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Abstract - We present and compare five approaches for
synthesizing and relighting real 3D surface textures. We
adapted Efros’s texture quilting method and combined it
with five different relighting representations, comprising:
a set of three photometric images; surface gradient and
albedo maps; polynomial texture maps; and two eigen
based representations using 3 and 6 base images. We used
twelve real textures to perform quantitative tests on the
relighting methods. We develop a systematic qualitative
test for the assessment of the complete synthesis systems.
Our conclusion is that the cheaper gradient and three-
base-image eigen methods should be used in preference to
the other methods, especially where the surfaces are
Lambertian or near Lambertian.

1 Introduction
There is a growing interest in the synthesis and relighting
of 3D surface textures. Zalesny and Van Gool, in [23 &
24] present a multi-view texture model which can
synthesise new viewpoints. Shum and his colleagues [14]
used the CUReT database [4] to develop a method for the
generation of bi-directional texture functions (BTFs). In
[13] Leung and Malik proposed the use of 3D textons to
synthesize new images under arbitrary viewpoints and
illuminations. In later work, Tong et. al. also exploited the
idea of ‘textons’ and coupled this with a modified 2D
texture synthesis algorithm[19]. In [26], Dong and
Chantler proposed six inexpensive methods for the
synthesis of 3D surface texture based on the Lambertian
assumption. Essentially, it extended R1 synthesis
techniques to deal with three Rm space relighting
representations: height-based, gradient-based and image-
based.

In this paper we extend the comparison to include
one polynomial and two Eigen-based relighting methods.
In addition we develop a systematic two-part evaluation
process. First, we quantitatively assess the relighting
methods. Second we assess the complete approaches
using psychophysical experiments coupled with statistical
tests.

This paper is organised as follows. Section 2 briefly
describes the framework that we use for the synthesis of
3D surface texture images. Section 3 surveys and selects
the five relighting representations that we use. Section 4
introduces the basic synthesis technique that we employ.
Section 5 describes each approach in detail and their
corresponding assessments are presented in section 6.

2 Basic Framework
Our framework for 3D surface texture synthesis consists
of three stages:
1. Extraction of a suitable representation of the 3D

surface texture sample from a set of input images.

2. Use of the representation of the sample to synthesize a
description of a larger area of surface texture.

3. Rendering (or relighting) of the surface representation
according to a specified set of lighting conditions.

3 Surface Representations for Relighting
For the first stage of our system we need a simple and
cheap method of obtaining a parsimonious representation
of the sample 3D surfaces. This is a popular field of
research that has attracted many researchers. Dana and
Nayer [4] present a method for measuring BTFs (Bi-
directional Texture Functions) and BRDFs of a texture.
Leung and Malik [13] used the K-means algorithm to
obtain a vocabulary of 3D textons from 20 CUReT
textures. Nayar and Dana [5] proposed three BTF derived
models for 3D surface texture: a histogram model, a
correlation model and a principal component analysis
(PCA) model. Using Principal Components to represent
and relight 3D surface texture has an advantage that it
makes no assumptions about texture surface reflectance [5
& 10]. For Lambertian surfaces, images obtained for the
purposes of 3-image photometric stereo [2 & 21] can be
used to implicitly represent surface normal and albedo
maps. Shashua[18] proposes that a linear combination of
three images can be used to generate images of the
surface illuminated from a new directions.  Malzbender
et. al. [15] introduced Polynomial Texture Maps(PTMs),
to capture variations due to surface self-shadowing and
interreflection and have given impressive looking results.

Our aim is to develop techniques that can provide real-
time rendering when implemented in a consumer level PC
or laptop. This limits us to relighting approaches that (a)
use low dimensional representations, and (b) use simple
or common graphics calculations such as weighted sums
of base images. We have therefore selected the following
five methods, from the above, for further study:

3I: This method uses three images of the sample
texture taken at an illumination slant angle of 45° and
tilt angles of 0°, 90° and 180° [18].

Gradient: The 2nd method uses surface gradient and
albedo maps derived using photometric stereo [17].

PTM: This approach uses Polynomial Texture Maps
(PTM), due to Malzbender et. al. [15].

Eigen3: The fourth method uses the first three PCA
base images [10].

Eigen6: This is identical to the previous method except
that it uses the first six base images [10].



4 Synthesis methods
The 2nd stage of our framework synthesizes
representations of larger surface areas given a
representation of a sample texture. This achieved by
extending a 2D algorithm. That is we simply extend
synthesis in R1 or R3 to synthesis in Rm.

We have selected Efros and Freeman’s 2D image
quilting method [8] as the basis for our synthesis
approach.

We have made three small modifications to this
quilting algorithm. First, instead of locating the best-
matching block using search, we more often select the
corresponding neighbour of last selection. This
simplification dramatically increases the speed of the
algorithm without apparently affecting the output. It can
be seen as a simple extension of the algorithm in [1].
Second, we perform synthesis in Rm space, where m is the
dimensionality of the surface representation we are using.
Third, we use an error metric based on a sum of absolute
differences rather than more expensive L2 norm.

5 The Five Methods
The 3rd stage of our system takes the synthesized
representation of the larger area and relights it under
specified illumination conditions. This section briefly
describes each of the five candidate methods identified in
Section 3. They are the 3I, Gradient, PTM, Eigen3 and
Eigen6 methods. (With the exception of the 3I method, all
of the approaches use 36 input images.)

The 3I method
Under the assumption of Lambertian reflectance,
Shashua[18] proposes that a linear combination of three
base images can be used to generate new images under
different illuminant directions. Thus, the three sample
images can be used for synthesizing and relighting of 3D
surface texture. This method was first introduced in [26].

The Gradient Method
Photometric stereo commonly uses three images to
estimate the gradient and albedo maps of a Lambertian
surface [21]. Additional images lead to an over-
constrained system, which may be solved using least
squares techniques to provide potentially more accurate
solutions. Thus we use surface gradient and albedo maps
produced by 36 images using SVD to represent 3D
surface textures. By synthesizing and relighting surface
gradient and albedo maps, we can generate new images
under arbitrary illumination. We call this the Gradient
method.

The PTM Method
Malzbender proposed the use of a quadratic function (4)
as the base representation for relighting surfaces [15]. For
each sample texture, 6 coefficient maps (PTM) are
generated by using SVD to solve the over-determined
system for every location ),( yx . This method can

produce realistic results for those textures with self-
shadows and inter-reflections.

We use all 36 images to generate Polynomial
Texture Maps (PTMs) of the sample. These sample PTMs
are used to synthesise a new set of output PTMs (in R6

space).  New images under arbitrary illumination are

obtained by using the new lighting vector ),( yx ll  to

relight the output PTMs.

The Eigen3 & Eigen6 Methods
In these approaches we use 3 or 6 base images in eigen-
space to represent and synthesize 3D surface textures
[10]. We perform Singular-Value Decomposition (SVD)
on the 36D sample image space. The first 3 (or 6) base
images of the sample are used in R3 (or R6) space to
synthesize larger base images. The relighting process then
simply consists of generating linear combinations of these
new base images.

The advantage of using an eigen-space approach is
that we may synthesize textures with arbitrary reflectance
functions, although specular spikes will require large
numbers of base images.

Table 1. Summary of the 5 approaches

Approach 1st phase 2nd phase 3rd phase

3I

No processing
required in this

phase as the three
(a, b, c) images are

used directly

R3 synthesis
(produces 3

large photometric
images a’, b’, c’)

Image-based
relighting

(produces final
image)

Gradient

Produces
sample

gradient(p,q) and
albedo maps (al)
using all sample

images

R3 synthesis
(produces large
gradient and
albedo maps)

Gradient-based
relighting

PTM
Generates

sample Polynomial
Texture Maps

R6 synthesis
(produces large
Polynomial

Texture Maps)

PTM- based
Relighting

Eigen3

Generates 3
base images of

sample in eigen-
space

R3 synthesis
(produces large

eigen base images)

Eigen-based
relighting

Eigen6

Generates 6
base images of

sample in eigen-
space

R6 synthesis
(produces large

eigen-base images
)

Eigen-based
relighting

6 Assessment of results
We compare the five approaches in two stages. First, we
quantitatively assess the relighting methods. Second, we
assess the complete synthesis approaches using
psychophysical experiments coupled with statistical tests.

6.1 Quantitative Assessment of Relighting Methods
We can quantitatively assess relighting methods by
directly comparing relit images with their corresponding
real (input) images. We use 12 textures with reflectance
properties ranging from diffuse to strongly specular.
Some include shadows and interreflections.
    We evaluate the ability of these five methods in
predicting new images with illumination conditions that
differ from those used for the extraction of surface
representations. We employ a leave-one-out method,
which leaves one image out of the 36 images that we have
captured for each texture and tests it as an unknown. We
produce 36 relit images in total, which are compared with
36 original images to calculate the normalised rms error.

The results are compared using a normalised root
mean square difference (ε ) metric.
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kσ is the standard deviation of image k,

NM is the size of the images in pixels,
i(x,y) is the x,yth pixel of an input image,
r(x,y) is the x,yth pixel of a relit image,

The results of performing these comparisons are shown in
Figure 1.

From these results it can be seen that the 3I method
produces the worst performance. This is not surprising
given that it uses three input images whereas the other
four methods use 36.  The reason is that 3 images can
only produce accurate results when the textures have pure
Lambertian surfaces with no shadowing. Of the remaining
methods, two (Eigen6 & PTM) use more expensive R6

representations while Gradient & Eigen3 use R3. On
aggregate the Eigen6 method provides the best figure.
However, the performance of the PTM approach can not
really be separated from that of its cheaper Eigen3
competitor. It must be cautioned however, that these
numerical results may not necessarily agree with
qualitative judgements.
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Figure 1. Relighting results for the five methods

6.2 Qualitative Assessment of 5 Approaches
Despite the significant quantity of research on texture
synthesis approaches little has been published concerning
their assessment. Direct numerical comparison is difficult,
as the output textures have no conventional ground-truth.
The majority of researchers therefore simply display their
results alongside those of their competitors and leave the
comparison to readers [7, 20, 8, 22, 9 & 1]. Few provide
any experimental support. Copeland et. al. did use a
psychophysical experiment with ten observers to assess
the ability of a numerical error metric to model the
perceptual differences between texture patterns [3] but
very little has been published on the systematic
qualitative assessment of texture synthesis results per se.
We have therefore developed a simple qualitative
approach  which uses nonparametric statistical tests and
psychophysical experiments.

Five representative textures of different reflectance
functions and topology were selected. They included
surfaces that exhibited pure Lambertian reflectance,
Lambertian reflectance with shadows, and

interreflections. For each texture, we used each of the five
methods to synthesize two output images under
illumination of (tilt angleτ =60°, slant angleσ =60°) and
(tilt angleτ =120°, slant angleσ =60°). These images are
shown at the end of this paper (aaj, aas, ace, adc, add).

Ten human observers were asked independently to
rank the results for each of the five textures from the best
to the worst. No other instructions were given concerning
as to what qualities to look for when comparing methods.
We used Friedman’s nonparametric two-way Analysis of
Variance (ANOVA) and a multi-comparison method to
test their significance.

In our experiments we firstly wished to decide
whether there was any significant difference between the
performance of the methods. We therefore constructed a
matrix which contains one column for each method.  Each
column contains 50 rank data (10 observers x 5 textures).
Friedman’s test compares the means of these columns
(see [6] for more details).  The null hypothesis H0 is that
all five methods make no significant difference for
synthesis of 3D surface texture, while the alternative
hypothesis H1 is that at least one is different. The test
statistic is defined as:
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where:
b is total number of  rank data for each method (50)
k is  the number of methods to be compared (5),

and
jR  is the sum of rank data for each method.

The test result indicated that there is at least one method
which performs significantly differently from the others at
a confidence level of (1.0 - 2.3e-14) x 100% (effectively
100%).

We therefore used a multiple comparison test of
means that is designed to provide an upper bound on the
probability that any comparison will be incorrectly found
to be significant [12]. The result is shown in Figure 2.
Each group mean is represented by a small circle within
an interval. Two means are significantly different if the
associated intervals are disjoint, and are not significantly
different if their intervals overlap.

Based on the results of this test in which the
confidence levels of the intervals are 99%  ( 01.0=α )
we make the following observation. There are no
significant differences between the performances of the
Gradient, Eigen3, and Eigen6 methods. However, each of
these methods does outperform both 3I and PTM.
Although Eigen6 produced the best quantitative relighting
results, its qualitative performance in the synthesis
experiments was not significantly better than its two
nearest competitors: Gradient and  Eigen3. This maybe
because synthesis is performed in R6 space which is more
prone to matching errors.  These errors often introduce
discontinuities, which are particularly noticeable to
human observers. Finally, if low computational and
image-acquisition requirements have to be kept low then
the 3I method, that uses only three photometric images,
provides relighting at the cost of lower quality output.
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Figure 2. Multiple comparison test of the five methods.
Small circles and lines represent the group means and
their intervals. The horizontal axis indicates rank
values. Two means are significantly different if their
intervals are disjoint.

7 Conclusions
In this paper, by adding PTM and Eigen based methods,
we have extended the range of relighting techniques that
we have employed from 2 to 5. In addition we developed
a systematic qualitative test using a set of 12 real surface
textures.

All the methods used thirty-six images except for 3I
that only uses three. This reduced data usage was
reflected in the performance of this method, which is only
capable of rendering unshadowed Lambertian surfaces.
The six-base-image eigen method produced the best
quantitative relighting results and in particular it was
shown to be better at relighting specular surfaces.
However, in the qualitative tests, no significant
performance differences were detected between it and the
other two top performers: Eigen3 and Gradient. However,
the computational complexity of Eigen6 is approximately
twice that of these two R3 based competitors.
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Table 2. Synthesis and relighting results from the five methods for 12 textures. The left most images are the
samples, the remainder are synthesis results. Arrows indicate illumination directions  (τ =60° and τ =120°).
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