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Abstract - This paper introduces two novel approaches to 
estimate the clique potentials in discrete and multilevel 
realizations of Gibbs Markov random field (GMRF) 
models. The first approach employs a genetic algorithm 
(GA) in order to arrive at the closest synthesized image 
that resembles the original “observed” image. The Second 
approach is used to estimate the parameters of Gaussian 
Markov random field. Given an image formed of a 
number of classes, an initial class density is assumed and 
the parameters of the densities are estimated using the EM 
approach. Convergence to the true distribution is tested 
using the Levy distance. The segmentation of classes is 
performed iteratively using the ICM algorithm and a 
genetic algorithm (GA) search approach that provides the 
maximum a posteriori probability of pixel classification. 
During the iterations, the GA approach is used to select 
the clique potentials of the Gibbs-Markov models used for 
the observed image. The algorithm stops when a fitness 
function, equivalent to the maximum a posteriori 
probability, does not change.  The approach has been 
tested on synthetic data and is shown to provide 
satisfactory results. 
1 Introduction 
The subject of image modeling involves the construction 
of models or procedures of the specification of images. 
These models serve a dual role in that they can describe 
images that are observed and also can serve to generate 
synthetic images from the model parameters. We will be 
concerned with a specific type of image model, the class 
of texture models.  There are important areas of image 
processing in which texture plays an important area of 
image processing in which texture plays important role: 
for example, classification, image segmentation, and 
image encoding.  
Several schemes have been proposed in the computer 
vision literature to estimate the parameters of an MRF. 
For MRFs defined on pixel sites (e.g. texture modeling), 
these schemes have been applied with considerable 
success. For MRFs defined in edge sites (line variable 
used to denote discontinuity between adjacent pixels), 
however, the available parameter estimation techniques 
[1]-[5] are difficult to apply because of the lack of true 
edge labels. Also the Least squares (LS) method is not 
accurate [6]. 
In this paper we introduce two novel unsupervised 
approaches to estimate GMRFs parameters. In the first 
approach we use a genetic algorithm to minimize the error 
between the original image and regenerated image. In the 
second approach we estimate the model parameters that 

maximize posteriori probability of each pixel in given 
image. The MAP estimate is obtained using a combination 
of genetic search and deterministic estimation using the 
iterated conditional mode (ICM) approach of Besag (e.g., 
[7]). The desired estimate of the GMRF parameters is 
those corresponding to the MAP estimate.  
 

2.     Statistical Framework 
 

We first define some basic notation. We will use 
uppercase letters for random quantities and lowercase 
letters for their deterministic realization. Throughout this 
paper, we will assume that the observed image G  is 
considered as a composite of two random process: a high 
level process Gh ,  which represents the regions (or 
classes) that form the observed image; and a low level 
process Gl , which describes the statistical characteristics 
of each region (or class).  The representation G = (Gh, Gl) 
has been widely used in the image processing literature in 
the past two decades.  
The high level process (Gh) is a random filed defined on a 
rectangular grid S of N points, and the value of Gh will be 
written as h

sG . Points in Gh will take values in the set 
{1,…,M}, where M is the number of regions (or classes). 
Further, the conditional density function of Gl given Gh, is 
assumed to exist and to be strictly positive and is denoted 
by p(Gl|Gh). 
Finally, an image is a square array of pixels, or sites, { (i, 
j): 1≤ i ≤ L, 1≤ j ≤L}. We adopt a simple numbering of 
sites by assigning sequence number t = j + L(i - 1) to site 
s. This scheme numbers the sites row by row from 1 to L2, 
starting in the upper left.  
       

3.    Markov Random Field 
 

The study of Markov random fields has had a long 
history, beginning with Ising thesis on ferromagnetism 
[8]. Although it did not prove to be to be a realistic model 
for magnetic domains, it is approximately correct for 
phase-separated alloys, idealized gases, and some crystals. 
The model has traditionally been applied to the case of 
either Gaussian or binary variables on lattice. Besag [1] 
allows a natural extension to the case of variables that 
have integer ranges, either bounded or unbounded. These 
extensions, coupled with estimation procedures, permit 
the application of the Markov random field to texture 
modeling. In this paper, we build on the models described 
in Geman and Geman 1984 [9], Dubes and Jain 1988 
[10], Derrin and Elliot [6], and Farag and Delp [11]. 
The structure of the neighborhood system determines the 
order of the MRF. For a first order MRF the 
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neighborhood of a site consists of its four nearest 
neighbors. In a second order MRF the neighborhood of a 
site consists of the eight nearest neighbors. The clique 
structures for a 2nd MRF are illustrated in figure 1. The 
order coding of the neighborhood up to order five is 
shown in figure 2    
Definition: Gh is a Gibbs random field (GRF) with 
respect to the neighborhood system η ={ηs: s ∈ S} if and 
only if 
                                             

 

where Z is a normalizing constant called the partition 
function, T is a control parameter called temperature and 
U is the energy function of the form:  
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where VC is called a potential and is a function depending 

only on h

s
g , s ∈ C.  Only cliques of size 2 are involved in 

a pairwise interaction model. The energy function for a 
pairwise interaction model can be written in the form 
[10]: 
 

 
where H(a, b) = H(b, a), H(a, a) = 0, and N depend on the 
size of the neighborhood around each site. Function F (.) 
is the potential function for single-pixel cliques, and H(.,.) 
is the potential function for all cliques of size 2. For 
example, in the Derin-Elliott [10] model F(.), and H(.,.) 
are expressed as follows: 
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where I(a, b) = -1 if a = b and 1 if a ≠ b. 
The simulations in this paper are based on the Gibbs-
sampler approach of Geman and Geman [9](see also 
Derrin and Elliot [6] and Dubes and Jain [10]). A 
realization is generated as follows 
Algorithm I 
(1) Initialize the L by L image by assigning a color 

randomly from {0, 1, 2…, M-1} to each site. Call this 
initial coloring gh. 

(2) for s from 1 to L2 
(a) Compute probabilities p(gh) for gh = 0, 1, M-1 

         where p(gh) =  p( h
sG  = h

sg | h
rG  = h

rg , r∈η), for 
all s  ∈ S and {Gs, s ∈ S}∈Ω 

(b) Set the color of site s to gh with probability p(gh). 
(3) Repeat (2) Niter times. 
The convergence of this algorithm is assured if Niter is 
large enough. Figure 3 shows realization of Derin-Elliot 
model generated with Niter = 50, and using ten parameters 
coefficient corresponding to the second order 
neighborhood system. All are 64 X 64 images with α = 1, 
and each image consist of two classes. The images shown 

in figure 3 contain two binary classes. One can map each 
class to take gray level from 0 to 255 according to certain 
distribution (e.g., normal distribution N (µ, σ2).) as shown 
in figure 4. 
4 Model-based parameters estimation 

4.1 Parameter estimation for Discrete GMRF  
In this section we introduce an approach to estimate the 
parameters for discrete GMRF such as the images shown 
in figure 3. The main idea of our approach is to use the 
GA to generate coefficient of U(gh), and evaluate these 
coefficient through the fitness function. We will focus on 
first and second-order GMRF models, the approach can be 
readily generalized for higher order models as well. To 
build the genetic algorithm we define the following 
parameters (see Goldberg [12] for the terminologies of the 
genetic algorithm). 
1) Chromosome: A chromosome is represented in binary 

digits and consists of representations for model order and 
clique coefficients. Each chromosome has 41 bits. The 
first bit represents the order of the system. The remaining 
bits represent the clique coefficients, where each clique 
coefficient is represented by four bits (note that for first 
order system we estimate only five parameters, and the 
remaining cliques coefficient will be zero, but for the 
second order system we will estimate ten parameters). 
2) Fitness: We defined the fitness of the individual as 
follow: 

Error = |j)O_image(i, - j)G_image(i,| , 
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where G_image is the regenerated image using the 
estimated parameters for the cliques, O_image is the 
original image 
3) GA Process. First, the initial population was randomly 

generated from a sequence of zeroes and ones. Next, 
the fitness of each individual was calculated. Then 
crossover and mutation is applied to generate the next 
population [12].  

Algorithm II 
 (1) Generate the first generation which consists of 30  

chromosomes. 
(2) Use Algorithm I to generate image corresponding to 

each chromosomes, and use original image as an 
initial image  

(3) If the Fitness value is equal to 1010, then stop and the 
chromosome, which gives this value, is the desired 
solution (If there are two chromosomes give the same 
fitness value we select the chromosomes which 
represent lower order system). 

(4) If the fitness values for all chromosomes in the first 
generation do not satisfy the required condition, go to 
2.  

The above algorithm was applied on the six textures 
shown in figure 3. Table 1 shows the original parameters 
and estimated parameters for each image. Figure 5 shows 
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the original image and the regenerated image using the 
estimated parameters. From these results we note that the 
estimated parameters are very close to original parameters, 
also the regenerated images close to the original images. 
These results are more favorable than the least square 
approach results in [6] and Markov Chain Monte Carlo 
(MCMC) in [13]. We also note that our method estimates 
10 parameters while the results in [6] and [13] were based 
on four parameters only. Table 2 shows comparison of our 
results with the results shown in [13].  On the first texture 
shown in figure 3, the Genetic algorithm converged to the 
solution after 15 to 20 generation, which took two-three 
minutes on a PC with an Intel 2.2 GHz processor. 

Table 2: MRF estimation using different methods 
 

Textures Methods θ1 θ2 θ3 θ4 
Original 0.3 0.3 0.3 0.3 

LS 0.1152 0.152 0.1867 0.1444 
MCMC 0.3478 0.2762 0.296 0.2877 

σ 0.0266 0.0165 0.0130 0.0086 

 
Texture1 

Our 
results 

0.2780 0.2900 0.289 0.291 

 
4.2 Parameter estimation for Gaussian 
      Markov Random Field  
A typical outline for statistical-based image parameters 
estimation is as follows (e.g., [11], [14], [15]): The 
observed image process G is modeled as a composite of 
two random processes, a high level process Gh and a low 
level process Gl , that is, G = (Gh , Gl). Each of the three 
processes is a random field defined on the same lattice S.  
The maximum a posteriori (MAP) parameters estimation 
involves the determination of  gh that maximizes P(Gh = gh 
|Gl = gl) with respect to gh By Bayes’ rule, 
P(Gh = gh |Gl = gl) = [P(Gl 
                              = gl|Gh= gh)P(Gh= gh)]/P(Gl= gl).    
Since the denominator of Eq. 5 does not affect the 
optimization, the MAP parameters estimation can be 
obtained, equivalently, by maximizing the numerator of 
Eq. 5 or its natural logarithm; that is, we need to find gh  

which maximizes the following criterion: 
             Γ(Gl,Gh)= lnP(Gl= gl|Gh= gh)+ lnP(Gh= gh).    
The first term of Eq. 6 is the likelihood due to the low 
level process and the second term is due to the high level 

process. Based on the models of the high level and low 
level processes, the MAP estimate can be obtained.  
In order to carry out the MAP parameters estimation in 
Eq. 6, one needs to specify the parameters in the two 
processes. A popular model for the high level process is 
the Gibbs-Markov model, with the probability density 
function as shown in Eq. 1. In this paper we will assume 
the model for the low level process to a mixture of normal 
distributions which follow the following equation: 
                                                        
 

where M is the number of normal mixture(classes), and π 
is the mixing proportion. 
In order to determine the number of classes for high level 
image and estimate the mean and variance for each class 
for low level image we will consider the low level process 
is a mixture of normal distributions and we will use the 
Expectation-Maximization (EM) algorithm to estimate the 
mean, the variance, and the proportion for each 
distribution (see for example [15] on application of EM 
algorithm for image classification). 
We run the algorithm shown [15] in the first image in 
figure 4. The results are shown in figure 6. As can seen 
from figure 6 at m = 2 maximize the conditional 
expectation so we will select m = 2 for the mixture model. 
Also it is clear from Table 3 that the original parameters 
of the mixture are close to the estimated parameters. 
In order to determine the convergence between the 
empirical distribution (which is computed from the low 
level image), and the reference distribution (mixture of 
normal distribution, which their parameters are estimated 
using EM algorithm) we will compute the Levy distance 
between the empirical distribution (Pemp) and the reference 
distribution (Pref) for each class. The Levy ρ ( empP , refP ) 

distance is defined as: 
ρ ( empP , refP ) = inf{ξ >0: ∀gl empP (gl-ξ) - ξ≤ refP (gl)                               

                           ≤ empP (gl + ξ) + ξ}. 

For example, figure 7 shows the empirical density 
function of the mixture and reference density function of 
the mixture. Figure 8 shows the empirical distribution of 
the mixture and reference distribution for the mixture. For 
these distributions  ρ ( empP , refP ) = 0.0001. Since as ρ 

( empP , refP )  approach to zero Pemp(gl) converge weekly to 

Pref (gl), then above result indicate that the Pemp (gl) 
converge to Pref (gl), and this proves that the choosing 
mixture of normal distributions to be the model for the 
low level process is correct.   
Table 3 shows The Estimated, and the original parameters 
Parameter µ1 µ2 2

1σ  2
2σ  

Estimated 31.4570 153.0938 153.4138 157.5943 
original 31.9027 152.8616 149.8957 158.09 

(7) 

(8) 

(5) 

Table 1: Original and estimated parameters. 
 
 

NO. Original 
Parameters Estimated Parameters 

1 [1 0.3 0.3 0.3 0.3 0 0 
0 0 0] [1 0.27 0.29 0.2 0.29 0.01 0.09 0 0 0] 

2 [1 1 1 -1 1 0 0 0 0 0] [0.9  0.9 -0.99 0.9 0.9 0 0 0 0 0] 
3 [1 2 2 -1 -1  0 0 0 0 0] [1 1.99 1.97 -0.95 -0.94 0 0 0 0 0] 

4 [1 1 1 -1 1 -1 1 -1 1] [1 1 0.9 0.9 -0.8 0.99 0.98 1 0.93 0.9] 

5 [1 1 1 -1 1 -1 1 -1 1 1] [0.9 0.7 0.9 -0.8 1 -0.9 0.8 -0.9 0.9 1] 
6 [1 -1 1 1 1 1 1 1 1  -1] [1 -0.99 1 1 1 1 1 1 1  -0.98] 
7 [1 1  -1 1 1 1 1 1 1 -1] [1 1  -0.95 1 1 1 1 1 1 -0.97] 
8 [1 1 1 1 1 1 1 1 1 -1] [1 1 1 1 1 1 1 1 1 -0.91] 

(6) 
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In order to estimate the parameters of the model of GMRF 
that maximizes Eq. 6, we will use the iterative conditional 
mode (ICM) approach [7], and genetic algorithm (GA). 
The ICM is a relaxation algorithm to find a global 
maximum. The algorithm assumes that the classes of all 
neighbors of a pixel g are known. The high level process is 
assumed to be formed of M-independent processes each of 
the M processes is modeled by Gibbs-Markov random field 
which follow Eq. 1. Then gl can be classified using the fact 
that p( h

ig | l
ig ) is  proportional to p( l

ig | h
ig )p( h

ig |ηs); i.e.,  

                   p( h
ig | l

ig )α p( l
ig | h

ig )p( h
ig |ηs),              

where ηs is the neighbor set to site S belonging to class 
h
ig , p( h

ig |ηs) is computed from Eq. 1 
To get initial labeling image (high level process), we will 
use Bayes classifier (see [16] for more details about Bayes 
classifiers ). 
In order to run ICM, first we must know the coefficient of 
potential function U(gh), so we will use GA to path the 
coefficient of U(gh), and evaluate these coefficients 
through the fitness function.   
We will use the same structure of GAs that described in 
the section 4.1 and using Eq. 6 to be the fitness function of 
each chromosome. 
Algorithm III 
(1) Generate the first generation which consists of 30 

chromosomes 
(2) Apply the ICM algorithm for each chromosome on 

each image and then compute the fitness function for 
each chromosome   

(3) If the fitness value for all chromosomes do not change 
from one population to another population, then stop 
and select the chromosome, which gives maximum 
fitness value (If there are two chromosomes give the 
same fitness value we select the chromosomes which 
represent lower order system). Otherwise go to step 2. 

We run the previous algorithm on the six textures had 
shown in figure 4. Table 4 shows the original parameters 
and estimated parameters for each image. Figure 9 shows 
the original image and the regenerated image using the 
estimated parameters. From these results we note that the 
estimated parameters are very close to original parameters, 
also the regenerated images close to the original images.  
5     Conclusion 
In this paper we introduced two novel approaches to 
estimate the clique potentials in Gibbs-Markov image 
models. First approach is used to estimate the clique 
potentials for discrete Gibbs Markov random field 
(GMRF) by using genetic algorithms (GAs). Second 
approach is used to estimate the parameters of Gaussian 
Markov random field. The outline steps of the second 
algorithm are as follow.  Given an image formed of a 
number of classes, an initial class density is assumed and 
the parameters of the densities are estimated using the EM 
approach. Convergence to the true distribution is tested 
using the Levy distance.  
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Table 4: Original and estimated parameters. 
 

NO. Original 
Parameters Estimated Parameters 

1 [1 0.3 0.3 0.3 0.3       
0 0 0 0 0] [0.9 0.25 0.27 0.28 0.21 0.01 0.07 0 0 0] 

2 [1 1 1 -1 1 0 0 0 0 0] [0.86  0.96 -0.91 0.9 0.8 0 0 0 0 0] 
3 [1 2 2 -1 -1  0 0 0 0 0] [1 1.97 1.96 -0.93 -0.92 0 0 0 0 0] 
4 [1 1 1 -1 1 -1 1 -1 1]] [0.9 0.8 0.9 0.8 -0.8 0.8 0.88 1 0.81 0.99] 
5 [1 1 1 -1 1 -1 1 -1 1 1] [0.91 0.9 0.8 -0.92 -0.98 0.8 -0.9 0.99 1] 
6 [1 -1 1 1 1 1 1 1 1  -1] [1 -0.9 0.8 0.82 0.79 0.9 0.8 0.9 0.9  -0.9] 
7 [1 1  -1 1 1 1 1 1 1 -1] [0.9 0.8  -0.9 0.9 0.8 0.8 0.9 0.9 0.9 -0.9] 
8 [1 1 1 1 1 1 1 1 1 -1] [1 0.8 0.88 0.98 0.99 0.96 0.95 1 1 -0.91] 
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Figure 1: Clique structure for the 2nd order neighborhoods 

    
 
 

                        Figure 2:  Neighborhood System for GMRF
 

Figure 4:  Examples of 64 X 64 
realizations of Auto-normal random 

process for various values of (α, θ1, θ2, 
θ3, θ4, θ5, θ6, θ7, θ8, θ9). 

 

   

Figure 3: Examples of 64 X 64 
realizations of Derin-Elliott model for 
various values of (α, θ1, θ2, θ3, θ4, θ5, 

θ6, θ7, θ8, θ9). 

 

 
Figure 5: Original and synthesized 

images using the parameters in Table 1. 
 

Figure 6 Evolution of Conditional Expectation 
with the number of mixture assumed in the 
scene for the absolute error shown in figure 

Figure 7  Empirical density function of the mixture pemp(g), 
and Reference density function of the mixture pref 

 
Figure 8  Empirical Distribution Pemp(g),  

and Reference Distribution Pref(g). 
Figure 9 Original and synthesized images using the 

parameters in Table 5. 


