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Abstract

Artificial biochemical networks (ABNs) are a class of computational dynamical system whose architectures are motivated
by the organisation of genetic and metabolic networks in biological cells. Using evolutionary algorithms to search for
networks with diagnostic potential, we demonstrate how ABNs can be used to carry out classification when stimulated
with time series data collected from human subjects with and without Parkinson’s disease. Artificial metabolic networks,
composed of coupled discrete maps, offer the best recognition of Parkinsonian behaviour, achieving accuracies in the
region of 90%. This is comparable to the diagnostic accuracies found in clinical diagnosis, and is significantly higher
than those found in primary and non-expert secondary care. We also illustrate how an evolved classifier is able to
recognise diverse features of Parkinsonian behaviour and, using perturbation analysis, show that the evolved classifiers
have interesting computational behaviours.
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1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disor-
der caused by the loss of dopamine-generating neurones
in the central nervous system. The symptoms of PD are
variable, but all patients develop some form of movement
abnormality—such as slowness of movement (bradykine-
sia), tremor, rigidity, and impaired balance. Because of its
symptomatic diversity, and symptom overlap with other
diseases, PD is sometimes difficult to diagnose, with clin-
ical misdiagnosis rates in the region of 25% (Bajaj et al.,
2010; Levine et al., 2003).

Artificial biochemical networks (ABNs) are a class of
computational automata whose form and function are
modelled upon the biochemical networks found within bio-
logical organisms. In (Lones et al., 2010) and (Lones et al.,
2011) we developed various ABN models, and showed how
they display rich computational behaviours when coupled
to a spectrum of dynamical systems. In this work, we ap-
ply ABNs to the problem of classifying whether a patient
has PD, based on analysis of their movement data. This
approach is based on the hypothesis that ABNs can be
evolved which will react to the dynamics found within a
movement time series, causing them to alter their internal
state in an observable manner. It is comparable to other
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uses of computational dynamical systems to perform time
series classification, for example recurrent neural networks
(Hüsken and Stagge, 2003) and reservoir computers (Ver-
plancke et al., 2010).

In this paper, we consider two different types of ABN—
artificial metabolic networks (AMNs) and artificial genetic
networks (AGNs)—and present results showing that ABNs
are able to discriminate between the movements of PD
patients and control subjects with accuracies in the region
of 90%. In particular, we find that discrete map based
AMNs provide the best classification accuracy, often using
only a small number of discrete maps. To illustrate this,
we look at the computational behaviour of an AMN which
is composed of only four discrete maps, showing how it
uses dampened chaotic dynamics to recognise a range of
Parkinsonian behaviours.

The paper is organised as follows: Section 2 introduces
the ABN architectures used in this work; Section 3 gives
a summary of materials and methods; Section 4 presents
classification results; Section 5 provides a detailed analysis
of an evolved classifier; and Section 6 concludes.

2. Artificial Biochemical Networks

We use the two ABN architectures described in Lones
et al. (2010), with only minor modifications to reflect the
different problem domain addressed in this work.

An artificial metabolic network (AMN) is an abstract
model of a cell’s metabolism, capturing the idea of a set
of enzyme-mediated reactions manipulating the concentra-
tions of a set of chemicals over a period of time. AMNs
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(a) AMN: IC={c0}, OC={c7} (b) AGN: IG={g0}, OG={g7}

Figure 1: Artificial biochemical network models.

are comparable to other computational models of cellular
metabolism, such as artificial chemistries (Dittrich et al.,
2001) and P systems (Pǎun, 2000), but with a focus on
computational efficiency rather than accurate modelling
of their biological analogue.

Formally: AMN = 〈C,E,LC , IC , OC〉, where:
C is the set of chemical concentrations {c0, ..., cn : R}.
E is the set of enzymes {e0, ..., en : ei = 〈Si, Pi,mi〉},
where:

Si ⊆ C is the enzyme’s substrates.
Pi ⊆ C is the enzyme’s products.
mi : Rn → Rn is the substrate-product mapping.

LC is an indexed set of initial chemical concentrations,
where |LC | = |C|.
IC ⊂ C is the set of chemicals used as external inputs.
OC ⊂ C is the set of chemicals used as external outputs.

An artificial genetic network (AGN) is an abstract model
of a biological genetic regulatory network, capturing the
idea of a set of genes regulating one another’s expres-
sion levels over a period of time. The AGN model used
in this work generalises the more common Boolean net-
work model (Kauffman, 1969) by using continuous-valued
expression levels and continuous-valued regulatory func-
tions. This makes the networks more suited to working
with continuous-valued data, and also means that smaller
networks can have more complex dynamics than Boolean
networks of an equivalent size.

Formally: AGN = 〈G,LG, IG, OG〉, where:
G is the set of genes {g0, ..., gn : gi = 〈λi, Ri, fi〉}, where:

λi : R is a gene’s expression level.
Ri ⊆ G is a gene’s regulatory inputs.
fi : Rn → R is a gene’s regulatory function.

LG is an indexed set of initial expression levels, where
|LG| = |G|.
IG ⊂ G is the set of genes used as external inputs.
OG ⊂ G is the set of genes used as external outputs.

AMNs and AGNs are executed in a similar manner.
First, their numerical state components are initialised from

LC or LG, respectively. During the course of execution, ex-
ternal inputs are delivered by explicitly setting the values
of state components indicated in IC or IG at appropriate
intervals. At each time step, the functional components
(enzymes or genes, respectively) synchronously modify the
values of the state components. At the end of execution,
outputs are captured from the final concentrations of the
state components specified in OC or OG.

In an AGN, each functional component operates upon
one state component. In the AMN, however, the func-
tional components operate upon potentially overlapping
subsets of chemical concentrations. In situations where
the same chemical is produced by multiple enzymes, the
chemical’s new concentration is the mean output value of
all contributing enzymes.

In addition, AMNs obey a mass conservation law, where
the sum of chemical concentrations are constrained to re-
main constant over time. The use of mass conservation
more closely reflects biological systems, where mass bal-
ance results in indirect regulatory interactions between
chemical reactions. Conservation is carried out after each
iteration of the network by uniformly scaling concentra-
tions so that: (∑

ci∈C

ci

)
= 0.5|C| (1)

However, chemicals which have reached saturation (c = 1)
and those which are not present in the chemistry (c = 0)
remain unchanged, preserving these special states.

2.1. Functional Components
The behaviours of functional components (i.e. enzyme

mappings mi and gene regulatory functions fi) are cho-
sen from a set of continuous non-linear mappings (Lones
et al., 2011). These comprise a standard sigmoidal logis-
tic function and also four discrete maps: the logistic map,
Chirikov’s standard map, the baker’s map, and Arnold’s
cat map. In previous work, we have found that discrete
maps are beneficial when evolving a range of dynamical
behaviours. The chosen maps capture a range of dynam-
ical phenomenon which occur in many types of physical
and biological systems. Whilst they do not directly repre-
sent processes occuring in the nodes of biological biochem-
ical networks, they have been used to simulate biological
dynamics (Kaneko, 1992), and have been used as com-
putational elements within other kinds of computational
dynamical system (Andersson and Nordahl, 1998).
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The logistic map (May, 1976) is a model of population
growth which displays both ordered and chaotic behaviour
depending upon the value of a parameter r ∈ [0, 4]:

xn+1 = rxn(1− xn) (2)

Chirikov’s map (Chirikov, 1969) is a model of Hamilto-
nian systems whose phase spaces have co-existing ordered
and chaotic regimes. The dynamics move from majority-
ordered to majority-chaotic as the parameter k ∈ [0, 10]
increases:

xn+1 = (xn + yn+1) mod 1

yn+1 = (yn −
k

2π
sin (2πxn)) mod 1

(3)

The baker’s map (Tél and Gruiz, 2006) and Arnold’s cat
map (Arnold and Avez, 1968) are both archetypal models
of chaotic phenomenon that occur in a range of systems.
They both map points within the unit square and are de-
fined, respectively:

(xn+1, yn+1) =
{

(2xn, yn/2) 0 ≤ xn ≤ 1
2

(2− 2xn, 1− yn/2) 1
2 ≤ xn < 1 (4)

(xn+1, yn+1) = ([2xn + yn] mod 1, [xn + yn] mod 1) (5)

3. Materials and Methods

3.1. Movement Data

Movement data was collected at the Leeds Teaching
Hospitals NHS Trust, UK, from 49 PD patients and 41
age-matched controls as they performed a finger tapping
task, a standard clinical means of measuring bradykine-
sia. The study was granted approval by the National Re-
search Ethics Service and Medicines and Healthcare Prod-
ucts Regulatory Agency. Written consent was obtained
from all subjects and their medications were not altered
for the study. There was no history of neurological disease
amongst the control subjects.

Each subject was asked to tap their thumb and index
finger repeatedly for a duration of 30 seconds, using their
dominant hand. Subjects were asked to carry out this
exercise as rapidly as possible, separating the finger and
thumb as far as they could comfortably achieve. Move-
ment data was collected using a Polhemus Patriot elec-
tromagnetic motion tracking device, whose probes were
attached to the subject’s thumb and index finger whilst
carrying out the task. Based on the displacement between
thumb and index finger, an acceleration time series was
then calculated for each subject. These were divided into
training and test sets in the ratio 2:1, with the training
data used for fitness evaluation and the test set used to
measure classifier generality.

3.2. Preprocessing

Each displacement time series was truncated to one
standard deviation around the mean, scaled to the interval
[0,1], down-sampled by a factor of 2, and smoothed using
a moving average filter of size 2. We have found this to be
an effective method for removing absolute amplitude infor-
mation, which acts as a local optimum in the classification
landscape, and for emphasising the shape of the signal,
which encourages the evolution of more general classifiers.

3.3. Classification

An acceleration time series is input to an AMN by set-
ting the concentration of the first chemical (c0), and to
an AGN by setting the expression of the first gene (λ0).
The time series is delivered to a network one value at a
time, each followed by tb iterations of the network. Once
the whole time series has been delivered, the network is
executed for another ta iterations in order to allow the
dynamics to settle. At this point a single output value is
read from the final concentration of the last chemical (cn)
or the final expression of the last gene (λn). Using a suit-
able threshold, this output value can then be interpreted
as the network’s classification for the time series.

3.4. Evolutionary Algorithm

We used a standard generational evolutionary algorithm
(EA) (Luke, 2009) to find ABNs that can classify the move-
ment data. The number of genes/enzymes, the connectiv-
ity between genes/enzyme/chemicals, the functional com-
ponents (including their parameters), and the settling pa-
rameters (tb and ta) are all encoded as a linear string and
evolved (Lones et al., 2010). The EA uses tournament se-
lection of size 4, a single elite, a point mutation rate of
6% and uniform crossover with a crossover probability of
15%. Initial solution sizes were made intentionally short,
between 2 and 10 genes/enzymes, to encourage parsimony.
Since evolutionary algorithms are stochastic algorithms,
we carried out 50 runs for each parameter set to measure
the distribution of classifier performance. Each evolution-
ary run had a population size of 200 and a generation limit
of 100.

3.5. Fitness Function

Each evolved ABN was stimulated with movement time
series from the training set, producing a real-valued out-
put for each subject. A Receiver Operating Characteristic
(ROC) (Fawcett, 2006) curve was then constructed, show-
ing the different trade-offs between specificity and sensi-
tivity for different thresholds on the ABN’s output range.
From this, the area under the ROC curve (AUC) was cal-
culated, and used as the ABN’s fitness score. An AUC
of 0.5 is no better than randomly assigning movement se-
quences to classes, and AUCs of 0 and 1 both indicate fully
correct class assignments, but with opposite orderings of
the classes within the classifier’s output range. During
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Figure 2: Diagnostic power of evolved ABNs on both the train-
ing (white) and test (grey) sets. Notched box plots show sum-
mary statistics over 50 runs. Overlapping notches indicate
when median values (thick horizontal bars) are not significantly
different at the 95% confidence level.

tournament selection, AUCs below 0.5 are normalised to
the range [0.5, 1] by subtracting from 1.

More generally, AUC is equivalent to the probability
that a classifier will generate a higher output value for a
patient than for a control subject. This relationship to
probability means that AUC is easy to interpret, making
it a popular metric in medicine (Kraemer et al., 2003).

4. Results

We first compared the ability of the evolutionary al-
gorithm to find AMN and AGN classifiers which could
correctly distinguish between PD patients and controls.
Fig. 2 shows the resulting distribution of training and test
scores for the best classifiers from each of 50 evolutionary
runs for AMNs and AGNs with various function sets. This
shows that, on average, AMNs perform better than AGNs
in terms of both maximum and mean training and test
set scores. It is also evident that the best ABNs with dis-
crete maps perform better than the best ABNs containing
only sigmoids. Moreover, sigmoidal AGNs—which closely
resemble recurrent neural networks (Lones et al., 2013)—
perform least well at this task.

The best overall classifier is a discrete map AMN with
a test set AUC of 0.95. This corresponds to classifica-
tion accuracies of around 90%. Whilst slightly lower than
the 92-94% accuracy of diagnosis performed by experts in
movement disorders, this is considerably higher than the
diagnostic accuracies found in non-expert secondary care
(75%) and community care (47%) (National Institute for
Health and Clinical Excellence, 2006).

Most AMNs have high classification accuracy on the
training set. The best AMN classifiers also generalise well
to the test set, as shown by the upper part of the dis-
tributions in Fig. 2. However, the wide distribution of
test set AUCs suggests that a significant proportion of the
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Figure 3: Solution lengths of the best discrete map AMNs from
50 evolutionary runs, showing (a) the effect that solution length
has upon generality, and (b) the frequency of evolved solution
lengths.

evolved AMNs do not generalise well to unseen data. Fig.
3a shows that this is largely due to a strong correlation
between an AMN’s length (i.e. number of enzymes) and
the AMN’s ability to generalise to the test set. This is
exacerbated by the evolutionary algorithm’s tendency to
explore shorter solutions, as shown in Fig. 3b. This is a
surprising result, since poor generality is often associated
with over-learning, which is normally present in over-sized,
rather than under-sized, classifiers.

5. Analysis of an Evolved Classifier

However, it is also notable that a number of relatively
short AMNs did generalise well to the test set, suggest-
ing that relatively small networks can effectively classify
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(a) The internal structure of the AMN, showing how the dis-
crete maps are coupled together through the chemical concen-
trations. STD=standard map (with value of k in parentheses),
BAM=baker’s map, TLM=tunable logistic map (chemical con-
centration used to set r in parentheses).
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(b) ROC curves, showing the trade-off between false
positive and false negative predictions as the thresh-
old on the classifier’s output, c9, is varied.

Figure 4: An example of an evolved AMN.

Parkinson’s disease. In order to gain a better understand-
ing of how these evolved classifiers work, we analysed the
behaviour of one of the best performing short AMNs, a
length-4 AMN with an AUC of 0.92 across the whole data
set. Fig. 4b shows ROC curves for the AMN’s classification
of the training and test sets. More generally, the purpose
of this case study is to show that (i) we can get some in-
sight into the workings of these evolved artefacts, (ii) they
appear to be doing something sensible with respect to the
problem domain, and (iii) they are doing something that is
interesting from a computational and dynamical systems
perspective.

5.1. Network structure

Fig. 4a shows the structure of the evolved network. It
comprises four coupled discrete maps. The two standard
maps both have k values that place them in a predomi-
nantly chaotic phase. The baker’s map is always chaotic.
The tunable logistic map has its parameter r set by the
concentration of the output chemical c9, whose typical

range of values place the map in a cyclic phase. A knock-
out analysis confirms that each map plays an important
role in the network’s overall behaviour: removal of each
map in turn reduces the AUC to 0.71, 0.72, 0.78 and 0.61
(with respect to the left-to-right ordering shown in Fig.
4a). Hence, the collective dynamics of the network are de-
termined by the coupled behaviour of three chaotic maps,
one ordered map, and the incoming time series.

The network has 10 chemicals. The input time series is
introduced a value at a time by setting the concentration
of c0. The network is iterated twice in between each in-
put. Once the input series has been depleted, the network
undergoes a settling period of 19 iterations. The classifi-
cation is then read from the final concentration of c9.

Four of the chemical concentrations are directly manip-
ulated by the discrete maps. In addition, the concentra-
tions of all chemicals are indirectly coupled by the net-
work’s conservation law. It is interesting to note that the
output chemical c9 is not directly updated by any of the
maps. Instead, its concentration is determined indirectly
as a function of dynamical processes operating upon the
other chemicals. c6 and c8 are both recurrently connected
and act as hubs within the network’s dynamics. The con-
centrations of the other chemicals are derived from these,
either directly or indirectly.

5.2. Dynamical behaviour

Fig. 5 shows the network’s behaviour when it is stimu-
lated with data from a variety of Parkinson’s patients and
disease-free controls, showing time series plots of chemi-
cal concentrations at the network’s input (c0), output (c9)
and its two hubs (c6 and c8). In general, the final value
of the output chemical is lower for Parkinson’s patients
and higher for controls, following a logarithmic distribu-
tion with an optimal decision threshold around 1.0×10−2.

The time series trends for c9 suggest that the network
is integrating local deviations from normality that are
present in the input, using these to push down the concen-
tration of the output. Examples are shown for four differ-
ent patients, each displaying different tapping behaviours.
In Fig. 5a, the patient’s tapping is highly irregular, and
this causes the output to be pushed down to one of the
lowest levels seen within the data set. In Fig. 5b, the
patient’s tapping is only slightly impaired, but displays
fatigue about half way through the time series. This also
causes the output to be pushed down relatively low. Figs.
5c–d are less visibly impaired, with only minor deviations
in terms of frequency and consistency. These exert less
pressure upon the output level, but still cause it to be
pushed down significantly below the decision threshold.
Hence, there does not appear to be a single feature that is
used by the network as a basis for classification, but rather
a combination of features.

The two examples of controls (Figs. 5e–f) both appear
visibly normal, and the output in both cases is consider-
ably above the decision threshold. However, for Fig. 5f,
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(a) Patient, irregular, output=6.0×10−13

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

In

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C6

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C8

 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C9

(b) Patient, amplitude fatiguing, output=8.8×10−11
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(c) Patient, slight impairment, output=6.4×10−4

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

In

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C6

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C8

 0.001

 0.01

 0.1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C9

(d) Patient, slight impairment, output=9.1×10−4

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

In

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C6

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C8

 0.1

 0  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900

C9

(e) Control, normal, output=1.0×10−1
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(f) Control, normal, output=2.6×10−1

Figure 5: Example of the evolved AMN in Fig. 4 processing movement data (In) from subjects (a–d) with and (e–f) without
Parkinson’s. The lower three plots in each case show how chemical concentrations at important points in the network change as
the input sequence is processed. c9 (lowest plot) is the designated output chemical, whose final concentration is interpreted as the
classifier’s output. Note that the plots for c9 use a logarithmic axis. The examples are in reverse order of output magnitude. The
optimal threshold for separating patients from controls is ∼ 1.0× 10−2, assuming equal weight given to specificity and sensitivity.
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(a) Amplitude response (changing from 0.5 to 0.25)
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(b) Frequency response (changing from 1Hz to 2Hz)
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(d) Square wave

Figure 6: Perturbation analysis of the evolved AMN in Fig. 4, showing the network’s time series behaviour when perturbed with
waveforms of different shape, amplitude and frequency.

the output level is near, and sometimes below, the thresh-
old for much of the network’s time evolution. The output
classification, in this case, is determined by the network’s
behaviour during the final settling period, which brings it
well above the threshold. This is a relatively uncommon
case, but it does suggest that the network is not merely
counting occurrences of a particular pattern but also tak-
ing into account its global dynamics.

As mentioned earlier, the concentration of the output
chemical is a result of the dynamical processes occurring
at c6 and c8. A visual inspection of the time series plots
suggests that there is a relationship between the concen-
trations of these chemicals and the input data, but the
relationship appears to be highly non-linear. This is unsur-
prising, given that these concentrations are a result of in-
teractions between the input signal and 4 non-linear maps,
3 of which are chaotic. However, it provides little insight
into the computational behaviour of the network.

5.3. Waveform Response
Another way of understanding the dynamical properties

of the network is to remove the input signal and analyse the
network’s response when perturbed using known functions.

Fig. 6 shows how the network responds to a variety
of waveforms, illustrating the effect that amplitude, fre-
quency, noise and shape have upon the network’s output
response. Changes of amplitude have the largest effect in
general, with an exponential downward trend in the out-
put level as the amplitude drops below ∼0.35, for a 1Hz
sine wave (Fig. 6a). This supports the interpretation that
the AMN responds to the amplitude fatiguing sometimes
observed in PD patients. Frequency also has an effect
upon the output level, although less so than amplitude.
For instance, in Fig. 6b, a doubling in frequency signifi-
cantly decreases the downward trend. This may indicate
a response to bradykinesia or tremor components, both of
which can affect a subject’s tapping frequency. The shape
of the waveform also has a significant influence upon the
output response. In Fig. 6c, we deformed the sine wave
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(c) Impulse magnitude 0.5
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(d) Impulse magnitude 0.6

Figure 7: Perturbation analysis of the evolved AMN in Fig. 4, showing the network’s time series behaviour (a) when input is
removed, and (b–d) when the network is perturbed with an impulse approximately half way through the network’s time evolution.

with a small amount of noise. In response, the output
level decreased by another order of magnitude, with re-
spect to the undistorted sine wave. This could indicate a
response to the irregular movements of PD patients.

It is notable that the dynamical activity of the network
is generally cyclic, with the same frequency as the stimu-
lating waveform. The shape of the waveform at c8 is rela-
tively stable. The waveform at c6, by comparison, changes
shape considerably depending upon the properties of the
stimulating waveform. Its response to noise is particularly
interesting, with small deformations of the sine wave lead-
ing to large spikes in the time series of c6. These spikes
presumably propagate through the network, resulting in
the lowering of the output response.

This analysis suggests that the network responds to
a combination of signal properties—including amplitude,
frequency and noise—which supports the analysis from
real human data. However, the acceleration waveforms
produced by humans are not sinusoidal, so there is a limit
to the generality of lessons learnt from this analysis. The

response to a square wave (Fig. 6d), for instance, is quali-
tatively different, with c6 displaying a cyclic response over
a longer time period, in addition to the stimulating fre-
quency.

5.4. Impulse Response

To further characterise the effect of noise, we carried
out an analysis of the network’s impulse response. Fig.
7a shows the dynamics of the network in the absence of
an input signal, i.e. when the concentration of c0 is not
manipulated externally. After an initial transient period,
during which the network displays chaotic behaviour, the
network converges to a fixed-point attractor. Figs. 7b–d
show what happens if an impulse is then introduced to the
network after it has reached this steady-state, i.e. when the
concentration of c0 is set to a particular value for a single
time step. In all three cases, this causes the network to
ring chaotically, then synchronise and settle to an ordered
attractor state.
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Figure 8: Time series behaviour of the evolved AMN in Fig. 4
with no input and no conservation.

It is particularly interesting to note that relatively small
changes to the impulse magnitude leads to the network
entering different attractors. Overall, the network’s re-
sponses suggest that, unperturbed, it enters a state that is
stable yet highly sensitive to input. Small changes in the
input then lead to relatively large dynamical responses.
This behaviour has certain commonalities with reservoir
computers (e.g. liquid state machines (Maass et al., 2002),
echo state networks (Jaeger, 2003)), where the general aim
is to create a dynamical system with dampened internal
dynamics but which maximally separates incoming signals.
This is despite the large structural differences between
reservoir computers and ABNs: reservoir computers are
large and only the linear output nodes are trained; ABNs
are small, and all the parameters are trained. In the case
of reservoir computers, damping is a property built into
the construction of the dynamical system; in the case of
ABNs, it is a property that is evolved.

Chaos is an innately controllable phenomenon, and we
can hypothesis that the sensitivity of this particular ABN
is a consequence of using chaotic discrete maps. This may
explain why discrete map-based AMNs work better than
sigmoidal AMNs for this particular problem: although net-
works of sigmoids are capable of expressing chaotic dy-
namics, it is much easier to evolve chaotic behaviour when
chaos is readily expressed by individual primitive func-
tions. However, chaotic behaviour can also be a disruptive
phenomenon. In this case, conservation appears to play
an important role in controlling chaos. As an illustration
of this, Fig. 8 shows the time evolution of the network
when the conservation law is not used. Unlike in Fig. 7a,
the chaotic dynamics do not become dampened, and dom-
inate the time evolution of the connected components of
the network.

6. Conclusions

In this paper, we have shown that artificial biochem-
ical networks can be used to recognise abnormal motor
function associated with Parkinson’s disease. The evolved
classifiers perform an objective diagnosis based upon data

collected from simple movement tasks, and have accuracies
comparable to trained clinicians. Analysis of the classifiers
suggests that diagnosis can be performed by relatively sim-
ple evolved networks, and that chaotic dynamics may play
an interesting role. In future work, we hope to investigate
whether this approach can also be applied to other forms
of neurological disorder, such as Alzheimer’s and Hunting-
ton’s disease.
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Esparcia-Alcázar, A. I., et al. (Eds.), Proc. 2010 European Con-
ference on Genetic Programming (EuroGP 2010). Vol. 6021 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 159–170.

9



Lones, M. A., Tyrrell, A. M., Stepney, S., Caves, L. S. D., August
2011. Controlling legged robots with coupled artificial biochemi-
cal networks. In: Lenaerts, T., et al. (Eds.), Advances in Artificial
Life, ECAL 2011: Proc. 11th European Conference on the Syn-
thesis and Simulation of Living Systems. MIT Press, pp. 465–472.

Luke, S., 2009. Essentials of Metaheuristics. Lulu, available for free
at http://cs.gmu.edu/∼sean/book/metaheuristics/.
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