Enzyme Genetic Programming

Michael A. Lones and Andy M. Tyrrell
Bio-Inspired and Bio-Medical Engineering
Department of Electronics
University of York
Heslington, York, England
{Michael.Lones, Andy.Tyrrell } @bioinspired.com

Abstract- The work reported in this paper follows from
the hypothesis that better performance in certain domains
of artificial evolution can be achieved by adhering more
closely to the features that make natural evolution ef-
fective within biological systems. An important issue in
evolutionary computation is the choice of solution repre-
sentation. Genetic programming, whilst borrowing from
biology in the evolutionary axis of behaviour, remains
firmly rooted in the artificial domain with its use of a
parse tree representation. Following concerns that this
approach does not encourage solution evolvability, this
paper presents an alternative method modelled upon rep-
resentations used by biology. Early results are encourag-
ing; demonstrating that the method is competitive when
applied to problems in the area of combinatorial circuit
design.

1 Introduction

Difficulty in evolutionary algorithms (EAs) is a combination
of both the fitness function and the solution representation.
These, in tandem with the operators used to introduce vari-
ability, determine the format of the search space traversed by
the evolutionary process[1].

Representations in EAs are both generative — solution en-
coding — and variational[2] — subject to evolution. These
introduce different, often opposing, influences on the require-
ments for a good representation. For instance, to meet gen-
erative demands, a representation must be efficiently exe-
cutable as, for instance, is the conventional tree-structure of
GP; which allows execution by a simple depth-first traver-
sal. Variational concerns, however, require that a represen-
tation supports effective manipulation by genetic operators.
The tree-structure of GP has a poor response to crossover[3],
meaning that most evolutionary progress is through mutation;
and suggesting that parse trees are not good variational repre-
sentations.

One way of solving these opposing constraints is to intro-
duce a duality to the representation; allowing it to have one
form during evolution and another during execution. This is
achieved by introducing a mapping, in the form of a devel-
opmental process, between genotype; the evolutionary repre-
sentation, and phenotype; the executable representation. This
mapping amounts to a separation of concerns, allowing evo-
Iution to act upon a representation suited to evolution whilst
allowing the development of a solution suitable for execu-

tion. Examples of this approach include work by Keller and
Banzhaf[4] and Shipman et al[5].

The need for a good representation in evolutionary com-
putation, and in artificial intelligence more generally, is called
the representation problem. For evolutionary algorithms, the
desired representation is one that captures the property of
evolvability; the ability, when subjected to evolutionary op-
erators, to create offspring of increasing fitness on a gen-
erational basis. There have been numerous approaches to
finding an evolvable representation in GP, including work
by Altenberg[6], Angeline’s MIPs nets[7] and Ryan et al’s
grammatical evolution[8]. Many of these techniques appeal
to alternative computational models. However, the approach
condoned in this paper is in the direction of increasing bio-
inspiration; towards a system that, through greater faithful-
ness to biological systems, hopes to gain those behaviours
found native in biology and desired in artificial systems.

With this aim in mind, the paper begins with a review of
the mechanisms by which biology has solved the represen-
tation problem. Following this is a review of existing tech-
niques in GP which have taken a bio-inspired approach, con-
cluded by a review of the work done in this research.

2 Representation in Biology

The mapping from genotype to phenotype in nature equates
to the development of a physical form from a DNA-encoded
description. Before the low-level functioning of biological
organism’s came to be understood, the predominant view of
this process was that sperm delivered a minute, yet otherwise
complete, version of the organism that would grow in the
mother’s womb and ultimately be born. In the light of fur-
ther discovery, this view gave way to the Aristotlian concept
of epigenesis; the idea that embryonic development is a pro-
cess of constructing a body from a blueprint. However, we
now know that rather than being the deterministic process en-
visioned by Aristotle, epigenesis — combined with ontogeny
— forms a complex, at times chaotic, system which emerges
from low-level interactions between proteins formed by the
body and environmentally-induced chemicals.

An organism’s genome, the sum of all the DNA from all of
its chromosomes, encodes the organism’s proteome[9] — the
set of all protein species capable of being created by the or-
ganism through the processes of DNA transcription and trans-
lation (see figure 1). Each protein is specified by a gene, a
sequence of codons stating the order and nature of the com-

Genome xy)%)(\

Transcription

Messenger RNA

Amino acid chain

Translation

Protein

Figure 1: Genotype-phenotype mapping in biology

ponents from which the protein is to be assembled, concluded
by a termination codon, marking the end of the gene. Proteins
have four layers of structure. Unfolded, they form a string of
amino acids. Amino acids are chemicals unified by a com-
mon structure and differentiated by the chemical properties of
their side chains. However, proteins do not remain unfolded.
Secondary structure, the emergence of physical members and
chemical surfaces, is caused by chemical attractions between
the amino acids within the chain. This effect is compounded
by the aqueous environment of the cell which, through in-
teractions between the protein and water molecules, forces
the structure into a distinct folded form known as the tertiary
structure. The final layer of structure, quaternary, emerges
from single-chain molecules bonding together to form macro-
molecular complexes.

The overall behaviour of an organism does not emerge
from isolated properties of individual proteins, but rather
from the interactions between proteins and proteins and be-
tween proteins and other chemicals. These interactions
lead to the formation of structures called biochemical path-
ways; sequences of protein-mediated reactions and interac-
tions that carry out functional tasks within the organism.
There are three broad categories of biochemical pathway, il-
lustrated conceptually in figure 2. Metabolic pathways ex-
ist within cells and emerge from the interactions of locally-
transcribed proteins. Signalling pathways comprise cellular
responses to inter-cellular signals. Gene expression networks
describe regulatory interactions between genes and gene-
products. In [10], these activities are described, respectively,
as self-organising, self-reshaping and self-modification. Self-
organisation is the ability of a distributed system to carry out

a unified task. Self-reshaping is the ability of an existing sys-
tem to carry out multiple tasks to satisfy varying needs. Self-
modification is the ability of a system to change its consti-
tution in order to solve unforseen problems. Interactions be-
tween the three classes of pathway unify these activities and
bring out the emergent behaviour of the whole.

Whilst all three classes of biochemical pathway can be
considered fundamental to the operation of the organism,
the most fundamental, from a reductionist viewpoint, is the
metabolic network. The metabolic network carries out ‘pro-
cessing’ functions whilst signalling and expression pathways
take on a configurational role — adapting the metabolic net-
works to meet the current needs of the organism. The pro-
cessing performed by the metabolic network amounts to the
temporal and spatial organisation and orchestration of chem-
ical reactions in order to convert chemicals available to cells
into chemicals needed by cells.

For a chemical reaction to take place, an activation energy
must be met. Usually, this is provided by the kinetic energy
of the reactants. However, due to the relatively low temper-
atures found in biological organisms, the energy required for
many reactions is not available. Biology solves this problem
through the catalytic behaviour of a group of proteins called
enzymes. Enzymes possess specificity, an ability to recog-
nise only certain chemicals and bind exclusively to these. The
chemicals recognised, the substrates, are the reactants needed
for the reaction. By bringing these together, the activation en-
ergy of the reaction is reduced; making the reaction possible
where it would not otherwise occur.

Metabolic pathways emerge from interactions between en-
zymes. A metabolic pathway consists of two interdependent
flows — reaction pathways and control feedbacks. Reaction
pathways are composed of systems of enzymes with tightly
linked specificities for one another’s products and substrates.
In many cases, these pathways are forked, with more than
one enzyme having specificity for a given product. Pathways
may also feed back into themselves, producing an iterative
structure. Control feedbacks emerge from another property
of enzymes, the ability to be regulated by the binding of reg-
ulatory molecules that either enable or disable the binding of

Figure 2: Biochemical Pathways

gene
expression
pathway transcription
gene blocked by
[T enzyme
- | = |

DNA|

<<transcription>>|

activation @
® signalling

pathway

metabolite

@ enzyme
untranscribed

A . gene product

E

metabolic
pathway

substrates. These regulatory molecules are either products of
other reactions in the pathway or are introduced by external
metabolic or signalling pathways.

3 Computation in Biology

A developing view in the field of biological computation is
that proteins, and enzymes in particular, have computational
abilities of their own and, when organised into protein sys-
tems, act out high-level computational behaviours. Compu-
tational mechanisms of enzymes are discussed in [11]. In
[12] and [13], insight is provided into the computational be-
haviours of enzyme systems. Bray, in particular, has explored
the emergence of these behaviours in the context of simulated
evolution. In [14], the computational nature of enzyme net-
works is highlighted by modelling them as petri nets.
Shackleton[15] has appealed to the computational aspects
of enzyme systems by successfully applying artificial en-
zymes to an information processing task. The aim is to sort
lists of numbers. Representing these lists as polymers of
data items, the system simulates the action of enzyme species
which either break or join lists depending upon properties of
the data. Shackleton also conjectures applying genetic algo-
rithms to the design of artificial enzyme-based systems; with
enzymes being represented as sequences of codons which
translate to elements of a primitive function set — construct-
ing artificial enzymes in a process akin to protein folding. The
idea of an artificial protein’s computational properties emerg-
ing from the spatial ordering of primitive, amino-acid like,
computational elements is further explored in [16].

4 Biology in Genetic Programming

From a procedural view, genetic programming amounts to
the application of genetic algorithms to the evolution of exe-
cutable structures. As such, it would be incorrect to say that
genetic programming lacks biological inspiration — after all,
the genetic algorithm (and genetic programming by descent)
is named for its source of inspiration. However, this inspira-
tion does not typically extend to GP’s problem domain; pro-
gramming.

There are exceptions. The use of a genotype-phenotype
mapping, discussed earlier, allows the program’s genetic rep-
resentation to be improved with respect to evolutionary per-
formance without effecting the representation used for the ex-
ecutable structure. However, genotype and phenotype are not
independent of one another, and there is a limit to the im-
pact allowed by this kind of tweaking. Other research has
introduced alternative executable representations that implic-
itly provide a more evolvable genetic representation. Interest-
ingly, some of these representations, whilst not intentionally
biomimetic, do aim to provide some properties native to com-
putation in biology. An example of this is Angeline’s MIPs
nets[7]. MIPs nets, named for their structural similarity to
neural networks, are systems of interconnected, yet indepen-

dent, parse trees. Each parse tree describes an equation, the
value of which is available as an input to each of the other
equations. The most important property of this system, which
leads to greater evolvability, is the increased independence of
functional components through distribution and the resulting
limits on between-component connectivity. This property is
also true of biological systems, where genes (and their prod-
ucts) have high internal cohesion yet low external linkage.

In other research, the representation issue has been
broached from an intentionally biological perspective, typi-
cally appealing to gene expression; which Kargupta[17] de-
scribes as “the missing link in evolutionary computation”. In
[18], programs are represented as linear chromosomes com-
prising an array of parse tree ‘genes’. Whilst the gene prod-
ucts do not truly interact (they are composed by a prede-
fined function), the model is reported to perform compet-
itively with existing methodologies. In [19], Luke uses a
gene-based model to represent finite state automata. An au-
tomaton’s genome is expressed as a multiset of genes; each
of which corresponds to a state. Associated with each gene
is a pattern, which specifies the ‘active site’ of the gene prod-
uct. During evaluation, state transitions emerge from pattern
matching between the patterns of the ‘transcribed’ states.

5 Enzyme Genetic Programming

Convention in genetic programming almost universally ac-
cepts that programs are represented as parse trees. To an ex-
tent, this dominance disguises the fact that parse trees, and
trees in general, are not the only possible representations for
evolving programs. Moreover, pragmatic and theoretical ex-
perience suggests that they are not good evolutionary repre-
sentations. Apart from a poor response to crossover, parse
trees also promote characteristics such as tight coupling, po-
sitional sensitivity and strictly linear behaviour; all of which
either hinder evolution or limit the search space which it can
explore. However, perhaps the most compelling argument
against a representation which can be considered an artifact
of human design is that it was not designed for evolution and,
considering experience from the field of genetic algorithms
where choice of representation is an integral part of problem
solving, there is no reason to expect it to be evolvable.

The philosophy behind enzyme genetic programming is
that biology has already solved the problem of an evolvable
representation for programs. Of course, this is a strong as-
sertion. For one, there is no guarantee that the representa-
tions in biology are near optimal. Secondly, we cannot, at
this point, be certain that a biological representation would
be suitable in artificial programmed systems. However, be-
ing a product of evolution itself, and having remained extant
in the face of competing representations, the biological rep-
resentation can be considered provenly evolvable. It is also
evident that biology is capable of using this representation to
create organisms of immense complexity. Furthermore, it has
been shown that biological systems can be mapped to many

computational metaphors; for instance, information process-
ing, pattern recognition and classification, distributed compu-
tation, agent ecologies and massively parallel computing —
and successful application of artificial models of the compu-
tational behaviour of cells, tissues and ontogenetic systems
gives weight to the notion that biological computation can be
annealed to the artificial domain.

5.1 Implementation

The aim of the research presented in this paper is to inves-
tigate the concept of a wholly bio-inspired genetic program-
ming system; one that abstracts from biology in both the vari-
ational and generative axis of GP behaviour. This is early
work, and the system’s application is limited to the relatively
simple problem of combinatorial logic design; the evolution
of digital, non-recurrent circuits. An overview of research ap-
plying GP to this problem can be found in [20]. Evaluation
problems are shown in figure 3.

The experimental system is depicted in figure 4. The evo-
lutionary framework, shown at the bottom, is a spatially-
distributed cellular GA, where each cell in the population
structure carries out an evolution strategy upon local state and
inputs from surrounding cells. Cells are connected together
by a network, the topology of which determines the process-
ing behaviour of the population. A cell’s evolution strategy,
shown at the bottom-right, selects the fittest individual from
the emigrants of those cells designated as inputs by the net-
work. This immigrant then undergoes recombination with the
local ‘elite’; the fittest individual created so far within this
cell. If the fittest child is fitter than the elite, then the elite is
replaced with this child. The cell’s emigrant, to which mu-
tational noise may be applied to encourage local search, is
the fittest individual out of the parents and the children. Note
that if the immigrant is fit, yet sexually incompatible with the
elite, it will pass straight through the cell without affecting
local state. This encourages the preservation of a fitness dif-

Figure 3: Arithmetic circuits used as test cases.

One-Bit Adder

c) ———0's

w
PR PP OOO O
PR OOR RO ON
rorOoror o
P OORrRORKFOoOWm
PR PROROOON

Two-Bit Multiplier

g

mororororororordg)

& >
0 D
FRrrrrRrocosooo oy

mrrroooorrrrooody
roocccocccococcoodg
ocroorroococococooody

ferential within the population, increasing the scope for back-
tracking and hence preserving breadth of search. Retention
of fit solutions through local elite, combined with determinis-
tic selection, is thought to provide more structure to depth of
search.

Candidate solutions to a problem are represented as shown
in the top-left of figure 4. Solution genotypes compose a lin-
ear array of program elements. A program element consists
of an activity, defining its role within the program, and a ta-
ble of specificities, defining its affinity for outputs from other
activities. An activity can be considered the combination of
a function and a context, allowing a program to have multi-
ple instances of a function with each having a different con-
text. Hence, each instance can take on a different role within
the program, and other activities can have specificity for the
function within this context, rather than every instance of the
function.

A specificity is a numerical value that defines a program
element’s relative affinity for output from a particular pro-
gram element. Each data consuming element has a specificity
for the output of every producing element. Consequently, the
genotype can be visualised as describing a weighted network
with vertices between every producer and every consumer;
where the weight attached to a vertex indicates its likelihood
of becoming a wire in the circuit. When a circuit is built
from an enzyme program, specificities must be translated into
wiring. A program element is ideally connected to the outputs
of the two other elements that it has the highest specificities
for. However, circuits are constrained so that no recurrent
connections are allowed — which means that circuit elements
will not always be connected to those for which they have
highest affinity. Circuit output terminals choose their input
gate according to specificity. Circuit elements downstream
of the outputs then choose inputs for which, after any ele-
ments upstream have been removed from their choice, they
have highest specificity.

Once this developmental process is concluded, the circuit
is evaluated. This takes place through simulation, where the
circuit’s response to inputs is measured and a truth table is
generated. Fitness is measured by comparison with the prob-
lem’s correct truth table.

5.2 Results

Table 1 shows results for the one-bit adder problem. The pop-
ulation topology used for these experiments was a mesh with
each cell connected to its four nearest neighbours (including
top-bottom and side-side connections). The key parameter
varied across experiments was the size of the dimensions of
this mesh. Figure 5 depicts how this parameter affects the
primary performance properties of the system — the number
of generations required to find an optimal solution, and the
proportion of runs which resulted in an optimal solution.
Generation count is measured using three metrics: mean,
median and cumulative mean. Mean and median are raw
measures, indicating average generation counts for success-

Candidate Solution

~

Genotype Phenotype Realisation Fitness Evaluation

’ AND1 ‘ AND2 ‘ORl ‘X(ol 1 2 3[1 2

- 00 0[]0 O

L - 1 00 1|10

A]

-, - ; 01 0|2 1

IN1 0.85 IN1 0.85 Represents Tj) g : Development Simulation 01 1 0 1

i 10 0|0 X

IN2 0.01 AND1 | 0.01 O | £ 10 1|0 1

AND2 | 0.2 OR1 |02 D_o 11 0]0 1

%—_D 11 1(1 1
\\ OR1 | 0.05 XOR2 | 0.05 J
Population Structure Structural Element \

/>‘ Uniform

inputs

.

/

LALELLAN

Child mutation
“ Emigrant mutation

output

/

Figure 4: The Experimental System

ful runs over a number of trials. Cumulative mean takes into
account the proportion of unsuccessful runs, giving a mea-
sure of the average expected wait between optimal solutions.
Most runs return results within a fairly narrow range of val-
ues. A smaller number of results, especially in smaller pop-
ulations, produce high generation counts. This is a reflection
of the stochastic nature of evolutionary search and, whilst in-
frequent in large populations, is unavoidable. The worst of
these runs are filtered by placing an upper limit on the gener-
ation count, in this case 200 generations. Runs which exceed
this, and those that converge upon sub-optima, are classified
as unsuccessful.

The functional profile shown in figure 5 generally agrees
with the standard profile for a genetic algorithm based sys-
tem. Increasing population size leads to an exponential de-
cay in the generation count and an exponential increase in the
success rate, both of which are observed to tail off at higher
population sizes.

Table 2 shows some results for the two-bit multiplier prob-
lem. Optimal solutions are found on average about every 100
generations. Values of minimum computational effort, giv-
ing the number of solution evaluations required for a 99%
certainty of success, have been calculated to allow a rough
comparison with work by Miller [20]. For the adder and
multiplier, respectively, they are 42,000 and 180,000. Miller
cites results between 210,000 and 585,000 for the multiplier
depending upon the formulation of the problem. Both ap-
proaches place different constraints upon the search space, so
a direct comparison isn’t yet possible. Nevertheless, these
results do not appear any worse than Miller’s.

5.3 Analysis

Figure 6 illustrates a typical run of evolution of a one-bit
adder in a 12x12 population over a span of thirty generations,
showing the correct solution to be a descendent of twelve first
generation solutions. Fitnesses at key points are shown by
measures of percentage-correctness.

This phylogenic trace illustrates certain behaviours ap-
parent within the system. First, whilst mutation events are
common within the run, only three of them map to pheno-

Table 1: Results for 1-Bit Adder

Population Generations to optimum Successful Average
Topology Size Mean | Median | C.Mean LS suboptimum
4x4 16 = - - 2% 87%
5x5 25 72 78 131 18% 92%
7 49 65 53 93 43% 94%
9x9 81 61 42 82 49% 94%
10x10 100 60 51 83 62% 94%
12x12 144 54 40 64 80% 94%
14x14 196 48 29 52 90% 94%
16x16 256 33 23 34 95% 94%
18x18 324 35 24 37 92% 94%

20x20 400 31 19 31 100% —
Table 2: Results for 2-Bit Multiplier
Population Generations Successful Average
Topology Size Mean | C.Mean runs suboptimum
14x14 196 69 196 35% 95.6%
18x18 324 70 127 55% 96.4%
20x20 400 56 93 60% 96.2%

—o—Mean --=-Median —e— Cumulative mean ---o--- Success
200 - _...© 100%

180 + 90%

160 + 80%
140 + T 70%
120 + + 60%

100 + T 50%

Successful runs

80 4 + 40%

60 30%

Generations to optimum

40 4 1 20%

20 TR R 10%

0 T T T T T T T 0%
0 50 100 150 200 250 300 350 400

Population size

Figure 5: Algorithm Performance

typic changes. The remainder are synonymous mutations,
silent mutations that either act upon untranscribed compo-
nents of the genotype — components comparable to reces-
sive genes — or act upon transcribed components in such
a way that does not affect the nature of their transcription.
Second, phenotypic changes are not always simple. In many
cases, changes are compound; with several elements adapting
in concert to achieve a high-level circuit transformation. Be-
tween the last crossover and the final solution (the lower two
circuits), for instance, a single non-synonymous mutation in-
troduces a new element into the circuit — an operation which
requires, from a phenotypic viewpoint, entry of a new compo-
nent in tandem with the modification of another component’s
input.

These two behaviours — synonymous and compound mu-
tation — are termed, respectively, neutrality and macromu-
tation. Both are a result of the separation of genotypic and
phenotypic search spaces accorded by a genotype-phenotype
mapping. Neutrality is a property which emerges from re-
dundancy in this mapping. It is the ability of an individual
to maintain phenotypic fitness invariance in the light of geno-

Figure 6: Evolution of a 1-Bit Adder

@ nitial solution ® Final solution © Crossover © Mutation (® phenotypic effect)

typic change (see [21] for a view on neutrality in digital cir-
cuit evolution). Significant movement in the genotypic search
space without significant movement in the space of pheno-
typic fitness is called a neutral walk. Macromutation is the
converse of neutrality; where a small movement in genotype
space can lead to an apparently large movement in pheno-
type space. These behaviours allow greater expression dur-
ing evolution than would be afforded with a representation
where there is no mapping between evolutionary and exe-
cutable forms.

Genotypes are an artifact of evolution; the memory of an
evolutionary search process. Analysing the complexity of
a biological genome, it is evident that the information con-
tained is far more than is necessary for the construction and
functioning of the organism. One interpretation, which sees
the genome as a search point in evolution, is that the untran-
scribed portion is nothing more than garbage. However, since
the genome is an artifact of evolution, and evolution is a pan-
generational process, the genome is best seen not as a discrete
entity but rather as a cross-sectional snapshot of evolution.
Therefore we can imagine the genome as not only containing
information relevant to the present in search, but also contain-
ing information relating to the state of search; information
concerning the past and the future of search. Some of this
past information may no longer be needed, and can there-
fore be considered garbage. However, past information can
support backtracking in search whereas future information,
which derives from the direction of, or potential for, change,
supports depth of search.

The representation used in the enzyme GP system also
maintains more information than is necessary to construct a
single phenotype. This is particularly so in its current incar-
nation, where genotypes are fixed length and therefore forced
to reference each component available to the system. In anal-
ogy to dominance hierarchies in biology, the genotypic el-
ements that describe active components — those which are
‘transcribed’ to the circuit — are considered dominant; and
those which remain hidden, recessive. There are two kind of
component within the system: functional elements and con-
nections; both of which can be dominant or recessive. Con-
nections, or rather the specificities which describe connec-
tions, are the targets of mutation. Mutations targeted at re-
cessive connections belonging to recessive elements will al-
ways be neutral. If the target is a recessive connection within
an active component, the effect will most likely be neutral,
though it could also cause the connection to become domi-
nant over a currently active connection. This, in turn, might
cause other components to become active. Mutations targeted
at active connections in active components are most likely to
reduce the strength of these connections (since mutation up-
dates their values randomly, and high values are most likely to
be replaced with lower values), which may then cause domi-
nance to be lost to a recessive connection.

The result of changing expression due to changing domi-
nance is particularly apparent when solutions are subjected to

Expressed traits Recesswe trait Dominant traits

’—K; i
[0.4 (07) 03[08]09]0.1]
r Parents
%D [03]05]09]03]04]07] |

Crossover

[0.4f0.7]0.9]03]04]01]

=, -

Recessive trait in parent T
becomes expressed in child Crossover points

 Children

5[03]08]09]07] |

Figure 7: Effect of Crossover

crossover. To illustrate this, figure 7 shows one possible result
of recombining a single AND gate between solutions. It is ev-
ident from the genotype of the first parent that the dominant
connections are only marginally stronger than the strongest
recessive connection, making this connection a feasible can-
didate for gaining dominance after crossover. In this example,
this is exactly the result, and leads to a recessive trait becom-
ing expressed in one of the child solutions.

From an evolutionary perspective, genotypes represent not
one, but many phenotypes. Whilst only one phenotype is ex-
pressed in each generation, the choice of which phenotype is
expressed is highly sensitive to the effect of mutation upon the
precariously balanced dominance hierarchy of the genotype.
The observable effect of this is macromutation; concerted or
unexpected changes of the phenotype. It also makes indi-
vidual genotypes efficient — since each one encodes many
different solutions to the problem — meaning that a popu-
lation has an information content more in line with a larger
population of discrete solutions. However, by keeping re-
lated solution components together in a single genotype, it
seems conceivable that evolution is able to make better use of
this information than would be the case if it were dispersed
throughout a population of discrete solutions. By this view,

Figure 8: Solution Diversity

unique instances

—e— genotypes - phenotypes — elite emgrants
200 —

copies of phenotypes

180

160 -

140 4

120 4

100 +

80 1

60 -

40 1

Solutions at highest fitness level

20 1

0 7%

16 21 26 31 36 41
Generation 100%

88% 94%
P —
highest fitness level

the untranscribed components of a genotype are the evolu-
tionary state, or context, of the transcribed components —
describing potential for change towards either previous solu-
tions (backtrack points) or future solutions through changes
in expression of transcribed and untranscribed components.

As well as encouraging diversity at the representation
level, enzyme GP also preserves it at the population level.
The fitness of a full adder is measured against only sixteen
output bits and consequently has only three effective fitness
brackets above the best solutions typically found in the seed
population. Figure 8 plots the frequencies of solutions of
the current highest fitness during a run of evolution: show-
ing both the number of unique genotypes and phenotypes as
well as their representation within the population’s elite and
emigrant slots. The graph shows that the genetic diversity is
considerably higher than the phenotypic diversity; as would
be expected given the level of neutrality in the representation.
Fit phenotypes, broadcast from the cells where they were dis-
covered, rapidly dominate the migrant population, spreading
their wisdom in a manner akin to missionaries. The num-
ber of cells discovering, and therefore broadcasting, these fit
solutions grows steadily in line with the generation of new
genotypes through the recombination of lower-fitness elite
and migrant solutions. The graph provides a good illustra-
tion of the high level of diversity accorded by both the genetic
representation and the evolutionary algorithm. In the current
system, only one optimal solution can be generated with the
activities provided to the algorithm. However, it seems likely
that if this constraint were lifted, then the algorithm could find
multiple optimal solutions concurrently.

6 Conclusions

The hypothesis behind this research was that more effective
evolutionary algorithms could be developed by paying closer
attention to the details that make evolution effective within
biological systems. The focus of the research reported in this
paper was to test the assertion that the representation used for
‘genetic programs’ in biological organisms could be derived
for use in genetic programming as a representation for other
types of program. Whilst only a preliminary investigation of
these concepts, it is hoped that the experimental results and
analysis presented in this paper go some way towards proving
these assertions.

7 Future Work

Immediate scope for future work includes a closer inspec-
tion of the dynamics and behaviours involved in the evolu-
tionary process. Also, the system is currently constrained by
user-imposed limits on the numbers and types of functional
elements available to the system. An important step towards
resolving this would be the allowance of variable-length so-
lutions. In the long term, it is hoped that the system will form
the basis for a more general approach to GP applicable to a

wider domain of problems; especially the evolution of com-
puter software. However, a number of issues will have to be
investigated before this is possible.

Complexity in biological systems emerges not only from
the activities of metabolic pathways, but also from the config-
urational roles played by gene expression and signalling path-
ways. Genetic networks are systems of emergent biochem-
ical pathways that, by controlling the format of metabolic
pathways, serve as the predominant mechanism of control
and coordination within organisms. Signalling pathways en-
able communication of data and control between separate
metabolic pathways. Given the power that these configura-
tional activities have in the organisation of biochemical sys-
tems, it would be interesting to investigate the effect of simi-
lar mechanisms within enzyme GP.

Bibliography

[1] T. Jones. Evolutionary Algorithms, Fitness Landscapes
and Search. PhD thesis, The University of New Mexico,
1995.

[2] G. P. Wagner and L. Altenberg. Complex adaptations
and the evolution of evolvability. Evolution, 50(3):967—
976, 1996.

[3] P. Angeline. Subtree crossover: building block engine
or macromutation? In J. Koza et al, editor, Genetic
Programming 1997: Proceedings of the Second Annual
Conference, GP97, pages 240-248. Morgan Kaufmann,
1997.

[4] R.E. Keller and W. Banzhaf. Genetic programming us-
ing genotype-phenotype mapping from linear genomes
into linear phenotypes. In J. Koza et al, editor, Genetic
Programming 1996: Proceedings of the First Annual
Conference. MIT Press, 1996.

[5] R. Shipman, M. Shackleton, and I. Harvey. The
use of neutral genotype-phenotype mappings for im-
proved evolutionary search. BT Technology Journal,
18(4):103-111, October 2000.

[6] Lee Altenberg. The evolution of evolvability in genetic
programming. In K. Kinnear, Jr, editor, Advances in
Genetic Programming. MIT Press, 1994,

[7] P. Angeline. Multiple interacting programs: A represen-
tation for evolving complex behaviors. Cybernetics and
Systems, 29(8):779-806, 1998.

[8] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary language.
In W. Banzhaf et al, editor, First European Workshop on
Genetic Programming, volume 1391 of Lecture Notes in
Computer Science. Springer, April 1998.

[9] P. Cohen. High in protein. New Scientist, 168(2263):38—
41, November 2000.

[10] P. C. Marijuan. Enzymes, artificial cells and the na-
ture of biological information. BioSystems, 35:167-170,
1995.

[11] M. Conrad. Molecular computing: The lock-key
paradigm. IEEE Computer, 25(11):11-20, November
1992.

[12] D. Bray. Protein molecules as computational elements
in living cells. Nature, 376:307-312, 1995.

[13] M. J. Fisher, R. C. Paton, and K. Matsuno. Intracellu-
lar signalling proteins as ‘smart’ agents in parallel dis-
tributed processes. BioSystems, 50:159-171, 1999.

[14] V. N. Reddy, M. L. Mavrovouniotis, and M. N. Lieb-
man. Petri net representations in metabolic pathways.
In L. Hunter, D. Searls, and J. Shavlik, editors, Pro-
ceedings of the first international conference on intelli-
gent systems for molecular biology. AAAI, MIT Press,
1993.

[15] M. Shackleton and C. Winter. A computational archi-
tecture based on cellular processing. In International

conference on Information Processing in Cells and Tis-
sues (IPCAT), 1997.

[16] J.-L. Fernandez-Villacafias-Martin, J. M. Fatah, and
S. Amin. Computing with evolving proteins. In Fourth
European Conference on Artificial Life, ECAL97, July
1997.

[17] H. Kargupta. Gene expression: The missing link in evo-
lutionary computation. In D. Quagliarella, J. Periaux,
C. Poloni, and G. Winter, editors, Genetic Algorithms
in Engineering and Computer Science, chapter 4. John
Wiley & Sons Ltd, 1997.

[18] C. Ferreira. Gene expression programming: A new
adaptive algorithm for solving problems. Unpub-
lished, available via http from www.genetic-expression-
programming.com, 2000.

[19] S. Luke, S. Hamahashi, and H. Kitano. “Genetic” Pro-
gramming. In W. Banzhaf et al, editor, GECCO-99:
Proceedings of the Genetic and Evolutionary Computa-
tion Conference. Morgan Kaufmann, 1999.

[20] J. FE. Miller, D. Job, and V. K. Vassilev. Principles in the
evolutionary design of digital circuits — part I. Genetic
Programming and Evolvable Machines, 1:7-36, April
2000.

[21] V. K. Vassilev and Julian F. Miller. The advantages
of landscape neutrality in digital circuit evolution. In
J.Miller, A.Thompson, P. Thomson, and T. C. Fogarty,
editors, Evolvable Systems: From Biology to Hardware
(ICES2000), volume 1801 of Lecture Notes in Com-
puter Science, pages 252-263. Springer, April 2000.

