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Abstract— The functionality model is a new approach in
enzyme genetic programming which enables the evolution
of variable length solutions whilst preserving local context.
This paper introduces the model and presents an analysis
of crossover and the evolution of program size.

I. Introduction

In standard genetic programming (GP), the structure
of a program is defined by a parse tree. The context of a
component within a program, its relationship with other
components, is given by its position within the parse tree.

Recombination is an important genetic operator and, in
standard GP, takes the form of sub-tree crossover. Sub-
tree crossover randomly selects a sub-tree from each par-
ent parse tree and swaps them, creating child solutions. In
each child, the component directly above a crossover point
now receives one of its inputs from a different sub-tree.
Given that sub-trees are chosen non-deterministically, in
most cases this will lead to the component receiving input
from a substantially different source to the one it received
input from in the parent. In effect, the component’s orig-
inal context has been lost.

Loss of context during crossover is thought to be a sig-
nificant reason why recombination in GP seldom generates
viable offspring. One approach to improving the success
of recombination is to select sub-trees deterministically, so
that only sub-trees with similar function or topology are
exchanged [1]. These context-preserving crossovers have
the advantage of maintaining a parse tree representation
but the disadvantage of a less natural, and more compli-
cated, crossover operator.

A problem related to, and perhaps aggravated by,
crossover is bloat. Bloat occurs when programs become
larger and larger without significant improvement in func-
tion. In standard GP, where program bloat has nearly
quadratic complexity [2], bloat can be controlled by plac-
ing limits on solution size or introducing a size penalty into
the fitness function. However, both of these approaches
modify or constrain the behaviour of search. The exact
causes of bloat are not known, though a number of the-
ories have been proposed. These include hitchhiking [3],
protection from disruptive operators [4], operator biases
[5], removal biases [6] and search space bias [7].

Enzyme genetic programming is an approach to genetic
programming that uses a biomimetic representation for
defining programs. This paper explains how this repre-
sentation can be adapted to maintain local context dur-
ing crossover and presents an analysis of the behaviour of
crossover and the evolution of program size within en-
zyme GP. Section II describes enzyme GP. Section III
introduces a new approach that enables a component to
capture its own context independently of its environment.
Section IV discusses program evolution and introduces a
low-disruption form of crossover unique to enzyme GP.
Section V analyses crossover performance and program
size evolution. Section VI concludes.

II. Enzyme Genetic Programming

The representation of enzyme GP is based upon a sim-
ple model of metabolic pathways, the emergent structures
that describe interactions between enzymes in cells. A
description of this model, and the biological motivation
behind enzyme genetic programming, can be found in [8]
and [9].

From a non-biological perspective, enzyme GP repre-
sents a program as a collection of components where each
component carries out a function and interacts with other
components according to its own locally-defined interac-
tion preferences. A program component is a terminal or
function instance wrapped in an interface which deter-
mines both how the component appears to other compo-
nents and, if the component requires input, which compo-
nents it would like to receive input from. The fundamen-
tal principle behind enzyme GP is that the structure of
a program is not given explicitly but is derived from con-
nection choices made by each component of the program
in a bottom-up, emergent, fashion.

A program is defined by a linear genotype where each
component is encoded as a gene specifying its function and
interaction preferences. Component types are named after
the biological components whose behaviours they resem-
ble. There are three types of component: glands, enzymes
and receptors; which contain, respectively, input termi-
nals, function instances and output terminals. For the
following discussion, glands and receptors can be consid-
ered simple enzymes which either do not produce outputs
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Fig. 1. Enzyme model. An enzyme consists of an activity and
a set of specificities. Shape describes how the enzyme is seen by
other program components. Specificity determines, in terms of their
shape, which components will be bound as substrates (inputs).

(glands) to or do not receive inputs (receptors) from other
components in the program.

The parts of an enzyme are depicted in figure 1. Activ-
ity is the function that the enzyme performs, or, viewing
the enzyme as an interface, the function that it wraps.
Specificities are templates which determine the interaction
preferences of the enzyme. There is at least one specificity
attached to each of the function’s inputs (recessive speci-
ficities are discussed in [8] and [9]). During execution,
these determine which other components each input will
be received from; or more exactly, they specify the shape
of the component that they wish to receive input from.

Shape is an identifier which describes how an enzyme is
seen by other enzymes. Consequently, it is shape which
determines how enzymes interact during execution and
whose definition underlies the behaviour of enzyme GP.
Previous implementations have used a definition of shape
based upon activity, a definition which can not easily
be applied to the evolution of variable-length programs.
Functionality, introduced in the next section, is a new def-
inition of shape designed to overcome both this and other
problems.

The process of program development is independent of
the exact definition of shape. An example is shown in
figure 2. Development begins with expression of the re-
ceptors, which then choose substrates whose shapes are
most similar to their specificities. Substrates are chosen
from those defined in the genotype and can be either en-
zymes or glands. These substrates are now considered
expressed and, if they require inputs, attempt to satisfy
them by binding their own substrates. This process con-
tinues in hierarchical fashion until all expressed receptors
and enzymes have satisfied all of their inputs. Each recep-
tor is expressed exactly once, whilst glands and enzymes
can be expressed zero or more times. Consequently, not all
the components defined in a genotype need be expressed
in the developed program and components are only ex-
pressed when they are compatible with other components
that have already been expressed.

III. A Functionality Model

A component’s shape is the means by which it is refer-
enced by other components. Shape is both an identifier
and a descriptor, and a good definition of shape should
both distinguish between different components and cap-
ture what a component does. Ideally, it should describe a
component’s expected role in any program within which
it is found, describing both the function it will perform
and, if it takes inputs, the substrates to which it will ap-
ply this function. Functionality is a definition of shape
which attempts to fulfill all these demands.

Functionality space is a vector space with a dimension
for each member of the set of available functions and ter-
minals. A functionality is a vector with a component be-
tween 0 and 1 for each member of this set. An example
functionality space is depicted in figure 3.

The functionality of an enzyme is a weighted profile of
the functions that occur in its ideal subtrees. An enzyme’s
subtrees are the hierarchical arrangements of substrates
found below (and bound to) the enzyme’s inputs. An ideal
subtree occurs when the enzyme, and all other enzymes
in the subtree, bind substrates that exactly match their
specificities.

The functionality, F , of an enzyme is defined

(1− k)F (activity) + k

∑n
i=1 specificityi

n
(1)

where k is a constant called the input bias and n is the
number of specificities. The functionality of the enzyme’s
activity, F (activity), is a unit vector situated on the axis
corresponding to the enzyme’s function. The functionality
of a gland is given by the functionality of its activity, since
it has no specificities. Receptors do not have a functional-
ity since they are never referenced by other components.
An example of using equation 1 is illustrated in figure 4.

Accordingly, with shape defined as functionality, an en-
zyme’s shape is derived from both its own activity and the
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Fig. 3. Functionality space for function set {AND, OR} and ter-
minal set {IN1} showing example functionalities. Vector plots of
functionalities are to be used for illustrative purposes in this paper.
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Fig. 2. Development of a program from a simple genotype. The output terminal receptor binds an AND1 enzyme as its substrate. The
AND1 enzyme now chooses its own substrates and the process continues until the inputs of all expressed enzymes have been satisfied. Note
that OR1 is never expressed and IN1 and IN2 are both expressed twice.
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Fig. 4. Derivation of functionality. An AND enzyme’s function-
ality is derived from the functionality of the AND function and its
specificities using equation 1 with k = 1
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shape of its specificities. Since its ideal substrates have the
same shape as these specificities, the enzyme’s shape also
captures the shape of its ideal substrates and, following
this logic recursively, the shape of all the components in
its ideal subtrees.

However, functionality only captures a profile of the
functions, weighted by depth, within an enzyme’s ideal
subtrees. It does not capture the hierarchical structure
of the trees. Consequently, a functionality does not de-
scribe an enzyme uniquely and therefore specificity is not
uniquely specific; much as a binding region of a biological
enzyme only captures part of its substrate’s shape. Nev-
ertheless functionality space is continuous, making it un-
likely that two non-identical enzymes will both have the
same functionality and occur in the same program (an
event which would still have precedent in biology).

IV. Evolution

Genotype evolution occurs within a spatially-distributed
parallel genetic algorithm, details of which can be found
in [8]. Bounded-size genotypes are constructed randomly
to fill the initial population. New genotypes are created
through crossover and mutation of existing genotypes.

Crossover in enzyme GP is somewhat different to sub-
tree crossover in conventional GP and takes advantage
of the fact that added components need not replace ex-
isting components. In subtree crossover, one subtree is
always replaced by another. In enzyme GP crossover, a
contiguous group of components is copied from one so-
lution to another without removing any existing compo-
nents (with the exception of receptors, see fig. 5). It is
then up to other components within the program whether
or not they use these new components. This has the ad-
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Fig. 5. A child genotype is a copy of a parent genotype augmented
by a contiguous sequence of genes taken from a donor genotype.
The number of receptors in a genotype is fixed, so any receptors
transferred from the donor replace those copied from the parent.

vantage that there is no need to select which components
will be replaced, avoiding the problems of either replacing
components randomly, which is most likely to be mean-
ingless, or replacing components deterministically, which
can be inaccurate and expensive. In effect, this decision
is made automatically by the rest of the program with
new components subsuming the roles of existing compo-
nents only if their shapes are preferred by other compo-
nents. Only contiguous groups of components are copied
between solutions, the intention being to encourage forma-
tion of building blocks where tightly-coupled genes encode
tightly-coupled products.

The transfer operation is complemented by a converse
operation which removes contiguous groups of components
from solutions. Each of these operations is used, non-
deterministically, for 50% of crossover events. The effect
of the remove operation is to balance solution sizes so that
recombination has an overall neutral effect upon solution
size within a population. For both transfer and remove
operations, the number of components targeted is chosen
randomly within an upper limit. Neither operation can
modifiy the internal contents of a component. Transfer
followed by remove has an effect similar to a conventional
crossover but with the added and removed components
selected independently.

For comparison, enzyme GP has also been implemented
with uniform crossover and headless crossover [10]. Head-
less crossover is identical to the crossover described above
but with the second parent generated at random for each
crossover event. The purpose of headless crossover is to
give a comparison between crossover and mutation when
implemented with the same mechanism, and to determine
how well recombination exploits existing information.

Point-wise mutation is also used within enzyme GP, but
to allow the behaviour of crossover to be measured, only
targets numerical values such as the components of speci-
ficities. It is not currently used to change which function
a component implements.

V. Analysis

Enzyme GP has been applied to the evolution of simple
non-recurrent digital circuits. Here, an analysis is made
of its performance and behaviour when evolving two-bit
multiplier circuits. A two-bit multiplier is a function that
takes two two-bit numbers as input and generates their
product as a four-bit output. The fitness landscape of this
function has been analysed by Vassilev [11], who found it
to have a structure more suited for traversal by mutation
than uniform crossover. In a sense, this makes the problem
hard for enzyme GP which relies heavily on crossover and
has a weak mutation operator. Results with this problem
can be compared to the earlier activity model of enzyme
GP [9] and, to a limited extent, Cartesian GP [12], which
uses a graph-based representation. Unfortunately, results
for this problem are not available for a tree-based GP.

A. Performance of operators

TABLE I

Performance on the two-bit multiplier problem.

Operators Success Generations
Standard c/o + mutation 69% 72
Uniform c/o + mutation 60% 104
Headless c/o + mutation 63% 98
Standard c/o only 0% —
Headless c/o only 41% 49
Mutation only 65% 84
Activity model 55% 70

Table I shows average success rates and generation
counts for different operators when applied to the mul-
tiplier problem with a population of 18x18. It is evident
that standard enzyme GP crossover performs better than
headless chicken crossover, which in turn performs bet-
ter than uniform crossover. Mutation is quite capable by
itself, but is improved by standard crossover. Without
mutation, standard crossover makes no progress.

The reason standard enzyme GP crossover improves
performance whereas uniform crossover does not stems
from the fact that uniform crossover is very disruptive.
In nature, uniform crossover is effective because the geno-
types of a species have homologous structure and little
variance in content. In artificial evolution, however, many
solutions within a population are highly dissimilar and
cutting and splicing them together will most likely pro-
duce children of lesser fitness. In standard enzyme GP
crossover it is recognised that whilst two parents will most
likely have significant differences, there may well be ho-
mologous regions. Unlike uniform crossover, this form of
crossover stands some chance of copying one of these re-
gions, and even if it does copy something unsuitable, the
child solution does not have to use the new components.
It may even later transfer these components to another
solution where they are suitable.
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Fig. 6. Evolution of genotype size, with initial sizes 7, 15 and
30. Feint lines show average solution sizes for each run. Heavy
lines indicate average minimum, average and maximum solution sizes
across all runs. Transfer size 6 7 for initial size 15 and 6 5 for others.

Table I also shows how the functionality model com-
pares to the earlier activity model. For the activity model,
the solution is fixed length and the exact components are
given in advance, making the problem easier. Success rate,
however, is higher for the functionality model and solution
time is comparable. Both models have a similar order of
performance to cartesian GP (see [9]).

B. Evolution of solution size

Figure 6 shows the evolution of genotype size in enzyme
GP for initial genotype sizes of 7, 15 and 30. Enzyme
expression is about 65% at the start of a run and these
initial genotype sizes concord with solutions below, at and
above the minimum size for an optimal phenotype. Some
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Fig. 8. Rates of growth in genotype and phenotype. Initial genotype
sizes are 15 or 30. Recombination is (b)alanced or (u)nbalanced.
Unbalanced recombination is 60% transfer, 40% remove.

genetic growth occurs for the first two cases, but tails off
once most population members are above the minimum
viable size. No net growth occurs in the third case where
solution sizes are well above this level. Note that these
observations reflect the average length at each generation.
Individual runs often experience phases of expansion and
compression before they reach a steady size.

Figure 7 shows the evolution of phenotype size for vari-
ous initial genotype sizes. Figure 8 shows how phenotype
size growth is related to genotype size growth for different
starting and operator conditions. Where genotype growth
occurs, phenotype growth occurs at a considerably lower
level. For a starting size of 30, where there is no genotype
growth, phenotype growth is negative. In the cases where
recombination is biased to favour increase in size, geno-
type growth is considerably higher yet phenotype growth
increases only slightly.

Since, on average, genotype size does not increase un-
less either it needs to or it is forced, enzyme GP does not
suffer from bloat in the usual sense of the word. How-
ever, since genotype size remains constant whilst pheno-
type size decreases, it does suffer growth in the ratio of
non-coding components to coding components within a
genotype. This is interesting, since it is unusual for a
variable-length representation not to bloat and perhaps
more unusual for its coding component to experience neg-



ative growth. It seems that either there is some attractor
that pulls phenotypes towards small sizes, but not too
small, or there is an evolutionary advantage to having a
greater non-coding content, yet not an advantage towards
increasing genotype size.

The stability of solutions, the linkage between specifici-
ties and shapes, is yet to be analysed. However, it seems
possible that smaller solutions could have greater stabil-
ity than larger solutions, since larger solutions are more
likely to have weak links—large distances between speci-
ficity and shape. If this is true, it would be less likely
that they could be copied faithfully during crossover and
propagate, either fully or in part, to future generations.
Consequently, there would be an evolutionary advantage
to smaller solutions, so long as they are large enough to
compete in terms of fitness.

It is known that the presence of introns, non-coding
components, can be beneficial to evolution [13]. At a sim-
ple level, introns can separate genes so that they are less
likely to be the targets of crossover points. For this reason,
introns are sometimes inserted intentionally into evolving
solutions. In GP, introns also enable solutions to protect
themselves from the disruptive effects of crossover by in-
creasing the chance that crossover points will fall within
unused sub-trees.

Miller has suggested another reason why introns may
be beneficial to GP [14]. Cartesian GP is a form of GP
which, like enzyme GP, has a genotype-phenotype map-
ping that does not require every component of the solution
to be expressed. When cartesian GP is modified so that
genotype length can change freely, genotype size is found
to bloat, yet phenotype size does not bloat. Miller sug-
gests that neutral exploration is one reason bloat occurs in
standard GP; for most neutral variants will be longer than
existing solutions. In cartesian GP, however, Miller spec-
ulates that most neutral variants are a result of changes
to non-coding components of the solution, and lead to no
increase in phenotype length.

If correct, lower stability of larger solutions and Miller’s
theory of bloat help explain why phenotype size decreases
whereas genotype size does not. However, it is not yet
clear why genotype size, so long as it is sufficiently high,
does not suffer bloat in the same manner as other ap-
proaches to GP. This is likely to be the focus of further
investigation.

VI. Conclusions

A new concept of shape, called functionality, has been
introduced to enzyme genetic programming. Functional-
ity allows the interaction preferences of a program compo-
nent to be be described independently of the program it
finds itself in. This, in turn, allows the evolution of vari-
able length programs and preserves local context during
crossover.

Analysis of program size evolution has shown that en-
zyme GP does not suffer from solution bloat in the man-

ner of conventional GP. So long as solution size is large
enough to solve the problem, average genotype size re-
mains fairly constant. If solution size is too small, then
genotype growth occurs. However, there is a marked ten-
dency for small phenotypes to be selected over longer phe-
notypes, producing negative phenotype size growth. Since
genotype size remains constant, this also leads to growth
in the ratio between the proportion of non-coding and cod-
ing components.

The growth characteristics of enzyme GP have the ad-
vantage that smaller, and therefore more efficient, pro-
grams will be evolved. However, for problems where high-
fitness sub-optima have short lengths compared to the op-
timum, this could increase the incidence of premature con-
vergence.
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