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Abstract—In previous work, we have shown how an evo- problematic for higher eukaryotes, whose genes have long
lutionary algorithm with a clustered population can be used promoter sequences which often contain multiple, variable
to concurrently discover multiple regulatory motifs present TFBSs whose individual signals may be weaker than the

within the promoter sequences of co-expressed genes. In shi back d noi f . ted patt
paper, we extend the algorithm by co-evolving a population D ackground noise or spurious over-represented patterns.

Boolean classification rules in parallel with the motif popuation. Recently we have described an evolutionary algorithm
Results using synthetic data suggest that this approach allvs which makes use of within-population data clustering to

poorly conserved motifs to be identified in promoter sequeres a  promote search for multiple diverse solutions within the
magnitude longer than using population clustering alone, Wilst g5 e nopulation [14]. This approach has proved successful
results using m.uscle-specmc data suggest the algorlthm afole both for findi itiol lat tif ithi t
to evolve meaningful sequence classifiers in parallel with otifs. oth Tor finding muftipie reguiatory mouls within a se
of sequences and for finding regulatory motifs in longer
l. INTRODUCTION promoter sequences than can be handled by comparable
Regulatory motifs describe the short patterns of nustatistical algorithms. In this paper, we present initegults
cleotides within DNA sequences which are responsible fdooking at how co-evolution may be used to improve the
controlling when and where a gene is expressed. More preearch carried out by the evolutionary algorithm. In par-
cisely, regulatory motifs describe transcription factording ticular, we show how the co-evolution of Boolean rules
sites (TFBSs) embedded in the non-coding DNA sequencdsscribing relationships between motifs helps to guide the
upstream, or more rarely downstream, of a gene’s trasearch for fit solutions, enabling the analysis of consiolgra
scription start site (TSS). Within higher eukaryotes (suctonger promoter sequences than is possible using populatio
as homo sapienjs TFBSs are commonly found within the clustering alone. We also discuss how this approach could
region extending several thousand kilobases upstreameof the used to infer information about the structure of regulato
TSS, though the size of this promoter region varies widelgegions in higher eukaryotes.
and binding sites have been reported at distances in extess oThe paper is organised as follows: Section Il provides a
100kb from the gene they are regulating. TFBSs may alsummary of related work. Section Ill provides an overview
very rarely be found within the coding regions of genesof our earlier work using within-population data clusteyin
The typical length of a regulatory motif is 10-20bp [29]Section IV introduces the new co-evolutionary approach.
and binding sites for particular transcription factors sanw  Section V presents experimental results and analysisioBect
substantial variation from gene to gene. VI discusses the implications and future directions of the
The aim of regulatory motif discovery is to identify thework. Section VII concludes.
regulatory motifs responsible for a gene being expressed
within a particular regulatory context [12], [20], [27]. Bh
problem usually takes the following form: given a set of There have been a number of previous studies in which
genes which are known to be expressed within a particevolutionary algorithms have been applied to regulatory
lar regulatory context, identify regulatory motifs whichea motif discovery [3], [4], [6], [11]. Early work by Corne at
over-represented in their promoter sequences relativdl to al. [4] showed how consensus sequence strings and weight
other genes. Regulatory motif discovery is an importamatrices could be evolved to describe core promoter matifs i
problem in contemporary bioinformatics, since mapping othe TSS-proximal region. Howard and Benson [11] evolved
gene regulatory regions underlies efforts to understaed tisP-Automata to describe motifs in 300bp sequences. Fogel
gene expression networks which control development ared al. [6] used an island model distributed EA to discover
metabolism. regulatory motifs within the 1kb promoter regions of co-
The limitations of existing regulatory motif discoveryexpressed genes. Congdon et al. [3] showed the ability of
tools have been highlighted in two recent comparative exgenetic algorithms to find conserved sequence strings in
perimental studies [12], [27]. Some of the most notablsituations where exhaustive methods would be intractable.
problems are rapid failure with increasing sequence lengvolutionary algorithms have also been applied to the prob-
and a tendency to discover biologically-meaningless pate lem of motif discovery in amino acid sequences. These and
rather than true regulatory motifs. These are particularlgther biosequence applications are reviewed in [13].

Il. RELATED WORK



For the majority of these approaches, the emphasis hpspulations [2], which also have explicit partitioning,sh
been on applying fairly standard evolutionary algorithms tpartitioning is determined by similarity between soluson
solve biosequence problems. This is motivated by the globaather than by evolutionary history, promoting better cov-
yet non-exhaustive, nature of search carried out by evolerage of the search space. There have been several other
tionary algorithms: which can often lead to better soluionexamples of using population clustering within evolutigna
than the local and exhaustive search methods commonly usddorithms, including [22] and [25].
within bioinformatics. Our motivation is slightly differg, in In [14], this population clustering evolutionary algorith
that we aim to make use of the relative flexibility with which(PCEA) was used to evolve variable length position fre-
evolutionary algorithms can represent and score solutionguency matrix (PFM) models of regulatory motifs. For a
and thereby develop approaches which are more applicalcleistering metric, we used the Euclidean distance between
to solving motif discovery problems. For instance, in outhe tetranucleotide distributions of two PFMs (followirtget
earlier work [14] we focussed on the ability of evolutionaryapproach of [8], in which this metric was successfully used
algorithms to represent diverse groups of candidate swisiti to distinguish between families of regulatory motifs withi
concurrently, and showed that this mode of search has advdne TRANSFAC [15] database). Our results showed this
tages both for discovering multiple motifs and for discavgr approach to be effective at both discovering multiple nsotif
single motifs in the presence of noise. In this work, we lookoncurrently and finding motifs in relatively long sequesice
at how co-evolution allows the motif discovery problem to
be solved as a parallel combination of transcription factor
binding site characterisation and sequence classifiercindu In this paper, we extend this population clustering evolu-
tion. tionary algorithm by co-evolving Boolean rules that ddseri

Another significant difference between this work andelationships between the evolving motifs. These Boolean
the majority of other EA-based approaches [3], [6], [11Jules have several potential roles: to identify combinaio
is that we focus upon the discovery of continuous (i.€0f motifs which can be used as sequence classifiers, to
matrix) models of transcription factor binding sites ratheidentify regulatory relationships between motifs, anda vi
than discrete (i.e. conserved strings and regular expressi Selective feedback, to concentrate search within thosé mot
models. The continuous search space makes this a métasters which contribute to fit rules. More generally, tisis

difficult optimisation problem, yet a more suitable apptoacan example of cooperative co-evolution [17]: the intention
for characterising the variance within regulatory motifs. ~ being that fit motifs should enable the evolution of fit rules

and fit rules should guide the evolution of fit motifs.
1. POPULATION CLUSTERING The algorithm is provided with two sets of sequences: a
In [14], we described an evolutionary algorithm for reguset of promoter sequences which are to be searched for over-
latory motif discovery which applies data clustering to itsepresented motifs (the data set), and a set of sequences
population prior to the generation of new solutions. Wevhich capture the nucleotide background (the background
refer to this population-based data clustering approach gst). The data set will usually consist of promoters from
population clustering More precisely, our algorithm uses genes known to be co-expressed within a certain regulatory
the sequential leader clustering algorithm [10] to pamiti context, and the background set will typically comprise-pro
the population into sub-populations prior to mating. Matin moters from a larger random selection of genes, preferably
then takes place solely within sub-populations. known not to be expressed within the same regulatory context
The sequential leader algorithm is a simple incremerys those comprising the data set. The algorithm has two

tal clustering algorithm chosen primarily for its low time populations: a motif population and a rule population.
complexity. The algorithm makes a single pass through the

population, and depending upon the degree of similaritf: Motif Population
either assigns each solution to an existing cluster or uses i The motif population consists of position frequency matri-
to seed a new cluster. The order-dependent nature of leades (PFMs), each describing a potential regulatory motié T
clustering also means that clusters can vary significantfitness of a PFM is a measure of how well it differentiates
from one generation to the next, providing an opportunitgequences in the data set from those in the background set. It
for solutions to move between clusters and thereby allowing calculated as follows: Prior to fitness evaluation, th&PF
a degree of genetic flow. is converted to a position weight matrix (PWM) for more
The explicit partitioning of the population is the primaryefficient matching. This is done by translating frequencies
advantage of population clustering over fitness sharing amato log-odds scores. For each sequence in both the data set
crowding [21] and mating-based approaches [7] to diversitgnd the background set, the best match to the PWM is found
management—all of which achieve partitioning through inby calculating the PWM match score at each offset in the
direct means—since it enables both selection and recombirsquence. This value is then normalised to the range [0,1]
tion to be carried out locally. In particular, selective ggere by dividing by the maximum possible score for any PWM
can be made high within partitions, promoting optimisaef equivalent size. The fitness of the motif is given by the
tion of individual solutions, whilst remaining low betweendifference between the mean best match score upon the data
partitions, promoting solution diversity. Unlike distuted set and the mean best match score upon the background set.

IV. MoOTIF-RULE CO-EVOLUTION



Clustered motif population Boolean rule

P RGOTEENEEELLE ; node returnstrue if the match value ofM againstS is

! ! equal to or greater thafi multiplied by the highest possible

3 ; match value of\/. Non-terminal nodes are Boolean functions

1 i ol E;snc;ei‘;;me from the set{AND, OR}. The AND function expresses

: ‘ ‘ co-occurrence, i.e. both of its arguments returme for

each matching sequence. This could describe a regulatory

| context where, for example, two interacting transcription

: factors are required for a gene to be expressed. The OR

: function expresses alternative matches, i.e. at least éne o
its arguments returns-ue for each matching sequence. This

Fig. 1. Example of a Boolean classification rule, showing himscriptive  could capture a regu|at0ry context in which more than one

pointers are matched to the fittest members of actual moitstets. Position P . .
frequency matrices are drawn as sequence logos, which skewinfor- transcription factor could lead to expression, but only @ne

mation content (column height) and distribution of nudgetfrequencies required.
(letter heights) at each offset. Since motifs are undergoing evolution, and therefore sub-
ject to change and removal, rules can not refer directly to

o . _~members of the motif population. Instead, they use descrip-

This is mapped linearly to a value between 0 and 1, Withye nointers which are mapped to actual members of the

values above 0.5 indicating a better match against seqsenggyit population prior to evaluation of the rule (see Figure

in the data set than the background set. 1). In this implementation, these descriptive pointersase
The motif population is initially filled with randomly hqsition frequency matrices. Prior to evaluation, thetirateu-

generated PFMs with uniformly distributed frequencies fofeqtige distribution is compared to that of the fittest memb

each base. The motif population undergoes clustering at the aach cluster within the motif population and they are

beginning of each generation and new solutions are gengr,nneq to whichever motif provides the closest match. This

ated py withi.n—cluster mating usi_ng both recqmbination anthsylts in decoupling between the two populations, allgwin
mutation. A fitness-ranked selection strategy is used &csel {ham to vary independently whilst retaining behaviounaks
parents for mating. Mutation is applied with a probabilify 0 yarveen rules and motifs.

8% per nucleotide position and works by randomly changing The fitness of a rule reflects its ability to accept sequences

the frquenmes assigned 1o one or more residues gnd tnﬁQhe data set whilst rejecting sequences in the background
normalising the other frequencies so that the total stihsu set. Raw fitness is calculated using Matthews correlation
to unity. Two forms of mutation are used. Gaussian mutatiO(MC) a measure of classifier accuracy defined by:

selects a new frequency value for a single residue using'a

Gaussian distribution centred around the current value and (TP-TN)— (FP-FN)

covering one standard deviation in the range.5. Values V(TP +FN)(TP + FP)(TN + FP)(TN + FN)
outside the rang€0, 1] are rejected. Gaussian mutation is

applied during 90% of mutation events. A more disruptivavhere TP, TN, FP and FN are the numbers of true positive,
mutation operator, which randomises then normalises all tiirue negative, false positive and false negative classiica
residue frequencies in the selected matrix column, is adpli respectively. A pseudocount is used to prevent zero values
during the remaining mutation events. There is also a 4@nd the result is mapped to the range [0,1], where higher
likelihood of adding a new column with random frequenciegalues are better and a value over 0.5 indicates a bettar-tha
to either the start or end of a motif during mutation. Unifornrandom classification. To avoid the problem of solution size
crossover selects crossover points with a probability @15 bloat whilst still encouraging a degree of complexity, fése

per nucleotide position, and then swaps the groups of matrenalties are imposed when tree size exceeds a certain depth
columns occurring between every other pair of crossové@nd when the motifs referenced by a rule are not sufficiently
points. Mutation and crossover are applied independentiijverse. A penalty of 0.04 is imposed for each level of depth
in the ratio 7:3. Parameter settings were determined exp@&bove 5. The diversity penalty has two components. The first
imentally. The number of new solutions generated by eadyenalises multiple references to the same motif and is equal
cluster is determined by a weighted function of the clusterto a maximum penalty of 0.1 multiplied by the ratio of the
rank fithess and the mean fitness of rules which refer to thieimber of motifs uniquely referenced by a rule to the total
cluster (see section IV-C). To preserve diversity, eacktelu number of motifs referenced. The second penalises sityilari

Fittest
member
of cluster

(1)

generates at least one child solution. between the referenced motifs and is equal to a maximum
) penalty of 0.05 multiplied by the ratio of the mean distance
B. Rule Population per base between the motifs’ tetranucleotide distribstamd

The rule population consists of sequence classificatidhe mean tetranucleotide probability for the motif popiolat
rules, each defined by a Boolean expression. Rules are imple-The initial rule population is filled with randomly gener-
mented as binary trees. Terminal nodes are pairs of the fomted binary trees with depths of between 2 and 5 levels.
(M, C) whereM is a member of the motif population adl  Cutoff values for terminal nodes have values of at least
is a fractional cutoff value. For a given sequesca terminal 0.7. Rules in subsequent populations are generated using



GP-like point mutation and sub-tree crossover. For poirty which the second population samples members of the
mutation, a single node is selected per tree. If the node fisst population.
a terminal, there is a 55% probability of replacing its PFM
with that of the fittest member of a randomly chosen cluster, V. RESULTS ANDANALYSIS
a 20% probability of applying standard motif mutation to To determine the benefits of introducing rule co-evolution,
the existing PFM (see Section IV-A), a 10% probability ofwe evaluated the extended algorithm using the same method-
replacing the PFM with a randomly generated PFM, and @logy used to evaluate the stand-alone population clugteri
15% probability of choosing a new cutoff value. Sub-tre€EA [14]. The first experiment looked at the algorithm’s abil-
crossover is slightly non-standard in that a crossovertpsin ity to re-discover single known transcription factor bingli
selected by first choosing a random depth and then selectigites embedded into DNA promoter sequences of various
a random node at that depth. This is designed to redufnhgths. The aim of this experiment was to determine whether
bloat by removing the bias towards leaf nodes associatedle co-evolution affects the upper bound on the lengths of
with standard sub-tree crossover. Parent solutions aetsel sequences which can be effectively searched. The second
using tournament selection with a tournament size of 5. experiment applied the extended algorithm to the problem

of rediscovering multiple known transcription factor bingl
C. Rule Feedback sites embedded within promoter sequences. The aim was to
determine whether co-evolution can identify multiple rfeoti
. i . . . (@ task for which the stand-alone population clustering EA
occurs via the function which determines how many chil ) . . o

proved well-suited) and infer suitable classification sule

solutions each cluster contributes to the next generafibis. . . . )
; ] . The third experiment applied the extended algorithm to a
is calculated as follows: (1) the motif clusters are orddned ; ) - -

eal biological data set comprising muscle-specific pr@anot

the relative fithess of their fittest member and assigned the T : . .
. g ) : sequences. The principle aim of this experiment was to deter
corresponding motif fitness rank; (2) the motif clusters arge’. .
' . mine whether co-evolved rules are able to express meaningfu
ordered by the mean fitness of the rules which reference then] tionshios between evolved motifs
and are assigned the corresponding rule fithess rank; (3) et P '
motif clusters are ordered by the weighted mean of thek Rediscovering single motifs in synthetic data sets
motif and rule fitness ranks and assigned the corresponding
overall rank; (4) each cluster is assigned a quota of child .
solutions linearly proportional to its overall rank. In eas
where clusters are not referenced by any rules, they are
assigned a rule rank one below the lowest position of those
which are referenced. For the experiments reported in@ecti
V, we use a ratio of 3:7 when calculating the weighted meagyg. 2. Sequence logos for JASPAR motifs HLF (left) and c-F@gh).
between motif and rule fitness ranks.
This procedure generates selective pressure towards PFMs$n previous work [14], we compared the ability of a
with both a high individual match value and a high contribupopulation clustering evolutionary algorithm and two istat
tion to rule fitness. Nevertheless, motifs with a low indisadl  tical motif discovery algorithms to locate motifs in syntice
match value will be ranked higher if they contribute to rulesequences of various lengths. In this experiment, we fatbw
fitness. This provides a potential mechanism for identdyinthis same approach but with considerably longer sequences.
short or poorly conserved binding sites, whose individudbata sets were constructed by embedding known regulatory
signals can be impossible to distinguish from backgrounehotifs from the JASPAR [18] transcription factor binding
noise. Since bound transcription factors often work in @hc site database at random locations within human upstream
with those bound at other binding sites, these weak motifgromoter sequences extracted from the Ensembl [1] genome
could be recognised though their interactions with othedatabase (release 43). Embedded motifs were generated prob
motifs, which may be reflected in their contribution to ruleabilistically, with the probability of a particular nucléde
fitness. occurring at each offset in the motif directly proportional
Our method of providing rule fitness feedback is somewhab its respective frequency in the corresponding JASPAR
different to most cooperative co-evolutionary algorithmsposition frequency matrix. We used the JASPAR motifs
which typically provide feedback by directly modifying HLF (ID: MA0043) and c-FOS (ID: MA0Q99), which have
the fitness of those entities in the first population whiclpreviously been shown to be relatively difficult to identify
are referenced by the second population. The advantagsing motif discovery tools [5], [14]. This is due to poor
of our approach, which is made possible by the use aonservation in the case of HLF and to short defining length
a clustered population, is that feedback affects groups of the case of c-FOS. Sequence logos for these motifs are
similar solutions in the first population rather than indival shown in Figure 2. Data sets were generated for sequences
solutions. This should promote search within regions,eathof length 3kb, 5kb, 10kb and 20kb for both motifs. To
than individual points, of the search space. It may alsmake the problem more biologically realistic, motif instas
lessen the impact of the stochastic element of the processre only embedded into half of the 100 sequences in

Feedback from the rule population to the motif populatio
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each data set. Background sets consisted of 2000 randomly (3) FTTACG TAIGTA AG +—OR
selected sequences. Data sets and background sets were non- =S f——AND
intersecting. Motif and rule population sizes of 4000 were =~ @ A43 | | CG L
used in all runs with initial motif lengths of 5-50bp.

|At't0t?| of 5 I:uns V\l/)ere iarried ouff fotr etﬁchh(_ja:]a set. Ttt'lis AQXACTQAIA'%\ -AAT-T‘-%A@ m A"‘ |
relatively small number of runs reflects the high computa-
tional overhead of processing long sequences. For example, TTQEAEGTC TCATAGC ®

with sequence length 20kb, a data set of 100 sequences, a
background set of 2000 sequences, and a motif populatifig- 3. The fittest Boolean rule in the final generation whearcteing
of 4000, a single run of 100 generations takes _approximat_eé&ethatha;n?rtge'_?nzepqS“fg]e; (’\L}L‘fghgtfr:jr]lg!;bﬁ:g;sggfi;ﬂgibg‘i:
6 days when distributed over 4 processors. This computati@éntaining their arguments. Black boxes indicate AND andygboxes
time is dominated by motif evaluation and we are currentlipdicate OR. Terminals are depicted by the sequence logdefntotif
looking at the potential use of harcware-based sequenffich "% eference: The nelgt of e Hue box befind tence ogo
matching to reduce evaluation time.

Table | shows the number of runs for each data set in
which the embedded motif was successfully rediscovereglumns 5-11. In effect, the rule appears to group together
by the algorithm. Table Il compares these results (“Cothe different components of the target PFM. The role of
evolution”) against those using the stand-alone populatighe functions AND and OR are less easy to see from this
clustering evolutionary algorithm (“PCEA”) [14] and the example, although it could be hypothesised that AND plays
statistical algorithms MEME and NestedMICA (these figureg role in gluing together horizontal components of the PFM
are taken from [5]). (i.e. different column ranges), whilst OR presents choices
between different vertical components (i.e. different row
values). This suggests a pattern of search in which rule co-
evolution ‘identifies’, and then constrains search towards
motif clusters representing the different components of a
solution. Interactions between clusters (through movemen
of solutions and sequential clustering errors) may thed lea

TABLE |
TOTAL RUNS (OUT OF 5) IN WHICH THE EMBEDDED MOTIF WAS
SUCCESSFULLY REDISCOVERED

Sequence length (base pairs)

Motif 3000 5000 10000 20000 ; ) :
e . - s 2 towards composite solutions which more closely resemble
oFOS 3 1 o 0 the target mo_tn‘. . _ _
By comparison, rule co-evolution brings about a relatively
modest improvement for the better conserved c-FOS motif—
TABLE Il on the order of twice, rather than ten times, the sequence

length. Assuming the above hypothesis is correct, thislemal
improvement could be attributed to the lesser scope for
vertical decomposition of the PFM, i.e. the c-FOS motif

MAXIMUM SEQUENCE LENGTHS IN WHICH MOTIFS COULD BE
CONSISTENTLY REDISCOVERED

Algorithm describes a relatively small number of alternative binding
Motf MEME NestedMICA PCEA  Co-evolution sites, presenting a smaller target for the hypothesisecksso
HLE 150 600 1500 20000 of parallel e>l<p_lorat|on followed by con;o]ldatlon. The n.rflet
c-FOS 300 500 1500 3000 shorter defining length may also limit the potential for

horizontal decomposition.

The interesting result here is that co-evolution allows th
HLF motif to be found in sequences a magnitude longer (10-
20kb) than those which could be effectively searched by the In the second experiment, we applied the co-evolutionary
population clustering EA alone (1.5kb). A mechanism foalgorithm to a synthetic data set containing 8 co-occuring
this improvement is suggested by the rules inferred durindlASPAR motifs. These motifs, listed in Table Ill, were
the process of searching for the motif, an example of which shosen to cover a range of values for information content
shown in Figure 3. Whilst individually the motifs refererdce (IC) and defining length. In particular, RORA1, RXR-VDR
by this rule are not good characterisations of the HLF motiand PPARG-RXRA were chosen in order to test the ability of
the majority of them would have some probability of beinga motif discovery algorithm to correctly distinguish beeme
generated by its PFM. For example, the well conservesimilar motifs, since these are all members of the nuclear
‘TTACG’ motif, labelled @ in Figure 3, would have a high receptor family and each contains the over-represented sub
probability of being generated by columns 3—7 in the PFMequence GGTCA. All of the motifs were stochastically
(see sequence logo in Figure 2). The motif ‘A[AT]TTCG’,inserted into 50 sequences of the 100 in the data set. A
labelled @, would have a lower probability of being gener-background set of 1000 sequences was used. Sequences in
ated by columns 2—7 of the PFM, and ‘TCATACG', labelledthe data set and background set were both 1kb in length. A
®), would have a small probability of being generated byotal of 5 runs were carried out.

. Rediscovering multiple motifs in synthetic data sets



TABLE IlI PPARG PPARG/RXR
JASPARMOTIFS EMBEDDED IN MULTIPLE MOTIFS DATA SET |

# Name ID I Lengh Sequence Logo  PPARG — i TOCA celAGE) | | 6Tcmache (4G RoRA
1 SPI-B MA0081 9.06 7 %QQGGAA NFKB1 =UGG§éII‘FQCQ GICATGCCC: P33

2 HLF MA0043 1115 12 SITCeaphs P53 — I AC A I GGTC A %Lé%eraf
3 FOXI1 MAOD42 1318 12 . IR P53 | AGACAT GG TC CA GT '|'|'AC HLF
4 NFKB1 MAO0105 15.63 11 GGGGAHQCCC |
5 RORA1l MA0072 17.42 14 JA@TAGGTCA PPARG/RXR TP53
6 RXR-VDR MAO0074  20.45 15 QGGTCA: Q?GTI A Fig. 5. Example of a rule which accepts all motif-containseguences in
M":ATCAAAMTCA the multiple motifs data set whilst rejecting all sequeniteshe data and
7 PPARG-RXRA MAQ065 23.45 20 & X I background sets which do not contain the motifs.
8 TP53 MA0106 2624 20 _lflslietls
1 T T T
Data set ——+—
SPIB —+—  FOX1 —%—  RORA1 PPARG Overall —x— Testset

HLF NFKB1 —&— RXR —a— TP53 —e— 08 - 1

0.6 9

Fitness

Fitness
Matthews correlation coefficient

0 Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Generations Generations Generations
i
100% 5 100%

Fig. 6. Best classification of muscle-specific promoter sagas from
non-muscle-specific promoter sequences at each gener&@nts show
mean values over 20 generations. Higher values indicaterh#assification
accuracy. Values above zero indicate a better than randassifitation.

Match
Match

T subset of the embedded motifs—in this case NFKB1, TP53,
0 20 40 60 80 100 120 0 0 20 40 60 80 100 120 0 the nuclear receptor motifs, and a small part of HLF—and
Generatons Generatons furthermore, that it is not necessary to fully charactetise

Fig. 4. Mean fitness (top) of closest matches (bottom) toahget motifs at individual motifs.

each generation for the stand-alone population clustefiagleft) and the C. Di . tifs i | if t
co-evolutionary algorithm (right). The mean fitness of therall fittest motif - Discovering motiis In muscle-speciiic promoter sequence

present within thgz population‘is also shown. Mat(;h va_lueeew!alculated In the final experiment, we looked at the co-evolutionary
using the dynamic programming technique described in [19]. algorithm’s ability to handle real biological data by atfem
ing to infer classification rules from a set of muscle-specifi

romoter sequences. We used sets of promoter sequences
escribed in [24} a data set comprising Wasserman and
ickett's [28] curated collection of 43 muscle-specific pro

oter sequences; a background set comprising 2348 non-
H:uscle promoter sequences from the eukaryotic promoter
Gtabase (EPD); and, to measure the generality of evolved
) o solutions, a test set comprising 28 muscle-specific promote
evolutionary approach. However, we did find that most runéequences from the EPD. Sequences in Wasserman and
of the (_:o—evolutionaryalgorithm lead to optimal classitﬁina_ . Fickett's dataset have lengths between 197bp and 802bp,
rules, i.e. rules Wh'(.:h WOl.”d ac_cep_t all sequences comgini 4 ose in the test set have lengths between 268bp and 600bp,
the embedded motifs whilst rejecting those (in the data a d those in the background set have lengths between 91bp

background sets) that do not. This suggests that, for thé%d 600bp. A total of 20 runs were carried out

problem at least, the search for fit rules interferes with the Figure 6 plots the evolution of classifier accuracy (in terms

search for _f|t motifs. A likely reason _for t_h|s, as |II_ustrcite_0f Matthews correlation) over the course of 150 generations
by the optimal evolved rule shown in Figure 5, is that it

is possible to correctly classify all sequences using only alAvailable from http://www.pnas.org/cgi/content/full06123102/DC1.

Figure 4 shows the relative abilities of the stand-along
PCEA and the co-evolutionary algorithm to rediscover th%
embedded motifs. Whilst both algorithms are able to idgntif
the majority of the embedded motifs, higher match an
fithess scores indicate that the stand-alone PCEA is moy
able to optimise individual motif instances than the co



showing performance on both the data set and the test set.
The best evolved classifiers in each run were able to reject
almost all background sequences (all but one, on average)
whilst accepting just over half (57% mean) of the sequences
in the data set. The highest scoring classifiers on the tést se

also rejected most background sequences whilst accepting g
about a fifth (18% mean) of the positive examples. Whilst| ..l CCPM i JC CQACA c[m
BRIAIFV eVellvieWI ]

there is a clear disparity between performance on the data a —
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test sets, these results do demonstrate that evolvedfidessi
are able to correctly classify sequences not seen during
training whilst rejecting almost all background sequences

Figure 7 shows the classifiers which performed best upon
the data and test sets, respectively. Both contain motifs
which resemble known muscle-specific transcription factor
binding sites, including all those previously identifiedhin Myf,
Wasserman and Fickett's data set [28]. Motifs resemblin izt
binding sites for myocyte enhancer factor (MEF), serum
response factor (SRF), transcription enhancer factor JTEF( TEF )
and stimulating protein 1 (SP1) are present within both-clas(-*\cmﬁc
sifiers. Although less well characterised, motifs resengpli SRF
myogenic determination factor (MyoD and Myf) binding ok
sites can also be seen in each of the classifiers. It is also
interesting to note that both rules make use of disjunctions
(ORs) of conjunctions (ANDs), a form which allows sub-

i Fig. 7.
groups of sequences to be classified separately. Howeverfr(ftm non-muscle-specific promoter sequences. The bestrp@rfg classi-

is not clear whether the individual conjunctions represergkr (mc=0.806) upon the data set (top) correctly accepts d4%equences
alternative forms of single binding sites or capture conitpos in the data set, 7% in the test set, and correctly rejects wli3bof the

ot ; indi ; background sequences. The best performing classifier (MG8)D upon
regulatory modules consisting of multlple blndlng sites. the test set (bottom) correctly accepts 44% of sequencebeirdata set,

VI. DISCUSSION 25% in the test set, and correctly rejects all but one of thekdpmund
o . . o _sequences. Both of these classifiers evolved in the same_abels show
These initial results offer some interesting insights int@imilarity to known muscle-specific transcription factdnding sites: SP1

the behaviour of the co-evolutionary algorithm. Perhap%'?n; ?Aw?,géggéfngR'\ﬁy&/?A%%%?%lg J”Téﬁﬁwﬂig%gbf?ndJ"ﬁg';ié'\.’mooﬁz
most interesting, they suggest that rule co-evolutionvalo
weakly conserved motifs to be discovered in long promoter
sequences, something which is very significant given the
fairly low sequence length limitations of many contempygrarsequences and each accept a reasonable proportion of the
continuous-model (e.g. PFM) motif discovery algorithmgnuscle-specific sequences: and it seems plausible that a
[12]. Whilst the results also suggest that co-evolutionsdoecomposite of multiple classifiers could improve this accyra
not appear to provide the same benefits for well conservedNevertheless, there is substantial room for improvement,
motifs, this is less significant given the relatively strongparticularly with regard to classifier generality (i.e. foer
performance of existing discrete-model (e.g. consensus geance on non-training sequences). Perhaps the most obvious
quence) approaches to this sort of problem [27]. next step is to improve the rule model used for classification
One point of concern is the potential for interferencallowing rules to more accurately capture the structure of
between motif evolution and rule evolution, as demonstrateegulatory regions and thereby distinguish between pesiti
by the multiple embedded motifs experiment. This is an exand negative examples in a more meaningful fashion. In
ample of a situation where the classification problem isezasieukaryotes, it has been observed that transcription factor
than the motif discovery problem, and hence rule feedbadknding sites are often grouped together in cis-regulatory
does not exert sufficient selective pressure to push thef mathiodules (CRMs). Usually these consist of 4-8 binding sites
population towards a diverse range of well characterisd@9], including duplicates, and often there are functional
motifs. In situations such as this, it may be advisable not toonstraints which limit the ordering, distances betweed, a
use rule co-evolution. However, this problem is artificial i strand orientation of the binding sites [26]. It would betgqui
nature and is unlikely to reflect the difficulty of real prorapt feasible to introduce distance, ordering and strand oeoge
sequence classification problems, such as that addresseaanstraints to the Boolean rule model, and possibly intcedu
the final experiment. The results from this muscle-specifia means of explicitly representing CRMs. This kind of
sequence classification task show that rule co-evolution &pproach has recently been shown to be effective for HMM-
able to induce classifiers containing known muscle-specifltased approaches to motif discovery [16]. It would even be
sequence features. These classifiers reject most nonenugmbssible to introduce another layer of co-evolution to cear
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for fit relationships between CRMs.

However, it is also important to not overly constrain the
model, since the structure of regulatory regions does nof,
always follow simple rules. In [9], for instance, it is argue
that the commonly-held view of dense-cluster models of
CRMs may be due to experimental bias towards yeast moqg]
els, and does not reflect the complexity of regulatory regjion
in higher eukaryotes. In fact, given the relative flexililit
with which solutions can be represented in evolutionary[g]
algorithms, approaches such as the one described in this
paper could play a role in improving understanding of thé&0l
organisation of regulatory regions. [11]

(6]

VIl. CONCLUSIONS

In this paper we have presented initial results from oJrlz]
investigation of a co-evolutionary architecture for regaly  [13]
motif discovery. Our approach builds upon previous work
in which we developed a population clustering evolution-
ary algorithm designed to concurrently discover multiple,
diverse over-represented patterns present within the gtem [14]
sequences of co-regulated genes. This new work introduces a
co-evolutionary layer in which sequence classificatioresul
are evolved in parallel with motifs, providing feedback to9]
guide the evolution of the motif population. We have applied
this new algorithm to several different problems involvingie]
synthetic and real biological data. The results suggedt tha
rule co-evolution considerably improves the ability of thqm
algorithm to discover weakly conserved motifs in long pro-
moter sequences (10-20kb). Analysis of evolved classifiers
indicates that this improvement may be a result of impIiciE18
problem decomposition carried out during rule evolution.
However, there is some concern that motif evolution will bé!®l
impaired if the classification problem is easier than theiimot
discovery problem. The results also show that the algorith[po]
is able to evolve meaningful classifiers when applied to & rea
biological data set. Nevertheless, the limited generalityhe
evolved classifiers suggests that more constraints shauld b
introduced to the classifier model in future work. [22]
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