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Abstract— In previous work, we have shown how an evo-
lutionary algorithm with a clustered population can be used
to concurrently discover multiple regulatory motifs present
within the promoter sequences of co-expressed genes. In this
paper, we extend the algorithm by co-evolving a population of
Boolean classification rules in parallel with the motif population.
Results using synthetic data suggest that this approach allows
poorly conserved motifs to be identified in promoter sequences a
magnitude longer than using population clustering alone, whilst
results using muscle-specific data suggest the algorithm isable
to evolve meaningful sequence classifiers in parallel with motifs.

I. I NTRODUCTION

Regulatory motifs describe the short patterns of nu-
cleotides within DNA sequences which are responsible for
controlling when and where a gene is expressed. More pre-
cisely, regulatory motifs describe transcription factor binding
sites (TFBSs) embedded in the non-coding DNA sequences
upstream, or more rarely downstream, of a gene’s tran-
scription start site (TSS). Within higher eukaryotes (such
as homo sapiens), TFBSs are commonly found within the
region extending several thousand kilobases upstream of the
TSS, though the size of this promoter region varies widely
and binding sites have been reported at distances in excess of
100kb from the gene they are regulating. TFBSs may also
very rarely be found within the coding regions of genes.
The typical length of a regulatory motif is 10–20bp [29]
and binding sites for particular transcription factors canshow
substantial variation from gene to gene.

The aim of regulatory motif discovery is to identify the
regulatory motifs responsible for a gene being expressed
within a particular regulatory context [12], [20], [27]. This
problem usually takes the following form: given a set of
genes which are known to be expressed within a particu-
lar regulatory context, identify regulatory motifs which are
over-represented in their promoter sequences relative to all
other genes. Regulatory motif discovery is an important
problem in contemporary bioinformatics, since mapping of
gene regulatory regions underlies efforts to understand the
gene expression networks which control development and
metabolism.

The limitations of existing regulatory motif discovery
tools have been highlighted in two recent comparative ex-
perimental studies [12], [27]. Some of the most notable
problems are rapid failure with increasing sequence length
and a tendency to discover biologically-meaningless patterns
rather than true regulatory motifs. These are particularly

problematic for higher eukaryotes, whose genes have long
promoter sequences which often contain multiple, variable,
TFBSs whose individual signals may be weaker than the
background noise of spurious over-represented patterns.

Recently we have described an evolutionary algorithm
which makes use of within-population data clustering to
promote search for multiple diverse solutions within the
same population [14]. This approach has proved successful
both for finding multiple regulatory motifs within a set
of sequences and for finding regulatory motifs in longer
promoter sequences than can be handled by comparable
statistical algorithms. In this paper, we present initial results
looking at how co-evolution may be used to improve the
search carried out by the evolutionary algorithm. In par-
ticular, we show how the co-evolution of Boolean rules
describing relationships between motifs helps to guide the
search for fit solutions, enabling the analysis of considerably
longer promoter sequences than is possible using population
clustering alone. We also discuss how this approach could
be used to infer information about the structure of regulatory
regions in higher eukaryotes.

The paper is organised as follows: Section II provides a
summary of related work. Section III provides an overview
of our earlier work using within-population data clustering.
Section IV introduces the new co-evolutionary approach.
Section V presents experimental results and analysis. Section
VI discusses the implications and future directions of the
work. Section VII concludes.

II. RELATED WORK

There have been a number of previous studies in which
evolutionary algorithms have been applied to regulatory
motif discovery [3], [4], [6], [11]. Early work by Corne at
al. [4] showed how consensus sequence strings and weight
matrices could be evolved to describe core promoter motifs in
the TSS-proximal region. Howard and Benson [11] evolved
GP-Automata to describe motifs in 300bp sequences. Fogel
et al. [6] used an island model distributed EA to discover
regulatory motifs within the 1kb promoter regions of co-
expressed genes. Congdon et al. [3] showed the ability of
genetic algorithms to find conserved sequence strings in
situations where exhaustive methods would be intractable.
Evolutionary algorithms have also been applied to the prob-
lem of motif discovery in amino acid sequences. These and
other biosequence applications are reviewed in [13].



For the majority of these approaches, the emphasis has
been on applying fairly standard evolutionary algorithms to
solve biosequence problems. This is motivated by the global,
yet non-exhaustive, nature of search carried out by evolu-
tionary algorithms: which can often lead to better solutions
than the local and exhaustive search methods commonly used
within bioinformatics. Our motivation is slightly different, in
that we aim to make use of the relative flexibility with which
evolutionary algorithms can represent and score solutions,
and thereby develop approaches which are more applicable
to solving motif discovery problems. For instance, in our
earlier work [14] we focussed on the ability of evolutionary
algorithms to represent diverse groups of candidate solutions
concurrently, and showed that this mode of search has advan-
tages both for discovering multiple motifs and for discovering
single motifs in the presence of noise. In this work, we look
at how co-evolution allows the motif discovery problem to
be solved as a parallel combination of transcription factor
binding site characterisation and sequence classifier induc-
tion.

Another significant difference between this work and
the majority of other EA-based approaches [3], [6], [11]
is that we focus upon the discovery of continuous (i.e.
matrix) models of transcription factor binding sites rather
than discrete (i.e. conserved strings and regular expressions)
models. The continuous search space makes this a more
difficult optimisation problem, yet a more suitable approach
for characterising the variance within regulatory motifs.

III. POPULATION CLUSTERING

In [14], we described an evolutionary algorithm for regu-
latory motif discovery which applies data clustering to its
population prior to the generation of new solutions. We
refer to this population-based data clustering approach as
population clustering. More precisely, our algorithm uses
the sequential leader clustering algorithm [10] to partition
the population into sub-populations prior to mating. Mating
then takes place solely within sub-populations.

The sequential leader algorithm is a simple incremen-
tal clustering algorithm chosen primarily for its low time
complexity. The algorithm makes a single pass through the
population, and depending upon the degree of similarity,
either assigns each solution to an existing cluster or uses it
to seed a new cluster. The order-dependent nature of leader
clustering also means that clusters can vary significantly
from one generation to the next, providing an opportunity
for solutions to move between clusters and thereby allowing
a degree of genetic flow.

The explicit partitioning of the population is the primary
advantage of population clustering over fitness sharing and
crowding [21] and mating-based approaches [7] to diversity
management—all of which achieve partitioning through in-
direct means—since it enables both selection and recombina-
tion to be carried out locally. In particular, selective pressure
can be made high within partitions, promoting optimisa-
tion of individual solutions, whilst remaining low between
partitions, promoting solution diversity. Unlike distributed

populations [2], which also have explicit partitioning, this
partitioning is determined by similarity between solutions
rather than by evolutionary history, promoting better cov-
erage of the search space. There have been several other
examples of using population clustering within evolutionary
algorithms, including [22] and [25].

In [14], this population clustering evolutionary algorithm
(PCEA) was used to evolve variable length position fre-
quency matrix (PFM) models of regulatory motifs. For a
clustering metric, we used the Euclidean distance between
the tetranucleotide distributions of two PFMs (following the
approach of [8], in which this metric was successfully used
to distinguish between families of regulatory motifs within
the TRANSFAC [15] database). Our results showed this
approach to be effective at both discovering multiple motifs
concurrently and finding motifs in relatively long sequences.

IV. M OTIF-RULE CO-EVOLUTION

In this paper, we extend this population clustering evolu-
tionary algorithm by co-evolving Boolean rules that describe
relationships between the evolving motifs. These Boolean
rules have several potential roles: to identify combinations
of motifs which can be used as sequence classifiers, to
identify regulatory relationships between motifs, and, via
selective feedback, to concentrate search within those motif
clusters which contribute to fit rules. More generally, thisis
an example of cooperative co-evolution [17]: the intention
being that fit motifs should enable the evolution of fit rules
and fit rules should guide the evolution of fit motifs.

The algorithm is provided with two sets of sequences: a
set of promoter sequences which are to be searched for over-
represented motifs (the data set), and a set of sequences
which capture the nucleotide background (the background
set). The data set will usually consist of promoters from
genes known to be co-expressed within a certain regulatory
context, and the background set will typically comprise pro-
moters from a larger random selection of genes, preferably
known not to be expressed within the same regulatory context
as those comprising the data set. The algorithm has two
populations: a motif population and a rule population.

A. Motif Population

The motif population consists of position frequency matri-
ces (PFMs), each describing a potential regulatory motif. The
fitness of a PFM is a measure of how well it differentiates
sequences in the data set from those in the background set. It
is calculated as follows: Prior to fitness evaluation, the PFM
is converted to a position weight matrix (PWM) for more
efficient matching. This is done by translating frequencies
into log-odds scores. For each sequence in both the data set
and the background set, the best match to the PWM is found
by calculating the PWM match score at each offset in the
sequence. This value is then normalised to the range [0,1]
by dividing by the maximum possible score for any PWM
of equivalent size. The fitness of the motif is given by the
difference between the mean best match score upon the data
set and the mean best match score upon the background set.



Fig. 1. Example of a Boolean classification rule, showing howdescriptive
pointers are matched to the fittest members of actual motif clusters. Position
frequency matrices are drawn as sequence logos, which show the infor-
mation content (column height) and distribution of nucleotide frequencies
(letter heights) at each offset.

This is mapped linearly to a value between 0 and 1, with
values above 0.5 indicating a better match against sequences
in the data set than the background set.

The motif population is initially filled with randomly
generated PFMs with uniformly distributed frequencies for
each base. The motif population undergoes clustering at the
beginning of each generation and new solutions are gener-
ated by within-cluster mating using both recombination and
mutation. A fitness-ranked selection strategy is used to select
parents for mating. Mutation is applied with a probability of
8% per nucleotide position and works by randomly changing
the frequencies assigned to one or more residues and then
normalising the other frequencies so that the total still sums
to unity. Two forms of mutation are used. Gaussian mutation
selects a new frequency value for a single residue using a
Gaussian distribution centred around the current value and
covering one standard deviation in the range±0.5. Values
outside the range[0, 1] are rejected. Gaussian mutation is
applied during 90% of mutation events. A more disruptive
mutation operator, which randomises then normalises all the
residue frequencies in the selected matrix column, is applied
during the remaining mutation events. There is also a 4%
likelihood of adding a new column with random frequencies
to either the start or end of a motif during mutation. Uniform
crossover selects crossover points with a probability of 15%
per nucleotide position, and then swaps the groups of matrix
columns occurring between every other pair of crossover
points. Mutation and crossover are applied independently
in the ratio 7:3. Parameter settings were determined exper-
imentally. The number of new solutions generated by each
cluster is determined by a weighted function of the cluster’s
rank fitness and the mean fitness of rules which refer to the
cluster (see section IV-C). To preserve diversity, each cluster
generates at least one child solution.

B. Rule Population

The rule population consists of sequence classification
rules, each defined by a Boolean expression. Rules are imple-
mented as binary trees. Terminal nodes are pairs of the form
(M, C) whereM is a member of the motif population andC
is a fractional cutoff value. For a given sequenceS, a terminal

node returnstrue if the match value ofM againstS is
equal to or greater thanC multiplied by the highest possible
match value ofM . Non-terminal nodes are Boolean functions
from the set{AND, OR}. The AND function expresses
co-occurrence, i.e. both of its arguments returntrue for
each matching sequence. This could describe a regulatory
context where, for example, two interacting transcription
factors are required for a gene to be expressed. The OR
function expresses alternative matches, i.e. at least one of
its arguments returnstrue for each matching sequence. This
could capture a regulatory context in which more than one
transcription factor could lead to expression, but only oneis
required.

Since motifs are undergoing evolution, and therefore sub-
ject to change and removal, rules can not refer directly to
members of the motif population. Instead, they use descrip-
tive pointers which are mapped to actual members of the
motif population prior to evaluation of the rule (see Figure
1). In this implementation, these descriptive pointers arealso
position frequency matrices. Prior to evaluation, their tetranu-
cleotide distribution is compared to that of the fittest member
of each cluster within the motif population and they are
mapped to whichever motif provides the closest match. This
results in decoupling between the two populations, allowing
them to vary independently whilst retaining behavioural links
between rules and motifs.

The fitness of a rule reflects its ability to accept sequences
in the data set whilst rejecting sequences in the background
set. Raw fitness is calculated using Matthews correlation
(MC), a measure of classifier accuracy defined by:

(TP · TN)− (FP · FN)
√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(1)

where TP, TN, FP and FN are the numbers of true positive,
true negative, false positive and false negative classifications
respectively. A pseudocount is used to prevent zero values
and the result is mapped to the range [0,1], where higher
values are better and a value over 0.5 indicates a better-than-
random classification. To avoid the problem of solution size
bloat whilst still encouraging a degree of complexity, fitness
penalties are imposed when tree size exceeds a certain depth
and when the motifs referenced by a rule are not sufficiently
diverse. A penalty of 0.04 is imposed for each level of depth
above 5. The diversity penalty has two components. The first
penalises multiple references to the same motif and is equal
to a maximum penalty of 0.1 multiplied by the ratio of the
number of motifs uniquely referenced by a rule to the total
number of motifs referenced. The second penalises similarity
between the referenced motifs and is equal to a maximum
penalty of 0.05 multiplied by the ratio of the mean distance
per base between the motifs’ tetranucleotide distributions and
the mean tetranucleotide probability for the motif population.

The initial rule population is filled with randomly gener-
ated binary trees with depths of between 2 and 5 levels.
Cutoff values for terminal nodes have values of at least
0.7. Rules in subsequent populations are generated using



GP-like point mutation and sub-tree crossover. For point
mutation, a single node is selected per tree. If the node is
a terminal, there is a 55% probability of replacing its PFM
with that of the fittest member of a randomly chosen cluster,
a 20% probability of applying standard motif mutation to
the existing PFM (see Section IV-A), a 10% probability of
replacing the PFM with a randomly generated PFM, and a
15% probability of choosing a new cutoff value. Sub-tree
crossover is slightly non-standard in that a crossover point is
selected by first choosing a random depth and then selecting
a random node at that depth. This is designed to reduce
bloat by removing the bias towards leaf nodes associated
with standard sub-tree crossover. Parent solutions are selected
using tournament selection with a tournament size of 5.

C. Rule Feedback

Feedback from the rule population to the motif population
occurs via the function which determines how many child
solutions each cluster contributes to the next generation.This
is calculated as follows: (1) the motif clusters are orderedby
the relative fitness of their fittest member and assigned the
corresponding motif fitness rank; (2) the motif clusters are
ordered by the mean fitness of the rules which reference them
and are assigned the corresponding rule fitness rank; (3) the
motif clusters are ordered by the weighted mean of their
motif and rule fitness ranks and assigned the corresponding
overall rank; (4) each cluster is assigned a quota of child
solutions linearly proportional to its overall rank. In cases
where clusters are not referenced by any rules, they are
assigned a rule rank one below the lowest position of those
which are referenced. For the experiments reported in Section
V, we use a ratio of 3:7 when calculating the weighted mean
between motif and rule fitness ranks.

This procedure generates selective pressure towards PFMs
with both a high individual match value and a high contribu-
tion to rule fitness. Nevertheless, motifs with a low individual
match value will be ranked higher if they contribute to rule
fitness. This provides a potential mechanism for identifying
short or poorly conserved binding sites, whose individual
signals can be impossible to distinguish from background
noise. Since bound transcription factors often work in concert
with those bound at other binding sites, these weak motifs
could be recognised though their interactions with other
motifs, which may be reflected in their contribution to rule
fitness.

Our method of providing rule fitness feedback is somewhat
different to most cooperative co-evolutionary algorithms,
which typically provide feedback by directly modifying
the fitness of those entities in the first population which
are referenced by the second population. The advantage
of our approach, which is made possible by the use of
a clustered population, is that feedback affects groups of
similar solutions in the first population rather than individual
solutions. This should promote search within regions, rather
than individual points, of the search space. It may also
lessen the impact of the stochastic element of the process

by which the second population samples members of the
first population.

V. RESULTS AND ANALYSIS

To determine the benefits of introducing rule co-evolution,
we evaluated the extended algorithm using the same method-
ology used to evaluate the stand-alone population clustering
EA [14]. The first experiment looked at the algorithm’s abil-
ity to re-discover single known transcription factor binding
sites embedded into DNA promoter sequences of various
lengths. The aim of this experiment was to determine whether
rule co-evolution affects the upper bound on the lengths of
sequences which can be effectively searched. The second
experiment applied the extended algorithm to the problem
of rediscovering multiple known transcription factor binding
sites embedded within promoter sequences. The aim was to
determine whether co-evolution can identify multiple motifs
(a task for which the stand-alone population clustering EA
proved well-suited) and infer suitable classification rules.
The third experiment applied the extended algorithm to a
real biological data set comprising muscle-specific promoter
sequences. The principle aim of this experiment was to deter-
mine whether co-evolved rules are able to express meaningful
relationships between evolved motifs.

A. Rediscovering single motifs in synthetic data sets

Fig. 2. Sequence logos for JASPAR motifs HLF (left) and c-FOS(right).

In previous work [14], we compared the ability of a
population clustering evolutionary algorithm and two statis-
tical motif discovery algorithms to locate motifs in synthetic
sequences of various lengths. In this experiment, we followed
this same approach but with considerably longer sequences.
Data sets were constructed by embedding known regulatory
motifs from the JASPAR [18] transcription factor binding
site database at random locations within human upstream
promoter sequences extracted from the Ensembl [1] genome
database (release 43). Embedded motifs were generated prob-
abilistically, with the probability of a particular nucleotide
occurring at each offset in the motif directly proportional
to its respective frequency in the corresponding JASPAR
position frequency matrix. We used the JASPAR motifs
HLF (ID: MA0043) and c-FOS (ID: MA0099), which have
previously been shown to be relatively difficult to identify
using motif discovery tools [5], [14]. This is due to poor
conservation in the case of HLF and to short defining length
in the case of c-FOS. Sequence logos for these motifs are
shown in Figure 2. Data sets were generated for sequences
of length 3kb, 5kb, 10kb and 20kb for both motifs. To
make the problem more biologically realistic, motif instances
were only embedded into half of the 100 sequences in



each data set. Background sets consisted of 2000 randomly
selected sequences. Data sets and background sets were non-
intersecting. Motif and rule population sizes of 4000 were
used in all runs with initial motif lengths of 5–50bp.

A total of 5 runs were carried out for each data set. This
relatively small number of runs reflects the high computa-
tional overhead of processing long sequences. For example,
with sequence length 20kb, a data set of 100 sequences, a
background set of 2000 sequences, and a motif population
of 4000, a single run of 100 generations takes approximately
6 days when distributed over 4 processors. This computation
time is dominated by motif evaluation and we are currently
looking at the potential use of hardware-based sequence
matching to reduce evaluation time.

Table I shows the number of runs for each data set in
which the embedded motif was successfully rediscovered
by the algorithm. Table II compares these results (“Co-
evolution”) against those using the stand-alone population
clustering evolutionary algorithm (“PCEA”) [14] and the
statistical algorithms MEME and NestedMICA (these figures
are taken from [5]).

TABLE I

TOTAL RUNS (OUT OF 5) IN WHICH THE EMBEDDED MOTIF WAS

SUCCESSFULLY REDISCOVERED

Sequence length (base pairs)

Motif 3000 5000 10000 20000

HLF 5 5 5 4
c-FOS 3 1 0 0

TABLE II

MAXIMUM SEQUENCE LENGTHS IN WHICH MOTIFS COULD BE

CONSISTENTLY REDISCOVERED

Algorithm

Motif MEME NestedMICA PCEA Co-evolution

HLF 150 600 1500 20000
c-FOS 300 500 1500 3000

The interesting result here is that co-evolution allows the
HLF motif to be found in sequences a magnitude longer (10–
20kb) than those which could be effectively searched by the
population clustering EA alone (1.5kb). A mechanism for
this improvement is suggested by the rules inferred during
the process of searching for the motif, an example of which is
shown in Figure 3. Whilst individually the motifs referenced
by this rule are not good characterisations of the HLF motif,
the majority of them would have some probability of being
generated by its PFM. For example, the well conserved
‘TTACG’ motif, labelled 1© in Figure 3, would have a high
probability of being generated by columns 3–7 in the PFM
(see sequence logo in Figure 2). The motif ‘A[AT]TTCG’,
labelled 2©, would have a lower probability of being gener-
ated by columns 2–7 of the PFM, and ‘TCATACG’, labelled
3©, would have a small probability of being generated by

Fig. 3. The fittest Boolean rule in the final generation when searching
for the HLF motif in sequences of length 10kb. For space efficiency, rules
are drawn as tree-maps [23] in which functions appear as outlined boxes
containing their arguments. Black boxes indicate AND and grey boxes
indicate OR. Terminals are depicted by the sequence logo of the motif
which they reference. The height of the blue box behind the sequence logo
indicates the match cut-off value associated with the terminal.

columns 5–11. In effect, the rule appears to group together
the different components of the target PFM. The role of
the functions AND and OR are less easy to see from this
example, although it could be hypothesised that AND plays
a role in gluing together horizontal components of the PFM
(i.e. different column ranges), whilst OR presents choices
between different vertical components (i.e. different row
values). This suggests a pattern of search in which rule co-
evolution ‘identifies’, and then constrains search towards,
motif clusters representing the different components of a
solution. Interactions between clusters (through movement
of solutions and sequential clustering errors) may then lead
towards composite solutions which more closely resemble
the target motif.

By comparison, rule co-evolution brings about a relatively
modest improvement for the better conserved c-FOS motif—
on the order of twice, rather than ten times, the sequence
length. Assuming the above hypothesis is correct, this smaller
improvement could be attributed to the lesser scope for
vertical decomposition of the PFM, i.e. the c-FOS motif
describes a relatively small number of alternative binding
sites, presenting a smaller target for the hypothesised process
of parallel exploration followed by consolidation. The motif’s
shorter defining length may also limit the potential for
horizontal decomposition.

B. Rediscovering multiple motifs in synthetic data sets

In the second experiment, we applied the co-evolutionary
algorithm to a synthetic data set containing 8 co-occuring
JASPAR motifs. These motifs, listed in Table III, were
chosen to cover a range of values for information content
(IC) and defining length. In particular, RORA1, RXR-VDR
and PPARG-RXRA were chosen in order to test the ability of
a motif discovery algorithm to correctly distinguish between
similar motifs, since these are all members of the nuclear
receptor family and each contains the over-represented sub-
sequence GGTCA. All of the motifs were stochastically
inserted into 50 sequences of the 100 in the data set. A
background set of 1000 sequences was used. Sequences in
the data set and background set were both 1kb in length. A
total of 5 runs were carried out.



TABLE III

JASPARMOTIFS EMBEDDED IN MULTIPLE MOTIFS DATA SET.

# Name ID IC Length Sequence Logo

1 SPI-B MA0081 9.06 7

2 HLF MA0043 11.15 12

3 FOXI1 MA0042 13.18 12

4 NFKB1 MA0105 15.63 11

5 RORA1 MA0072 17.42 14

6 RXR-VDR MA0074 20.45 15

7 PPARG-RXRA MA0065 23.45 20

8 TP53 MA0106 26.24 20

Fig. 4. Mean fitness (top) of closest matches (bottom) to the target motifs at
each generation for the stand-alone population clusteringEA (left) and the
co-evolutionary algorithm (right). The mean fitness of the overall fittest motif
present within the population is also shown. Match values were calculated
using the dynamic programming technique described in [19].

Figure 4 shows the relative abilities of the stand-alone
PCEA and the co-evolutionary algorithm to rediscover the
embedded motifs. Whilst both algorithms are able to identify
the majority of the embedded motifs, higher match and
fitness scores indicate that the stand-alone PCEA is more
able to optimise individual motif instances than the co-
evolutionary approach. However, we did find that most runs
of the co-evolutionary algorithm lead to optimal classification
rules, i.e. rules which would accept all sequences containing
the embedded motifs whilst rejecting those (in the data and
background sets) that do not. This suggests that, for this
problem at least, the search for fit rules interferes with the
search for fit motifs. A likely reason for this, as illustrated
by the optimal evolved rule shown in Figure 5, is that it
is possible to correctly classify all sequences using only a

Fig. 5. Example of a rule which accepts all motif-containingsequences in
the multiple motifs data set whilst rejecting all sequencesin the data and
background sets which do not contain the motifs.

Fig. 6. Best classification of muscle-specific promoter sequences from
non-muscle-specific promoter sequences at each generation. Points show
mean values over 20 generations. Higher values indicate better classification
accuracy. Values above zero indicate a better than random classification.

subset of the embedded motifs—in this case NFKB1, TP53,
the nuclear receptor motifs, and a small part of HLF—and
furthermore, that it is not necessary to fully characterisethe
individual motifs.

C. Discovering motifs in muscle-specific promoter sequences

In the final experiment, we looked at the co-evolutionary
algorithm’s ability to handle real biological data by attempt-
ing to infer classification rules from a set of muscle-specific
promoter sequences. We used sets of promoter sequences
described in [24]1: a data set comprising Wasserman and
Fickett’s [28] curated collection of 43 muscle-specific pro-
moter sequences; a background set comprising 2348 non-
muscle promoter sequences from the eukaryotic promoter
database (EPD); and, to measure the generality of evolved
solutions, a test set comprising 28 muscle-specific promoter
sequences from the EPD. Sequences in Wasserman and
Fickett’s dataset have lengths between 197bp and 802bp,
those in the test set have lengths between 268bp and 600bp,
and those in the background set have lengths between 91bp
and 600bp. A total of 20 runs were carried out.

Figure 6 plots the evolution of classifier accuracy (in terms
of Matthews correlation) over the course of 150 generations,

1Available from http://www.pnas.org/cgi/content/full/0406123102/DC1.



showing performance on both the data set and the test set.
The best evolved classifiers in each run were able to reject
almost all background sequences (all but one, on average)
whilst accepting just over half (57% mean) of the sequences
in the data set. The highest scoring classifiers on the test set
also rejected most background sequences whilst accepting
about a fifth (18% mean) of the positive examples. Whilst
there is a clear disparity between performance on the data and
test sets, these results do demonstrate that evolved classifiers
are able to correctly classify sequences not seen during
training whilst rejecting almost all background sequences.

Figure 7 shows the classifiers which performed best upon
the data and test sets, respectively. Both contain motifs
which resemble known muscle-specific transcription factor
binding sites, including all those previously identified within
Wasserman and Fickett’s data set [28]. Motifs resembling
binding sites for myocyte enhancer factor (MEF), serum
response factor (SRF), transcription enhancer factor (TEF),
and stimulating protein 1 (SP1) are present within both clas-
sifiers. Although less well characterised, motifs resembling
myogenic determination factor (MyoD and Myf) binding
sites can also be seen in each of the classifiers. It is also
interesting to note that both rules make use of disjunctions
(ORs) of conjunctions (ANDs), a form which allows sub-
groups of sequences to be classified separately. However, it
is not clear whether the individual conjunctions represent
alternative forms of single binding sites or capture composite
regulatory modules consisting of multiple binding sites.

VI. D ISCUSSION

These initial results offer some interesting insights into
the behaviour of the co-evolutionary algorithm. Perhaps
most interesting, they suggest that rule co-evolution allows
weakly conserved motifs to be discovered in long promoter
sequences, something which is very significant given the
fairly low sequence length limitations of many contemporary
continuous-model (e.g. PFM) motif discovery algorithms
[12]. Whilst the results also suggest that co-evolution does
not appear to provide the same benefits for well conserved
motifs, this is less significant given the relatively strong
performance of existing discrete-model (e.g. consensus se-
quence) approaches to this sort of problem [27].

One point of concern is the potential for interference
between motif evolution and rule evolution, as demonstrated
by the multiple embedded motifs experiment. This is an ex-
ample of a situation where the classification problem is easier
than the motif discovery problem, and hence rule feedback
does not exert sufficient selective pressure to push the motif
population towards a diverse range of well characterised
motifs. In situations such as this, it may be advisable not to
use rule co-evolution. However, this problem is artificial in
nature and is unlikely to reflect the difficulty of real promoter
sequence classification problems, such as that addressed in
the final experiment. The results from this muscle-specific
sequence classification task show that rule co-evolution is
able to induce classifiers containing known muscle-specific
sequence features. These classifiers reject most non-muscle

Fig. 7. Rules evolved to differentiate muscle-specific promoter sequences
from non-muscle-specific promoter sequences. The best performing classi-
fier (MC=0.806) upon the data set (top) correctly accepts 74%of sequences
in the data set, 7% in the test set, and correctly rejects all but 3 of the
background sequences. The best performing classifier (MC=0.458) upon
the test set (bottom) correctly accepts 44% of sequences in the data set,
25% in the test set, and correctly rejects all but one of the background
sequences. Both of these classifiers evolved in the same run.Labels show
similarity to known muscle-specific transcription factor binding sites: SP1
(ID: M00196) and MyoD (M00001) in TRANSFAC, and MEF2 (MA0052),
Myf (MA0055), SRF (MA0083) and TEF (MA0090) in JASPAR.

sequences and each accept a reasonable proportion of the
muscle-specific sequences: and it seems plausible that a
composite of multiple classifiers could improve this accuracy.

Nevertheless, there is substantial room for improvement,
particularly with regard to classifier generality (i.e. perfor-
mance on non-training sequences). Perhaps the most obvious
next step is to improve the rule model used for classification,
allowing rules to more accurately capture the structure of
regulatory regions and thereby distinguish between positive
and negative examples in a more meaningful fashion. In
eukaryotes, it has been observed that transcription factor
binding sites are often grouped together in cis-regulatory
modules (CRMs). Usually these consist of 4–8 binding sites
[29], including duplicates, and often there are functional
constraints which limit the ordering, distances between, and
strand orientation of the binding sites [26]. It would be quite
feasible to introduce distance, ordering and strand occurrence
constraints to the Boolean rule model, and possibly introduce
a means of explicitly representing CRMs. This kind of
approach has recently been shown to be effective for HMM-
based approaches to motif discovery [16]. It would even be
possible to introduce another layer of co-evolution to search



for fit relationships between CRMs.
However, it is also important to not overly constrain the

model, since the structure of regulatory regions does not
always follow simple rules. In [9], for instance, it is argued
that the commonly-held view of dense-cluster models of
CRMs may be due to experimental bias towards yeast mod-
els, and does not reflect the complexity of regulatory regions
in higher eukaryotes. In fact, given the relative flexibility
with which solutions can be represented in evolutionary
algorithms, approaches such as the one described in this
paper could play a role in improving understanding of the
organisation of regulatory regions.

VII. C ONCLUSIONS

In this paper we have presented initial results from our
investigation of a co-evolutionary architecture for regulatory
motif discovery. Our approach builds upon previous work
in which we developed a population clustering evolution-
ary algorithm designed to concurrently discover multiple,
diverse over-represented patterns present within the promoter
sequences of co-regulated genes. This new work introduces a
co-evolutionary layer in which sequence classification rules
are evolved in parallel with motifs, providing feedback to
guide the evolution of the motif population. We have applied
this new algorithm to several different problems involving
synthetic and real biological data. The results suggest that
rule co-evolution considerably improves the ability of the
algorithm to discover weakly conserved motifs in long pro-
moter sequences (10–20kb). Analysis of evolved classifiers
indicates that this improvement may be a result of implicit
problem decomposition carried out during rule evolution.
However, there is some concern that motif evolution will be
impaired if the classification problem is easier than the motif
discovery problem. The results also show that the algorithm
is able to evolve meaningful classifiers when applied to a real
biological data set. Nevertheless, the limited generalityof the
evolved classifiers suggests that more constraints should be
introduced to the classifier model in future work.
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