
Biomimetic Representation in Genetic Programming

Michael A. Lones and Andy M. Tyrrell
Bio-Inspired and Bio-Medical Engineering

Department of Electronics
University of York

Heslington, York, England
{Michael.Lones, Andy.Tyrrell}@bioinspired.com

Abstract

Biological representations underly biological
evolution. Moreover, they are also a product
of evolution and consequently well adapted
for their purpose. The argument presented
in this paper is that the representations of
biology are also suitable for representing arti-
ficial executable systems in genetic program-
ming and, furthermore, that biomimetic rep-
resentations could improve both the adapt-
ability and evolvability of GP. To this end
a biomimetic approach to GP, enzyme ge-
netic programming, is introduced and its be-
haviour is analysed when applied to the do-
main of combinational circuit design.

1 INTRODUCTION

Whilst it is true that manual programming and genetic
programming (GP) explore the same search space, the
manner in which they do so is very different. Manual
programming is a design process. Moreover, it is a de-
sign process necessarily biased by the cognitive limita-
tions of human programmers. Consequently, the tools,
languages and artifacts of manual programming make
implicit the linearity and decompositional constraints
of human thought. Evolution does not require limi-
tations since it does not require understanding of the
domain. Indeed, experience in evolutionary computa-
tion (EC) suggests that placing unsuitable constraints
upon a search space can reduce performance of evo-
lutionary algorithms (EAs) and even restrict search
from traversing sub-spaces containing global optima.
Hence there is a danger that the use of manual pro-
gramming representations in GP could place unnec-
essary constraints upon the scope and evolvability of
evolutionary search.

Rather than design a new representation from scratch,
the approach taken here is to mimic biological repre-
sentations. The reason for this is two-fold. One, bi-
ology has already proven a useful source of ideas in
EAs, and in computer science more generally. Two,
biology and GP share important characteristics. The
obvious similarity is that both apply evolution to their
respective products. However, a less obvious similar-
ity between GP and biology is that both their products
are executable; in that static descriptions are mapped
to dynamic systems — systems that, furthermore, can
be expressed using a common representation [2]. From
this it follows that GP, a system sometimes accused of
lacking evolvability, could benefit through greater con-
cordance with biology, a system with proven evolvabil-
ity at a broadly similar task.

The paper proceeds as follows. Section 2 describes bio-
logical representations. Section 3.1 discusses the use of
biomimetic representations in GP and artificial com-
putation. Section 3.2 describes enzyme genetic pro-
gramming, a biomimetic GP system.

2 THE BIOLOGICAL APPROACH

Development in biology is a mapping from a genotype,
a static description of an organism, to a phenotype, a
dynamic instance of the organism. This mechanism
can be described at a number of different levels, the
most fundamental of which is the level of gene expres-
sion; where genomic information is used to construct
proteins, the basic elements of biological phenotypes.

2.1 GENE EXPRESSION

Gene expression, the process of transforming a gene
into a protein, is often expressed as a combination
of transcription; copying the gene, and translation;
converting the language of the gene, DNA bases, into
the language of the protein, amino acids. More accu-



messenger RNA
genome

transfer RNA

amino acids

folding

polypeptide
chain(s) protein

ribosome proteome

translationtranscription

Figure 1. Gene expression

rately, transcription and translation are components
of a transformation process which, via the orchestra-
tion of many biological agents (that were also at an
earlier time generated by this process), builds pro-
teins according to specifications recorded in an or-
ganism’s DNA. A computational interpretation of this
process is depicted in figure 1. The genome is en-
visaged as a database of descriptions of computa-
tional agents, stored in some random access stor-
age media. Transcribers (protein complexes organ-
ised around DNA polymerase) extract records from
the genomic database and record them in temporary
linear data structures (messenger RNA) which, after
editing to remove obsolete sections, are delivered to
translators. Translators (complexes of protein and
RNA called ribosomes) parse this data, using it as
a blueprint to guide construction of the components
required for new computational agents. However, be-
fore they are assembled, these components, linearly-
connected sequences (polypeptides) of basic functional
units (amino acids), are folded into three-dimensional
shapes; where the spatial arrangements of their func-
tional units determine the computational natures of
the components. New computational agents (proteins)
are then formed by the physical composition of one or
more of these components. The set of all proteins gen-
erated by way of gene expression within an organism
is called the proteome.

2.2 BIOCHEMICAL PATHWAYS

If a cell is viewed as a computational system, then that
computation takes the form of the manipulation, the
metabolism, of the cell’s chemical state; the concentra-
tions of different chemical species within the cell. Ma-
nipulation of this state involves transformations, im-
plemented by constructive and destructive chemical re-
actions, between chemical species; increasing the con-
centrations of some and reducing the concentrations of
others. However, temperatures in biological systems
are relatively low and many of these reactions will not
occur without the help of catalytic agents — enzymes,

a group of proteins that bind to specific chemicals and
mediate their interaction and subsequent transforma-
tion. The chemical species to which an enzyme binds,
its substrates, is determined by a property called its
specificity; a result of the spatial arrangement of amino
acids found at the enzyme’s binding sites.

The presence of enzymes activates transformative
paths within the metabolism. This forms a net-
work, a metabolic network, where chemical species
are nodes and enzyme-mediated reactions are vertices.
Metabolic networks are composed of metabolic path-
ways. A metabolic pathway is an assemblage of en-
zymes which, roughly speaking, carries out a unified
task involving a shared group of chemical species. This
cooperation emerges from the sharing of substrates
between enzymes, where the product of one enzyme
becomes the substrate of another. Pathways can be
linear, forked or iterative; iteration resulting where a
product feeds back to an earlier stage in the pathway.
However, the metabolism operates within a dynamic
environment and therefore requires a dynamic execu-
tion structure to cope with varying demands. Execu-
tional dynamism is controlled either directly, through
regulation of pathways, or indirectly, through expres-
sion of enzymes. Pathway regulation acts through the
regulation of enzymes; either through chemical modi-
fication or by effector molecules that bind to enzymes
and alter their activity. The source of regulation may
be this pathway, another metabolic pathway, or a sig-
nalling pathway; a type of biochemical pathway which
delivers external signals to cells.

Enzymes are proteins and are therefore a result of gene
expression. Gene expression offers the potential for the
synthesis of all proteins found within the proteome, yet
due to the presence of regulatory mechanisms, each cell
generates only a fraction of this potential. Genes are
predominantly regulated by the interference of DNA-
binding proteins upon the formation of their transcrip-
tion complexes, interference that can be negative or
positive. Since gene expression is regulated by prod-
ucts of gene expression, genomes are ultimately self-
regulating. The regulatory interactions between genes
and their products are described by a third class of
biochemical pathway; gene expression pathways.

2.3 EVOLUTION

From a human perspective, the genome seems static;
a single database that is faithfully copied and dissem-
inated throughout the lifetime of an organism. From
an evolutionary perspective, the genome is dynamic;
growing, mutating, recombining, rearranging — evolv-
ing between the lifetimes of single organisms.



If evolution is considered as a search process, then
one interpretation of genomes is that they represent
current search points within a landscape of possible
genomes. However, a different interpretation is that
genomes represent the state of search within evolu-
tion; they contain not just information relevant to the
present in search but also control information — infor-
mation describing the history and potential future of
search. Historical information is important for back-
tracking, and hence breadth of search, whereas in-
formation regarding the future conceivably improves
depth of search.

Diversity amongst genomes is sustained by the pres-
ence of multiple alternative alleles at a single gene
locus within a population. According to the neutral
theory of evolution, this phenomenon, called polymor-
phism, represents transitory events where alternative
alleles at a gene locus are heading towards either fixa-
tion or extinction. Neutralism, backed up by measure-
ments of the degree of polymorphism within natural
populations, proclaims that evolution occurs mostly
through the random fixation of neutral mutations and
the removal of degenerative alleles. Advantageous mu-
tations, by comparison, are rare.

Evolution is the population-wide genetic change of a
species. Adaptation is the improvement of a species’
fitness. Whilst neutral mutation drives evolution,
adaptation is the result of positive mutations. How-
ever, positive mutations are only likely to occur where
a current allele is close to a better allele in genotypic
space. The action of neutral evolution is to explore
different areas of a region of fitness equivalence within
genotypic space. A neutral walk is a series of such
mutations. If the walk takes the allele close to a re-
gion of higher-fitness space, then a positive mutation
is more likely to occur. Hence, neutrality increases ex-
ploration and diversity, improving the likelihood of an
advantageous mutation occurring.

3 GENETIC PROGRAMMING

3.1 BIOMIMETIC APPROACHES

Biological representations possess a number of proper-
ties which improve their adaptability and evolvability.
For genetic representations, these include neutrality,
multiplicity of expression and positional independence.
For phenotypic representations, they include expres-
siveness, reconfigurability and fault tolerance. Adapt-
ability and evolvability are, of course, also goals of
GP. The following sections review previous approaches
which have used mimicry of biological representations
in an attempt to achieve these goals.

3.1.1 Developmental representation

The most common form of biomimicry found in
the representations of GP systems is the genotype-
phenotype mapping, the separation of variational and
generative solution representations by a developmen-
tal stage. The benefit of this separation is that it al-
lows the genetic representation to be improved with
respect to evolution without affecting the representa-
tion used for the executable structure. An example
of this in GP is grammatical evolution [3]. Programs
in grammatical evolution are defined by an arbitrary
BNF grammar. Genotypes are expressed as sequences
of production choices within the BNF grammar. Dur-
ing development, this sequence, the blueprint of the
program, is mapped to an executable program. The
representation used for production choices is degener-
ate, meaning that a single choice can be encoded in
multiple distinct ways; leading to support for neutral
mutation and neutral walks. A more general benefit
of a redundant mapping from genotype to phenotype,
suggested in [4], is the resulting increase in genetic di-
versity.

3.1.2 Genetic Representation

In grammatical evolution, genes are production
choices. However, the relationship between gene prod-
ucts is based upon genomic ordering. One approach
which limits positional dependency in GP is gene ex-
pression programming [5] which segments a program
into small parse trees which are then composed by
a global function. Angeline’s MIPS nets [6] also ex-
press programs as collections of interacting parse trees,
though not in an intentionally biomimetic sense. An-
other, overtly biomimetic approach is described in [7],
in which finite state automata are expressed as a multi-
set of genes; each of which consists of a state reference
and a pattern. This pattern is then used as a template
for deciding which other states the gene will interact
with; and hence which state transitions will be formed.

3.1.3 Phenotypic Representation

The use of gene expression, the mimicry of biologi-
cal genetic representations, is a developing notion in
GP [8]. Less developed is the abstraction of biologi-
cal phenotypic representations; which can be regarded
as the natural mapping for systems described geneti-
cally. The idea of abstracting biological computational
systems for artificial use is as old as computers them-
selves; and artifacts like neural networks and evolu-
tionary algorithms show it to be an effective strategy.
Furthermore, the basis of phenotypic representation —
proteins — and higher-level metabolic and signalling



systems have been shown to be computational in na-
ture. Fisher [9] describes the computational abilities of
enzymes, and Bray [10] the computational behaviours
and simulated evolution of protein networks. Further
evidence is given by the modelling of metabolic net-
works as Petri nets [2]. An information-processing ar-
tificial enzyme system is demonstrated in [11].

3.2 ENZYME GENETIC PROGRAMMING

Enzyme genetic programming [1] is a GP system that
mimics both genetic and phenotypic representations
to evolve analogues of metabolic pathways in artifi-
cial programmable systems. The model of a metabolic
pathway used in enzyme GP is a set of interacting func-
tional elements where the nature of interaction is de-
cided locally by a unit according to its specificities —
defined in the genome — for outputs from other units.
An important difference between this and other GP
systems that describe programs as networks (for ex-
ample, [12]) is that here functional elements can have
specificities for any number of other components, not
just those they ultimately interact with.

Enzyme GP has so far been applied to problems
in combinational logic design; the evolution of non-
recurrent digital circuits. Other research in this area
is presented in [13]. The mapping between metabolic
networks and digital circuits is fairly natural. Logic
gates, like enzymes, enable transitions to occur in the
space of possible states, and circuits, like metabolic
pathways, enable functional sequences of transitions;
which in this case carry out a combinational logic func-
tion upon the circuit inputs.

3.2.1 Overview

Circuits, as illustrated in figure 2, have both genetic
and phenotypic forms. The genetic form is a linear
array of genes, where each gene consists of an activity
and a list of specificities for the outputs of other activ-
ities. Activities are input terminals, output terminals
or instances of boolean functions. The activities avail-
able to evolving circuits are recorded in a global ‘gene
pool’ which is defined at the beginning of an evolu-
tionary run. Specificities are numerical values in the
range 0 to 1.

Once expressed, gene products behave in an enzy-
matic fashion, sinking products from those activities
they have the highest specificity for and transforming
them into other products depending upon their activ-
ity. However, the circuits generated by the method
must be viable and therefore non-recurrent. Rather
than constrain the genetic representation or discard

Development

Simulation

X X

X

1 2 3 1 2
0 0 0 0 0
0 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Represents

Activity
Specificity

Logic elements Output terminals

Logic elements Input terminals

Gene

Specificity list

Figure 2. Circuit representations

invalid descriptions, all genotypes are mapped to valid
circuits; meaning that activities must choose inputs
for which they have ‘recessive’ specificity if their most
favoured inputs already occur downstream in the de-
veloping circuit.

Evolution of circuit genotypes is enacted with a dis-
tributed diffusion-model genetic algorithm. This al-
gorithm, detailed in [1], applies an elitist evolution
strategy at each node of a spatially-distributed popu-
lation. Variation is applied through uniform crossover,
between the specificities of homologous activities, and
mutation, randomly modifying a proportion of a solu-
tion’s specificities.

3.2.2 Evaluation

Enzyme GP’s performance has been measured upon
two problems; the full adder and the two-bit multi-
plier. The algorithm is given a truth table and the
gates found in the standard circuit. Its aim is then to
form the correct connections between the circuit ele-
ments. Results for the adder are graphed in figure 3.
Results for the multiplier are recorded in table 1. Cu-
mulative mean gives the average number of generations
between optimal solutions for a series of runs. Compu-
tational effort is a standard measure [14] which allows
a degree of comparison between EAs. For the adder,
the minimum effort is about 42000 evaluations for a
99% certainty of success. Values for the multiplier,
shown in the table, can be compared to results from
[13], where minimum effort is cited as between 210000
and 585000 depending on the choice of available logic
functions. Each system places different constraints on
the search space so direct comparison of performance
is not possible. Nevertheless, the performance of en-
zyme GP seems no worse than Miller’s system.



0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Population size

G
en

er
at

io
ns

to
op

tim
um

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
uc

ce
ss

fu
lr

un
s

Mean Median Cumulative mean Success

Figure 3. Results for full adder

Population Generations Successful Average Computational
size Mean C.Mean runs suboptimum effort

196 69 196 35% 95.6% 213248

324 70 127 55% 96.4% 252720

400 56 93 60% 96.2% 179200

Table 1. Results for 2-bit multiplier

3.2.3 Analysis

Figure 4 shows a typical evolution of a full adder;
showing how the evolutionary process transforms
twelve first generation random solutions into a thirti-
eth generation correct solution. The expanded section
shows the nature of phenotypic variation caused by
genetic operators. It should be apparent that simple
genotypic variation is not reflected as simple pheno-
typic variation. For instance, circuit D is a simple mu-
tation of circuit A’s specificities, yet the effect is more
akin to a compound macromutation; with the intro-
duction of a new circuit element in tandem with the
modification of another element’s input. For most mu-
tations, there is no phenotypic change, suggesting that
the major role of mutation is the generation of neutral
diversity through synonymous genetic changes. A se-
ries of such changes is a neutral walk. Returning to
figure 4, the transition between the final crossover and
the optimal solution is a neutral walk which brings
the genotype near enough to the optimum for it to be
found by a single further mutation.

The action of crossover upon genotypes also leads to
non-trivial effects upon the phenotype. Recombining
circuits D and E, for example, leads to circuit F; where
the output terminal receives input from a gate to which
it was connected in neither parent. The unexpected
phenotypic behaviours of crossover are due to changes

in the dominance hierarchies of the genotype; resulting
in recessive, yet relatively strong, specificities becom-
ing expressed when dominant specificities are removed.
This also reflects the multiplicity of solutions in en-
zyme GP. In addition to the dominant schema which
are expressed in any given generation, a genotype also
carries many recessive schema. Changes in the dom-
inance hierarchy, caused by the action of genetic op-
erators between generations, means that a large num-
ber of different, yet related, solutions can be expressed
within different generations.

Multiplicity, a single genotype describing many related
phenotypes, is conceivably more efficient than having
many genotypes each mapping to a single phenotype
since (i) it reduces computational effort within a gener-
ation and (ii) it keeps related information in one place
rather than distributing it throughout the population.
It also reflects the view that genomes are adaptive be-
cause they elicit state of search in addition to position
in search. In this case, the genotypes contain com-
ponents of previous and future solutions in addition
to those expressed in the current solution; and conse-
quently possess more information regarding the direc-
tion of search.

94%

94%

69%

75%

100%

Crossover
Mutation

Mutation with
phenotypic effect

Initial solutions

B C

E

A

D

F

2% mutation
crossover

crossover

50% 63%

81%

Figure 4. Evolution of a full adder



However, it seems likely that enzyme GP suffers from
too much multiplicity. In each solution, every circuit
element that requires inputs has specificity for every
element that provides output. This implies a large ra-
tio of recessive components to dominant components;
and since fitness is measured only on dominant com-
ponents, this may encourage the hitchhiking of low-
fitness recessive components. The disparity between
solution fitness and true evolutionary worth may in
turn limit the effectiveness of selection.

4 CONCLUSIONS

The argument of this paper is that representations in
GP could be improved through mimicry of biological
representations. Enzyme genetic programming, whilst
not yet proving this assertion, shows that adaptation
of biological representations for use in the artificial
domain is at least possible. Early results, applying
the method to combinational logic design, show the
method to be competitive, whilst analysis of its be-
haviour suggests that biomimetic representations may
be advantageous to artificial evolution.

5 FUTURE WORK

The behaviours of the three classes of biochemical
pathway; metabolic, signalling and gene expression,
have been described, respectively, as self-organising,
self-reshaping and self-modifying [15]. Much of the
power of biology comes from the reshaping and mod-
ifying activities of the latter two classes of path-
way. Consequently, an interesting direction of research
would be the addition of these other axes of behaviour
into the enzyme GP system.

References

[1] M. A. Lones and A. M. Tyrrell. Enzyme genetic
programming. Accepted for CEC2001, May 2001.

[2] V. Reddy, M. Mavrovouniotis, and M. Liebman.
Petri net representations in metabolic pathways.
In L. Hunter et al, editor, Proceedings of the first
international conference on intelligent systems for
molecular biology. MIT Press, 1993.

[3] C. Ryan, J. J. Collins, and M. O’Neill. Grammati-
cal evolution: Evolving programs for an arbitrary
language. In W. Banzhaf et al, editor, First Eu-
ropean Workshop on Genetic Programming, vol-
ume 1391 of Lecture Notes in Computer Science.
Springer, April 1998.

[4] R. E. Keller and W. Banzhaf. Genetic program-
ming using genotype-phenotype mapping from
linear genomes into linear phenotypes. In J. Koza
et al, editor, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference. MIT
Press, 1996.

[5] C. Ferreira. Gene expression programming: A
new adaptive algorithm for solving problems. Un-
published, manuscript available at www.genetic-
expression-programming.com, 2000.

[6] P. Angeline. Multiple interacting programs: A
representation for evolving complex behaviors.
Cybernetics and Systems, 29(8):779–806, 1998.

[7] S. Luke, S. Hamahashi, and H. Kitano. “Ge-
netic” Programming. In W. Banzhaf et al, edi-
tor, GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan
Kaufmann, 1999.

[8] H. Kargupta. Gene expression: The missing link
in evolutionary computation. In D. Quagliarella,
J. Periaux, C. Poloni, and G. Winter, editors,
Genetic Algorithms in Engineering and Computer
Science, chapter 4. John Wiley & Sons Ltd, 1997.

[9] M. J. Fisher, R. C. Paton, and K. Matsuno. In-
tracellular signalling proteins as ‘smart’ agents
in parallel distributed processes. BioSystems,
50:159–171, 1999.

[10] D. Bray. Protein molecules as computational ele-
ments in living cells. Nature, 376:307–312, 1995.

[11] M. Shackleton and C. Winter. A computational
architecture based on cellular processing. In In-
ternational conference on Information Processing
in Cells and Tissues (IPCAT), 1997.

[12] J. Miller and P. Thomson. Cartesian genetic pro-
gramming. In R. Poli et al, editor, Third Eu-
ropean Conference on Genetic Programming, vol-
ume 1802 of Lecture Notes in Computer Science.
Springer, 2000.

[13] J. F. Miller, D. Job, and V. K. Vassilev. Princi-
ples in the evolutionary design of digital circuits
— part I. Genetic Programming and Evolvable
Machines, 1:7–36, April 2000.

[14] John Koza. Genetic programming: on the pro-
gramming of computers by means of natural se-
lection. MIT Press, 1992.

[15] P. C. Marijuán. Enzymes, artificial cells and
the nature of biological information. BioSystems,
35:167–170, 1995.


