
Pathways into Genetic Programming

Michael A. Lones and Andy M. Tyrrell
Bio-Inspired and Bio-Medical Engineering

Department of Electronics
University of York

Heslington, York, England
{Michael.Lones, Andy.Tyrrell}@bioinspired.com

Abstract

Biochemical pathways are the fundamental
structures of biological representations. Bi-
ological representations are the fundamen-
tal targets of natural evolution. Evolution
is the fundamental principle behind genetic
programming. Could biological representa-
tions be useful to genetic programming? Are
biochemical pathways a suitable representa-
tion for programs? These are the fundamen-
tal questions addressed by this paper.

1 INTRODUCTION

Evolution, unlike design, takes advantage of any avail-
able behaviours. It is not limited by the cognitive
capacities of a creator — it is, as Richard Dawkins
says, blind. To place constraints: understandability,
decomposability, synchronicity, linearity; on the pro-
cess might make it seem less blind, more comprehensi-
ble; yet equally, it would be like placing walls in front
of a blind person, limiting their movement, pushing
them away from potentially productive pathways.

Genetic programming (GP) is a computational
method that uses evolution, rather than design, to
generate programs. A conspicuous trend in GP is to-
wards increasing convergence between its products and
those of manual programming. This has a number of
advantages; it leads to programs that are readable, un-
derstandable, decomposed into reusable functions and,
ultimately, capable of complementing the traditional
software engineering process. The research reported
here, however, is towards convergence not with man-
ual programming but with natural evolution.

The justification for this is two-fold. One, there is a
danger that using the tools, languages and artifacts of

manual programming could be placing limiting con-
straints upon evolutionary search. These representa-
tions were not designed for evolution and consequently
would not be expected to be evolvable. Problems
such as bloat and the ineffectiveness of crossover seem
to exemplify this. Secondly, and conversely, biology
is a product of evolution. Therefore, its representa-
tions, its products; its very nature, are examples of
approaches that work for evolution. The argument
then follows that what is good for evolution may also
be good for genetic programming.

2 REPRESENTATIONS

The need for a good representation in evolutionary
computation, and in artificial intelligence more gener-
ally, is called the representation problem. Genetic pro-
gramming has two forms of representation; the varia-
tional and the generative. The variational representa-
tion is a static description of a program and is subject
to evolutionary variation. The main requirement for a
variational representation is evolvability: the evolution
of programs of increasing fitness on a generational ba-
sis when subjected to genetic variation. The generative
representation is a product of the variational represen-
tation, and describes the dynamic form of a program.
Its main requirement is that it can be executed. Yet,
despite the different requirements of variational and
generative representations, most GP systems do not
distinguish between the two.

2.1 BIOLOGICAL REPRESENTATIONS

Biology does distinguish between variational and gen-
erative representations. They are called, respectively,
the genetic and the phenotypic. The genetic repre-
sentation, from a reductionist viewpoint, is a linear,
spatially distributed, sequence of heritable attributes.
Each heritable attribute describes the amino acid se-



quence of a protein. Development interprets these
descriptions and generates proteins; the fundamental
components of the phenotypic representation.

A group of proteins working upon a common task is
called a biochemical pathway. The tasks carried out
by biochemical pathways fall into three broad classes:
metabolic, signalling and gene expression. Of these,
metabolic pathways are considered the most funda-
mental for they implement the processing behaviours
of the cell, whilst signalling and gene expression path-
ways take on a configurational role.

Biochemical processing amounts to the manipulation
of a cell’s chemical state through systems of chemical
reactions. Metabolic pathways are composed of en-
zymes, a group of proteins that carry out catalytic be-
haviours; enabling reactions that would otherwise not
be possible in the relatively low cellular temperatures.
Enzymes achieve their catalytic behaviour by bind-
ing to specific chemicals, the enzyme’s substrates, and
guiding their reaction. Cooperation within metabolic
pathways emerges from product-substrate sharing be-
tween enzymes, where the product of one enzyme be-
comes the substrate of another.

2.2 BIOMIMETIC REPRESENTATIONS

Biological representations possess a number of qual-
ities conceivably useful to, but not usually found,
in genetic programming representations. These, in-
clude: the specialisation of evolutionary and exe-
cutable forms; evolvable representations, ‘designed’ for
evolution; neutrality, increasing genetic diversity and
adaptability; less constrained behaviour, giving more
freedom to evolution; and positional independence, not
limiting gene function to gene position.

A number of GP systems mimic the genetic represen-
tation of biology. Many of these have introduced a
developmental stage, allowing the genetic representa-
tion to be independent of the executable representa-
tion. This has been shown to increase genetic diversity
[1] and encourage neutrality [2]. A number of these
approaches also allow positionally-independent genic
units within the genome [3]. Other researchers have
used genetic-like representations without deliberately
attempting biomimicry [4, 5].

The mimicry of phenotypic representations is less com-
mon. However, computational idioms have been used
to describe the action of enzymes [6] and biochemi-
cal pathways [7]. Analogues of enzyme activity have
been used for computational purposes in the artificial
domain [8]. Evolutionary models of pathway develop-
ment have also been attempted [7].

3 ENZYME GENETIC
PROGRAMMING

Enzyme genetic programming [9] is a system that mim-
ics biology in both genetic and phenotypic represen-
tations. Phenotypic representation is based upon an
abstraction of metabolic pathways. The aim of the
system is to evolve analogues of metabolic pathways
within combinational logic circuits. Other work in the
evolution of digital circuits is reported in [10].

3.1 REPRESENTATION

Figure 1 shows the relationship between the represen-
tations of enzyme GP. During evolution, circuits are
encoded as linear sequences of ‘genes’; where each gene
describes the input preferences, the specificities, of a
particular logic gate or output terminal. A specificity
is a floating point value between zero and one which
indicates relative preference for inputs (substrates).
Each input-consuming activity has a specificity defined
for the products of every output activity.

The phenotypic representation generated by a geno-
type is visualised in the center of figure 1. Line weights
indicate relative specificities. In practice, the network
should be fully connected. However, for clarity only
the dominant and a few of the recessive specificities
are shown. When the circuit is realised, the dominant
specificities should map to circuit connections. How-
ever, combinational circuits must be non-recurrent and
consequently it will not always be possible to express
a circuit element’s most preferred connections. This
approach is taken rather than allowing invalid circuits
or constraining the genetic representation.

3.2 APPLICATION

Circuit genotypes are evolved using a diffusion-model
distributed genetic algorithm. Fitness is measured
by simulating the circuit against all input combina-
tions and comparing outputs with those in the problem
specification’s truth table.

Population Generations Successful Average Computational
size Mean C.Mean runs suboptimum effort

196 69 196 35% 95.6% 213248

324 70 127 55% 96.4% 252720

400 56 93 60% 96.2% 179200

Table 1. Results for two-bit multiplier

The method has been applied to two problems: the full
adder and the two-bit multiplier. Results are shown
in figure 2 and table 1 respectively. Cumulative mean



Activity
Specificity

Logic elements Output terminals

Logic elements Input terminals

Gene

Specificity list

in1

in2

in3

out1

out2

encodes represents

Genotype Phenotype

in1
in2

in3out1

out2

Phenotypic Representation

Figure 1. Circuit Representations

measures the expected wait between optimal solutions
for a series of runs. Computational effort [11] measures
the number of circuit evaluations required to guaran-
tee a 99% certainty of success. For the adder, the
minimum computational effort was about 42,000. Val-
ues for the multiplier are given for comparison against
[10]; where results between 210,000 and 585,000 are
given for different formulations of the problem. The
two approaches cannot be directly compared due to
differing constraints on the search space, though the
performance of enzyme GP appears at least no worse.

3.3 EVOLUTION

Figure 3 shows a typical evolution of a full adder.

Neutrality

The evolutionary tree shows that most mutations are
synonymous, having no effect at the circuit level. Neu-
tral mutations fall into three classes: synonymous mu-
tations upon recessive specificities, synonymous muta-
tions upon dominant specificities (changing their value
but not their dominance) and non-synonymous muta-
tions that do not change the circuit’s fitness. Having
relatively few output bits, the full adder problem has

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400

Population size

G
en

er
at

io
ns

to
op

tim
um

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
uc

ce
ss

fu
lr

un
s

Mean Median Cumulative mean Success

Figure 2. Results for full adder

only three effective fitness levels above those of first-
generation random solutions. This both encourages
non-synonymous mutations and indicates the impor-
tance of the diversity produced by synonymous muta-
tions.

Only occasionally do mutations lead to a circuit-level
change. However, when this change does occur its ef-
fect can be substantial; as the transition between cir-
cuits A and D in the diagram illustrates. Often, a
circuit changing mutation occurs after a sequence of
synonymous mutations; a neutral walk. An example
of this occurs between the last crossover and the find-
ing of the optimal solution.

94%

94%

69%

75%

100%

Crossover
Mutation

Mutation with
phenotypic effect

Initial solutions

B C

E

A

D

F

2% mutation
crossover

crossover

50% 63%

81%

Figure 3. Evolution of a full adder



Dominance hierarchies

The effect of uniform crossover at the circuit-level, as
figure 3 testifies, is also quite complex. Circuit F, for
example, expresses an OR gate seen in neither par-
ent. This is the result of a change in the dominance
hierarchy, with a recessive specificity being expressed
when more dominant specificities are lost. As an ex-
ample, consider the specificity lists < 7, 3, 8, 9, 1 > and
< 5, 9, 3, 4, 8 >. Placing crossover points after posi-
tions one and four produces a child < 7, 9, 3, 4, 1 >.
The dominant specificities, which map to connections,
are underlined. For the child solution this includes an
input dominant in neither parent.

Multiplicity

From an evolutionary perspective, the potential for
expression of recessive elements implies that solution
genotypes have multiplicity, representing not one but
many related solutions. This is best understood from
a schema viewpoint. Each genotype carries both dom-
inant and recessive schema. Crossover adds and re-
moves schema, truncating or extending the dominance
hierarchy, whilst mutation changes the relative domi-
nance of schema, restructuring the dominance hierar-
chy. The advantage of multiplicity is that it groups
related information, reduces computational effort and
potentially makes evolution more efficient. A potential
disadvantage is that, since fitness is measured solely on
dominant schema and not on recessive schema, fitness
values may not reflect true evolutionary values. The
requirement that every consuming element has speci-
ficity for every producing element, for example, intro-
duces a high proportion of recessive characters into
the genetic representation. This may be promoting
the hitchhiking of low-fitness recessive schema within
high-fitness genotypes.

4 Conclusions

Neutrality, dominance hierarchies and multiplicity are
all facets of natural evolution and its products. To
this extent enzyme genetic programming succeeds at
its aim of biomimicry. The use of an enzyme-like
representation for circuit elements, and consequently
a pathway-like representation for circuits, illustrates
that biological phenotypic representations can be an-
nealed to the artificial domain. Performance-wise, the
method is competitive with existing methods, though
it has yet to demonstrate a provable performance ad-
vantage. Partly this is due to limitations of the results,
though it may also be due to deleterious simplifications
found within the initial system.

References

[1] R. E. Keller and W. Banzhaf. Genetic program-
ming using genotype-phenotype mapping from
linear genomes into linear phenotypes. In J. Koza
et al, editor, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference. MIT
Press, 1996.

[2] C. Ryan, J. J. Collins, and M. O’Neill. Grammati-
cal evolution: Evolving programs for an arbitrary
language. In W. Banzhaf et al, editor, First Eu-
ropean Workshop on Genetic Programming, vol-
ume 1391 of Lecture Notes in Computer Science.
Springer, April 1998.

[3] S. Luke, S. Hamahashi, and H. Kitano. “Ge-
netic” Programming. In W. Banzhaf et al, edi-
tor, GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan
Kaufmann, 1999.

[4] P. Angeline. Multiple interacting programs: A
representation for evolving complex behaviors.
Cybernetics and Systems, 29(8):779–806, 1998.

[5] J. Miller and P. Thomson. Cartesian genetic pro-
gramming. In R. Poli et al, editor, Third Eu-
ropean Conference on Genetic Programming, vol-
ume 1802 of Lecture Notes in Computer Science.
Springer, 2000.

[6] M. J. Fisher, R. C. Paton, and K. Matsuno. In-
tracellular signalling proteins as ‘smart’ agents
in parallel distributed processes. BioSystems,
50:159–171, 1999.

[7] D. Bray. Protein molecules as computational ele-
ments in living cells. Nature, 376:307–312, 1995.

[8] M. Shackleton and C. Winter. A computational
architecture based on cellular processing. In Pro-
ceedings of the International conference on Infor-
mation Processing in Cells and Tissues (IPCAT),
1997.

[9] M. A. Lones and A. M. Tyrrell. Enzyme genetic
programming. Accepted for the Congress on Evo-
lutionary Computation 2001, May 2001.

[10] J. F. Miller, D. Job, and V. K. Vassilev. Princi-
ples in the evolutionary design of digital circuits
— part I. Genetic Programming and Evolvable
Machines, 1:7–36, April 2000.

[11] John Koza. Genetic programming: on the pro-
gramming of computers by means of natural se-
lection. MIT Press, 1992.


