Biomimetic Representation with Enzyme Genetic Programming

Michael A. Lones (michael.lones@bioinspired.com)
Department of Electronics, University of York, York, YO10 5DD, UK

Andy M. Tyrrell (andy.tyrrell@bioinspired.com)
Department of Electronics, University of York, York, YO10 5DD, UK

Abstract. The standard parse tree representation of genetic programming, whilst
a good choice from a generative viewpoint, does not capture the variational demands
of evolution. This paper addresses the issue of whether representations in genetic
programming might be improved by mimicry of biological behaviours, particularly
those thought to be important in the evolution of metabolic pathways, the ‘computa-
tional’ structures of the cell. This issue is broached through a presentation of enzyme
genetic programming, a form of genetic programming which uses a biomimetic
representation. Evaluation upon problems in combinational logic design does not
show any significant performance advantage over other approaches, though does
demonstrate a number of interesting behaviours including the preclusion of bloat.

Keywords: genetic programming, biomimetic representation

1. Introduction

Solution representation is an important issue in virtually every domain
of machine learning and artificial intelligence. Evolutionary computa-
tion is no exception. Representations in evolutionary computation are
subject to two demands: generation and variation (Altenberg, 1994b);
requiring that they both express a solution and react to changes in the
encoding of this solution in a meaningful way. It is natural to choose
a representation that reflects generative demands, since these are the
same representations found in conventional, often manual, approaches
to the same problem. However, ignoring variational demands can have
profound effect upon navigation of the problem’s search space; to the
extent of making an easy problem difficult or a difficult problem in-
tractable. For genetic programming (GP), the conventional parse tree
representation is generative in nature and does not respond well to
genetic operators. In this sense, it lacks evolvability.

A representation that captures both generative and variational de-
mands can make solving a hard problem easier. This paper presents a
genetic programming system, enzyme genetic programming, that uses
biomimetic representations in an attempt to capture these variational
demands and improve the evolution of executable structures.

The paper is organised as follows. Section 2 describes the repre-
sentation problem in GP. Section 3 reviews biological concepts and

© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

journal.tex; 18/02/2002; 16:42; p.1

2 LONES AND TYRRELL

discusses how the mechanisms and representations of biology support
effective evolution. Section 4 introduces enzyme genetic programming
and section 5 presents the implementations of enzyme GP used in this
study. Section 6 evaluates the method upon a selection of problems
from combinational logic design. Section 7 discusses the behaviour of
enzyme GP, and section 8 concludes.

2. The Representation Problem

The difficulty of a problem in evolutionary computation is a result
of many factors (Jones, 1995). Chief among these is the fitness func-
tion, which defines the search space. However, the fitness function, the
objective difficulty of the problem, is usually invariant. The effective
difficulty, rather, is a result of the implementation, and in particular,
the solution representation and the variational operators. The represen-
tation records the state of a particular search within the search space,
and the operators decide how this representation can be transformed
— and hence how the search space can be traversed. Moreover, rep-
resentation and operators are dependent variables. The behaviour of
the operators is constrained by the adaptability of the representation;
such that a good representation enables appropriate transformations
enacted by meaningful operators.

However, there are good reasons to believe that the standard rep-
resentation of genetic programming, the parse tree, is not a good rep-
resentation for an evolutionary algorithm. One reason is philosophical.
Parse trees are not designed to be evolvable, and therefore we would
not expect them to be evolvable. Evolvability would not appear to
be a common property of representations, and it seems likely that
it is especially uncommon amongst those used by humans to solve
problems. Manual representations, after all, are designed to support
human cognition; a process typified by limited memory, linearity and
necessary decomposition. Evolution does not require limitations since it
does not require understanding of the domain. Indeed, common wisdom
in evolutionary computation records that placing unsuitable constraints
upon a search space can reduce performance of evolutionary algorithms
and even restrict search from traversing sub-spaces containing global
optima.

This argument alone does not prove that parse trees are an unsuit-
able representation for evolution. Further evidence is given by anal-
ysis of the behaviour of crossover in tree-based genetic programming
(Nordin et al., 1996; Angeline, 1997). Sub-tree crossover, the swap-
ping of randomly selected sub-trees between individuals, is the nat-

journal.tex; 18/02/2002; 16:42; p.2

ENZYME GENETIC PROGRAMMING 3

ural recombination operator for a parse tree representation (Koza,
1992). Following from the argument presented earlier, an ineffective
recombinative operator would suggest a representation sub-optimal for
evolution. There are a number of empirical and theoretical reasons
to believe that sub-tree crossover is not an effective operator. First,
empirical analysis (Nordin and Banzhaf, 1995) shows that for most
crossover events, offspring are less fit than their parents. Less frequently,
the effect is neutral and infrequently it is beneficial. This suggests
that rather than being a constructive operator, sub-tree crossover is
primarily disruptive; and it has been argued that a major cause of
solution bloat is protection from the disruptive behaviour of crossover
(Nordin et al., 1996). A second observation (Angeline, 1997) is that the
performance of sub-tree crossover can be equalled or bettered by mu-
tative operators such as headless-chicken crossover; an operator which
resembles crossover but is actually a form of macro-mutation. This
supports the notion that sub-tree crossover is primarily a source of
disruption rather than a meaningful recombinative operator.

The problems with sub-tree crossover derive from the explicit, po-
sitionally sensitive nature of parse trees. Parse trees have a globally
defined structure and functional components within the parse tree have
explicit context defined by this structure. This means that informa-
tion regarding connections between components is recorded in terms of
position; and this information is neither recognised nor preserved by
sub-tree crossover. In effect, most of the behaviours open to sub-tree
crossover involve the exchange of unrelated sub-trees, generating child
solutions with functionality, and therefore fitness, very different (and
most likely lower) than their parents.

One solution to this problem is to adapt crossover so that it actively
searches for homologous regions between parent solutions (Langdon,
2000b). This has proved successful in reducing the incidence of bloat
and can lead to improved performance, but comes at the expense of
a less-natural operator with a higher computational overhead. Whilst
homologous crossovers may have the potential to improve search in
GP, there will always be the problem of annealing an essentially alien
operator to a parse tree representation.

3. A Biomimetic Solution
An alternative approach is to remove the parse tree and replace it with
a more supportive representation. Examples of this are grammatical

evolution (Ryan et al., 1998), which uses a linear representation, and
Parallel Distributed Genetic Programming (Poli, 1997), which evolves

journal.tex; 18/02/2002; 16:42; p.3

4 LONES AND TYRRELL

control flow graphs. A less acute approach is to retain parse trees,
but use them as a component within a more evolvable representation.
Examples are MIPs (Multiple Interacting Programs) nets (Angeline,
1998) and gene expression programming (Ferreira, 2001); both of which
represent programs as distributed collections of interacting parse trees.

This paper is about representations that mimic biology. Existing ex-
amples of this approach in GP and other areas of evolutionary compu-
tation include (Luke et al., 1999; Kennedy and Osborn, 2000; Keller and
Banzhaf, 1999; Banzhaf, 1998; Kargupta, 1999; Kargupta, 2001; Gold-
berg et al., 1993); although some of those mentioned above (Angeline,
1998; Ferreira, 2001) also feature biological aspects. Before returning to
this subject, however, it is useful to take a look at the representations
of biology and discuss how these, in association with the mechanisms
of biology, encourage the evolution of genetic content.

3.1. BIOLOGICAL REPRESENTATIONS

Biological organisms, except for those with no body, have two forms of
representation; the genotype and the phenotype. The genotype is the
evolutionary form of an organism, derived from the genotype of its par-
ents and contributing to the genotypes of its offspring. The phenotype
is the physical form of an organism, constructed from the genotype
through a process of development. It is this form which determines an
organism’s fitness, and therefore the perceived fitness of its genotype.

3.1.1. Genetic Representation

The genome is the genetic representation, yet despite the recent interest
in genome-mapping projects, is widely viewed as a collection of genes;
each of which determines a phenotypic trait. In practice, genomes are
far more complex than this (Lewin, 2000). They do encode a collec-
tion of genes, but most of the genome does not encode genes (Brown
and Brown, 1999). Genes do describe phenotypic traits but, given
pleiotropic and polygenic effects, not usually according to a one-to-one
mapping (Lewin, 2000).

It is probably true that a proportion of non-coding DNA constitutes
‘junk’ since there is little selective pressure towards compact genomes in
large eukaryotes. However, non-coding DNA performs both functional
and informational roles both within and between the lifetimes of organ-
isms (Moore, 1996). Within an active genome, base sequences found in
non-coding DNA provide binding sites for transcription factors. During
recombination, non-coding DNA separates coding sequences, making
it less likely that these will be targets for division during crossover.
Transposons, sequences of (mostly) non-coding DNA which are capa-

journal.tex; 18/02/2002; 16:42; p.4

ENZYME GENETIC PROGRAMMING)

ble of being moved or copied within the genome, may have significant
evolutionary roles (Brown and Brown, 1999).

However, perhaps the most interesting property of non-coding DNA
is that it contains copies and fragments of extinct genes, extant genes
and possibly future genes. The retention of extinct genes provides a
source of backtracking. Copies of extant genes are subject to evolution
without having an effect upon fitness. Any of these inactive sequences
might become incorporated into future genes. Consequently, genomes
appear to have multiple roles: phenotype encoding, fossil record and
evolutionary scratchpad. Considering all these roles, perhaps the genome
is best considered as not recording merely a search point, but a search
state.

3.1.2. Phenotypic Representation

Each gene provides a specification for a protein. This specification is
realised through the processes of transcription and translation (Lewin,
2000; Lones and Tyrrell, 2001a). Once expressed, proteins interact with
other chemicals and other proteins to form emergent structures called
biochemical pathways (Michal, 1999); which form networks of com-
putation and communication that implement the functionality of the
organism.

If a cell is viewed as a computational system, then that computation
takes the form of the manipulation, the metabolism, of the cell’s chem-
ical state; the concentrations of different chemical species within the
cell. Manipulation of this state involves transformations, implemented
by constructive and destructive chemical reactions, between chemical
species; increasing the concentrations of some and reducing the con-
centrations of others. However, temperatures in biological systems are
relatively low and many of these reactions will not occur without the
help of enzymes, catalytic proteins that bind to specific chemicals and
mediate their interaction and subsequent transformation. The chemical
species to which an enzyme binds, its substrates, are determined by a
property called its specificity; a result of the spatial arrangement of
amino acids found at the enzyme’s binding sites. Substrate binding
occurs through inexact matching. The closer the match is between
the substrate shape and the binding site shape, the stronger is the
bond between enzyme and substrate; and consequently, the higher the
likelihood of recognition.

The presence of enzymes activates transformative paths within the
metabolism. This forms a network, a metabolic network, where chem-
ical species are nodes and enzyme-mediated reactions are the connec-
tions between nodes. Metabolic networks are composed of metabolic
pathways. A metabolic pathway is an assemblage of enzymes which,

journal.tex; 18/02/2002; 16:42; p.5

6 LONES AND TYRRELL

roughly speaking, carries out a unified task involving a shared group
of chemical species. This cooperation emerges from the sharing of sub-
strates between enzymes, where the product of one enzyme becomes
the substrate of another. Pathways can be linear, forked or iterative;
iteration resulting where a product feeds back to an earlier stage in the
pathway.

Proteins, including enzymes, have computational characteristics sim-
ilar to artificial computational elements like transistors and logic gates
(Capstick et al., 1992; Bray, 1995; Fisher et al., 1999) (and also (Con-
rad, 1992) some that are quite unrelated). The computation provided
by metabolic pathways has been modelled using Petri nets (Reddy
et al., 1993) and, in other work, artificial analogues of enzymes have
been used to solve an information-processing task (Shackleton and
Winter, 1997).

3.2. NEUTRAL EVOLUTION

When Kimura published his Neutral Theory of Evolution (Kimura,
1983), the dominant view of evolution was the selectionist school, which
states that genetic change derives from the selective advantage of rare
positive mutations which gradually replace less-fit alleles within the
population. The neutral theory, however, proposes that genetic change
is driven not by selection but by the random fixation of neutral muta-
tions; mutations that do not cause fitness change, and in many cases
do not cause phenotypic change. Accordingly, most mutations that
proliferate are those that are neutral. Those that go extinct are either
neutral or deleterious. Advantageous alleles, by comparison, are rare
and have the least influence on population genetics.

There are several sources of neutral mutation. Mutation in non-
coding DNA (unless it changes a protein binding site) leads to no
phenotypic change. Likewise, synonymous mutation in coding DNA;
which changes a codon, but not the amino acid it codes for; has no
phenotypic effect. Also, change in a protein’s amino acid sequence does
not necessarily change the protein’s behaviour. Proteins with the same
behaviour but different amino acid sequences are called allozymes.

Recently, there has been considerable interest in the role of neutral
evolution in evolutionary computation (Ebner et al., 2001; Barnett,
2001); where it is thought that neutrality increases an algorithm’s abil-
ity to bypass local optima in many search spaces. Neutrality is defined
as redundancy in the genotype-phenotype mapping, meaning that a sin-
gle phenotype can be described by multiple different genotypes. Neutral
mutation is then the transformation between genotypes that map to the
same phenotype. These genotypes are said to be connected together by

journal.tex; 18/02/2002; 16:42; p.6

ENZYME GENETIC PROGRAMMING 7

a neutral network. Movement within this network, a sequence of neutral
transformations, constitutes a neutral walk and is thought to allow the
circumnavigation of local optima. To a certain extent, this hypothesis
has been validated. See, for example, Shipman et al. (2000).

4. Enzyme Genetic Programming

Enzyme genetic programming is based upon the following simple model
of biology. A genotype defines a collection of functional components,
not all of which are necessarily expressed. When expressed, functional
components interact with other functional components to form useful
computational structures. These interactions occur according to each
component’s own interaction preferences and generally independently
of genetic position. Whether a component is expressed depends in part
upon which other components are present.

The principle behind enzyme GP is that the structure of a program
is not given explicitly but is derived from connection choices made by
each component of the program in a bottom-up fashion. A program
is defined as an ‘enzyme system’, the format of which is described
in section 4.1. During evaluation, each enzyme system carries out a
developmental process which leads to a static executional structure
comparable to a conventional GP program expression. This process is
described in section 4.2. Enzyme systems are evolved using a genetic
algorithm, defined in section 4.3.

4.1. ENzZYME REPRESENTATION

An enzyme system is a set of computational elements called enzymes.
From a non-biological perspective, each of these elements can be seen as
a functional component wrapped by an interface that determines how
it interacts with the rest of the system. However, since these elements
mimic biological enzymes, for the remainder of this paper they are
described by shared biological terms.

The enzymes of enzyme GP are defined by three attributes: shape,
activity and specificity (depicted in figure 1). Activity is the enzyme’s
role within the enzyme system and is either a function instance, an
input terminal instance or an output terminal. Specificity describes the
shape of an enzyme’s preferred inputs. It is analogous to the binding
domains in biological enzymes that determine which substrates will be
bound by the enzyme. Unlike in biology, specificity is defined directly
upon other enzymes rather than upon their products and hence an
enzyme’s specificity determines which other enzymes it will receive its

journal.tex; 18/02/2002; 16:42; p.7

8 LONES AND TYRRELL

Shape

!

<«—— Activity

= _/
g

Specificities

Figure 1. Enzyme attributes. Specificity strengths are shown by grayscale value.

inputs from. An enzyme has at least as many specificities as its activity
has inputs so each input will be determined by a different specificity.
Since there may be more specificities than there are activity inputs,
some specificities remain unused. Each specificity has a strength and the
strongest specificities determine inputs. The remainder are considered
recessive. A specificity, like a binding region, chooses an input through
pattern matching between its own shape and the shape of its substrate.
An enzyme’s shape is an identifier that describes how it is seen by other
enzymes. In effect, a specificity declares the shape of the enzyme it
would most prefer to receive input from.

There are three different kinds of enzyme within a system. A func-
tional enzyme (or just enzyme) has a functional activity, a set of speci-
ficities and a shape. A gland has an input (terminal) activity and a
shape. Since it receives no input from within the system, it has no
specificites. A receptor has an output activity, which takes one input,
and a set of specificities. It has no shape since it produces no output
within the system. An enzyme system is a set of glands, enzymes and
receptors containing at least one gland and one receptor.

4.2. PROGRAM DEVELOPMENT

The executional structure of an enzyme program must reflect the con-
straints of the domain. The domain used in this study is combinational
logic design — the design of non-recurrent digital circuits. The activities
carried out by enzymes correlate with logic gates, input terminals and
output terminals. Input terminal enzymes (glands) deliver data to the
enzyme system, logic gate enzymes transform this data, and output
terminal enzymes (receptors) sink data from the system. Execution

journal.tex; 18/02/2002; 16:42; p.8

ENZYME GENETIC PROGRAMMING

Program Definition

-~ ™ A\ 7
£ -
ouT IN1 Disallowed
9 » @ recurrency
Vx \ 4 s
& ‘*"
—— %
\ IN1
== 1 //,
IN2 XOR " substrate
sharing

-

Figure 2. Development of an enzyme system. Shape is indicated by pattern and
specificity strengths are not shown for clarity. Enzyme ‘OUT’ selects enzyme ‘AND’
as its input according to its strongest specificity. Enzyme ‘AND’ then selects its
inputs, followed by enzyme ‘OR’. However, due to the non-recurrency constraint,
‘OR’ may not choose ‘AND’ as an input. Enzyme ‘IN1’ is bound to more than
one enzyme, demonstrating a capacity for reuse. Notice that enzyme ‘XOR’ is not
expressed during execution.

ouT = (IN2 [iNng) OiNa

requires valid combinational circuits, requiring that output terminals
must have a source, logic functions must have a complete set of inputs
and data must not feed-back to an earlier stage in the circuit.

The executional structure of a program emerges from interactions
between enzymes in a developmental process analogous to the for-
mation of metabolic pathways in biology. Enzymes attempt to bind
substrates that match their strongest specificities. This occurs in a
hierarchical fashion with receptors binding their substrates first. These
substrates then attempt to bind their own substrates (unless they are
glands, in which case they do nothing) with the process completing
when all active enzymes have bound the appropriate number of sub-
strates. However, given the non-recurrency constraint, enzymes will
not always be able to satisfy their strongest specificities, in which case
they will bind substrates for which they have lesser specificity. Choice
of substrates is deterministic, meaning that a given enzyme system
will always develop into the same executional structure. An example of
development is shown in figure 2.

Note that enzymes will only be involved in the developmental pro-
cess if they are chosen as substrates by other enzymes. Consequently,
some enzymes may not be expressed in the program’s executional struc-
ture. Alternatively, enzymes may be expressed more than once as the
substrates of multiple enzymes; introducing a capacity for reuse of
sub-circuits.

journal.tex; 18/02/2002; 16:42; p.9

10 LONES AND TYRRELL

Population
Al Crossover
N Mutation
elite

ouT

e
"
e
"
INY .
"
e
"

Figure 3. Genetic algorithm structure, showing the processing which occurs in each
cell of the distributed population during each generation.

4.3. PROGRAM EVOLUTION

Evolution of enzyme systems occurs within the framework of a dif-
fusion model distributed genetic algorithm (shown in figure 3). The
population is organised into a spatially-distributed network of cells,
each of which carries out an evolution strategy upon local state and
inputs from surrounding cells. The network topology determines the
processing behaviour of the population. For all experiments reported
in this paper, the network is a two dimensional edge-connected matrix
(toroidal). A cell’s evolution strategy selects the fittest individual from
the emigrants of those cells designated as inputs by the network. This
immigrant then undergoes recombination with the local ‘elite’; the
fittest individual created so far within this cell. If the fittest child is
fitter than the elite, then the elite is replaced with this child. The cell’s
emigrant is the fittest individual out of the parents and the children.
By implementing elitism, the algorithm retains fit solutions. By making
this elitism local to each cell, diversity is preserved and new solutions
are encouraged. Whilst each cell contains three individuals, only the
elite is considered resident and only the children are evaluated during
each generation.

Genotypes, enzyme system definitions, are stored in linear struc-
tures; the format of which is shown in figure 4. Genotypes are generated
randomly to fill the initial population, though a particular implemen-
tation may place different constraints upon the size and constitution of
programs (see below).

5. Implementation
This paper presents two implementations of enzyme GP. The first,

the activity model, uses a simple definition of shape and is used to
evolve the connectivity of fixed-length programs containing pre-defined

journal.tex; 18/02/2002; 16:42; p.10

ENZYME GENETIC PROGRAMMING 11

(:8]d-(:8]¢ | O])-(B) | (e[}~ (2[]

[shape ‘ strength} .- -[shape ‘ strength}

Specificity List

Figure 4. Genotype layout. The genotype defines which enzymes are present in an
enzyme system. All genotypes declare a full set of terminal enzymes (glands and
receptors). Note that glands do not have specificities, for they receive no input from
other enzymes.

components. The second, the functionality model, uses a more advanced
definition of shape which automatically supports variable-length pro-
grams and attempts to preserve local context during crossover. The
functionality model is a refinement of the activity model. Descrip-
tions of the activity model can also be found in (Lones and Tyrrell,
2001a; Lones and Tyrrell, 2001b), with significant details repeated here
for completeness and to allow comparison with the functionality model.

5.1. Activity MODEL

For the activity model, the shape of an enzyme is its activity and the
activity of an enzyme is an instance of a function; not the function itself.
This allows there to be multiple identifiable instances of a function, each
recognised as a separate activity.

Since shape is defined upon activity, so too is specificity. Moreover,
within the activity model, each inputting enzyme has specificity for
every outputting activity present within the enzyme system.

An enzyme system based upon the activity model can be visualised
as a fully-connected weighted network where the weight of a particular
edge (the strength of a particular specificity) defines a relative prefer-
ence for this edge being realised as a wire within the circuit. This idea
is depicted in figure 5.

Programs evolved by the activity model are fixed-length and con-
tain only pre-defined instances of components. Recombination is imple-
mented by uniform crossover. Concern that the activity model contains
excessive redundancy (Lones and Tyrrell, 2001b) and that it can not
easily be extended to support variable-length solutions has lead to the
development, in this paper, of the functionality model.

journal.tex; 18/02/2002; 16:42; p.11

12 LONES AND TYRRELL

() (o)

Figure 5. Visualising the activity model. Shape is equivalent to activity. Connections
show the specificity of one activity for input from another. Specificity strengths are
shown by line weight. During development, the strongest specificities are realised as
wires (within the bounds of the non-recurrency constraint).

5.2. FUNCTIONALITY MODEL

5.2.1. Requirements of functionality

The purpose of shape is two-fold; to identify enzymes and to describe
enzymes. Identification allows an enzyme to be referenced by other en-
zymes, whereas description allows an enzyme to be classified in relation
to other enzymes. Activity is a basic definition of shape which segments
all enzymes into discrete equivalence classes. However, the enzymes
within an activity class are not normally equivalent and, given that
specificity has a major influence in deciding an enzyme’s role within
a program, their behaviour is not necessarily related. Furthermore,
the activity model provides no metric defining quantitative similarity
between enzymes either within or between classes.

Functionality is a definition of shape that attempts to both describe
an enzyme’s role within a program and provide a quantitative distance
metric for comparing enzymes. A distance metric is required because,
during development, an enzyme will not always be able to bind its
preferred substrate; either because that substrate is not present within
the program, or to satisfy the non-recurrency constraint. In the activity
model, the enzyme would, in this situation, bind a substrate activity
for which it has a lesser preference. This second choice substrate is
not necessarily related to the most preferred substrate, meaning that
an enzyme may change its function considerably (and non-uniformly)
depending upon its environment. Where each program contains an in-
stance of every activity, this is a relatively small problem. However,
in a system with different activities in each program, it is quite likely
that an enzyme’s most preferred substrate will not be available; and
in this circumstance it would make more sense to bind as a substrate
whichever enzyme has the closest role.

Ideally, the shape of an enzyme would describe the exact expression
formed by the enzyme during development, but there are a number of
reasons why this definition would not work in practice. First, generation

journal.tex; 18/02/2002; 16:42; p.12

ENZYME GENETIC PROGRAMMING 13

and comparison of complete expressions would be computationally ex-
pensive. Second, the expression formed by an enzyme is dependent upon
which other enzymes are present within a program, making the shape of
an enzyme variant with respect to its environment; and possibly causing
evolutionary instability. Finally, an enzyme’s complete expression is not
available until after development.

5.2.2. Definition of functionality

Functionalities, by comparison, are available prior to development, are
invariant, and are computationally inexpensive to generate and com-
pare. This is possible because a functionality does not capture the exact
form of an expression, but rather a functional profile of the expected
expression. For now, an expected expression can be considered as the
expression developed when each active enzyme is able to bind shapes
that exactly matches its specificities. An enzyme’s functionality is the
relative incidence of each member of the function set within this ex-
pression. Formally, a functionality is a point within an n-dimensional
reference space, where n is the size of the function set, and Vmem < n,
the magnitude in dimension m indicates the relative incidence of func-
tion m (weighted by depth) in the corresponding enzyme’s expected
expression. A functionality is recorded as a vector. The functionality,
f, for a particular enzyme is a weighted vector sum of the functionality
of the enzyme’s own activity and the functionality of its inputs.

fenzyme) = (1 — k). f(activity) + k. f (inputs) (1)

The functionality of an activity is simply a vector with a zero in all
positions except that corresponding to the dimension of the activity’s
function; for which there is a value of one. The functionality of an
enzyme’s inputs is a weighted sum of the functionalities defined in its
specificities; the weights being given by the strength of each specificity.

*_ 1 f(specificity;).strength(specificity;)

f(inputs) = (2)

Yo strength(speci ficity;)
The constant k decides how much bias is given to the functionality of
the inputs rather than the enzyme’s own activity in the calculation of
an enzyme’s functionality. If the matching distances between specificity
and functionality remain small, a specificity captures the functionality
of its substrate enzyme. Therefore, it also captures the substrate en-
zyme’s specificities and, recursively, the activities of all enzymes below
itself in the enzyme’s expression. For this reason, the larger the value
of k, the more bias is given to capturing functional information deeper
in the expression. However, the matching distance between specificity

journal.tex; 18/02/2002; 16:42; p.13

14 LONES AND TYRRELL

Substrate binding ’

Derivation of functionality

2 = e (A D)

S

s

INI
NI
ANy ~—

g

\

"o

Specificities

¥OxX
1no

Figure 6. Development in the functionality model. Enzyme interactions emerge from
inexact matching between specificities and shapes, both of which are defined as
functionalities. Functionality vectors are plotted graphically. Some specificities are
shown inverted to emphasise the matching process. An enzyme’s shape is derived
from its activity and the shape of its specificities according to equation 1.

and functionality will not always be small and so the distance between
the expected expression and the actual expression will increase with
depth. Accordingly, choosing a value for & is a tradeoff between a fuller
description of an enzyme’s role and accuracy of this description during
development. Figure 6 shows expression development within the func-
tionality model and also depicts visually the derivation of an enzyme’s
functionality.

Note that an enzyme’s input functionality, and hence the enzyme’s
overall functionality, is derived from all specificities, including any that
are recessive. The benefit of capturing recessive specificities is that a
functionality gives a more complete description of the enzyme than
would be available otherwise. It also makes functionality less variant
in response to changes in dominance over evolutionary time; giving
the enzyme a more constant character. Consequently, if mutation leads
to a dominance change, the enzyme has a greater chance of retaining
its previous role, which may lead to more effective behavioural explo-
ration during evolution. It also means that the definition of expected
expression given above is slightly inaccurate, since this expression also
captures recessive sub-expressions to some degree.

The functionality reference space defines a point for every possi-
ble enzyme. However, it does not assign each enzyme a unique point
and consequently enzymes describing different expressions but with
the same functional profiles will be assigned identical functionalities.
Nevertheless, this reference space is continuous and it seems very un-
likely that two different enzymes with the same functionality would
be present in the same population. A similar phenomenon is found in

journal.tex; 18/02/2002; 16:42; p.14

ENZYME GENETIC PROGRAMMING 15

Parent solutions Child solutions

Genic recombination

.
N
i -

Synapsis Shuffling

[=
NN -
[— =
)
s

Figure 7. Recombination of variable length genotypes. Genes are shown as rectan-
gles. Shade indicates functionality. Crossover is a two-stage process of genic recom-
bination and gene shuffling. These operations preserve linear genotype structure,
but are drawn in a way which emphasises their resemblance to meiosis.

biological systems, where recognition is also based upon a shape which
reflects, but only captures in part, a protein’s functional role within the
system. In biological systems, the occurrence of two proteins with the
same shape (or more exactly, the same markers) can cause interesting
behaviours.

5.2.3. FEwvolution of genotypes

Enzyme systems generated for the initial population are variable length
and composed of enzymes with varying activities. The number of en-
zymes within a single genotype is limited by upper and lower bounds.
Enzymes are given activities chosen non-deterministically from the
function set and a random number of specificities (also bounded). Speci-
ficity functionalities and strengths are generated randomly. After ini-
tialisation, the population contains a selection of enzymes which ran-
domly sample the functionality reference space and are sorted into
random enzyme system groupings.

Crossover must recombine heterogeneous genotypes. This is carried
out using a two-stage process that bares some similarity to biological
processes (see figure 7). To begin with, genes which are similar between
the two parents align. Similarity is measured by distance between the
functionalities of the genes’ respective enzyme products and does not
necessarily imply that they have the same activity but does suggest
that they carry out similar roles. This alignment resembles synapsis
where, during meiosis metaphase, chromosomes pair up and exchange
genetic material. However, in this implementation only a fraction of
the gene-pairs are recombined in order to limit disruption.

journal.tex; 18/02/2002; 16:42; p.15

16 LONES AND TYRRELL

The second stage of crossover is gene shuffling, where the recom-
bined genes are desegregated non-deterministically between the child
genotypes. This is implemented using a uniform crossover and results
in child genotypes with lengths intermediate to the lengths of their
parents.

Following recombination, mutation is applied to the child genotypes.
This involves randomly changing the magnitude of a small fraction of
specificity strengths and dimensions of functionalities.

6. Evaluation

Enzyme GP has been applied to a range of problems in the domain of
combinational logic design. The problems, listed in table I, have been
chosen with the aim of exercising the method upon a range of tasks and
to allow comparison with other methods. The 1-bit full adder and 2-
bit multiplier problems have been given particular attention and their
truth tables and standard solutions are shown in figure 8. Standard
circuits for the other problems can be found in (Miller et al., 2000) or
(Coello Coello et al., 2000). Parameter settings used for all experiments
can be found in table II.

6.1. COMPARISON OF ACTIVITY AND FUNCTIONALITY MODELS

The performance of the activity and functionality models has been
compared upon the 1-bit full adder and 2-bit multiplier problems.
Figures 9 and 10 show average solution times and success rates for
both problems over a range of population sizes. For the functionality
model, results for two different sets of solution size bounds are shown.
Standard deviations have been measured and t-tests performed to de-

Table I. Test problems.

Name Inputs Outputs Function set
1-bit full adder AND, OR,X0OR
2-bit full adder XOR,MUX
2-bit multiplier AND,XOR
3-bit multiplier AND, XOR

even-3-parity AND, OR,NAND,NOR
AND,OR,NAND,NOR

AND,OR,NOT, XOR

even-4-parity

B W O A Ot W
W R R O AW N

Coello’s ‘example 5’

journal.tex; 18/02/2002; 16:42; p.16

ENZYME GENETIC PROGRAMMING 17

Table II. Parameter settings.

Parameter Value
Input bias (constant ‘k’ in equation 1) 0.3
Number of specificities per enzyme 3
Distance limit for gene alignment 1
Proportion of gene pairs recombined 15%
Rate of specificity strength mutation 2%

Rate of functionality dimension mutation 15%

termine whether there is any significant difference between the mean
solution times of different approaches. For both problems, Standard
deviation is about 20-30 generations for the activity model and 30-40
for the functionality model. For results of t-tests see figure captions.
Both models are able to evolve solutions to both problems. Unsur-
prisingly, increasing population size leads to higher success rates and
generally lower solution times. On both problems, the activity model
performs better than the functionality model with lower-bound solution
size and worse than the functionality model with upper-bound solution

One-Bit Adder N

ST,

A O—

™
PR RRPROOOOD
PP OORR OOm
HORrOROROn
POORORRO

PP PORFrOOOF

Two-Bit Multiplier

@
S
@

P2P3

»

o

N
R EEEEEEE R
rrrRrOOOORREROOOOD
PR OORROORROORKROOK
rooooooooooooooor
oroOORrOOOOOCOCO0O0OQT
SrrorororroOOOCOOO L
HroroOOOOOROROOOOOR

POROROROROROROR O

Figure 8. Standard solutions and truth tables for one-bit full adder and two-bit
multiplier problems.

journal.tex; 18/02/2002; 16:42; p.17

18 LONES AND TYRRELL

—m—Awerage (4-8) —o—Awerage (8-12) —=— Average (activity) --.m-- Success (4-8) --.o--- Success (8-12) ... -- Success (activity)

120

Generations to optimum
Successful runs

25 50 75 100 125 150 175 200 225 250 275 300 325 30 375 400
Population size

Figure 9. Results for evolution of the full adder. Averages and success rates are
taken over 100 trials. Generation limit is 200 generations. For the functionality
model, results are shown for solution length bounds of 4-8 gates and 8-12 gates.
T-tests indicate no significant difference between the means of the activity model
and the functionality model with bounds 812 for most population sizes.

size. On the whole the difference between the performance of the two
models is not great. This is revealing since the functionality model must
discover the correct activities in addition to the correct connections
found by the activity model, implying that the functionality model
does more useful work than the activity model in a given time.

6.2. PERFORMANCE OF ENZYME GP

The adder, multiplier and even-4-parity problems have been solved by
Miller (2000) using Cartesian GP (Miller and Thomson, 2000), a graph-
based genetic programming system. Results from Koza (1992; 1994),
using tree-based GP, are available for both parity problems. Koza
(1992) has also attempted the 2-bit adder problem, but quantitative
results are not available. Further comparison can be made with work
on graph-based GP by Coello (2000), whose test problems include the
2-bit multiplier and a harder problem which he refers to as ‘example
5. Results for these problems for enzyme GP with the functionality
model are shown in table III.

Enzyme GP is able to solve all problems apart from the 3-bit multi-
plier. This is a difficult problem and Miller required in the order of 100
million evaluations to find an optimal solution. Enzyme GP was able
to find a 95% correct solution in four runs of 5,000 generations for a
population size of 1,600.

journal.tex; 18/02/2002; 16:42; p.18

ENZYME GENETIC PROGRAMMING 19

—=— Awerage (8-12) —0O— Average (12-16) —x— Average (activity) ---m-- Success (8-12) ---x -- Success (activity) ---O--- Success (12-16)

100%

Generations to optimum
Y
3
Successful runs

IS
S

20 4

200 300 400 500 600
Population size

Figure 10. Results for evolution of the two-bit multiplier. For the functionality
model, results are shown for solution length bounds of 8-12 gates and 12—16 gates.
T-tests indicate no significant difference between the mean solution times of the
functionality model for different solution size bounds.

Computational effort is a measure first used by Koza (1992) which
gives the number of evaluations required for a 99% confidence of finding
an optimal solution to a problem. Miller records minimum computa-
tional effort of between 210,015 and 585,045 for the 2-bit multiplier
problem. Coello does not calculate computational effort though it ap-
pears to take about 150 generations to find a correct multiplier circuit
within a population of 2,000. It should be noted that Coello’s work is
directed towards minimising circuit size rather than just finding correct
solutions. Enzyme GP, requiring a minimum computational effort of
136,080 for a population of 324, compares favourably with these results.

Table III. Results using functionality model.

Problem name Pop. size Bounds Average Success Effort
1-bit full adder 196 5-10 32 32% 39,200
2-bit full adder 324 10-20 113 74% 244,620
2-bit multiplier 324 12-16 118 7% 136,080
3-bit multiplier 1600 25-35 — 0% —
even-3-parity 100 5-10 54 43% 79,000
even-4-parity 625 10-25 178 20% —
Coello’s ‘example 5’ 1,225 12-25 400 75% —

journal.tex; 18/02/2002; 16:42; p.19

20 LONES AND TYRRELL

For the 2-bit adder problem, Miller cites a minimum computational
effort of 385,110. For enzyme GP, using the same functions as Miller,
effort is 244,620. For ‘example 5’, Coello’s results suggest a correct
solution is found at about 900 generations for a population of 2,800.
Enzyme GP takes on average 400 generations for a population of 1,225.
Again, a favourable comparison.

Koza has evolved even-n-parity circuits using populations of size
4,000 (Koza, 1992) and 16,000 (Koza, 1994). For the even-3-parity
problem (and without using ADFs), this gives minimum computational
efforts of 80,000 and 96,000 respectively. For the even-4-parity problem,
minimum computational efforts are 1,276,000 and 384,000 respectively.
For enzyme GP, minimum computational effort has been calculated at
79,000 for the even-3-parity problem but has not yet been calculated for
the even-4-parity problem. Early results suggest enzyme GP cannot eas-
ily evolve even-n-parity circuits where n > 3. This agrees with Miller’s
findings, where only 15 correct even-4-parity circuits were found in the
course of 400 million evaluations. Langdon (1998) has suggested that
parity circuits are unsuitable benchmarks for GP. Furthermore, parity
circuits involve a high degree of re-use of sub-structures and it seems
plausible that graph-based and enzyme GPs may be less able to take
advantage of this fact than tree-based GPs where structural duplication
is encouraged by non-deterministic subtree exchanges.

6.3. SOLUTION SIZE EVOLUTION

An issue of interest to GP practitioners is bloat. Bloat occurs when pro-
grams get larger and larger without a corresponding increase in func-
tionality. Standard GP exhibits near quadratic growth if left unchecked
(Langdon, 2000a). The exact causes of bloat are not known, though
a number of theories have been proposed. These include hitchhiking
(Tackett, 1994), protection from disruptive operators (Blickle and Thiele,
1994), operator biases (Altenberg, 1994a), removal biases (Soule et al.,
1996) and search space bias (Langdon and Poli, 1997).

Figure 11 shows the evolution of 2-bit multiplier solution size for a
selection of genotype size bounds using the functionality model. These
graphs show that whilst individual runs freely explore between the
size bounds, on average there is no bias towards either an increase or
decrease in genotype size. This is especially pronounced for the higher
size range of 10-30 where the average starting size of about 20 is well
above the minimum correct phenotype size of 7 gates.

Phenotype size, the size of developed expressions, does appear bi-
ased. For the lowest size range where the average starting size of the
phenotype is about 5.5, there is an average increase in size which levels

journal.tex; 18/02/2002; 16:42; p.20

ENZYME GENETIC PROGRAMMING 21

Solution size

0 20 40 60 80 100 120 140 160 180 200
Generations

20 T

18

16 4

Solution size

0 20 40 60 80 100 120 140 160 180 200

Generations
30 7
28 7\

26

24 1

22

20

Solution size

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 11. Solution size evolution for 2-bit multiplier problem for different size
bounds. Faint lines show average genotype sizes for each run. Heavy un-crossed
lines show average minimum, average and maximum solution sizes across all runs.
Heavy crossed line shows average phenotype size across all runs. Arrow indicates
average time to find a correct solution.

off once the size is above the minimum correct size. Where the starting
size is close to this minimum there is little average change in phenotype
size, as shown in the second graph. Where the starting size is above

journal.tex; 18/02/2002; 16:42; p.21

22 LONES AND TYRRELL

the minimum correct size, as shown in the third graph where aver-
age starting size is about 13, there is negative growth towards shorter
solution sizes. This is interesting and suggests that there is either an
evolutionary advantage afforded to shorter solutions or an evolutionary
disadvantage for longer solutions.

More recently, solution size analysis has been applied to a form of
enzyme GP which places no bounds upon solution size (Lones and
Tyrrell, 2002). This form of enzyme GP also demonstrates a bias to-
wards exploring shorter solutions where the starting size is above the
minimum viable size, and the paper speculates that this may be due
to the greater presence of ‘weak links’ between specificities and shapes
in larger solutions. This hypothesis is yet to be tested.

Nevertheless, enzyme GP does not suffer from bloat and, unlike
tree-based GP, does not require size or shape limits to achieve this.

7. Discussion

7.1. RECOMBINATION

One of the goals behind enzyme GP is to provide a representation
that does not suffer from the context-preservation problems found with
tree-based representations. A key feature of enzyme GP is the use of
a distributed genetic representation. Distributed representations seem
appropriate for evolution for they allow context to be defined locally,
within a component, rather than globally, with respect to the whole
system. In enzyme GP, each component defines its context using terms
independent of the particular program it finds itself in. This context
is preserved by recombination. Of course, this does not imply that the
component’s definition of context will be meaningful in every program,;
but it will be invariant. This allows evolution to recognise the compo-
nent’s apparent fitness in a way that is not possible when its context is
constantly changing; as would be the case for sub-trees using a parse
tree representation and sub-tree crossover.

Whether recombination in enzyme genetic programming is in prac-
tice more meaningful, and therefore more successful, than for other
representations will not be known until further experiments are carried
out. However, it is possible to identify the factors that will determine
whether or not it is successful. First, development should be sufficiently
accurate. This depends on how often the context defined for a compo-
nent, its specificity, matches the context it actually finds itself in, its
bound substrates. If this incidence is sufficiently high, evolution should
be able to determine a component’s worth. If it is too low, there will
not be enough consistent information available to measure its fitness.

journal.tex; 18/02/2002; 16:42; p.22

ENZYME GENETIC PROGRAMMING 23

Second, a component’s definition of context should be sufficiently
precise. For a component to have a role, its context must define some
meaning. If this meaning is not precise enough, then the component’s
role will be ill-defined and opaque to evolution.

Third, context must be sufficiently specific. It should not define too
many actual contexts as being equivalent. This could lead to the rou-
tine development of unrelated expressions in different programs, again
making it hard to characterise the component’s role.

Accuracy, precision and specificity are related concepts, but they
place different requirements upon how context is defined. When func-
tionality is used to define context, accuracy is how well the developed
expression reflects the expected expression; precision is how well a
functionality describes an expression; and specificity is how many ex-
pressions are assigned the same functionality. Functionality sacrifices
exactness in all of these areas in order to be efficient, always available
and invariant. The question is how much exactness is required in order
for evolution to be effective. The results collated so far indicate that
evolution is working effectively; though further research will be neces-
sary to measure how effectively it is working. An interesting realisation
is that biology also has imperfect exactness (perhaps due to efficiency
reasons) of the kinds described above.

7.2. NEUTRALITY

Neutrality is prevalent in biological representations, and likewise in the
representations of enzyme GP. Sources of neutrality, other than that
provided by the problem search space, include changes to enzymes that
are not expressed, changes to recessive specificities and certain changes
to dominant specificities. Neutrality is particularly ubiquitous in the
activity model, where most specificities are recessive, and changes to
recessive components are always neutral. The high incidence of these
neutral mutations is shown in figure 12. For the functionality model, an
enzyme’s shape captures its specificities and change to either recessive
or dominant specificities can change how it is bound by other enzymes.
This also applies to recessive enzymes, which may become dominant
due to a change in shape. Point mutations are unlikely to lead to a
significant change in shape; though they may significantly affect the
enzyme’s choice of substrates. When mutation leads to a change in
specificity yet no change in behaviour, the new enzyme has a similar
role to an allozyme in biology.

journal.tex; 18/02/2002; 16:42; p.23

24 LONES AND TYRRELL

Initial solutions

Crossover
Neutral Mutation

Mutation with
phenotypic effect

Figure 12. Evolution of a full adder with the activity model. Both crossover and
mutation are used to evolve an optimal solution. Most mutations are neutral. Note
the neutral walk that leads to the optimum after the final recombination.

7.3. INTRONS

In conventional GP, introns are sections of code that have no functional
role but are generated by bloat (Smith and Harries, 1998). Enzyme
GP also has introns, but these are present by intent and, unlike in
conventional GP, may have a functional role. Introns in enzyme GP
are components that are present in a program’s genetic definition, but
not in the developed expression. They are inactive either because they
are redundant, or more generally, no other enzyme has chosen to bind
them as a substrate; either because they do not match a specificity or to
preserve non-recurrency. Redundant introns are enzymes that duplicate
the function of other enzymes.

However, an intron in one program is not necessarily an intron in
another program. An enzyme’s expression depends upon whether it is
compatible with the other enzymes in a program; and what is unused
in one program may be used in another following recombination or
mutation. Of particular interest is where a program contains a redun-
dant copy of an enzyme. This copy is still subject to evolution, but
any change does not affect fitness. This is similar to gene duplication
in biology; where duplicated genes experience evolution without selec-
tion, leading to change that sometimes improves their function. More
generally, this effect can also occur where enzymes have unused copies
in other programs.

Introns could also be useful for backtracking. An enzyme that be-
come unused may still be present as an intron within the population. If
the enzyme that replaced it then proves to have important limitations,
the saved copy may be used to restore an earlier point in search.

journal.tex; 18/02/2002; 16:42; p.24

ENZYME GENETIC PROGRAMMING 25

There is of course a balance between sustaining introns and pre-
venting hitchhiking. If too large a proportion of a program definition
consists of introns, the fitness value given to the program will not
reflect the value of these introns. If the program is fit and some of the
introns are deleterious, these deleterious introns may hitchhike with the
program and disrupt evolution.

In a sense, an enzyme program definition describes more than one de-
veloped expression. If the developmental process were non-deterministic,
then this would be literally so. If enzymes bound substrates proba-
bilistically based upon specificity, most of the time they would bind
the substrates for which they had highest specificity. Less frequently,
they would bind substrates for which they had lower specificity. The
expressions that developed over the course of time would be related,
but variant. Whilst development is deterministic, only one expression is
developed for each program; yet the amount of genetic change needed
to generate a related expression is small and can be enabled by a single
mutation. Less similar expressions can be accessed through several
mutations. In effect, through mutation, a deterministic implementa-
tion can access the same expressions generated by a non-deterministic
process. Mutation in enzyme GP is quite different to conventional GP.
In conventional GP, mutation introduces new components to a solution
whereas in enzyme GP, mutation changes the internal organisation of
the program; changing the ordering and expressed status of enzymes.
This allows programs to capture a range of solutions with mutation
selecting which one is active. Whether this is advantageous or not is yet
to be tested, but it could allow programs to group related expressions,
structuring search and reducing evaluation cost.

8. Conclusions

A number of properties of biological representations have been identi-
fied which are thought supportive of the evolution of genetic material.
An important realisation is that linkage between genes is not deter-
mined by genetic position but rather by the properties of the genes’
products. It is also evident that biological genomes are more than a
sum of their genes since they contain considerable quantities of non-
coding genetic material that is informational and subject to evolution.
Both coding and non-coding components of DNA are subject to neutral
evolution, and this process is encouraged by a high degree of neutrality
in the genetic encoding.

The program representation used in enzyme GP mimics those found
in biology and captures each of the properties outlined in the previous

journal.tex; 18/02/2002; 16:42; p.25

26 LONES AND TYRRELL

paragraph. In enzyme GP, the structure of a program is not given
explicitly, as in conventional GP, but is derived from connection choices
made by each component of the program in a bottom-up emergent
fashion. Whether or not a component is expressed is determined by
the connection preferences of other components. Furthermore, the con-
nection preferences, or context, of a component are recorded in the
component’s genetic definition. This local definition of context, and the
fact it is defined using a reference system independent of the program
it is found within, means that it can not be lost or altered by crossover.

Enzyme GP has been evaluated upon a number of problems in the
domain of combinational circuit design and its performance compared
with that of other GP approaches in this domain. Enzyme GP does
show some performance advantage over some other methods, yet it is
uncertain whether this advantage is significant. In particular, there is
some danger that matching between a program component’s preferred
context and its actual context may not be close enough on average to
make recombination meaningful. However, this remains the focus of
further investigation. Meanwhile, it can be concluded that enzyme GP
does demonstrate some interesting behaviours, especially with regards
to lack of bloat, and it seems fair to speculate that some of the ideas
introduced in this paper could prove useful in the evolution of genetic
programming.

References

Altenberg, L.: 1994a, ‘Emergent phenomena in genetic programming’. In: A. V.
Sebald and L. J. Fogel (eds.): Evolutionary Programming — Proceedings of the
Third Annual Conference. pp. 233-241, World Scientific Publishing.

Altenberg, L.: 1994b, ‘The evolution of evolvability in genetic programming’. In: K.
Kinnear, Jr (ed.): Advances in Genetic Programming. MIT Press.

Angeline, P.: 1997, ‘Subtree Crossover: Building block engine or macromutation?’.
In: J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and
R. L. Riolo (eds.): Genetic Programming 1997: Proceedings of the Second Annual
Conference, GP97. pp. 240-248, Morgan Kaufmann.

Angeline, P.: 1998, ‘Multiple Interacting Programs: A Representation for Evolving
Complex Behaviors’. Cybernetics and Systems 29(8), 779-806.

Banzhaf, W.: 1998, ‘Genotype-phenotype mapping and neutral variation—A case
study in Genetic Programming’. In: Y. Davidor, H.-P. Schwefel, and R. Manner
(eds.): Proceedings of Parallel Problem Solving from Nature III. Springer-Verlag.

Barnett, L.: 2001, ‘Netcrawling — Optimal Evolutionary Search with Neutral Net-
works’. In: J.-H. Kim, B.-T. Zhang, G. Fogel, and 1. Kuscu (eds.): Proceedings
of the 2001 Congress on FEvolutionary Computation. pp. 30-37, IEEE Press.

Blickle, T. and L. Thiele: 1994, ‘Genetic programming and redundancy’. In: J.
Hopf (ed.): Genetic Algorithms within the Framework of Evolutionary Compu-
tation (Workshop at KI-94, Saarbriicken). pp. 33-38, Max-Planck-Institut fiir
Informatik.

journal.tex; 18/02/2002; 16:42; p.26

ENZYME GENETIC PROGRAMMING 27

Bray, D.: 1995, ‘Protein molecules as computational elements in living cells’. Nature
376, 307-312.

Brown, T. A. and A. Brown: 1999, Genomes. Wiley.

Capstick, M., W. P. L. Marnane, and R. Pethig: 1992, ‘Biological Computational
Building Blocks’. IEEE Computer 25(11), 22-29.

Coello Coello, C. A.; A. D. Christiansen, and A. Herndndez Aguirre: 2000, ‘Use of
Evolutionary Techniques to Automate the Design of Combinational Circuits’.
International Journal of Smart Engineering System Design 2(4), 299-314.

Conrad, M.: 1992, ‘Molecular Computing: The Lock-Key Paradigm’. IEEE
Computer 25(11), 11-20.

Ebner, M., P. Langguth, J. Albert, M. Shackleton, and R. Shipman: 2001, ‘On
Neutral Networks and Evolvability’. In: J.-H. Kim, B.-T. Zhang, G. Fogel, and
I. Kuscu (eds.): Proceedings of the 2001 Congress on Evolutionary Computation.
pp. 1-8, IEEE Press.

Ferreira, C.: 2001, ‘Gene Expression Programming: A New Adaptive Algorithm for
Solving Problems’. Complezx Systems 13(2), 87-129.

Fisher, M. J., R. C. Paton, and K. Matsuno: 1999, ‘Intracellular signalling proteins
as ‘smart’ agents in parallel distributed processes’. BioSystems 50, 159-171.
Goldberg, D. E., K. Deb, H. Kargupta, and H. George: 1993, ‘Rapid Accurate
Optimization of Difficult Problems Using Fast Messy Genetic Algorithms’. In:
S. Forrest (ed.): Proceedings of The Fifth International Conference On Genetic

Algorithms. Morgan Kaufmann.

Jones, T.: 1995, ‘Evolutionary Algorithms, Fitness Landscapes and Search’. Ph.D.
thesis, The University of New Mexico.

Kargupta, H.: 1999, ‘SEARCH, Computational Processes in Evolution, and Prelim-
inary Development of the Gene Expression Messy Genetic Algorithm’. Journal
of Complex Systems 11(4), 233-287.

Kargupta, H.: 2001, ‘A striking property of genetic code-like transformations’.
Complex Systems Journal 13(1), 1-32.

Keller, R. and W. Banzhaf: 1999, ‘The evolution of genetic code in genetic program-
ming’. In: W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M.
Jakiela, and R. E. Smith (eds.): Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann.

Kennedy, P. J. and T. R. Osborn: 2000, ‘Operon Expression and Regulation with
Spiders’. In: D. Whitley, D. Goldberg, and E. Cantu-Paz (eds.): Proceedings of the
2000 Genetic and FEvolutionary Computation Conference, Workshop Program.
pp. 161-166.

Kimura, M.: 1983, The Neutral Theory of Molecular FEwvolution. Cambridge
University Press.

Koza, J.: 1992, Genetic programming: on the programming of computers by means
of natural selection. MIT Press.

Koza, J.: 1994, Genetic programming II: automatic discovery of reusable programs.
MIT Press.

Langdon, W. and R. Poli: 1998, ‘Why “Building Blocks” Don’t Work on Parity Prob-
lems’. Technical Report CSRP-98-17, School of Computer Science, University of
Birmingham.

Langdon, W. B.: 2000a, ‘Quadratic Bloat in Genetic Programming’. In: D. Whitley,
D. Goldberg, and E. Cantu-Paz (eds.): Proceedings of the 2000 Genetic and
FEvolutionary Computation Conference. pp. 451-458, Morgan Kaufmann.

Langdon, W. B.: 2000b, ‘Size fair and homologous tree genetic programming
crossovers’. Genetic programming and evolvable machines 1(1/2), 95-119.

journal.tex; 18/02/2002; 16:42; p.27

28 LONES AND TYRRELL

Langdon, W. B. and R. Poli: 1997, ‘Fitness causes bloat’. In: P. K. Chawdhry,
R. Roy, and R. K. Pant (eds.): Soft Computing in Engineering Design and
Manufacturing. pp. 13-22, Springer.

Lewin, B.: 2000, Genes VII. Oxford University Press.

Lones, M. A. and A. M. Tyrrell: 2001a, ‘Biomimetic Representation in Genetic
Programming’. In: J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.):
Proceedings of the 2001 Genetic and FEvolutionary Computation Conference,
Workshop Program. pp. 199-204.

Lones, M. A. and A. M. Tyrrell: 2001b, ‘Enzyme Genetic Programming’. In: J.-
H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu (eds.): Proceedings of the 2001
Congress on Evolutionary Computation, Vol. 2. pp. 1183-1190, IEEE Press.

Lones, M. A. and A. M. Tyrrell: 2002, ‘Crossover and Bloat in the Functionality
Model of Enzyme Genetic Programming’. To appear in the proceedings of the
Congress on Evolutionary Computation 2002 (CEC2002).

Luke, S., S. Hamahashi, and H. Kitano: 1999, “Genetic” Programming’. In: W.
Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith (eds.): Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’99). Morgan Kaufmann.

Michal, G.: 1999, Biochemical pathways. John Wiley and Sons, Inc.

Miller, J. and P. Thomson: 2000, ‘Cartesian Genetic Programming’. In: R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty (eds.):
Third European Conference on Genetic Programming, Vol. 1802 of Lecture Notes
in Computer Science. Springer.

Miller, J. F.; D. Job, and V. K. Vassilev: 2000, ‘Principles in the evolutionary design
of digital circuits — part I'. Genetic Programming and FEvolvable Machines 1,
7-36.

Moore, M.: 1996, ‘When the junk isn’t junk’. Nature 379, 402-403.

Nordin, P. and W. Banzhaf: 1995, ‘Complexity compression and evolution’. In:
L. Eshelman (ed.): Genetic Algorithms: proceedings of the sizth international
conference (ICGA95). pp. 310-317, Morgan Kaufmann, San Francisco.

Nordin, P., F. Francone, and W. Banzhaf: 1996, ‘Explicitly defined introns and
destructive crossover in genetic programming’. In: P. Angeline and K. Kinnear,
Jr. (eds.): Advances in Genetic Programming 2. MIT Press, Cambridge, Chapt. 6,
pp. 111-134.

Poli, R.: 1997, ‘Evolution of Graph-Like Programs with Parallel Distributed Ge-
netic Programming’. In: T. Béck (ed.): Proceedings of Seventh International
Conference on Genetic Algorithms. pp. 346-353, Morgan Kaufmann.

Reddy, V., M. Mavrovouniotis, and M. Liebman: 1993, ‘Petri Net Representations in
Metabolic Pathways’. In: L. Hunter (ed.): Proceedings of the first international
conference on intelligent systems for molecular biology. MIT Press.

Ryan, C., J. J. Collins, and M. O’Neill: 1998, ‘Grammatical Evolution: Evolving
Programs for an Arbitrary Language’. In: W. Banzhaf (ed.): First European
Workshop on Genetic Programming, Vol. 1391 of Lecture Notes in Computer
Science. Springer.

Shackleton, M. and C. Winter: 1997, ‘A Computational Architecture based on
Cellular Processing’. In: M. Holcombe and R. Paton (eds.): Proceedings of
the International conference on Information Processing in Cells and Tissues
(IPCAT’97). Plenum Press.

Shipman, R., M. Shackleton, and I. Harvey: 2000, ‘The Use of Neutral Genotype-
Phenotype Mappings for Improved Evolutionary Search’. BT Technology Journal
18(4), 103-111.

journal.tex; 18/02/2002; 16:42; p.28

ENZYME GENETIC PROGRAMMING 29

Smith, P. and K. Harries: 1998, ‘Code Growth, Explicitly Defined Introns and
Alternative Selection Schemes’. Evolutionary Computation 6(4), 339-360.

Soule, T., J. A. Foster, and J. Dickinson: 1996, ‘Code growth in genetic program-
ming’. In: J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.):
Genetic Programming 1996: Proceedings of the First Annual Conference. pp.
215-213, MIT Press.

Tackett, W. A.: 1994, ‘Recombination, Selection, and the Genetic Construction of
Computer Programs’. Ph.D. thesis, University of Southern California, Electrical
Engineering Systems.

journal.tex; 18/02/2002; 16:42; p.29

journal.tex; 18/02/2002; 16:42; p.30

