
Modelling biological evolvability: implicit

context and variation filtering in enzyme

genetic programming

Michael A. Lones, Andy M. Tyrrell

Intelligent Systems Research Group, Department of Electronics,
University of York, York YO10 5DD, United Kingdom

Abstract

This paper describes recent insights into the role of implicit context within the rep-
resentations of evolving artefacts and specifically within the program representation
used by enzyme genetic programming. Implicit context occurs within self-organising
systems where a component’s connectivity is both determined implicitly by its own
definition and is specified in terms of the behavioural context of other components.
This paper argues that implicit context is an important source of evolvability and
presents experimental evidence that supports this assertion. In particular, it intro-
duces the notion of variation filtering, suggesting that the use of implicit context
within representations leads to meaningful variation filtering whereby inappropriate
change is ignored and meaningful change is encouraged during evolution.

Key words: genetic programming, evolvability, implicit context, variation filtering

1 Introduction

Enzyme genetic programming [Lones and Tyrrell, 2001a,b, 2002b, 2003] is a
form of genetic programming (GP) [Koza, 1992] which uses a program rep-
resentation modelled upon biological enzyme systems. The approach is mo-
tivated both by the limitations of conventional GP representations and by
the premise that biological representations are well adapted for representing
entities undergoing evolutionary processes, irrespective of whether these enti-
ties are biological or non-biological in nature. The logic behind this reasoning

Email addresses: Michael.Lones@bioinspired.com (Michael A. Lones),
Andy.Tyrrell@bioinspired.com (Andy M. Tyrrell).

Preprint submitted to Elsevier Science 30 July 2003

has been addressed in earlier papers on enzyme GP [e.g. Lones and Tyrrell,
2001b]. These papers also present comparative analysis of the performance of
enzyme GP [Lones and Tyrrell, 2002a], the development of the enzyme model
[Lones and Tyrrell, 2001b, 2002b] and the evolution of solution size [Lones
and Tyrrell, 2002a,b].

The aim of this paper is to give further insight into the properties of the
program representation used by enzyme GP, and in particular to verify that
the representation used by enzyme GP is able to support meaningful program
evolution. An important issue addressed by this paper is the evolvability of
different forms of representation in GP and the potential sources of evolvability
within enzyme GP. For more information on evolvability in GP and biology,
see Conrad [1990], Kirschner and Gerhart [1998], Altenberg [1994] and Wagner
and Altenberg [1996].

The paper is structured as follows. Section 2 compares approaches to program
representation in GP and develops the notion of implicit context as an impor-
tant mechanism for preserving the meaning of program components during
evolution. Section 3 describes how implicit context is implemented in the pro-
gram representation of enzyme GP. Section 4 presents experimental results
and observations that support the ideas developed in section 2; showing how
implicit context in enzyme GP leads to behaviours that promote evolvability.
Section 5 offers conclusions and speculates about the role of enzyme GP and
evolutionary computation in understanding biological evolution.

2 The Role of Context in Program Representation

The evolution of an entity is a result of processes of variation acting upon its
representation. The way in which an entity evolves depends upon both the way
in which variation changes the representation and the extent to which change
in the representation leads to change in the entity. This, in turn, depends upon
the relationship between representation and entity.

In genetic programming, we are interested in evolving programs. Enzyme GP
models computation as a network of interacting functional elements, input
nodes and output nodes. This model is general enough to capture most of the
programs that are evolved by other GP systems, including the tree-structures
evolved by standard GP. The role of each of the nodes within the network
can be defined by the nature of its outputs. For a functional element, this is
the result of applying its function to the data supplied at its inputs i.e. it is
determined by both its function and its inputs. Its inputs, more specifically
its input connections from other network nodes, determine the context within
which its function is applied. The manner in which this context is expressed,

2

however, depends upon the program representation.

2.1 Explicit Context

The most common representations used by GP declare explicit connections be-
tween components. Consequently, a node’s context is also recorded explicitly.
Examples of this form of representation include the parse tree of conventional
genetic programming and linear GP representations [e.g. Nordin, 1994].

This use of explicit context has a number of implications for these represen-
tations when subjected to evolution. First, a node’s context is typically deter-
mined by its position within the representation. Crossover operators (unless
designed to be context-preserving and therefore more computationally inten-
sive) tend not to preserve this positional information and, consequently, tend
to disrupt context. The result of this is that crossover is more likely to cause
macro-mutation rather than meaningful recombination [Angeline, 1997].

Second, where explicit context is used there is usually a one-to-one mapping
between representation and program, such that changes to the representation
lead directly to changes within the program. The variation operators therefore
act directly upon the program, implying that evolution is determined solely
by processes of variation and selection. The representation, by comparison,
has no dynamic role to play within the evolutionary process.

2.2 Indirect Context

In some other GP representations, connections between components are speci-
fied using indirection. Typically each component is assigned a reference (which
may be a location, a number or an arbitrary code) and other components spec-
ify their input connections using these references. A good example of this is
Cartesian GP [Miller and Thomson, 2000], where components are assigned
to locations in a cartesian co-ordinate system and input connections are ex-
pressed in terms of the co-ordinates of components they wish to receive inputs
from.

An interesting facet of representations that use indirect context is that a com-
ponent only becomes active in the program if another component expresses a
connection to it. Otherwise it is recessive. This has some important implica-
tions. If a new component is added to the representation during recombination,
it will only become active in the program if its reference is addressed by an
existing component or it is an output node. In this paper, this effect is termed

3

variation filtering, since the representation only expresses certain variation
events in the program whilst filtering out others.

The trouble with most representations that use indirect context is that com-
ponents are assigned references arbitrarily. Usually there is no correlation be-
tween component reference and component behaviour within, and more signifi-
cantly, between programs. Accordingly, components with different behaviours
can have the same reference and components with the same behaviour can
have different references. This implies that the meaning of a component’s
input context depends upon which other components are present in its envi-
ronment. If this environment changes following recombination, this will cause
the component’s context — and therefore its role within the program — to
change. Hence, indirect context does not maintain its meaning following re-
combination.

However, it is conceivable that the population might be able to evolve a corre-
lation between component reference and component behaviour over the course
of time, especially as the population becomes more homogenous. In this sense,
the meaning of indirect context is evolvable. Representations that use indirect
context also have a number of other interesting evolutionary behaviours. For
instance, mutation is able to change the structure of the program by targeting
the references that specify connections. Furthermore, mutation or recombina-
tion can lead to recessive components becoming re-activated. This may en-
courage back-tracking behaviours during evolutionary search. Also, recessive
components are still exposed to evolution: encouraging useful forms of neu-
tral evolution. These ideas have been explored further in [Lones and Tyrrell,
2001a].

2.3 Implicit Context

Implicit context is an innate property of biological representations and, as we
shall see, the program representation used by enzyme GP. The principle behind
implicit context is that a component’s input context is defined in terms of be-
havioural properties of the component it would like to receive input from. For
example, the behaviour of a bio-chemical is dependent upon its physical shape
and chemical properties. Enzymes, which conceptually receive their input in
the form of bio-chemicals, express their preference for these inputs by the
shape and chemical properties of their binding sites. Since the bio-chemicals
that they bind have physical shape and chemical properties complementary
to these binding sites, the binding sites are implicitly describing the context
of the substrates they expect to bind.

Implicit context within program representations captures many of the rich

4

Representation

Program

Representation’

Program’

Variation operators

Preserved context

Addition, removal and
modification of components

Tendency to preserve existing
output behaviour

Fig. 1. The combination of implicit context and variation filtering causes a tendency
to preserve existing context and program output behaviour.

evolutionary behaviours possible with indirect context, but — because con-
text is defined in a manner which is independent of any particular environment
— does not suffer the same problems with loss of meaning following recom-
bination. In particular, representations with implicit context also experience
variation filtering. However, unlike with indirect context representations where
loss of meaning makes this process arbitrary, variational filtering in representa-
tions with implicit context may be a significant source of evolvability: filtering
out inappropriate variation whilst preserving meaningful variation. If a new
component is added to the representation (during recombination), it will only
become active in the program if it either fulfills an existing component’s pre-
ferred context better than any existing component or it is an output node. If
it does not fit into the context of the program, it will become recessive. If an
active component is removed from a program (during recombination), then the
components which received input from it will receive input from components
that have functional properties most similar to the one that was removed —
which may be components that are currently recessive. If an existing active
component is modified (by mutation), it may become recessive if the context it
provides no longer fits with the rest of the program. If a recessive component
is modified, it may become active if the context it provides now fits better
into the program than the context provided by an active component.

In effect, the combination of implicit context and variation filtering could
result in a tendency to preserve existing contexts within the program following
the application of variation operators. In turn, this will tend to preserve the
existing behaviour at the program outputs (which may come from more than
one program following recombination). This idea is illustrated in figure 1.

However, there are certain pre-conditions for implicit context being useful in
enabling meaningful recombination and variation filtering. These were origi-
nally identified in Lones and Tyrrell [2002a] and concern the relationship be-
tween implied context (the context declared in the representation) and actual
context (the context which occurs in the program). Precision is the generality

5

of the implied context: the degree to which it suggests an actual context. If
implicit context is too general, then the behaviour of the program will not
be obvious from the representation, making the mapping between representa-
tion and program unstable and therefore easily disrupted by the application
of variation operators. In turn, this will make meaningful recombination un-
likely. Related to precision is the issue of specificity: how well an implied
context is able to identify an actual context. If a component’s implied context
is too unspecific, it is likely to form different actual contexts within different
programs, meaning that variation filtering will tend to carry out arbitrary be-
haviours. Finally, there is the issue of accuracy: the ability of implicit context
to match actual context given the availability of components within the rep-
resentation and any constraints upon connections between components that
are placed upon the behaviour of the program. Given that these limitations
are unavoidable, there is little that implicit context can do to overcome them.
Nevertheless, it is important that when the preferred context is not available,
the implied context should match the nearest available actual context. In turn,
this requires that a distance metric can be defined between implied and actual
contexts, such that the greater the distance between contexts, the greater is
the difference in component behaviour.

3 Implicit Context in Enzyme Genetic Programming

In enzyme GP, program components are modelled upon biological enzymes.
In addition to having an activity, each component has a shape which declares
its expected role within the program and analogues of binding sites whose
shapes declare the component’s implicit context — the shapes of its expected
inputs (or substrates) within the program. However, unlike biological enzymes,
individual program components carry out only a limited range of functional
activities and typically more than one component within a program would
carry out the same function. Consequently, for implicit context to confer suf-
ficient precision and specificity, it would be insufficient for shape to capture
only the component’s activity. Accordingly, shape captures the entire form of
the component: both its activity and the shapes of its binding sites. Likewise,
binding sites describe the complete shape of the components they expect to
bind.

This has an interesting implication. Since a component’s shape captures the
shapes of its binding sites, and these shapes capture the entire form of its
expected substrates, it is also capturing the activity and binding site shapes
of these expected substrates: and recursively, the shapes — and therefore the
activities — of all the components in the program fragments that develop
below its inputs. This is not a behaviour that occurs in biological enzyme
systems, since enzymes interact through chemical intermediaries and even then

6

do not capture the entire shape of their substrates. Nevertheless, it would
appear to be a useful mechanism in increasing the precision and specificity of
implicit context within enzyme GP.

The shape of a program component is defined using a measure called func-
tionality: a vector which describes the component’s position within an activity
reference space. This reference space has one dimension of unit length for each
member of the GP function and terminal sets. The functionality, F , of a pro-
gram component is defined as follows:

F (component) = (1− k) · F (activity) + k · F (binding sites) (1)

where k is a constant that biases the functionality towards either the compo-
nent’s activity or the component’s binding sites; F (activity), the functionality
of the component’s activity, is a unit vector situated in the dimension corre-
sponding to the enzyme’s function; and F (binding sites), the functionality
declared by the component’s binding sites, is defined:

F (binding sites) =

∑n
i=1 F (sitei) · strength(sitei)∑n

i=1 strength(sitei)
(2)

i.e. the average of the functionalities corresponding to its binding sites weighted
by the strength (a number between 0 and 1) of each binding site.

In effect, a component’s functionality declares an expected activity profile of
the components that occur in the program fragment of which it is the root,
weighted by depth and biased by the strength of binding sites. Functionality
space itself is continuous and the distance between functionalities is calculated
using vector subtraction. This reflects the difference between their activity
profiles, meeting the requirement (outlined in section 2.3) that the greater
the distance between contexts, the greater is the difference in component be-
haviour.

3.1 Mapping Implicit Context to Actual Context

A program representation is the enzyme GP analogy of a biological genome:
stored as a linear array of program components sub-divided into input ter-
minals, functional elements and output terminals. In addition to an activity
declaration (a member of the function or terminal set), each component that
processes inputs, i.e. functional elements and output terminals, contains a list
of potential binding sites, each of which has a functionality and a strength.

The objective of mapping program representation to program is that each

7

active input of each active component will be connected to the output of
the component for whose shape its corresponding binding site has the high-
est specificity i.e. the shortest distance between functionalities. A number of
different mapping processes are possible. The mapping process used for the
results in this paper begins with expression of the output terminals, which
then choose substrates whose shapes are most similar to the shapes of their
strongest binding sites. These substrates are now considered expressed and, if
they require inputs, attempt to satisfy them by binding their own substrates.
This process continues in hierarchical fashion until all expressed program com-
ponents have satisfied all of their inputs. Each output terminal is expressed
exactly once, whilst input terminals and functional elements can be expressed
once or not at all. Where more than one component chooses the same sub-
strate, the output of the substrate is shared between them.

The programs evolved for this paper are required to have strict tree-structures.
This constraint is handled within the mapping process by checking for the pres-
ence of cycles before a new connection is made. If a connection to a substrate
would result in a cycle, then an alternative (less preferred) connection must
be made. Unfortunately this cycle checking brings the time complexity of the
mapping process above linear, but is an unavoidable overhead of developing
a cyclic graph into a tree structure. An alternative mapping process, based
upon transforming the program representation into a network random key
representation [Rothlauf et al., 2002], has also been used within enzyme GP,
but has a higher average-case complexity than the process outlined above.

3.2 Evolving Program Representations

Evolution of program representations occurs within a spatially-distributed
parallel genetic algorithm, details of which can be found in Lones and Tyrrell
[2001b]. Bounded-size program representations are constructed randomly to
fill the initial population. New program representations are created through
crossover and mutation of existing program representations.

Crossover in enzyme GP is somewhat different to sub-tree crossover in con-
ventional GP and takes advantage of the fact that added components need
not replace existing components. In sub-tree crossover, one sub-tree is always
replaced by another. In enzyme GP crossover, a contiguous group of compo-
nents is copied from one solution to another without removing any existing
components (with the exception of output terminals, whose numbers remain
constant). This transfer operation is complemented by a converse operation
which removes contiguous groups of components from solutions. Each of these
operations is used, non-deterministically, for 50% of crossover events. The ef-
fect of the remove operation is to balance solution sizes so that recombination

8

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0 50 100 150 200

Generations

F
itn

es
s

(o
ut

pu
t

er
ro

rs
)

Functionality shape (w ith c/o) Random shape (w ith c/o)

Functionality shape (no c/o) Random shape (no c/o)

1

2

3

4

5

6

0

Fig. 2. Comparing mean number of output bit errors when evolving two-bit multi-
pliers. (Averages taken over 50 runs. Parameters are given in table 1).

has an overall neutral effect upon solution size within a population. For both
transfer and remove operations, the number of components targeted is chosen
randomly within an upper limit (tu). The benefits of this form of crossover over
uniform and tree-based crossovers is discussed in Lones and Tyrrell [2002b].
Mutation targets both functionalities (mf) and activities (ma).

4 Properties of the Representation

4.1 Meaningful context

Earlier papers have presented comparative analysis of the performance of
enzyme GP upon a range of problems in combinational logic design [Lones
and Tyrrell, 2002a]. These have shown that the approach is able to compete
favourably against indirect context representations upon most problems that
it has been applied to.

A more direct comparison is shown in figure 2, where fitness curves for en-
zyme GP with functionality shapes are shown against fitness curves for enzyme
GP with randomly generated shapes. These random shapes effectively specify
an indirect context, where there is no relationship between pattern and be-
haviour. It can be seen that the fitness curves for enzyme GP with random

9

Table 1
Success rate and average solution time (in generations) for evolving two-bit multi-
pliers in a population of size 324 with k = 0.3, mf = 2%, ma = 1.5% and tu = 5.

Shape Variation operators Success rate Average

Functionality Mutation and recombination 70% 98

Functionality Mutation only 55% 79

Random Mutation and recombination 26% 69

Random Mutation only 30% 64

shapes initially grow at a high rate, but fall to a relatively low rate once they
reach a certain fitness level. This suggests a high level of disruptive varia-
tion, which initially benefits search but later becomes a hindrance to effective
exploitation. The curves for enzyme GP with functionality shapes, by compar-
ison, demonstrate a steady rate of decay in fitness growth, indicating a more
structured search which continues until the optimum is found. Performance
statistics for enzyme GP with both types of shape are listed in table 1; and
indicate that performance is considerably better with functionality shape than
with random shape. This supports the notion that implicit context captures
more meaningful context than indirect context.

4.2 Context preservation in recombination

Table 1 also compares the performance of enzyme GP both with and without
recombination. When functionality shapes are used, recombination leads to a
significant improvement in performance. This occurs even though the prob-
lem’s fitness landscape is not particularly suited to recombination [Vassilev
et al., 1999], and illustrates that functionality shapes are able to preserve con-
text both within and between program representations. When random shapes
are used, however, recombination impairs performance: suggesting that recom-
bination disrupts rather than preserves context.

Figures 3 and 4 show examples of the behaviours that occur when transfer
and remove operations are applied during recombination. The transfer opera-
tion cannot directly replace any components within a program representation
(other than outputs). However, as figure 3 illustrates, it can still lead to be-
haviours at the program level that look like replacement. This happens because
the new component has subsumed the role of the former component, offering
a closer match to the input context declared by the parent node. Nevertheless,
the former component is still present within the program representation and, if
the new component was removed, could resume its former role in the program.
Figure 3 also shows how subsumption is able to preserve the behaviour of the
program below the component that has been replaced, indicating that the new

10

parent

transfer

child

donor

Fig. 3. A simple example of subsumption resulting from a transfer operation. Dif-
ferent node and terminal shades represent different members of the function and
terminal sets.

component has a functionality similar to that of the former component, and
illustrating the context preserving nature of recombination in enzyme GP.

Figure 4 shows two other behaviours which often occur during recombination:
insertion and deletion. In the example on the left of the figure, a transfer
operation leads to a new sub-tree being inserted between two existing compo-
nents, something which is not possible using sub-tree swapping recombination
in standard GP. Again, the existing sub-tree below the root of the inserted
sub-tree is preserved, and from the perspective of the component (the output
terminal) above the inserted sub-tree, the new context is related to the for-
mer context: and presumably a closer fit to the implicit context declared by
its binding site. In fact, insertion is a special case of subsumption where the
subsuming component happens to declare an input context which matches the
role of the component that it subsumed. In the other two example in figure
4, removal operations lead to parts of programs being deleted. In the example
in the centre, two sub-trees are affected by a single removal operation. This
shows how recombination operators in enzyme GP operate upon groups of
components at the representation level rather than structures (in this case
sub-trees) at the program level: a behaviour which is presumably more dis-
ruptive 1 , but also more expressive, than conventional sub-tree crossover. In

1 Although, given that recombination targets contiguous groups of components in
the representation, the development of genetic linkage over time might naturally
reduce the level of disruption in the later stages of search.

11

parent

transfer

child

parents

children

remove

Fig. 4. Behaviours resulting from transfer and remove operations.

the example on the right of the figure, an entire sub-tree is removed from be-
tween two nodes. This is the complement of the behaviour which occurs in the
transfer example on the left of the figure, and shows how a subsumption oper-
ation might become undone. In both of these removal examples, the program
below the deletion remains unaffected, showing how the remove operation also
encourages context preservation.

4.3 Variation filtering

Conceptually, all the components defined in a representation occupy some po-
sition in a subsumption hierarchy. At the top are the expressed components:
those which appear in the program. Below these are any redundant copies of
the expressed components. Below these are components that have been sub-
sumed by the expressed components; and further down, components that were
subsumed by components further up the hierarchy which have since themselves
also been subsumed. At the bottom are components which have never been ex-
pressed but which could in principle be expressed if all the components above
them in the subsumption hierarchy were removed. All the behaviours that
occur in enzyme GP are a result of variation operators modifying this sub-
sumption hierarchy: either by adding new entries, by removing entries or by
re-ordering existing entries (which is what mutation operators are essentially
doing). Nevertheless, the operators are not aware of this subsumption hierar-
chy. They blindly add, remove and re-order entries — only causing change in
the program when they happen to add, remove or re-order entries at the top
of the hierarchy. All other changes are absorbed into the lower echelons of the

12

0

10

20

30

40

50

60

0 10 20 30 40 50

Generations

S
iz

e

Average representation size Average program size

Fig. 5. Comparing representation size growth against forced program size growth
in a population of size 100 with no selection pressure, no removal operation and no
mutation.

hierarchy.

Subsumption supports the idea that the program representation used by en-
zyme GP promotes meaningful variation filtering: since it is clearly the way
in which the representation describes the program, rather than the action of
the variation operators, that allows subsumptive behaviours to occur. Further
evidence for the existence of variation filtering can be seen in the relationship
between patterns of growth in the program and in the representation. Earlier
papers [Lones and Tyrrell, 2002a,b] have described this relationship in the
case where the population is undergoing fitness-based selection. These have
shown that program growth is considerably lower than representation growth.
Figure 5, by comparison, compares program and representation size growth
when the population is not undergoing selection and only the insertion op-
erator is used. Consequently, any problem-specific program size influence is
removed. Again, program size growth is considerably lower than representa-
tion size growth, implying that the proportion of un-expressed components in
a program representation, on average, increases over time. This effect can be
accounted for by a process of variation filtering, where the un-expressed por-
tion of the representation contains those components which have been inserted
into the representation but not propagated to the program.

This un-expressed portion of the program representation constitutes the re-
cessive part of the subsumption hierarchy described above. Although it would
not normally grow at the rate seen in this example, it is interesting to con-
sider whether it could have a function other than filtering out components that

13

do not fit into the context of the program. One such function is evolutionary
back-tracking. If the population were to evolve towards a local optimum, these
recessive subsumption hierarchies contain information that could be used as
a means of escape to some previous point before the population converged
upon the local optimum. Other functions concern behavioural plasticity: the
possibility of recessive components becoming expressed during operation to
compensate for failure of expressed components or changes in the program’s
requirements (an idea related to work reported in Tyrrell et al. [2001]).

5 Conclusions

Most genetic programming systems represent the programs they are evolving
using either explicit or indirect context. This paper introduces an alternative,
biologically motivated, approach to program representation that uses implicit
context; arguing that this form of representation is more able to confer evolv-
ability than those which use explicit or indirect context. This paper also in-
troduces the notion of variation filtering: the tendency of a representation to
promote certain types of change whilst filtering out others. In particular, it is
suggested that implicit context representations can carry out a form of varia-
tion filtering that promotes evolvability by filtering out inappropriate change
whilst maintaining meaningful change — and that this process is instrumental
in enabling meaningful recombination.

In biological representations, shape is an innate form of implicit context.
The program representation used by enzyme genetic programming is mod-
elled upon the representations used by biology to represent enzyme systems,
and models shape as a pattern which describes the role of each component
defined within the representation. This paper presents results which demon-
strate the ability of this pattern to capture meaningful context and therefore
enable meaningful recombination. It also introduces some of the behaviours
that occur during recombination and discusses how these are the result of the
representation’s variation filtering behaviours.

Whilst enzyme GP has so far been used as a tool for understanding com-
putational evolution, it is interesting to consider whether it might also have
a role in understanding biological evolution; particularly the early stages of
biological evolution. It seems evident that variation filtering behaviours do
occur in biological systems, although simple behaviours of the kind described
in this paper may only have had an influence before active forms of genetic
and enzymatic regulation evolved. Likewise, it seems plausible that the non-
coding portions of DNA, rather than being junk, have a role similar to the
recessive subsumption hierarchy described in this paper — providing a source
of error recovery and evolutionary back-tracking. Therefore, we would like to

14

end this paper by posing the question: could evolutionary computation have a
role within the understanding of biological evolution similar to the role played
by neural computing in the understanding of brain function: to validate bio-
logical theories, to test the generality of biological constructs and to identify
holes in our understanding of how biology functions.

References

Lee Altenberg. The evolution of evolvability in genetic programming. In
K. Kinnear, Jr, editor, Advances in Genetic Programming. MIT Press, 1994.

P. Angeline. Subtree crossover: Building block engine or macromutation? In
John R Koza, Kalyanmoy Deb, Marco Dorigo, David B Fogel, Max Garzon,
Hitoshi Iba, and Rick L Riolo, editors, Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference, GP97, pages 240–248. Morgan
Kaufmann, 1997.

M. Conrad. The geometry of evolution. BioSystems, 24:61–81, 1990.
M. Kirschner and J. Gerhart. Evolvability. Proceedings of the National

Academy of Science (USA), 95:8420–8427, July 1998.
John Koza. Genetic programming: on the programming of computers by means

of natural selection. MIT Press, 1992.
M. A. Lones and A. M. Tyrrell. Biomimetic representation in genetic pro-

gramming. In H. Kargupta, editor, Proceedings of the 2001 Genetic and
Evolutionary Computation Conference, Computation in Gene Expression
Workshop, pages 199–204, July 2001a.

M. A. Lones and A. M. Tyrrell. Enzyme genetic programming. In J.-H.
Kim, B.-T. Zhang, G. Fogel, and I. Kuscu, editors, Proceedings of the 2001
Congress on Evolutionary Computation, volume 2, pages 1183–1190. IEEE
Press, May 2001b.

M. A. Lones and A. M. Tyrrell. Biomimetic representation in genetic pro-
gramming enzyme. Genetic Programming and Evolvable Machines, 3(2):
193–217, June 2002a.

M. A. Lones and A. M. Tyrrell. Crossover and bloat in the functionality model
of enzyme genetic programming. In Proceedings of the 2002 World Congress
on Computational Intelligence. IEEE Press, 2002b.

M. A. Lones and A. M. Tyrrell. Enzyme genetic programming. In M. Amos,
editor, Cellular Computing, Genomics and Bioinformatics Series. Oxford
University Press, 2003. (To appear).

J. Miller and P. Thomson. Cartesian genetic programming. In Riccardo Poli,
Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Peter Nordin,
and Terence C. Fogarty, editors, Third European Conference on Genetic
Programming, volume 1802 of Lecture Notes in Computer Science. Springer,
2000.

P. Nordin. A compiling genetic programming system that directly manipulates

15

the machine code. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic
Programming, chapter 14, pages 311–331. MIT Press, 1994.

F. Rothlauf, D. Goldberg, and A. Heinzl. Random network keys — a tree net-
work representation scheme for genetic and evolutionary algorithms. Evo-
lutionary Computation, 10(1):75–97, 2002.

A. M. Tyrrell, G. S. Hollingworth, and S. L. Smith. Evolutionary strategies
and intrinsic fault tolerance. In D. Keymeulen, A. Stoica, J. Lohn, and
R. S. Zebulum, editors, Proceedings of the Third NASA/DoD Workshop on
Evolvable Hardware. IEEE Computer Society, July 2001.

V. Vassilev, J. Miller, and T. Fogarty. On the nature of two-bit multiplier
landscapes. In A. Stoica, D. Keymeulen, and J. Lohn, editors, The First
NASA/DoD Workshop on Evolvable Hardware, pages 36–45. IEEE Com-
puter Society, July 1999.

G. P. Wagner and L. Altenberg. Complex adaptations and the evolution of
evolvability. Evolution, 50(3):967–976, 1996.

16

