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Abstract. Artificial biochemical networks (ABNs) are a class of compu-
tational automata whose architectures are motivated by the organisation
of genetic and metabolic networks. In this work, we investigate whether
evolved ABNs can carry out classification when stimulated with time
series data collected from human subjects with and without Parkinson’s
disease. The evolved ABNs have accuracies in the region of 80-90%, sig-
nificantly higher than the diagnostic accuracies typically found in initial
clinical diagnosis. We also show that relatively simple ABNs, comprising
only a small number of discrete maps, are able to recognise the abnormal
patterns of motor function associated with Parkinson’s disease.

1 Introduction

We recently developed a series of computational dynamical systems motivated by
the structure and function of biochemical networks [7, 8]. When evolved using an
evolutionary algorithm, these artificial biochemical networks were shown to be
competent at solving a diverse range of difficult control problems. In this work,
we investigate whether artificial biochemical networks can be used to solve a
difficult classification task, by distinguishing between movement time series data
collected from Parkinson’s disease patients and age-matched controls in a recent
clinical study. In particular, we look at the classification accuracy of artificial
biochemical networks which are composed of only a few non-linear discrete maps.
Discrete maps, such as the logistic map and Chirikov’s standard map, model
complex real-world processes using simple iterative equations. Their dynamics
make them computationally interesting in their own right, and when coupled
together they have been shown to carry out difficult computational tasks [1].

2 Materials and Methods

2.1 Data Sets

Parkinson’s Disease (PD) is a chronic neuro-degenerative disorder caused by
the loss of dopamine-generating cells in the brain. The symptoms of PD are



highly variable, but all patients develop some form of movement disorder—such
as slowing of movement (bradykinesia), tremor, rigidity, and impaired balance.
Because of its symptomatic diversity, and symptom overlap with other diseases,
PD is sometimes difficult to diagnose, with clinical misdiagnosis rates in the
region of 25% [2, 5].

In a recent clinical study, we collected movement data from 49 PD patients
and 41 age-matched controls as they performed a finger tapping task, a standard
clinical means of measuring bradykinesia. The subject was asked to tap their
thumb and index finger repeatedly for a duration of 30 seconds, using each hand
in turn. Movement data was collected using a Polhemus Patriot electromagnetic
motion tracking device, whose probes were attached to the subject’s thumb
and index finger whilst carrying out the task. The movement data was then
transformed into time series of displacements between thumb and index finger,
and divided into training and test sets in the ratio 2:1. The training data was used
for fitness evaluation, and the test set was used to measure classifier generality.

2.2 Classifier Architectures

Artificial biochemical networks (ABNs) are a class of computational automata
whose form and function are loosely modelled upon the biochemical networks
found within biological organisms. In [7] and [8] we developed various ABN mod-
els, and showed how they display rich computational behaviours when coupled
to a spectrum of dynamical systems. In this work, we are interested in whether
ABNs can perform classification when stimulated with patient movement data.
This approach is based on the hypothesis that ABNs can be evolved which will
react to the dynamics found within a movement time series, causing them to
alter their internal state in an observable manner. The approach is compara-
ble to other uses of computational dynamical systems to perform time series
classification, for example recurrent neural networks [3].

In this work, we use two types of ABN: artificial metabolic networks (AMNs)
and artificial genetic networks (AGNs). The former are loosely modelled upon
metabolic networks, and involve a set of functional elements (termed enzymes)
manipulating an indexed set of real numbers (chemical concentrations) over a
period of iterations. In order to mimic the effect of mass conservation in biology,
the sum of chemical concentrations are normalised after each iteration. AGNs are
a model of genetic regulation, and comprise an indexed array of genes, each of
which has a real-valued state (expression level), a function (regulatory function)
and a set of inputs (indices of other genes). The AGNs are synchronously updated
over a period of iterations, with each gene’s expression level at each iteration
determined by applying its regulatory function to the expression levels of its
input genes. Enzyme and regulatory functions are selected from a set of non-
linear discrete maps: the logistic map, Chirikov’s standard map, the baker’s
map, and Arnold’s cat map [8]. Between them, these maps display a wide range
of ordered and chaotic dynamical behaviours.

Inputs are delivered to the ABNs by setting a chemical concentration or the
expression level of a designated input gene. Outputs are read from the final state



Fig. 1: Diagnostic power of evolved ABNs on both the training and test sets. Notched
box plots show summary statistics over 50 runs. Overlapping notches indicate when
median values (thick horizontal bars) are not significantly different at the 95% con-
fidence level. Kernel density estimates of underlying distributions are also shown (in
grey).

of a designated chemical concentration or gene expression level. A time series
is delivered to a network one value at a time, each followed by tb iterations
of the network. Once the whole time series has been delivered, the network is
executed for another ta iterations in order to allow the dynamics to settle. At
this point a single output value is read, which is then interpreted as the network’s
classification of the sequence. The settling parameters, tb and ta are both evolved
with the network.

2.3 Evolutionary Algorithm

We used a standard generational evolutionary algorithm to evolve ABN-based
classifiers. This used tournament selection of size 4, a single elite, a point muta-
tion rate of 6% and uniform crossover with a crossover probability of 15%. Initial
solution sizes were made intentionally short, between 2 and 10 genes/enzymes,
to encourage parsimony. Each evolutionary run had a population size of 200
and a generation limit of 100. The fitness function was the area under the ROC
curve (AUC), which is equivalent to the probability that a network will generate
a higher output value for a PD time series than one from a control subject. Its
relationship to probability means that AUC is easy to interpret, making it a
popular metric in medicine [4].

3 Results

Fig. 1 shows the distribution of training and test scores for the best classifiers
from each of 50 evolutionary runs, showing that AUC scores approach 0.9 for the
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Fig. 2: ROC curves showing the diagnostic accuracy of an evolved classifier across all
thresholds. The best trade-off is marked with a circle, showing a sensitivity of 87.5%
and a specificity of 80%.

best parameter sets. This corresponds to classification accuracies in the range of
80-90% (see Fig. 2 for an example ROC curve). Whilst lower than the 92-94%
accuracy of diagnosis performed by experts in movement disorders, it is con-
siderably higher than the diagnostic accuracies found in non-expert secondary
care (75%) and community care (47%), where most patients are first diagnosed
[9]. This level of misdiagnosis led to the UK’s National Institute of Clinical
Excellence (NICE) to recommend that suspected PD patients should only be
diagnosed by specialists. However, with this level of diagnostic accuracy, it is
feasible that these kinds of classifiers could be used to assist primary care pro-
fessionals such as general practitioners—especially given the relatively low cost
of the equipment and the non-invasive nature of the diagnostic process.

Unlike our earlier diagnostic work [6, 10], which used window-based GP clas-
sifiers, ABNs have access to both local (e.g. local patterns of acceleration) and
global (e.g. spectral characteristics) features of the data, so in principle are able
to base their classification on diverse factors. This seems particularly important
when processing movement data from Parkinson’s patients, where symptom di-
versity means that individual indicators have poor diagnostic accuracy. For in-
stance, the presence of tremor (measured using spectral analysis of at-rest data
collected during the same clinical trial) has a diagnostic accuracy of 63%.

Our results are also interesting from an information processing perspective.
Whilst the best classifiers generally make use of several discrete maps, good
classification accuracy can be achieved with networks containing only one or two
functional elements. Fig. 3 gives an example of this, showing the behaviour of an
AMN containing only a single discrete map—Chirikov’s standard map operating
within a majority chaotic phase. It is surprising that a single chaotic map, in
concert with the mass conservation rule of the AMN, can achieve a relatively
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(a) Parkinson’s disease patient
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Fig. 3: Example of an evolved AMN processing movement data (In) from subjects with
and without Parkinson’s. The lower four plots in each case show how chemical con-
centrations change as the input sequence is processed. C9 is the designated output
chemical, whose final concentration is interpreted as the classifier’s output. For com-
parison, grey lines show the C9 time series for all members of the test set.

high classification accuracy (AUC=0.84). Furthermore, this capacity does not
appear to be linked to the choice of discrete map, since solutions with similar
classification accuracies were evolved which contained each of the discrete maps
available to the evolutionary algorithm.

Given the gap between ABNs and the biological structures which they are
motivated by, it is hard to say whether these results give any insight into the
nature of biochemical information processing. However, it does show that rel-
atively simple (from an implementation perspective) non-linear processes can
process signals produced by a relatively complex biological process. These non-
linear processes, in turn, occur in many naturally occurring systems, so it doesn’t
seem unreasonable that they could occur in the biochemical networks present
within cells and tissues.

4 Conclusions

In this paper, we have shown that artificial biochemical networks can be used
to recognise abnormal motor function associated with Parkinson’s disease. The
evolved classifiers perform an objective diagnosis based upon data collected from
simple movement tasks, and have accuracies comparable to trained clinicians.



Analysis of the classifiers suggests that diagnosis can be performed by relatively
simple evolved networks, and that chaotic dynamics may play an interesting role.
In future work, we hope to investigate whether this approach can also be applied
to other forms of neurological disorder, such as Alzheimer’s and Huntington’s
disease.
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