
Discriminating Normal and Cancerous Thyroid Cell Lines using
Implicit Context Representation Cartesian Genetic Programming

Michael A. Lones, Member, IEEE, Stephen L. Smith, Andrew T. Harris,
Alec S. High, Sheila E. Fisher, D. Alastair Smith and Jennifer Kirkham

Abstract— In this paper, we describe a method for discrimi-
nating between thyroid cell lines. Five commercial thyroid cell
lines were obtained, ranging from non-cancerous to cancerous
varieties. Raman spectroscopy was used to interrogate native
cell biochemistry. Following suitable normalisation of the data,
implicit context representation Cartesian genetic programming
was then used to search for classifiers capable of distinguishing
between the spectral fingerprints of the different cell lines.
The results are promising, producing comprehensible classifiers
whose output values correlate with biological aggressiveness.

I. INTRODUCTION

Papillary cancer is the most common thyroid malignancy,
followed by follicular carcinoma. Both of these cancers have
a high chance of cure. Medullary thyroid carcinoma, which
is associated with a genetic predisposition, occurs less fre-
quently, but has a higher mortality rate. Anaplastic carcinoma
is the rarest variety, usually occurring in the elderly with a
very poor prognosis. Diagnosis of thyroid cancer is made on
needle biopsy. Should this not prove adequate, removal of
half of the gland is required with histological analysis. This
is an invasive procedure usually taking two to three weeks
before results are confirmed.

Recently, there has been growing interest in the use of
optical methodologies to identify diseased cells and tissues,
since these have the potential to provide a non-invasive,
rapid and objective diagnosis prior to the onset of visible
symptoms [6]. In this paper, we focus on the use of Ra-
man spectroscopy, an optical methodology which provides
considerable information about the chemical composition of
a sample, making it of particular interest for diagnosing
diseases, such as cancer, which have a complex biochemical
signature [11].

A Raman spectrum is generated when a sample is illu-
minated by a monochromatic light, causing photons to be
absorbed and reemitted at different (or shifted) frequencies
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determined by the energy states of its constituent molecules.
Raman spectroscopy provides a highly detailed biochemical
fingerprint of the target material. However, biological cells
are biochemically complex, making interpretation of Raman
spectra highly challenging. Chemical components of the cell
will each produce peaks in the spectrum, with those of
the highest quantity producing the largest peaks. Thus this
method is both qualitative and quantitative in nature. Inter-
preting this biochemical information requires sophisticated
data analysis methods capable of discriminating between
subtle differences in the data sets.

In this paper, we describe an approach to discriminating
between the Raman spectra of normal and cancerous thyroid
cell lines using implicit context representation Cartesian
genetic programming (IRCGP), a form of genetic program-
ming which has previously been used to successfully learn
biomedical classifiers [8, 18, 20]. In particular, we take a
multi-class approach, training individual classifiers to distin-
guish between five thyroid cell lines (one normal and four
cancerous) ordered by increasing biological aggressiveness.

The paper is organised as follows: In Section II, we review
previous and related work. Section III describes materials
and methods. Section IV provides experimental results and
analysis. Section V concludes.

II. PREVIOUS AND RELATED WORK

Spectral analysis using evolutionary algorithms: Several
types of evolutionary algorithm have been used to interpret
Raman spectra. In [12], the authors used a genetic algorithm
(GA) to identify the Raman spectral components associated
with different types of plastic. In [2], the authors used a
hybrid GA-immune algorithm to identify chemicals present
in composite spectra. In [9], the authors used standard genetic
programming (GP) to identify solvent samples from their
Raman spectra, showing the approach to be superior to those
based upon neural networks and more traditional multivariate
data analysis techniques. GP has also been used to interpret
Fourier Transform Infrared (FTIR) spectral data, showing
good explanatory power when compared to more traditional
analysis techniques [4].

Classification using IRCGP: We have previously looked
at the feasibility of using IRCGP to discriminate Raman
spectra, showing that it is capable of generating classifiers
able to discriminate blood samples from subjects with and
without head and neck cancers [8]. We have also shown how
this IRCGP-based method (in the context of measuring visuo-



Fig. 1: Classifying the Raman spectrum of a thyroid cell.

spatial ability [18]) can be extended to problems of multi-
class discrimination, such as the one addressed in this paper.

Spectral discrimination of thyroid cancer: In [21], the
authors used discriminative linear analysis to compare the
Raman spectra of benign thyroid tumours and papillary and
follicular carcinomas, finding good discrimination between
benign and malignant tissues. Our own initial study of two
cell lines, taken from normal thyroid tissue and anaplastic
carcinoma, supports this conclusion, showing that a self-
organising map can accurately distinguish the Raman spectra
of these two cell lines [7]. The current paper extends this
initial study by applying the multi-class IRCGP approach,
developed in [18], to discriminate between five thyroid cell
lines: one normal and four cancerous.

III. MATERIALS AND METHODS

We used IRCGP to evolve classifiers capable of discrim-
inating between Raman spectra of normal thyroid cells and
each of the four main classes of thyroid cancer on a single,
continuous-valued, output scale (see schematic in Figure 1).

A. Implicit Context Representation CGP

Implicit context representation Cartesian genetic program-
ming (IRCGP) [19] is a graph-based genetic programming
system which uses the idea of implicit context [13–15]
to provide positional independence to evolving solutions.
IRCGP is a variant of Cartesian genetic programming (CGP)
[17]. Like CGP, an IRCGP solution consists of an n-
dimensional grid (where n is typically 1 or 2) in which
each grid location contains a function, and program inputs
and outputs are delivered to and taken from specific grid
locations. However, unlike standard CGP, interconnections
between functions, inputs and outputs are specified in terms
of a component’s functionality profile: a vector describing the
component’s functional context within the program. Since
functionality profiles are independent of grid position, this
means that a program’s behaviour is more likely to be
preserved when variation operators modify a component’s
absolute or relative grid position. In particular, this has been
shown to improve performance when crossover operators are
used [1, 15]. More details about the form of IRCGP used in
this work can be found in [18].

B. Data Collection and Preprocessing

Collection: Five human thyroid cell lines (see Table I),
one normal and four cancerous, were cultured in media. Up
to 30 cells were sampled from each cell line, formalin-fixed
and placed onto calcium fluoride slides. Exciting light was
provided by a cavity laser set at 783 nm, and 5 Raman spectra
were collected for each cell sample using a thermoelectrically
cooled CCD camera attached to a Renishaw ‘System 1000’
Raman microscope. Further details of the experimental setup
can be found in [7].

Normalisation: When collecting spectral data, variability
of experimental conditions, sample consistency, and instru-
mentation lead to differences in spectral intensity. In Figure
2a, this is particularly evident in differences in the total
energies (area under curves) of the mean spectra for each of
the cell lines. To compensate for this, each sample’s spectrum
was linearly scaled to the unit interval, mapping the highest
intensity to 1 and the lowest intensity to 0. Figure 2b shows
the resulting mean spectra for each cell line.

Data Sets: The normalised data were divided uniformly
into training, validation and test sets, maintaining a within-
class ratio of 2:1:1. To prevent possible bias, spectra from
the same cell sample were kept together.

C. Classifier Evaluation

Receiver Operating Characteristic (ROC) analysis is used
to measure an evolved classifier’s fitness — its ability to
discriminate between data classes. A ROC curve plots true
positive rate (TPR) against false positive rate (FPR) across
the range of possible classification thresholds, where:

TPR =
Number of positive examples correctly classified

Number of positive examples

FPR =
Number of negative examples incorrectly classified

Number of negative examples

TABLE I: Cell Lines

Class Name Cell Type Samples

1 Nthy-ori 3-1 Normal follicular epithelial 30
2 K1 Papillary thyroid carcinoma 25
3 RO82-W-1 Follicular thyroid carcinoma 25
4 TT Medullary thyroid carcinoma 24
5 8305C Anaplastic thyroid carcinoma 25



(a) Original

(b) Normalised

Fig. 2: Mean Raman spectra for each cell line.

The area under a ROC curve (known as AUC) is often used
as a measure of classifier accuracy, since it is equivalent to
the probability that the classifier will rank a randomly chosen
class member higher than a randomly chosen non-member
[3]. AUC scores fall within the range [0, 1], where 1 indicates
perfect discrimination of class members from non-members,
0.5 indicates no ability to discriminate, and 0 indicates
that non-members are always ranked higher than members
(i.e. perfect classification can be achieved by inverting the
classifier’s output).

The AUC metric can be extended to multi-class classifiers
by taking the mean of the AUCs between each pair of classes
[5], thus measuring the overall pairwise discriminability of
the classifier — in effect, how well the classifier separates
the classes within its output range. Hand and Till [5] define
this metric as:

AUCmulticlass =
2

|C|(|C| − 1)

∑
{ci,cj}∈C

AUC(ci, cj) (1)

where C is the set of classes and AUC(ci, cj) is the area
under the ROC curve when separating classes ci and cj .

D. Experimental Settings

We carried out 50 runs of 50 generations using a popula-
tion of 500 classifiers. All members of the population were
evaluated separately upon both the training and validation
data sets. At the end of a run, the solution with the highest
validation set accuracy (during the whole run) was evaluated
upon the test set, giving an unbiased measure of its fitness.

Child solutions were generated using uniform crossover
and mutation in equal proportion. The mutation rate (de-
termined experimentally) was 6% for functions and 3% for
each functionality profile element. We used a CGP grid size
of 5 rows by 5 columns, large enough to be expressive yet
small enough to discourage over-learning. The function set
is defined in Table II.

TABLE II: Function Set

Function Description

x + y Returns the sum of its two inputs
x− y Returns the difference of its two inputs
x ∗ y Returns the product of its two inputs

{x, y} Returns the mean of its two inputs
min{x, y} Returns the lesser of its two inputs
max{x, y} Returns the greater of its two inputs
−x Returns its input multiplied by -1

IV. RESULTS

Figure 3 (left-hand side) shows the distribution of fitness
scores for the 50 runs. Whilst the mean multiclass AUC
score is 0.68, a number of classifiers were found with
scores above 0.7, and analysis of the pairwise AUC scores
shows good discrimination (> 0.8) between well-seperated
classes. Table III, by way of example, gives the overall
and pairwise scores for the highest scoring classifier (corre-
sponding ROC curves are shown in Figure 4): showing good
discrimination of follicular, medullary and anaplastic cancers
from normal cells, good discrimination of medullary and
anaplastic cancers from papillary cancer, and fairly good dis-
crimination between follicular and anaplastic cancers. Low
scores are generally associated with neighbouring classes, i.e.
normal and papillary, papillary and follicular, follicular and
medullary, and medullary and anaplastic.

TABLE III: Multi-class and pairwise AUC scores for classifier with
highest test score. AUC scores over 0.75 are shown in bold.

Classes Train AUC Validate AUC Test AUC

1/2/3/4/5 0.75 0.78 0.75
1/2 0.69 0.64 0.61
1/3 0.80 0.83 0.74
1/4 0.85 0.94 0.88
1/5 0.94 0.98 0.91
2/3 0.65 0.69 0.62
2/4 0.70 0.82 0.79
2/5 0.84 0.89 0.83
3/4 0.59 0.65 0.71
3/5 0.76 0.76 0.78
4/5 0.68 0.62 0.60
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Fig. 4: ROC Curves, showing the ability of the classifier to discriminate between the different thyroid cell lines.
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Fig. 3: Comparing the fitness distributions of classifiers evolved to
discriminate classes in order of biological aggressiveness (correct)
with those evolved to discriminate a biologically meaningless
ordering (mixed).

Although the Raman spectra were normalised with respect
to total energy, variability of equipment and experimental
conditions could lead to significant local differences in spec-
tral intensity. Whilst the likelihood is considerably mitigated
by a multi-class approach, it is possible that an evolved
classifier could pick up biochemically-meaningless artefacts
whose magnitude happens to be correlated with the ordering
of the classes. To test for this, we carried out a further 50
runs with the mixed-up class ordering < 1, 5, 2, 4, 3 >, in
which biologically-distant classes are neighbouring, i.e. for
which we would not expect to be able to evolve meaningful
multi-class classifiers. Figure 3 compares the fitness distri-
butions of the two sets of runs, showing that the fitness
of classifiers discriminating correctly-ordered classes is, in
general, considerably higher than those discriminating the
mixed-up ordering. This suggests that high fitness classifiers

are making decisions based upon biological factors rather
than biologically-meaningless features.

One of the benefits of a GP approach over, for instance,
a neural network-based approach, is the relative ease with
which solutions can be interpreted. Table IV, for example,
lists the expressions used by the 10 highest scoring evolved
classifiers. On the whole, these expressions are quite simple.
Whilst they vary considerably in form, they often refer to
similar regions within the Raman spectrum. This is illustrated
by Figure 5, which shows the Raman shifts referenced by
these expressions. In particular, it shows that Raman inten-
sities around 636, 833, 1000, 1600 and 1660 are particularly
well-referenced. These regions of the spectrum correspond to
DNA/RNA nucleotide bases, phenylalanine, aromatic amino
acids and amide I, respectively; suggesting that the relative
levels of these chemical components may be indicative of
thyroid cancers. However, given that Raman spectra capture
both qualitative and quantitative information, it is unclear
whether these changes are due to the biochemical alteration
of native compounds, or due to changes in the concentrations
of native chemical components following carcinogenesis. It
would be necessary to employ other biochemical analysis
methods to determine the actual chemical composition of
the cells and thus corroborate the Raman information.

V. CONCLUSIONS

We have shown that IRCGP, when applied to Raman
spectra, can be used to discriminate between both normal
and cancerous thyroid cells, and between different forms
of thyroid cancer. We have also shown how analysis of
evolved expressions can be used to identify the Raman
shifts which underlie good discrimination; providing possible
insight into biochemical factors which may be indicative of
thyroid cancer.



TABLE IV: Highest scoring evolved classifiers. Numerical values refer to Raman shifts.

Expression Test AUC

out = {885, 1001} − 1607−max{1656, 1117} 0.75

out = (841 + 1002)− (836 + 1600) + (max{−622, 1657 ∗ 1655} − 1657 ∗ 1655) 0.75

out = 780− 1606 + (max{1002, 1084} − (636 + 1664)) 0.74

out = (1002− 1661)− ((1607− 1379)(625− 1783))−max{625, 636} 0.73

out = −({−1001, 1270 + 1741}+ {−999, 1606}) 0.72

out = −(−{1002, 999}+ {−1473, 1173} − −1473 ∗ (1599 + 723)) 0.72

out = (636 ∗ 1661−max{878, 893})(636 ∗ 1661− (1002− 833)) 0.72

out = −{sub1, min{833, {1463, 636}}, sub1, 1603 + 1661} 0.71
sub1 = −max{1685, 1002}

out = (1001− 713) + (1715 ∗ 1751− 636) 0.71

out = {(1439 + {1533, 1759})2, sub1 − sub2}+ (sub1 − sub2) 0.71
sub1 = 1603 + 1757 + (833− 1001)
sub2 = {1566, 964}

Fig. 5: Mean Raman spectra of all cell samples overlaid with vertical red lines showing Raman shifts referenced by the 10 highest scoring
evolved classifiers. Colour intensity is proportional to the number of referring classifiers (see legend).



The stochastic nature of evolutionary algorithms means
that multiple runs often lead to multiple, diverse, solutions.
In this work, we have leveraged this behaviour in order
to identify spectral features which contribute towards good
classification. In future work, we plan to extend this approach
by looking at whether better classifiers can be produced by
combining multiple, diverse, solutions. One way in which
this can be done is to use conventional leveraging techniques,
such as bagging and boosting, which have been shown able to
improve the accuracy and generality of genetic programming
[10]. Alternatively, we could co-evolve ensembles alongside
classifiers, an approach which proved effective in [16], and
which has the advantage of guiding search towards classifiers
that work well in ensembles.
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