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Abstract— This paper describes the artificial epigenetic
network, a recurrent connectionist architecture that is able
to dynamically modify its topology in order to automatically
decompose and solve dynamical problems. The approach is moti-
vated by the behavior of gene regulatory networks, particularly
the epigenetic process of chromatin remodeling that leads to
topological change and which underlies the differentiation of cells
within complex biological organisms. We expected this approach
to be useful in situations where there is a need to switch between
different dynamical behaviors, and do so in a sensitive and robust
manner in the absence of a priori information about problem
structure. This hypothesis was tested using a series of dynam-
ical control tasks, each requiring solutions that could express
different dynamical behaviors at different stages within the task.
In each case, the addition of topological self-modification was
shown to improve the performance and robustness of controllers.
We believe this is due to the ability of topological changes
to stabilize attractors, promoting stability within a dynamical
regime while allowing rapid switching between different regimes.
Post hoc analysis of the controllers also demonstrated how the
partitioning of the networks could provide new insights into
problem structure.

Index Terms— Epigenetic networks, intelligent control,
recurrent neural networks (RNNs), self-modification, task
decomposition.

I. INTRODUCTION

COMPLEX real world tasks can often be reduced to
multiple interacting subtasks. It has long been realized

that there are advantages to capturing the structure of this
subtask decomposition within the topology of a neural net-
work architecture, especially when compared with monolithic
networks [1]. Conventionally, this is done using various kinds
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of modular neural network [2], [3], which typically structure
solutions as a decision tree whose leaves are subnetworks, each
trained to solve a particular subtask. In this respect, modular
neural networks resemble the macrostructure of the human
brain, which is also known to be structured as a hierarchy of
special-purpose neural circuits [4].

The brain is not the only naturally occurring connectionist
architecture known to solve complex tasks. Another prominent
biological network, which we consider in this paper, is a
cell’s gene regulatory network. There are many similarities
between neural and genetic networks; indeed, artificial neural
networks (ANNs) have been used as a modeling tool for
capturing the structure and dynamics of genetic networks [5].
However, there are also some prominent differences between
the two [6]. One of these is the widespread existence of self-
modifying processes within genetic networks, whereby the
cellular machinery expressed by the genetic network induces
physical changes within the network’s topology. In this paper,
we focus upon a self-modifying process that is central to
task specialization within biological cells: chromatin remod-
eling [7]. Chromatin remodeling is described in Section II
in detail. However, in a nutshell, it is a mechanism that
turns genetic subnetworks ON and OFF by regulating their
exposure to the cell’s gene expression machinery. Signifi-
cantly, the biochemical components that control chromatin
remodeling are expressed by the genetic network; so, in
essence, the genetic network regulates changes to its own
topology.

The premise of this paper is that the topological
self-modification can be used as a novel mechanism for achiev-
ing task decomposition within connectionist architectures.
In the conventional modular approach to task decomposition,
processing is divided into independent subnetworks, which
are always turned ON, and whose outputs are integrated
by some higher level decision node. In our approach, by
comparison, the subnetworks used to solve different subtasks
can be overlapping, are only turned ON when in use, and the
output is determined by whichever subnetwork is currently
expressed. We expect the resulting approach to be useful in
situations where there is no a priori knowledge of how a task
can be decomposed, where there is significant overlap between
subtasks, and where highly dynamic solutions are beneficial.
We demonstrate this by showing that a self-modifying con-
nectionist architecture is able to solve three difficult control
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tasks. This paper builds upon an earlier model [8], in which
task decomposition was prespecified, and upon initial results
reported in [9].

This paper is structured as follows. Section II introduces
genetic networks and the form of topological self-modification
carried out by chromatin remodeling. Section III summarizes
the related work on computational models of genetic net-
works, task decomposition in ANNs, and self-modification.
Section IV describes the self-modifying mechanism used in
this paper. Section V outlines the dynamical control tasks.
Section VI presents the results and analysis. Finally, the
conclusion is drawn in Section VII.

II. GENETIC NETWORKS AND CHROMATIN REMODELING

A gene is a region of DNA that describes a protein. In order
for this protein to be expressed within a cell, the gene must
be transcribed (and later translated) by the cell’s processing
machinery. In higher organisms, such as humans, this involves
the binding of a group of around 5–20 interacting proteins,
known as a transcription complex. These proteins, in turn,
are the products of other genes. Hence, genes are regulated
by other genes, and this pattern of regulatory interactions,
when extended to all genes, forms the cell’s genetic network.
Genetic networks have many similarities with recurrent neural
networks (RNNs). After abstracting away the detailed bio-
chemical mechanisms, both can be considered to be a set
of interacting nodes with connection weights, and both can
be viewed as dynamical systems operating on a network.
In many cases, gene regulation, such as neurone activation,
can be modeled as a sigmoidal function [5].

However, there are also some fundamental differences
between neural and genetic networks [6]. Perhaps most signif-
icantly, there is no analog of physical wiring (i.e., axons and
synapses) in a genetic network. Rather, regulatory pathways
emerge from stochastic spatial processes of dynamic molecu-
lar association and dissociation. In practice, this means that
interactions between biochemical components are relatively
unconstrained and, as a consequence, evolution is free to
explore interactions between different cellular components.
Chromatin modification is a good example of this. Chromatin
is an assembly of structural proteins (histones) organized into
spindles (nucleosomes) over which DNA is wound [10]. It was
originally seen as a spatial compression mechanism that allows
very long strands of DNA to fit into the cell’s relatively
compact nucleus. However, in recent years, it has become
clear that the structure of chromatin is closely regulated by
the genes it contains, whose products are able to locally wind
or unwind the nucleosomes in order to permit or block access
to the transcription machinery.

Hence, a different view of chromatin has emerged as
a dynamic mechanism for modifying the complement of
expressed genes and, hence, the topology of the cell’s genetic
network. Nowadays, chromatin remodeling is believed to play
a significant role in determining cell fate. Exactly, how this
is achieved in biological systems remains a topic of con-
temporary research; however, it has been hypothesized that
it is due to the stabilization of the attractor states of the
underlying genetic network [11], presumably by removing

extraneous genetic pathways. Nevertheless, it is clear that
chromatin remodeling plays a key part in this cellular analog
of subtask specialization. Given the underlying similarities
between genetic and neural networks, it is intriguing to con-
sider whether an analogous mechanism could be used for task
decomposition within ANNs.

III. RELATED WORK

A. Artificial Gene Regulatory Networks
Historically, the development of computational models of

genetic networks has focused on their role in understand-
ing biological systems, for instance inferring computational
models from measurement data [12] or using computational
models to understand systems-level properties of genetic net-
works [13]. Another, less well-known role, involves using
these models to carry out computation, in a manner akin to the
relationship between ANNs and biological neural networks.
These artificial gene regulatory networks take on various forms
(see [14] for a recent review). In some cases, representa-
tions are borrowed from the wider genetic network modeling
community. For instance, Boolean networks, which model
genetic networks as the networks of interacting logic functions,
have been used to control robots [15]. In other cases, new
models have been developed. This includes work on artificial
genomes [16] and fractal gene regulatory networks [17].

Given the relative immaturity of the field, it is unclear
which model is most suitable for doing a particular kind
of computation. In practice, there are likely to be different
tradeoffs between expressiveness, efficiency, compactness, and
robustness. Since these models are often optimized using
evolutionary algorithms, there is also a difficulty discriminat-
ing between the influence of expressiveness and evolvability.
In this paper, we are interested in understanding the potential
benefits of introducing topological modification to connec-
tionist models. Hence, we make use of a relatively simple
representation that closely resembles an ANN. Such models
have previously been used to model genetic networks [5],
and their optimization using evolutionary algorithms has also
been well studied [18]. This approach also has the benefit that
lessons learnt can be directly applied to the wider field of
ANN research.

B. Task Decomposition Using Modular Neural Networks
We are interested in how topological self-modification can

be used for achieving automatic task decomposition. As we
have already remarked, the mechanism currently most used for
achieving task decomposition in ANNs is the partitioning of a
network into modules, each of which is used to solve a partic-
ular subtask. How this is done varies considerably [19], [20],
although all approaches must have some mechanism for iden-
tifying modules and then determining which modules to use
in a given situation. Modular ANNs are most often applied in
domains, such as classification, where a priori knowledge of
the task domain is available.

When a priori knowledge is available, it may be possi-
ble to identify the subtasks in advance and train modules
accordingly. However, in the more general case, it is also
necessary to determine the correct number of modules required
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to solve the task. This is arguably easier using neuroevolution
approaches, where it is relatively easy to adapt the gross
structure of the collective network. An interesting example
of this is the use of coevolution [21], where a population
of modules is evolved in parallel with a population of mod-
ule combinators, allowing the algorithm to explore different
combinations of modules in a relatively open-ended fashion.
It should be noted, however, that coevolutionary algorithms
are inherently complex, requiring significant expertise in order
to avoid pathological conditions. Where a priori knowledge
is available, choosing between modules may be as simple as
matching input cases. Other approaches include asking mod-
ules to vote on their applicability for a particular subtask [1],
or the construction of decision trees to determine transitions
between modules [22].

Our approach differs from the existing modular ANNs in a
number of ways. First, there is no need to explicitly identify
the modules. In fact, there is no reason why modules should
be completely segregated, since in many cases, it might be
advantageous (in terms of size and training cost) for processing
to be shared between subtasks. In this paper, this can be
achieved using overlapping subnetworks. Second, transitions
between subnetworks are handled by the subnetworks them-
selves, by turning ON or OFF other subnetworks. In effect, the
system can transition between subnetworks at all points during
execution, suggesting that this might lead to far more dynamic
and context-sensitive solutions.

C. Topological Rewriting in Artificial Neural Networks

A number of authors have looked at applying topological
rewriting processes during the learning phase of an ANN.
This includes learning algorithms that add or remove nodes
and links to or from the network. Examples include the early
work by Ash [23] on dynamic node creation during backprop-
agation, and more recent work by Forti and Foresti [24] on
dynamic self-organizing maps. Another prominent application
of a self-modification process during learning is the work
by Schmidhuber et al. [25], who looked at self-modification
of the learning algorithm itself. There have also been a
number of examples of self-modifying and self-organizing
processes applied prior to the execution of an ANN, in the
form of a developmental mapping. This includes the early
work by Gruau [26] on rewriting grammars, and work by
Astor and Adami [27] who made use of an artificial chemistry
to determine the topology of an ANN. However, in all of these
examples, the topology of the network remains fixed during
the execution of the ANN.

There are very few examples of ANNs which use
self-modifying processes during execution. GasNets [28] are
perhaps the best known of these, an ANN model in which
diffusive neurotransmitters are able to change the function
of nodes within a network in a dynamic fashion. A more
recent approach, termed artificial neural tissue [29], is also
based around diffusive chemical gradients, but uses them to
turn ON and OFF sparsely coded neural circuits in response
to external cues. This is arguably the closest related work
to our own, though prominent differences in our work
include its relative simplicity (e.g., no developmental process),

the use of comparatively small networks, and our emphasis on
overlapping subnetworks and regulatory interactions between
subnetworks.

D. Self-Modification in Artificial Biochemical Networks

The idea of self-modification has also previously been
explored within computational models of biochemical
networks. In [30], we considered an artificial biochemical
network model in which a computational analog of a genetic
network both expresses and modifies a computational analog
of a metabolic network. This was effective at certain tasks,
which benefited from decomposition; however, the complexity
and appropriate parameterization of the system was a signifi-
cant issue. Self-modification was also explored in [31] within
the context of a model of mobile DNA applied to Boolean
networks, in which the author found it to be beneficial in terms
of access and stability of attractors. We have also explored a
simpler model of chromatin remodeling in which subtasks are
prespecified [8], and published initial results using the current
approach [9] which have been significantly extended in this
paper.

IV. TOPOLOGICAL SELF-MODIFICATION

A. Architecture

In this section, we describe how an analog of epigenetic
remodeling can be implemented within a connectionist archi-
tecture. We use a fairly conventional RNN as a baseline
architecture, general enough to be considered an abstract
model of both a biological neural network and a genetic
network.

Formally, this RNN architecture can be defined by the tuple
〈N, L, In, Out〉, where N is a set of nodes {n0 . . . n|N | : ni =
〈ai , Ii , Wi 〉}, where ai : R is the activation level of the node,
Ii ⊆ N is the set of inputs used by the node, and Wi is a
set of weights, where 0 ≤ wi ≤ 1, |Wi | = |Ii |. L is a set of
initial activation levels, where |L N | = |N |. In ⊂ N is the set
of nodes used as external inputs. Out ⊂ N is the set of nodes
used as external outputs.

Chromatin modules can be considered to be context-
dependent switches that add or remove network components
based on the network’s current activation state. This form
of topological self-modification can be introduced to the
RNN model by adding extra nodes that act as Boolean
switches, each adding or removing specified groups of nodes
from the network based on the activation levels of one or more
nodes.

The resulting artificial epigenetic network (AEN) architec-
ture can be defined by the tuple 〈N, S, L, In, Out〉, where S is
a set of switches {s0 . . . s|S| : si = 〈ai , Ii , Wi , Ci 〉}, where
as

i ∈ {0, 1} is the activation level of the switch, I s
i ⊆ N is the

set of inputs to the switch, W s
i is the set of weights, where

0 ≤ wi ≤ 1, |Wi | = |Ii |, and Cs
i ⊆ N is the set of nodes

controlled by the switch. The other variables are as defined
for the RNN. Nodes N and switches S both use a sigmoid
function. In the case of nodes, the activation level ai is the
output of the sigmoid function applied to the weighted sum of
its input activations. For switches, a threshold of 0.5 is applied.
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Algorithm 1 Training AENs With NSGA-II
1: P ← {}
2: for popsi ze times do 	 initialize population
3: P ← P ∪ {new random AEN}
4: end for
5: for maxgen times do
6: for each p ∈ P do 	 evaluate population
7: EVALUATE(p) 	 see Algorithm 2
8: end for
9: P ← RANK(P) 	 NSGA-II style ranking [32]

10: P ← {p0, . . . , ppopsize/2} 	 remove lower ranks
11: P ′ ← P
12: repeat 	 breed child population
13: p1, p2← SELECT(P) 	 rank-based selection
14: child ← RECOMBINE(p1,p2)
15: child ← MUTATE(child)
16: P ′ ← P ′ ∪ {child}
17: until |P ′| = popsi ze
18: P ← P ′ 	 replace with child population
19: end for

If the output of the sigmoid function is less than this value,
the activation level as

i of the switch is 1; otherwise, it is 0.
If as

i = 1, then the switch has no effect upon the network.
If as

i = 0, then the activation levels of its controlled nodes
are set to 0, i.e., ∀ni ∈ Cs

j , ai = 0. In effect, these nodes are

removed from the network.
Note that the network uses a sparse encoding, i.e., zero-

weighted edges are not included in the model. Compared with
a fully connected network, this is a more appropriate model of
the pattern of connectivity seen within most genetic networks.

B. Training

We train both the RNN and AEN models using an evolution-
ary algorithm. Traditional neural network training methods,
such as backpropagation, do not readily generalize to nonstan-
dard architectures. Evolutionary algorithms, by comparison,
are relatively flexible in this respect. They are also less
sensitive to local optima, and are able to optimize both the
parameters of individual nodes and the topology of the net-
work. Since biological evolution is the mechanism responsible
for designing biological genetic networks, it is particularly
fitting to use an evolutionary algorithm to train a connectionist
architecture that is motivated by genetic networks.

The nondominated sorting genetic algorithm,
version II (NSGA-II) [32] is used for the experiments
reported in this paper. This is a multiobjective evolutionary
algorithm, allowing solutions to be evaluated with respect
to more than one objective. Algorithm 1 gives an outline of
NSGA-II and describes how it is used to train AENs.

C. Encoding

Given the close relationship between biological evolution
and genetic networks, there is value in considering how genetic
networks are encoded in biological systems, since this is
known to have a significant bearing on their evolvability.

Fig. 1. Illustration of the indirect encoding between the nodes and switches
of the network. In this example, the single switch interacts with genes 3 and 4,
modulating their functionality.

A notable aspect of this paper is that we use a low-level
network encoding in which connections between networks
nodes are defined indirectly. Hence, during evolution, the
connections, Ii , I s

i , and Cs
i , are not represented by absolute

node identifiers, but by locations within an indirect reference
space. Several properties of the biological encoding of genetic
networks motivate this approach.

First, gene–gene interactions are positionally independent,
meaning that a gene retains its function irrespective of its
position within a chromosome. This means that the posi-
tional changes due to biological recombination and mutation
events preserve the existing structure of the genetic network.
By comparison, when positionally sensitive encodings are
used in evolutionary algorithms, ordering changes are gen-
erally disruptive, leading to child solutions with poor
fitness [33], [34].

Second, and related to this, biological components recognize
one another based upon their physicochemical properties.
In effect, this physicochemical space is used as an indirect
reference system in which genes, and other biochemical com-
ponents, address one another. This observation has motivated a
number of positionally independent encodings based upon the
use of indirect reference spaces, including our own previous
work on implicit context representation [34], and the template
matching approach used in some computational models of
genetic networks [35], [36].

Third, biological genetic networks display epistatic cluster-
ing [37], such that the genes that encode interacting gene prod-
ucts are often found located together within the genome [38].
This means that genetic pathways tend to be encoded in
contiguous regions of DNA. From an evolutionary perspective,
this leads to compartmentalization, which in turn promotes
evolvability [39]. It also means that the winding and unwinding
of chromatin modules tends to affect distinct subnetworks,
arguably providing a less disruptive means of regulating bio-
logical function.

For simplicity, we use a 1-D reference space in which
each node and switch has a location in the range [0, 1]. The
inputs to a node or switch are defined as a continuous interval
within this range. Furthermore, this interval overlaps with the
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location of the node or switch. Hence, nodes and switches
located proximally within the reference space are encouraged
to interact, generating an effect similar to epistatic clustering.
In particular, this means that the epigenetic switches will tend
to operate upon complete subnetworks. It should be noted that
this results in biases in the network landscape, since some
patterns of connectivity are more likely to occur than others.
Nevertheless, our initial experiments showed that a lack of
epistatic clustering results in poor performance, and that this
outweighs any issues associated with network shape bias.

Before being executed, an encoded network is mapped into
the directly connected form defined in Section IV-A. Conse-
quently, the indirect encoding does not lead to a performance
penalty during execution. There is an overhead associated with
this mapping, but it is small compared with the execution time.

V. TASK DEFINITIONS

We hypothesize that topological self-modification will be
useful in situations where task decomposition is not apparent
a priori, where tasks are overlapping, and/or where there
is a need to switch often between different behaviors. The
control of dynamical systems is a class of problems that
exhibits all of these characteristics. In particular, we focus
on three interesting problems in dynamical systems control:
1) state-space targeting in a numerical dynamical system;
2) balancing a system of coupled inverted pendulums; and
3) controlling transfer orbits in a gravitational system. These
are all challenging to solve, and each has qualitatively different
dynamics. Although these kind of systems are traditionally
controlled using analytical feedback methods [40], [41], our
approach reflects the methodology of previous computational
intelligence applications, such as [42] and [43], which do not
require a priori knowledge about the state space of the system
under control.

A. State-Space Targeting in a Numerical Dynamical System

This task involves controlling a trajectory so that it moves
back and forth between two boundary points in Chirikov’s
standard map. This is a numerical dynamical system that
models the behavior of a large class of conservative dynamical
systems that have coexisting chaotic and ordered dynamics.
While the exact definition of the task is to some extent
arbitrary, it demonstrates the general concept of trajectory
targeting in a complex state space.

Chirikov’s standard map [44] is defined within the unit
square by the following system of difference equations:

xn+1 = (xn + yn+1) mod 1

yn+1 = yn − k

2π
sin (2πxn). (1)

For low values of k, the dynamics of the system are ordered,
with initial points converging to cyclic orbits which remain
bounded to small intervals on the y-axis. As k increases,
islands of chaotic dynamics begin to appear. As k increases
further, these begin to dominate the upper and lower regions
of the map, with a band of ordered dynamics remaining
in the central region. This central band prevents trajectories

TABLE I

SENSORY INPUTS FOR THE STANDARD MAP TASK.
EACH IS MAPPED TO THE RANGE [0, 1]

Fig. 2. Chirikov’s standard map showing both ordered and chaotic dynamics.
The top and bottom regions, which are used as initial and target regions for
the control task, are shown as gray boxes.

traversing from the top to the bottom of the map (and
vice versa) until sufficient chaotic islands have appeared
at kc ≈ 0.972. After this, it is possible for a trajectory
to traverse the y-axis of the map by following the natural
dynamics of the system. However, this occurs at a very
slow rate. For example, when k = 1.1, the median transit
time is 64 000 iterations of (1), with 27% of trajectories not
reaching the other side within 106 iterations [30].

The aim of this task is to create controllers that can guide
a trajectory from a region at the bottom of the map to a
region at the top of the map, and then back again, in the least
amount of time. These regions are defined as x[0.475, 0.525],
y[0.975, 1] for the top region and x[0.475, 0.525], y[0, 0.025]
for the bottom region. A traversal between these regions can
be seen in Fig. 8. The controller receives the inputs shown
in Table I at each time step, and exerts control by modulating
the parameter k within the interval [1.0, 1.1]. This results in
a small perturbation to the trajectory. In previous work using
this map [9], [30], we have observed that different control
interventions are required when moving through regions with
different dynamical characteristics (e.g., chaotic, ordered, and
mixed). In general, it is not obvious when these transitions in
behavior should occur. This makes the problem challenging
from a control perspective.

In order to generate a fair estimate of a controller’s ability to
guide trajectories, the task is repeated ten times with different
starting positions randomly chosen within the regions shown
in Fig. 2. Two objective values are then calculated for each
controller: 1) the mean trajectory length when moving from
the bottom to the top of the map and 2) the mean trajectory
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Fig. 3. Coupled inverted pendulums, illustrating a single controller control-
ling three tethered carts.

length when moving from the top to the bottom of the map.
Controllers, which are not able to traverse the map in either
direction within a limit of 1000 time steps, are assigned an
arbitrary large value of 1000 for the corresponding objective.
This penalty will also be applied if the trajectory in a particular
direction moves beyond the y-axis bound of [0, 1].

B. Balancing a System of Coupled Inverted Pendulums

Balancing an inverted pendulum is a classic problem in
control theory, and a proxy for various real world control
problems, such as bipedal locomotion and missile control [45].
In this task, we consider a harder formulation of this problem
that involves using multiple pendulums, mounting them on
movable carts, and then coupling the carts together (Fig. 3).
The aim is to move the carts in such a way that all the
pendulums become upright, and then remain upright for a
predetermined amount of time. This can be interpreted as
a state-space targeting task, in which a trajectory must be
guided from a stable equilibrium state (all pendulums pointing
downward) to an unstable equilibrium state (all pendulums
pointing upward), followed by a stabilization task that involves
maintaining the trajectory at the unstable point.

In our formulation, the system has between one and five
carts, arranged in a line. When the number of carts is greater
than 1, they are connected to their nearest neighbor(s) with
inelastic tethers. Each cart is controlled using an actuator with
a differential input, allowing it to move toward or away from
its neighbors based on the difference of its two inputs. Table II
shows the physical parameters of the model. Each cart is
controlled independently using the same evolved controller.
The controller has access to a number of state variables. These
are described in Table III, and their application to the cart
can be seen in Fig. 4. The fitness of the controller is defined
as an aggregate function over all the carts of the amount of
time each pendulum spends in the upright position and scaled
between [0, 1]. Hence, if a system contains three pendulums,
of which one remains upright throughout simulation with the
other two remaining hanging from the carts, a fitness of 0.33
would be assigned. If all pendulums are upright throughout the
simulation, a fitness of 1 will be assigned and if all pendulums
remain hanging throughout the simulation, a fitness of 0 will
be assigned.

C. Controlling Transfer Orbits in a Gravitational System

As a more concrete example of control in a conservative
dynamical system, we consider a formulation of the N-body
problem in which the aim is to guide a trajectory through

TABLE II

PHYSICAL PARAMETERS OF THE COUPLED INVERTED PENDULUMS TASK

TABLE III

SENSORY INPUTS USED FOR THE INVERTED COUPLED PENDULUMS TASK.
THE VALUES ARE RESCALED TO [0, 1] BEFORE THEY ARE USED

AS INPUTS TO A NETWORK

Fig. 4. Sensory inputs for a cart within the coupled inverted pendulums task.

a system of planetary bodies. Gravitational systems with more
than two bodies exhibit the kind of mixed chaotic and ordered
dynamics seen in Chirikov’s standard map. This presents a sig-
nificant challenge when controlling spacecraft, since efficient
orbital transfers require traversal of these complex dynamical
regimes. In the example, we consider that there are four
bodies: a spacecraft and three planets. The aim is to guide
the trajectory of the spacecraft so that it moves repeatedly
between two of the three planets. It is required to do this in
the least amount of time, and by using the least amount of
fuel. It can do this either by taking a direct path (see Fig. 5),
or by sling-shotting around the third, more massive, planet.
Either way, the spacecraft is under the influence of gravity
from all three planets. To make simulation time tractable, the
positions of the planets remain fixed. See Tables V and VI for
model parameters.

The force exerted on the spacecraft is calculated using (2),
where m is the mass of a body and q is a 3-D vector
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Fig. 5. System of gravitational bodies used in the orbital control task.
The aim is to guide an orbit so that it transitions repeatedly between
planets A and B, while also under gravitational influence from planet C.

( j specifies an instance of a body, and k represents an instance
which is not equal to the first, i.e., force i is the sum of all
other forces k which are not force i )

m j q j = G
∑

k �= j

m j mk(qk − q j )

|qk − q j |3 . (2)

From this, the acceleration of the spacecraft due to the
gravitational forces of the other planets can be calculated using
Newton’s second law of motion. The equations are simulated
using leapfrog integration, which is well suited to the problems
of orbital mechanics due to its symplectic nature and time
reversibility [46], [47].

The controller has access to the following state variables:
1) distance to target; 2) position of target; 3) spacecraft
acceleration; and 4) spacecraft position. These are mapped
to nine inputs (see Table IV). The target is determined by
the spacecraft’s current position, i.e., planet A if it is in orbit
around planet B, and vice versa. The controller exerts control
by adding thrust in one or more of the three dimensions,
subject to an acceleration limit of ±25 ms−2.

Two objective values are calculated for each controller:
1) the cumulative time taken to move between planets A and B
over the course of the simulation and 2) the cumulative thrust
used to maneuver the spacecraft. The spacecraft is assumed to
be in a valid orbit when it is between 1× 105 and 2× 105 m
from a planet’s center of mass. If the spacecraft moves within
2×104 m of the planet’s center of mass, it is assumed to have
collided and the controller is assigned a fitness value of 0 for
planetary hops (corresponding to the lowest possible perfor-
mance) and positive infinity for the fuel used (corresponding
to the worst possible performance). The same penalties are
applied if it takes more than 8000 s to transition between the
two planets. In initial experiments, it was found that evolution
disproportionately favored solutions, which minimize the fuel
usage objective by remaining relatively static. To discourage
this behavior, we introduced a third objective, the product of
the first two objectives. This especially penalizes solutions that
do not achieve at least one orbital transition.

VI. RESULTS AND ANALYSIS

For each of these tasks, the aim is to evolve a closed-
loop controller that can guide the dynamics of the system

TABLE IV

SENSORY INPUTS USED FOR THE ORBITAL CONTROL TASK

TABLE V

INITIAL POSITIONS AND MASSES OF THE BODIES

WITHIN THE ORBITAL CONTROL TASK

TABLE VI

PHYSICAL PARAMETERS FOR THE ORBITAL CONTROL TASK

in the specified manner. At each time step, the state of the
controlled system is fed back to the controlling AEN or RNN
by setting the activation levels of nodes in the input set (In).
See Algorithm 2 for details. There is one input node for each
of the sensory inputs given in the task definition. Control is
then exerted by copying the activation levels of nodes in the
output set (Out) to the governing parameters of the controlled
system, scaling as appropriate.

A. Standard Map

Both AENs and RNNs were evolved to control trajec-
tories within Chirikov’s standard map. A population size
(popsi ze) of 200 was used, with the evolutionary process
allowed to run for 100 generations (maxgen). Mutation and
crossover rates were 0.05 and 0.5, respectively. In the initial
generation, networks were created with lengths of between
10 and 20 nodes. In addition, initial AENs were seeded with
3–5 switches. Solution lengths were otherwise free to vary
during evolution.

Since EAs are nondeterministic algorithms, 50 independent
runs were carried out for each problem instance to give a fair
portrayal of expected performance. Fig. 6 shows the distri-
butions of fitness for the best solutions from these 50 runs,
for both AENs and RNNs. This shows that the AEN model
leads to better solutions both on average (p = 2.04 × 10−4)
and overall. The best performing AEN controller traverses
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Algorithm 2 Evaluating an AEN on a Control Task
1: initialize control task
2: a← L 	 initialize AEN state
3: repeat
4: cout ← state variables from controlled system
5: In← SCALE(cout) 	 scale inputs to [0, 1]
6: for i ∈ {0, . . . , |S|} do 	 update switches
7: as

i ← SIGMOID(I s
i ·W s

i )
8: if as

i < 0.5 then 	 modify topology
9: for each j ∈ Cs

i do
10: a j ← 0
11: end for
12: end if
13: end for
14: for i ∈ {0, . . . , |N |} do 	 update nodes
15: ai ← SIGMOID(Ii · Wi )
16: end for
17: cin← SCALE(Out) 	 scale outputs to range
18: modify controlled system according to cin
19: until control task finished or timed-out
20: f i tness ← progress on control task objectives

Fig. 6. Fitness distributions for AEN and RNN-based controllers, showing
the average number of steps required to traverse the standard map in each
direction by the best controllers from 50 sequential runs of NSGA-II.

the map in each direction in ∼99 steps, on average, which
is ∼20 steps faster than the best RNN. Fig. 7 shows an
example of a controlled trajectory.

Fig. 8 shows the change in mean and maximum controller
fitness over time for the AEN and RNN runs. It is evident
that the fitness for RNN-based controllers begins to converge
considerably earlier than for the AEN-based controllers. It is
also notable that the evolution of the best AEN controller
is much smoother, in terms of fitness changes, than for the
best RNN controller. This may be an indication of better
evolvability for the AEN model, allowing controllers to evolve
through gradual frequent changes rather than large infrequent
changes.

Analysis of the dynamical behavior of evolved controllers
gives some insight into these differences in performance.
First, it is notable that all but one of the evolved AEN
networks used their switches to alter the topology of the
network during execution. This suggests that there is strong
selective pressure toward using topological modification.
Second, significant differences can be seen between the

Fig. 7. Example of an AEN controlling a trajectory within Chirikov’s
standard map, traversing from a region at the bottom to a region at the top
in 94 steps.

Fig. 8. Best and average performance of both the AEN and RNN controllers
at each generation for the standard map task.

Fig. 9. Phase portraits showing control responses of the AEN (left)
from Fig. 10, and a representative RNN (right).

phase spaces of AEN and RNN controllers. For example,
Fig. 9 shows the representative phase spaces reconstructed
using time-delay embedding [48] from the outputs of an
AEN and RNN controller, respectively. It can be seen that
the AEN phase space is well conserved, apparently following
attractors with well-defined topological characteristics as it
navigates the map. The dynamical behavior of the RNN
controller, by comparison, is relatively poorly conserved,
indicative of a less stable attractor structure. This suggests
that the topological modification may play a role in stabilizing
different attractors as the controller navigates through the
different dynamical regimes exhibited by the map.

To understand how topological self-modification is used
by evolved AENs, the smallest working example of an
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Fig. 10. Time series of expression states of the nodes and switches of the
smallest working example of an AEN controlling traversal of Chirikov’s map
in both directions.

AEN controller was first analyzed. Fig. 10 shows the time
series of expression values for nodes and switches within
this network. In this case, it is apparent that the single
switch present in this network is not used simply to transition
between subtasks. Rather, during much of the control period,
it generates an oscillatory pattern of expression which turns
ON and OFF one of the network’s other nodes, thereby affecting
the network’s dynamics. This points to roles for topological
modification beyond task decomposition.

However, it was also noticed that the switch elements
of many evolved AENs could be used to manually switch
between dynamical behaviors. For instance, by forcing a
switch to remain ON, it is often the case that the trajectory will
then remain within a certain dynamical region of the map. This
suggests that the switches are used to move between different
attractors during the course of controlling trajectories. It also
points to an emergent role of these switches as a means for
inferring task decomposition and allowing external control of
transitions between subtasks.

It is also notable that the AEN-based controllers are
significantly smaller than the RNNs, using an average of
seven nodes, compared with an average of ten nodes in the
RNN-based controllers. In addition to offering a small ben-
efit in terms of efficiency, this may indicate that smaller
overlapping subnetworks are used at different stages of the
control task, rather than the single monolithic network used
by an RNN.

B. Coupled Inverted Pendulums

A similar approach was used to evolve AEN- and
RNN-based controllers for the coupled inverted pendulums
problem. Recognizing the greater difficulty of this task, the
generation limit was raised to 200, and initial networks were
generated with between 15 and 25 nodes.

Fitness distributions for one-, three-, and five-cart variants
of the problem are shown in Fig. 11. Unsurprisingly, control
of a single cart is significantly easier than multiple carts, and
effective control could be achieved using both architectures.
Nevertheless, AEN-based controllers were able to balance the
pendulum more consistently and, on average, significantly
faster than the RNN-based controllers. For the multicart prob-
lems, RNN-based controllers were able to solve the three-cart
variant only once out of 40 runs, and were unable to solve the
five-cart variant. AEN-based controllers were also challenging

Fig. 11. Fitness distributions over 40 runs for RNN- and AEN-based
controllers solving the 1, 3, and 5 coupled inverted pendulum problems.
The means are significantly different in all cases (p = 0.029, 7.5 × 10−5,
and 0.01, respectively, using the Wilcoxon rank sum test). Dashed horizontal
line: approximate fitness required to solve the task. Improvements in stabi-
lization time occur beyond this point.

Fig. 12. Best and average performance of both the AEN and RNN controllers
at each generation for the three-cart variant of the coupled inverted pendulums
task.

to evolve; however, substantially more of these solutions were
found for the three-cart problem, and several AEN-based
controllers were also found for the five-cart variant.

Fig. 12 shows the change in mean and maximum controller
fitness over time for the AEN and RNN runs when solving
the three-cart problem (although this is also representative of
the one- and five-cart versions). It can be seen that the AEN-
based controllers evolve much faster and converge toward a
higher fitness value. A smoother pattern of evolution is again
seen for the best solution, with the RNN exhibiting large step
changes. This supports the hypothesis that the AENs are more
evolvable.

Analysis of evolved controllers again suggests that AENs
solve the problem in a different way to RNNs. First of all,
this can be seen in their use of sensory inputs (see Table III),
with all AEN solutions using inputs 0 (pendulum angle sensor)
or 9 (angular velocity), and the majority of RNNs using
inputs 2 (pendulum angle), 3 (pendulum angle), 7 (cart veloc-
ity), and 8 (angular velocity) to solve the task. Neither favored
inputs 4, 5, or 6. This suggests that the two different archi-
tectures are biased toward exploring different input–output
mappings, with the AENs presumably more able to express
mappings that result in higher fitness. Differences in behavior
can also be seen in the reconstructed phase spaces of AEN
and RNN controllers (see Figs. 13 and 14).

Figs. 15 and 16, respectively, show the network topol-
ogy and time series of an AEN evolved to solve the
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Fig. 13. Phase portraits of representative control responses of an AEN,
showing the swinging behavior (left) and the balancing behavior (right).

Fig. 14. Phase portraits of representative control responses of an RNN,
showing the swinging behavior (left) and the balancing behavior (right).

Fig. 15. Typical minimum working example AEN evolved for the three
pendulum task. Only the nodes and the switches, which are required to
generate the optimal behavior, are shown. S0 and S1 switches, which when
active, deactivate the genes within their bounds. V0 refers to the angular
velocity in the top quadrants. A0 refers to the angular position in the top-left
quadrant. N0 is a node with no external input, but is required to create the
oscillatory behavior. M0 and M1 are the motor control for the cart.

Fig. 16. Time series of expression states of the nodes and switches in the
AEN shown in Fig. 15 solving the three-cart coupled inverted pendulums
problem. Dashed vertical line indicates where the pendulum stabilizes in the
upright state. Nodes that do not contribute to the behavior of the controller
have been removed.

three-cart problem. This solution used two switches. One of
these is activated when a pendulum is in the upward part of its
swing, causing a transition between swinging and stabilizing
behaviors. The other functions as an oscillator. Hence, we see
both of the behaviors observed in the standard map controllers.

Fig. 17. Performance of AEN and RNN controllers on the orbital transfer
problem, showing (red and green lines) the Pareto fronts achieved by each
controller type.

Fig. 18. Trajectory of the spacecraft generated by the fittest AEN, achieving
nine planetary hops. It can be seen that this controller utilizes the gravitational
slingshot effect.

Again, the first switch can be used to manually transition
between the controller’s behaviors; for instance, turning this
ON during the stabilization phase causes the pendulum to
transition to the swinging phase and remain there.

C. Controlling Transfer Orbits in a Gravitational System

Controlling transfer orbits was the hardest of the three
problems, requiring a population of 500 and a generation limit
of 200. Other parameters were the same as for coupled inverted
pendulums problem.

Fig. 17 shows the Pareto front of solutions generated
by 40 subsequent evolutionary runs for both AENs and RNNs,
showing the tradeoffs between orbital repetitions and fuel used
by each controller. The Pareto front for AEN-based controllers
is significantly further to the bottom-right, indicating solutions
were found that could travel further and with less fuel than
the RNNs.

It was observed that the majority of evolved controllers
used a gravitational slingshot around planet C to conserve fuel
while transitioning between planets A and B. Fig. 18 shows the
behavior of one of the best controllers, guiding the trajectory
over the course of nine planetary transitions.

Topological self-modification was seen to occur in 36 of
the 40 evolved AEN controllers, again suggesting a strong
selective pressure toward making use of this behavior. In the
remaining four controllers, the switches remained perma-
nently OFF. In all instances where topological modification was
applied, its effect included changing the expression state of
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Fig. 19. Structure of an AEN, which was able to perform nine orbital hops in
succession. Only the nodes and switches, which are required to generate the
behavior, are shown. A0 refers to the distance to the target, and A1 and A2
refer to the absolute position of the spacecraft. N0 is a processing node.
R0–R2 are the outputs of the network, which specify the acceleration of the
spacecraft.

Fig. 20. Expression of each node and switch of the AEN shown in Fig. 19
over 50 000 times steps (sampled at one every ten steps) with nonfunctional
nodes and switches removed. It can be seen that the switch is modifying the
topology of the network dynamically.

one of the output nodes—in effect, forcing an abrupt direction
change within the trajectory.

Fig. 20 shows a time series view of node and switch
activations in one of the best evolved AEN controllers. It can
be seen that the switch changes state on only three occasions
during the period of control. This suggests that the mechanism
is being used in a sensitive manner, inducing only small
infrequent changes within the dynamics of the network. In this
case, the switch is regulated by node A2, which indicates the
spacecraft’s position in the z plane. It becomes active when the
trajectory reaches its extremal position, guiding the spacecraft
back into a close orbit.

VII. CONCLUSION

In this paper, we investigated the potential benefits of intro-
ducing topological self-modification to RNN architectures, in
the form of an AEN. The AEN approach is motivated by the
process of chromatin modification within genetic regulatory
networks, particularly the manner in which genes are able to
regulate transcriptional access to other genes through chro-
matin modification. This, in effect, is analogous to adding or
removing nodes to or from the network.

The AEN approach was applied to three different dynamical
control tasks, using evolutionary algorithms to design the
topology and parameters of the networks. A clear pattern
seen in these experiments is that the AEN model allows the
evolution of better solutions than a conventional RNN model,

both in terms of average performance and ability to express
more general solutions.

We propose several hypotheses for why this is the case.
First, it seems likely that the topological change stabilizes
attractors, making it easier for a controller to maintain a
stable behavior. This reflects biological understanding of the
role of chromatin modification in achieving cell specialization.
Second, the topological change can lead to rapid behavioral
change, presumably faster than that which can be achieved
by following the natural dynamics of a network with fixed
topology. This is likely to be beneficial in controllers that
require rapid responses to their environment. Third, we see
that the evolved AENs express behaviors, which are not seen
in evolved RNNs, presumably because the topological change
makes these behaviors easier to discover. These behaviors,
in turn, appear particularly useful for the kind of control
problems we have considered in this paper.

By considering how controllers evolved over time, it also
became evident during our experiments that the AEN con-
trollers evolve more smoothly than the conventional RNN
architectures. This, in turn, may suggest that the AENs are
more evolvable than the RNNs and, therefore, more suitable
for use with evolutionary algorithms. It is known that evolv-
ability and robustness are closely related system properties,
so this may also be related to an AEN’s ability to maintain
different stable behaviors and robustly transition between
them.

A further benefit of the approach was discovered during post
hoc analysis of the evolved controllers, where it was noted
that manually changing the activation state of the topological
switches led the controllers to transition between different
phases of the control task. This gave insights into the natural
decomposition of the tasks, and could potentially be used
as a general mechanism for exploring and understanding the
internal structure of problems. This is something we plan to
explore further in the future work.

Although this paper has focused on solving computational
problems, it is feasible that computational models such as
this could also be used to develop better understanding of
epigenetic mechanisms in biology. Epigenetics is a relatively
new field of study, and experimental limitations make it
difficult to infer general principles from biological data alone.
Computational models could help to fill this gap by allowing
the exploration of systems-level properties, in much the same
way that Boolean network models have helped to understand
genetic networks. As a start, we have begun to look at more
detailed computational models of epigenetic processes that
model the spatiotemporal behavior of chromatin modifying
protein complexes.

The results presented in this paper show the potential for
using self-modifying processes within connectionist architec-
tures. However, an AEN is only one way of achieving this, and
in the future work, we also plan to investigate a broader range
of self-modifying connectionist models. These need not be
limited to switching ON and OFF different parts of an existing
network. They could also, for instance, be used to dynamically
create new nodes or subnetworks using processes analogous
to development or growth.
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