1. Let $y=x^{2} \int v$. Then $y^{\prime}=2 x \int v+x^{2} v, y^{\prime \prime}=2 \int v+4 x v+x^{2} v^{\prime}$ and $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=1 \Leftrightarrow x^{2} v^{\prime}+5 x v=1 \Leftrightarrow v^{\prime}+\frac{5}{x} v=\frac{1}{x^{2}}$. Solve equation for v via integrating factor method. $A(x)=\int \frac{5}{x}=5 \log x=\log x^{5}$ hence integrating factor is $\exp \left(\log x^{5}\right)=x^{5}$. Multiplying both sides of the equation by x^{5} we obtain $\left(x^{5} v\right)^{\prime}=x^{3} \Rightarrow x^{5} v=x^{4} / 4+C \Rightarrow v=\frac{1}{4 x}+\frac{C}{x^{5}}$. Hence $\int v=(1 / 4) \ln x+C / x^{4}+D$ $\Rightarrow y=x^{2} \int v=(1 / 4) x^{2} \ln x+C / x^{2}+D x^{2}$.
2. Let $y_{1}=\cos x$. Then $y_{1}^{\prime \prime}+\tan x y_{1}^{\prime}+\sec ^{2} x y_{1}=-\cos x-\tan x \sin x+$ $1 /(\cos x)=0$ as required.
Let $y=\cos x \int v$. Then $y^{\prime}=-\sin x \int v+(\cos x) v$ and $y^{\prime \prime}=-\cos x \int v-$ $2(\sin x) v+(\cos x) v^{\prime}$. So $y^{\prime \prime}+\tan x y^{\prime}+\sec ^{2} x y=1 /(\cos x)$ if and only if $v^{\prime}-\tan x v=1 /\left(\cos ^{2} x\right)$. Now solve equation for v by integrating factor method. Integrating factor is $\exp (A(x))$ where $A(x)=-\int \tan x d x=\log (\cos x)$ (we don't need to put the absolute value as $0 \leq x<\pi / 2)$. So $\exp (A(x))=\cos x$. Multiply both sides of the equation for v by the integrating factor and obtain $(\cos x v)^{\prime}=1 /(\cos x) \Rightarrow v=1 /(\cos x) \int 1 /(\cos x)+C /(\cos x)$. We now need to calculate $\int v$. First, integrating by parts, we have

$$
\int v=\frac{1}{2}\left(\int \frac{1}{\cos x} d x\right)^{2}+\int \frac{C}{\cos x} d x+D
$$

To calculate $\int 1 /(\cos x) d x: \int 1 /(\cos x) d x=\int \cos x /(\cos x)^{2}=\int \cos x /\left(1-\sin ^{2} x\right)=$ [substitute $z=\sin x] \int d z /\left(1-z^{2}\right)$. So in the end

$$
\int \frac{d x}{\cos x}=\frac{1}{2} \log \left(\frac{1+\sin x}{1-\sin x}\right) .
$$

The general solution is

$$
y=\frac{\cos x}{8} \log ^{2}\left(\frac{1+\sin x}{1-\sin x}\right)+C \cos x \log \left(\frac{1+\sin x}{1-\sin x}\right)+D \cos x
$$

Use initial condition to find $C=-(\log 3) / 2, D=\left(\log ^{2} 3\right) / 2$.
3. Let $y_{1}=x^{\lambda}$. Then $y_{1}^{\prime \prime}-y_{1}^{\prime}-\left(6 / x^{2}+2 / x\right) y_{1}=\lambda(\lambda-1) x^{\lambda-2}-\lambda x^{\lambda-1}-$ $6 x^{\lambda-2}-2 x^{\lambda-1}=0$.
Equate coefficients of $x^{\lambda-2} \Rightarrow \lambda^{2}-\lambda-6=0 \Rightarrow \lambda=3$ or $\lambda=-2$.
Coefficients of $x^{\lambda-1} \Rightarrow \lambda+2=0 \Rightarrow \lambda=-2$. So $\underline{\lambda=-2}$ is the only possible value.
4. If $x=t^{2}$ then $d y / d t=(d x / d t)(d y / d x)=2 t d y / d x=2 x^{1 / 2} d y / d x$.

Then $d^{2} y / d t^{2}=2 x^{1 / 2} \frac{d}{d x}\left(2 x^{1 / 2} \frac{d y}{d x}\right)=4 x d^{2} y / d x^{2}+2 d y / d x$.
Therefore the ode becomes $d^{2} y / d t^{2}+y=0$, as required.
General solution is $y=A \cos t+B \sin t \Rightarrow$ in terms of $x, y=A \cos (\sqrt{x})+B \sin (\sqrt{x})$.
5. If $t=\cosh x$, then $d y / d t=(d x / d t)(d y / d x)=(1 / \sinh x)(d y / d x)$.

Then $d^{2} y / d t^{2}=(1 / \sinh x) \frac{d}{d x}\left((1 / \sinh x) \frac{d y}{d x}\right)=\left(1 / \sinh ^{2} x\right) d^{2} y / d x^{2}-\left(\cosh x / \sinh ^{3} x\right) d y / d x$
$\Rightarrow\left(\sinh ^{2} x\right) d^{2} y / d t^{2}=d^{2} y / d x^{2}-(\operatorname{coth} x) d y / d x$.
Therefore the ode becomes $\left(\sinh ^{2} x\right) d^{2} y / d t^{2}+\left(4 \sinh ^{2} x\right) y=0 \Rightarrow d^{2} y / d t^{2}+$ $4 y=0$
$\Rightarrow y=A \cos 2 t+B \sin 2 t$. In terms of x, the solution is thus $y=A \cos (2 \cosh x)+B \sin (2 \cosh x)$.
6. Let $x=\sin t$. Then $d y / d t=(d x / d t)(d y / d x)=(\cos t) d y / d x=(1-$ $\left.x^{2}\right)^{1 / 2} d y / d x$.
So, $d^{2} y / d t^{2}=\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x}\left(\left(1-x^{2}\right)^{1 / 2} d y / d x\right)=\left(1-x^{2}\right) d^{2} y / d x^{2}-x d y / d x$.
Thus: $\left(1-x^{2}\right) d^{2} y / d x^{2}-x d y / d x+2\left(1-x^{2}\right)^{1 / 2} d y / d x=d^{2} y / d t^{2}+2 d y / d t$.
The ode therefore becomes $d^{2} y / d t^{2}+2 d y / d t+y=\sin ^{-1}(x)=t$.
We have a constant coefficient 2 nd order ode. Solve in the normal way by seeking homogeneous $\left(y_{H}\right)$ and particular $\left(y_{P}\right)$ solutions. For y_{H} look for solution using associated auxiliary polynomial $\lambda^{2}+2 \lambda+1=0$
$\Rightarrow(\lambda+1)^{2}=0 \Rightarrow \lambda=-1 \Rightarrow y_{H}=(A+B t) \exp (-t)$.
So you can take $y_{1}=e^{-t}$ and then look for a general solution of the non homogeneous equation in the form $y=y_{1} \int v . \quad v$ solves $d v / d t=t e^{t}$ hence $v=e^{t}(t-1)+C$ and $\int v=e^{t}(t-2)+C t+D$.
So the general solution in terms of t is $y=(D+C t) \exp (-t)+t-2$.
Writing back in terms of x we have $y=\left(D+C \sin ^{-1}(x)\right) \exp \left(-\sin ^{-1}(x)\right)+\sin ^{-1}(x)-2$.
7. Following the hint, start from the homogeneous equation $4 y_{1}^{\prime \prime}+4 y_{1}^{\prime}+y=0$, which has constant coefficients. Associated auxiliary polynomial has only one root, $\lambda=-1 / 2$, so general solution of homogeneous equation is $y_{1}=A e^{-x / 2}+$ $B x e^{-x / 2}$. Imposing $y(0)=1$ gives $A=1$, and $y_{1}^{\prime}(0)=-1 / 2$ gives $B=0$. So take $y_{1}(x)=e^{-x / 2}$. Let $y=e^{-x / 2} \int v$. In order for y to be a solution of the non-homogeneous equation, v has to satisfy the equation $v^{\prime}=\frac{1}{4} x^{2} e^{x / 2}$ so by simply integrating both sides we get $v=\int \frac{x^{2}}{4} e^{x / 2}+C$. Integrating by parts gives $v=e^{x / 2}\left(\frac{x^{2}}{2}-2 x+4\right)+C$. Then $y=y_{1} \int v=\left(x^{2}-8 x+24\right)+C x e^{-x / 2}+D e^{-x / 2}$.

