
Civil Engineering 2 Mathematics Autumn 2011

Solutions 2

1.

i
ii
iii
iv






x1 + x2 + tx3 = 1
x1 + x3 = 0
x1 + x2 + t

3x3 = 3
x1 + x2 + x3 = 0

⇒

ii
ii− i
i− iii
i− iv






x1 + x3 = 0
−x2 + (1− t)x3 = −1
(t− t3)x3 = −2
(t− 1)x3 = 1

So if t 6= 1, working bottom to top, we have

x3 = 1/(t− 1), x3 = −2/[t(1− t
2)], x2 = 0, x1 = −1/(t− 1).

In order for the system to have a solution the two expressions for x3 have to
match 1/(t− 1) = −2/[t(1− t2)]⇒ t2 + t− 2 = 0⇒ t = −2 and t = 1, but we
exclude t = 1. If t = 1 the system does not have a solution (look at the formula
for x3 or substitute t = 1 into the system and try and solve it).

2. For A: write
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 1 −1
0 1 −1 1
0 2 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

.

First row of L by first to last column of U gives
u11 = 1, u12 = 0, u13 = 0, u14 = 0.
Second row of L by first to last column of U gives
l21 = 0, u22 = 1, u23 = 1, u24 = −1.
Third row of L by first to last column of U gives
l31 = 0, l32 = 1, 1 + u33 = −1 so u33 = −2, −1 + u34 = 1 so u34 = 2.
Fourth row of L by first to last column of U gives
l41 = 0, l42 = 2, l43 = 1, u44 = −1. To solve the system: Ax = b ⇔ LUx = b.

Let Ux = y and solve Ly = b, which is

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 0 0
0 1 1 0
0 2 1 1

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

y1
y2
y3
y4

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

1
0
0
3

∣
∣
∣
∣
∣
∣
∣
∣

, so

working top to bottom y1 = 1, y2 = 0, y3 = 0, y4 = 3. Now solve Ux = y,

which is

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 1 −1
0 0 −2 2
0 0 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

x1
x2
x3
x4

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

1
0
0
3

∣
∣
∣
∣
∣
∣
∣
∣

. Working bottom to top we get

x4 = −3,−2x3 − 6 = 0⇒ x3 = −3, x2 = 0, x1 = 1.
For B: write

∣
∣
∣
∣
∣
∣

1 0 0
l21 1 0
l31 l32 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

u11 u12 u13
0 u22 u23
0 0 u33

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1 −1 1
1 0 1
3 −1 0

∣
∣
∣
∣
∣
∣
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We work as before and find u11 = 1, u12 = −1, u13 = 1,
l21 = 1,−1 + u22 = 0, 1 + u23 = 1,
l31 = 3,−3 + l32 = −1, 3 + u33 = 0.
Bx = d ⇔ LUx = d. Let Ux = y, so LUx = d ⇔ Ly = d. Solve

Ly = d:

∣
∣
∣
∣
∣
∣

1 0 0
1 1 0
3 2 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

y1
y2
y3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

5
1
0

∣
∣
∣
∣
∣
∣
working top to bottom we have y1 =

5, 5 + y2 = 1, 15 − 8 + y3 = 0, hence y = (5,−4,−7). Now solve Ux =

y:

∣
∣
∣
∣
∣
∣

1 −1 1
0 1 0
0 0 −3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1
x2
x3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

5
−4
−7

∣
∣
∣
∣
∣
∣
working bottom to top we have −3x3 =

−7, x2 = −4, x1 + 4 + 7/3 = 5 hence the result.
The last is way too easy...E is already lower diagonal, so an LU factorization is
just E = E I, with I the identity matrix. Because it is lower triangular you can
easily solve the system.

3. For the first matrix, call it A. det(A− λI) = 0⇔ λ3 − 9λ2 + 15λ− 7 = 0⇔
(λ− 7)(λ− 1)2 = 0. So the eigenvalues are λ = 7 and λ = 1.
λ = 7: Av = λv ⇒ (A− 7I)v = 0






−5v1 − 2v2 − v3 = 0
−12v2 + 24v3 = 0
0v2 + 0v3 = 0

⇒






v1 = −v3
v2 = 2v3
v3 ∈ Rr {0}

.

So if we choose v3 = 1 we get the eigenvector v = (−1, 2, 1).
λ = 1 : (A− I)x = 0⇒ x1 = 2x2+x3, where x2 and x3 can be any real number
(but they cannot be both zero.) Choose x2 = 0, x3 = 1 and get the eigenvector
w = (1, 0, 1), Choose x3 = 0, x2 = 1 and get the eigenvector u = (2, 1, 0).

The matrix C =

∣
∣
∣
∣
∣
∣

−1 2 1
2 1 0
1 0 1

∣
∣
∣
∣
∣
∣
is invertible (detC = −6 6= 0), so it is the

diagonalizing matrix. Check that C−1AC =

∣
∣
∣
∣
∣
∣

7 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣
= Δ.

To calculate A34: A = CΔC−1 so A = CΔ34C−1.

To solve the system: eAt = CeΔtC−1 = C

∣
∣
∣
∣
∣
∣

e7t 0 0
0 et 0
0 0 et

∣
∣
∣
∣
∣
∣
C−1

= 1
6

∣
∣
∣
∣
∣
∣

e7t + 5et 2(et − e7t) et − e7t

2(et − e7t) 2(et + 2e7t) 2(−et + e7t)
et − e7t 2(−et + e7t) 5et + e7t

∣
∣
∣
∣
∣
∣
. The general solution is y(t) =

eAtc where c = (c1, c2, c3) is a vector of generic constants.

For the second matrix, let me call it B. Characteristic polynomial: (1−λ)2(2−
λ) = 0 ⇒ λ = 1, 2 and 1 has algebraic multiplicity two. (B − 2I)x = 0 ⇒
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∣
∣
∣
∣
∣
∣

−1 1 0
0 −1 0
0 0 0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1
x2
x3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0
0
0

∣
∣
∣
∣
∣
∣
. Working bottom to top 0x3 = 0, x2 = 0, x1 = 0

so we choose x3 = 1 and we get v1 = (0, 0, 1). For λ = 1: (B − I)x =

0 ⇒

∣
∣
∣
∣
∣
∣

0 1 0
0 0 0
0 0 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x1
x2
x3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0
0
0

∣
∣
∣
∣
∣
∣
⇒ x3 = 0, x2 = 0, 0x1 = 0. So we choose

x1 = 1 and we get v2 = (1, 0, 0). So we get only 2 eigenvectors, hence B is not
diagonalizable.

4. The matrix A is

A =

∣
∣
∣
∣
∣
∣

0 0 1
3 7 −9
0 2 −1

∣
∣
∣
∣
∣
∣

Characteristic polynomial is det(A − λI) = −λ3 − 11λ + 6λ2 + 6. One root is
easy to see and it is λ = 1. Dividing the characteristic polynomial by (λ − 1)
gives −λ2 +5λ− 6, the roots of which are λ = 2 and λ = 3. The corresponding
eigenvectors are (1, 1, 1), (1, 3, 2) and (1, 6, 3), so the matrix A is diagonalizable

and the diagonalizing matrix is C =

∣
∣
∣
∣
∣
∣

1 1 1
1 3 6
1 2 3

∣
∣
∣
∣
∣
∣
.

We know that A = CΔC−1 where Δ =

∣
∣
∣
∣
∣
∣

1 0 0
0 2 0
0 0 3

∣
∣
∣
∣
∣
∣
. The general solution is

then given by y = eAtD, D = (d1, d2, d3) ∈ R3 vector of generic constants.
y = eAtD = e(CΔC

−1)tD = CeΔtC−1D. Because D is arbitrary, C−1D is still a
vector of arbitrary constants, which we keep calling D (with abuse of notation),
hence the general solution is

y =

∣
∣
∣
∣
∣
∣

y1
y2
y3

∣
∣
∣
∣
∣
∣
= C

∣
∣
∣
∣
∣
∣

et 0 0
0 e2t 0
0 0 e3t

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

d1
d2
d3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

d1e
t + d2e

2t + d3e
3t

d1e
t + 3d2e

2t + 6d3e
3t

d1e
t + 2d2e

2t + 3d3e
3t

∣
∣
∣
∣
∣
∣

5. A =

∣
∣
∣
∣
∣
∣

a 1 0
0 a 1
0 0 a

∣
∣
∣
∣
∣
∣
= aI +N3 with N3 defined in handout. Solution is y(t) =

eAty(0) so we need to calculate eAt. aI and N3 commute so e
At = eatT eN3t.

eatI = eatI and eN3t =
∑∞
k=0

(N3t)
k

k! = I + N3t + N3t
2/2 =

∣
∣
∣
∣
∣
∣

1 t t2/2
0 1 t
0 0 1

∣
∣
∣
∣
∣
∣
.

Putting everything together y(t) = eat

∣
∣
∣
∣
∣
∣

1 t t2/2
0 1 t
0 0 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1
0
0

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

eat

0
0

∣
∣
∣
∣
∣
∣
.

If a < 0 then y(t) approaches the origin as t→ +∞, if a = 0 then y(t) remains
in (1, 0, 0) ∀t ≥ 0.
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6. Letting X = (x, y, z), the system can be rewritten as Ẋ = AX where

A =

∣
∣
∣
∣
∣
∣

1 0 0
0 0 ω
0 −ω 0

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
1 0
0 ωJ

∣
∣
∣
∣ and J has been defined in your lecture notes.

The general solution is X(t) = eAtC with C = (c1, c2, c3) generic vector of R3.

At =

∣
∣
∣
∣
t 0
0 ωJ

∣
∣
∣
∣ so

∣
∣
∣
∣
∣
∣

x(t)
y(t)
z(t)

∣
∣
∣
∣
∣
∣
= eAtC =

∣
∣
∣
∣
et 0
0 eωtJ

∣
∣
∣
∣C =

∣
∣
∣
∣
∣
∣

et 0 0
0 cosωt sinωt
0 − sinωt cosωt

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

c1
c2
c3

∣
∣
∣
∣
∣
∣
. Imposing

the initial conditions we have x(0) = 1⇒ c1 = 1, y(0) = 1⇒ c2 = 1, z(π/ω) =
−1⇒ c3 = 1.
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