Civil Engineering 2 Mathematics Autumn 2011

Exercise Sheet 3

1. Find the Fourier series of period 2π of the following functions, defined on the interval $-\pi<x \leq \pi$:

$$
\text { (i) } f(x)=x ; \text { (ii) } f(x)=x^{2} ; \text { (iii) } f(x)=\sinh x
$$

In each case, does the Fourier series $F_{f}(x)$ converge to $f(x)$ for $-\pi<x<\pi$? Find the value to which F_{f} converges at $x=\pi$ and sketch the graph of $F_{f}(x)$ for $-3 \pi<x<3 \pi$.
2. For $f(x)=\cos (\alpha x)$ obtain the Fourier expansion

$$
\cos \alpha x=\frac{\sin \alpha \pi}{\alpha \pi}+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 \alpha \sin \alpha \pi}{\pi\left(\alpha^{2}-n^{2}\right)} \cos n x, \quad|x| \leq \pi,
$$

when α is not an integer. What happens to the terms of the series when $\alpha \rightarrow m$, an integer?
3. Find the half range cosine series that represents the function $(x-1)^{2}$ over the range $0 \leq x \leq 2$. Using Parseval's theorem deduce the value of $\sum_{n=1}^{\infty} 1 / n^{4}$.
4. Show that the Fourier series representation on $[-\pi, \pi]$ of the function

$$
f(x)=\left\{\begin{array}{lc}
1+(x / \pi), & -\pi \leq x<0 \\
1-(x / \pi), & 0 \leq x \leq \pi
\end{array}\right.
$$

is given by

$$
F_{f}(x)=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}
$$

Explain why $F_{f}(x)=f(x) \forall x \in[-\pi, \pi]$. Deduce that

$$
\sum_{k=0}^{\infty} 1 /(2 k+1)^{2}=\pi^{2} / 8
$$

5. For the function $f(x)=x(\pi-x), 0 \leq x \leq \pi$, derive the Fourier half-range sine and cosine expansions

$$
\text { (i) } f(x)=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{(2 k-1)^{3}}, \text { (ii) } f(x)=\frac{\pi^{2}}{6}-\sum_{k=1}^{\infty} \frac{\cos (2 k x)}{k^{2}} \text {, }
$$

Sketch the graph of the sine expansion and of the cosine expansion for $-\pi \leq$ $x \leq \pi$. Explain why both expansions are valid for $0 \leq x \leq \pi$. By evaluating the series at appropriate points, find:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$,
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$,
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{3}}$.

Use Parseval's theorem to show that $\sum_{n=1}^{\infty} 1 / n^{6}=\pi^{6} / 945$.
6. Show that the half-range Fourier sine series for $f(x)=1+(x / L), 0<$ $x<L$, is:

$$
\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-2(-1)^{n}\right) \sin \left(\frac{n \pi x}{L}\right)
$$

Sketch the function represented by the series in the range $-L<x<L$.

Answers

1. (i) $x=\sum_{n=1}^{\infty}\left(2(-1)^{n+1} / n\right) \sin (n x)$; zero at $x=\pi$;
(ii) $x^{2}=\pi^{2} / 3+4 \sum_{n=1}^{\infty}\left((-1)^{n} / n^{2}\right) \cos (n x) \cdot f=\pi^{2}$ at $x=\pi$;
(iii) $\sinh x=((2 \sinh \pi) / \pi) \sum_{n=1}^{\infty}(-1)^{n+1} n \sin (n x) /\left(1+n^{2}\right)$; zero at $x=\pi$.
2. As $\alpha \rightarrow m$, all terms of series tend to zero except A_{m} which tends to 1 .

Thus the Fourier series tends to $\cos m x$ as $\alpha \rightarrow m$.
3. $(x-1)^{2}=(1 / 3)+\left(4 / \pi^{2}\right) \sum_{n=1}^{\infty} \cos (n \pi x) / n^{2} ; \sum_{n=1}^{\infty}\left(1 / n^{4}\right)=\pi^{4} / 90$.
5. (a) $\pi^{2} / 6$; (b) $\pi^{2} / 12 ;$ (c) $\pi^{3} / 32$.

