Civil Engineering 2 Mathematics Autumn 2011

Exercise Sheet 5

1. Verify the relation

$$
\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\tilde{\nabla}^{2} \mathbf{A}
$$

for the vector field

$$
\mathbf{A}=x^{2} y \mathbf{i}-2 x z \mathbf{j}+2 y z \mathbf{k}
$$

(Use the definition $\tilde{\nabla}^{2} \mathbf{A}=\partial^{2} \mathbf{A} / \partial x^{2}+\partial^{2} \mathbf{A} / \partial y^{2}+\partial^{2} \mathbf{A} / \partial z^{2}$).
2. If $\mathbf{A}=2 y z \mathbf{i}-x^{2} y \mathbf{j}+x z^{2} \mathbf{k}, \mathbf{B}=x^{2} \mathbf{i}+y z \mathbf{j}-x y \mathbf{k}$ and $\phi=2 x^{2} y z^{3}$, find:
(i) $(\mathbf{A} \cdot \nabla) \phi$;
(ii) $\mathbf{A} \cdot(\nabla \phi)$;
(iii) $(\mathbf{B} \cdot \nabla) \mathbf{A}$;
(iv) $\mathbf{A} \times(\nabla \phi)$;
(v) $(\mathbf{A} \times \nabla) \phi$.
(Note that in (iii) there is some abuse of notation.) Verify that the answers to (i) \& (ii) and (iv) \& (v) are the same.
3. Calculate the divergence and curl of the following vector fields:
(i) $\mathbf{v}=\mathbf{r}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$;
(ii) $\mathbf{v}=\frac{\mathbf{r}}{|\mathbf{r}|}$ with \mathbf{r} as in (i);
(iii) $\quad \mathbf{v}=\omega \mathbf{k} \times \mathbf{r}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$ and ω is a constant;
(iv) $\quad \mathbf{v}=\omega \mathbf{k} \times \frac{\mathbf{r}}{|\mathbf{r}|}$, with \mathbf{r} and ω as in (iii).
4. Establish the identity

$$
\nabla \cdot(\phi \mathbf{G})=\phi(\nabla \cdot \mathbf{G})+(\nabla \phi) \cdot \mathbf{G}
$$

for a general scalar field $\phi(x, y, z)$ and general vector field $\mathbf{G}=G_{1} \mathbf{i}+G_{2} \mathbf{j}+G_{3} \mathbf{k}$. Hence evaluate

$$
\nabla \cdot\left(\frac{y}{x r^{3}} \mathbf{r}\right)
$$

where $\mathbf{r}=(x, y, z)$ and $r=|\mathbf{r}|$.
5. If $\mathbf{A}=A_{1} \mathbf{i}+A_{2} \mathbf{j}+A_{3} \mathbf{k}$ is a vector and ϕ is a scalar, prove that
(i) $\nabla \times(\nabla \phi)=0$;
(ii) $\nabla \cdot(\nabla \times \mathbf{A})=0$.

Answers:

1. Both right hand side and left hand side are equal to $(2 x+2) \mathbf{j}$.
2. (i) $8 x y^{2} z^{4}-2 x^{4} y z^{3}+6 x^{3} y z^{4}$; (ii) same as (i); (iii) $\left(2 y z^{2}-2 x y^{2}\right) \mathbf{i}-$ $\left(x^{2} y z+2 x^{3} y\right) \mathbf{j}+\left(x^{2} z^{2}-2 x^{2} y z\right) \mathbf{k}$;
(iv) $\quad-\left(6 x^{4} y^{2} z^{2}+2 x^{3} z^{5}\right) \mathbf{i}+\left(4 x^{2} y z^{5}-12 x^{2} y^{2} z^{3}\right) \mathbf{j}+\left(4 x^{2} y z^{4}+4 x^{3} y^{2} z^{3}\right) \mathbf{k}$; (v) same as (iv).
3. (i) $\nabla \cdot \mathbf{v}=3, \nabla \times \mathbf{v}=0$; (ii) $\nabla \cdot \mathbf{v}=2 / r, \nabla \times \mathbf{v}=0$; (iii) $\nabla \cdot \mathbf{v}=$ $0, \nabla \times \mathbf{v}=2 \omega \mathbf{k}$;
(iv) $\nabla \cdot v=0, \nabla \times \mathbf{v}=(\omega / r) k$.
4. $\nabla \cdot\left(\frac{y}{x r^{3}} \mathbf{r}\right)=0$.
