Civil Engineering 2 Mathematics Autumn 2011

Exercise Sheet 6

1. Test whether the following functions can be the real (or imaginary) part of an analytic function ; if yes, then use the Cauchy-Riemann relations to find the general analytic function, $f(z)=u+i v$, associated with them:

$$
\text { (i) } u=x y+x,(i i) v=2 x y+2 y,(i i i) v=\cos x \sinh y
$$

2. For what values of a and b are the following functions harmonic?

$$
\text { (i) } u=\exp (a x) \cos (3 y), \quad \text { (ii) } v=\exp (-2 x) \sin b y
$$

For such values determine in case (i) the analytic function $f(z)$ that has u as real part and in case (ii) the analytic function that has v as imaginary part.
3. Check which of the following functions are harmonic. For those which are, calculate the trajectories orthogonal to either $u(x, y)=c$ or $v(x, y)=c$, where c is a generic constant.

$$
\begin{aligned}
& \text { (i) } u=\exp (3 x) \cos (3 y), \quad \text { (ii) } u=\exp (2 x) \cos (3 y), \\
& \text { (iii) } v=\exp (-2 x) \sin 2 y, \quad \text { (iv) } v=\exp (-2 x) \sin y
\end{aligned}
$$

4. Prove that the complex function $f(z)=\bar{z}$ is not differentiable in complex sense, or, in other words, prove that it is not analytic. (Remember that \bar{z} denotes the complex conjugate of z so $f(x+i y)=x-i y)$. Prove it in two ways: first using the definition and then the Cauchy Riemann relations.
5. Using the definition, show that the derivative in complex sense of the function $f(z)=z^{3}$ is $f^{\prime}(z)=3 z^{2}$. Also, use the Cauchy Riemann relations to double-prove that $f(z)$ is holomorphic and that $f^{\prime}(z)=3 z^{2}$.

Answers

1.(i) $v=y-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+c$; (ii) $u=2 x+x^{2}-y^{2}+c$; (iii) $u=\sin x \cosh y+c$; (c is real in all cases);
2. (i) $a= \pm 3, v= \pm e^{ \pm 3 x} \sin 3 y+c$ (ii) $b= \pm 2, u=\mp e^{-2 x} \cos 2 y+c$
3. (i) and (iii) are harmonic. See answer to question 2.

