Civil Engineering 2 Mathematics Autumn 2011

Exercise Sheet 6

1. Test whether the following functions can be the real (or imaginary) part of an analytic function; if yes, then use the Cauchy-Riemann relations to find the general analytic function, f(z) = u + iv, associated with them:

(i)
$$u = xy + x$$
, (ii) $v = 2xy + 2y$, (iii) $v = \cos x \sinh y$.

2. For what values of *a* and *b* are the following functions harmonic?

(i)
$$u = \exp(ax)\cos(3y)$$
, (ii) $v = \exp(-2x)\sin by$.

For such values determine in case (i) the analytic function f(z) that has u as real part and in case (ii) the analytic function that has v as imaginary part.

3. Check which of the following functions are harmonic. For those which are, calculate the trajectories orthogonal to either u(x,y) = c or v(x,y) = c, where c is a generic constant.

(i)
$$u = \exp(3x)\cos(3y)$$
, (ii) $u = \exp(2x)\cos(3y)$,
(iii) $v = \exp(-2x)\sin 2y$, (iv) $v = \exp(-2x)\sin y$.

4. Prove that the complex function $f(z) = \overline{z}$ is not differentiable in complex sense, or, in other words, prove that it is not analytic. (Remember that \overline{z} denotes the complex conjugate of z so f(x+iy) = x-iy). Prove it in two ways: first using the definition and then the Cauchy Riemann relations.

5. Using the definition, show that the derivative in complex sense of the function $f(z) = z^3$ is $f'(z) = 3z^2$. Also, use the Cauchy Riemann relations to double-prove that f(z) is holomorphic and that $f'(z) = 3z^2$.

Answers

1.(i) $v = y - \frac{1}{2}x^2 + \frac{1}{2}y^2 + c$; (ii) $u = 2x + x^2 - y^2 + c$; (iii) $u = \sin x \cosh y + c$; (c is real in all cases);

2. (i) $a = \pm 3$, $v = \pm e^{\pm 3x} \sin 3y + c$ (ii) $b = \pm 2$, $u = \pm e^{-2x} \cos 2y + c$

3. (i) and (iii) are harmonic. See answer to question 2.