Civil Engineering 2 Mathematics Autumn 2011

Sketch solutions of Revision sheet

1. The integrating factor is

$$
\exp \left(\int \frac{5}{x} d x\right)=e^{5 \log x}=x^{5}
$$

Multiplying both sides of the ODE by x^{5} gives

$$
\left(x^{5} y\right)^{\prime}=x^{3} \quad \Rightarrow \quad x^{5} y=\frac{x^{4}}{4}+C
$$

hence the result.
3. Separate the variables

$$
\frac{d y}{y}=d x
$$

and then integrate both sides using the given boundary conditions

$$
\int_{1}^{y} \frac{d y}{y}=\int_{0}^{x} d x \quad \Rightarrow \quad \log y=x
$$

(I do realize that the notation in the line above can be slightly misleading)
4. Use the following

$$
\sin (n x)=\left(-\frac{\cos (n x)}{n}\right)^{\prime}
$$

6. Multiplying and dividing by $\cos x$ gives an indeterminate form of the type $" \frac{0}{0} "$, hence you can apply de L'Hôpital's theorem.
7. Eigenvalues $\lambda=0,2,3$. Eigenvectors $(-1,2,1),(1,0,1),(-1,-1,1)$. The matrix C that has these eigenvectors as columns is the diagonalizing matrix.
