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Recap on Fourier series

A function f(x) is called “2L-periodic” if f(x) = f(x + 2L) for all x. A
continuous 2L−periodic function can be represented by (or, in other words, it
coincides with) its Fourier series of period 2L, which we will denote Ff (x):

Ff (x) =
1

2
a0 +

∞∑

n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(1)

where the constants an and bn are called the Fourier coefficients of f(x).
These can be calculated from the formulae

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx . (2)

The factor of 12 in (1) is included so that the formula (2) holds for n = 0 also.
It is easiest to deal with 2π-periodic functions (L = π). The formulae for the
coefficients can be derived using the following orthogonality relations:

∫ π

−π
sinmx cosnx dx = 0 and

∫ π

−π
sinmx sinnx dx = 0 =

∫ π

−π
cosmx cosnx dx

where m and n are integers with m 6= n. If m = n 6= 0, then
∫ π

−π
sinnx cosnx dx = 0 and

∫ π

−π
sin2 nx dx =

∫ π

−π
cos2 nx dx = π.

So, as we said, if f(x) is continuous and 2L periodic then Ff (x) = f(x) ∀x ∈ R.
What happens if the function f is not continuous or not periodic? Let us start
with an example.

Example 1. Consider the “square-wave” function

h(x) =

{
+1 for 0 < x < π
−1 for −π < x < 0

Then

an =
1

π

∫ π

0

cosnx dx+
1

π

∫ 0

−π
(−1) cosnx dx = 0

bn =
1

π

∫ π

0

sinnx dx+
1

π

∫ 0

−π
(−1) sinnx dx

=
1

π

(
[− cosnx]π0 − [− cosnx]

0
−π

)
=
1

π
(1− cosnπ) .
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Now cosnπ = (−1)n, and so bn = 0 if n is even, and bn = 4/(πn) if n is odd.
The Fourier series for h(x), which we will denote Fh(x), is thus

Fh(x) =
4

π

∞∑

n=1
n odd

sinnx

n
=

{
+1 for 0 < x < π
−1 for −π < x < 0,

(3)

so the Fourier series of h(x) coincides with ( or better, converges to ) h(x), ∀x ∈

(−π, 0) ∪ (0, π). So far we have not defined h(x) at x0 = 0. Suppose we define

h(x) =

{
+1 for 0 ≤ x < π
−1 for −π < x < 0,

so that h(0) = 1. Though from (3) we have Fh(0) = 0 so in 0 the value of the
Fourier series of h does not coincide with the value of h Why is that? Notice
that h(x) has a discontinuity at 0.

Behaviour at discontinuities: If the function f(x) is discontinuous at the
point x = x0, taking the value f(x0)

+ as x approaches x0 from the right, and
the value f(x0)

− as x approaches x0 from the left, then the series converges to
the average, 12 (f

+(x0) + f
−(x0)). Let’s be more precise: also at the points of

continuity we have Ff (x) =
1
2 (f

+(x) + f−(x)) but, if f(x) is continuous at x

then f+(x) = f−(x) = f(x) so Ff (x) =
1
2 (f

+(x) + f−(x)) = 2f(x)
2 = f(x).

Indeed, in the previous example, h+(0) = 1, h−(0) = −1 therefore 12 (h
+(0) +

h−(0)) = 0, which is precisely the value of Fh(0) that we had found. However,
we will come back to this problem later on.

Odd and even functions: Wy were the cosine coefficients an = 0 in the
above example? This was because h(x) was an odd function: h(−x) = −h(x).
Thus as cos is an even function, h(x) cos(nπx/L) is an odd function. If we inte-
grate an odd function between −L and +L the areas under the curve obviously
cancel, and we are left with zero. Similarly, suppose f(x) were an even function.
Then f(x) sin(nπx/L) would be an odd function and thus bn = 0 in that case.
Even functions only have cosines and odd functions only have sines
in their Fourier series.

Half-Range Sine & Cosine Series: Suppose f(x) is defined only in 0 < x <
L. Then if we assume f(x) is even, we can extend the definition to −L < x < L
and find its Fourier series which will have cosines only. Likewise, if we assume
f(x) is odd, then we can find a Fourier series with sines only. These are called
half-range series.

Differentiation and Integration of Fourier series: If we differentiate (1)
with respect to x, we find that

F ′f (x) =

∞∑

n=1

[(
−nπ
L

)

an sin
(nπx
L

)
+
(nπ
L

)
bn cos

(nπx
L

)]

(4)
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which gives us another Fourier series for f ′(x). Note that differentiating brings
down a factor of n, so that the coefficients of the new Fourier series are larger
for large values of n, and the new series may not converge. If it does converge,
however, it converges to the right answer. Likewise we can integrate (1). In
that case the new series always converges.

Parseval’s Theorem: What happens if we take the Fourier series for f(x)
and square both sides and then integrate over a period? We can use the orthog-
onality relations to evaluate the integrals of the product of the two series, and
all these integrals are zero except when multiplying like terms together. This
gives the result

1

L

∫ L

−L
[f(x)]2 dx =

1

2
a20 +

∞∑

n=1

(
a2n + b

2
n

)
(5)

which is known as Parseval’s theorem, which is in some sense a generalisation
of Pythagoras’ theorem! The way to think about it physically is as follows:
A Fourier series decomposes a signal into a sum of independent fundamental
signals each with an “energy” given by the coefficient squared. Equation (5)
then states that the total energy of the original signal is equal to the sum of the
energies in the component parts. If we apply (5) to the square wave function,
we obtain the strange-looking result

1

π

∫ π

−π
(1) dx =

∞∑

n=1
nodd

(
4

πn

)2
⇒

π2

8
= 12 +

1

32
+
1

52
+
1

72
+
1

92
+ . . .

Fourier series often lead to surprising formulae such as this.

Again on the convergence of Fourier Series. Because nihil recte sine
exemplo docetur, let’s look at some examples.
In Example 1 we saw that at the points of discontinuity of f we need to be
careful, because Ff (x) might not converge to f(x). We now want to investigate
a bit more carefully what happens at the extrema L and −L.

Example 2. Consider the function f(x) = |x|, x ∈ [−π, π]. Using formulae (1)
and (2) we find that the Fourier series of f(x) is

Ff (x) =
π

2
−
4

π

∞∑

k=0

cos[(2k + 1)x]

(2k + 1)
. (6)

We know that if f is continuous at x then f(x) = Ff (x). So we already know
that f(x) = Ff (x) for x ∈ (−π, π). What happens at x = π and x = −π?
Step 1: extend the graph of f(x) by periodicity. We will call fp the periodic
extension of f .
Step 2: the values Ff (π) and Ff (−π) are given by Ff (π) = 1

2

(
f+p (π) + f

−
p (π)

)
=

π and Ff (−π) = 1
2

(
f+p (−π) + f

−
p (−π)

)
= π. So in this case Ff = f on [−π, π].
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Figure 1: f(x) on the left, fp(x) on the right.

In this case it is also true that Ff (x) = fp(x)∀x ∈ R (but this is not true in gen-
eral). Indeed the graph of Ff can be found in the following way: for x ∈ (−π, π)
we know that Ff = f ; for x = π,−π we have just found the value of Ff and
outside [−π, π] we can use that fact that Ff is periodic of period 2π.

Example 3. Let

f(x) =

{
0 if −π < x ≤ 0
x if 0 < x ≤ π.

Again using formulae (1) and (2) we find that the Fourier series of f(x) is

Ff (x) =
π

4
−
2

π

∞∑

k=0

cos[(2k + 1)x]

(2k + 1)2
−
∞∑

k=1

(−1)k sin kx
k

.

Again, f is continuous in (−π, π) so Ff = f in (−π, π). At x = −π the function
is not defined. To check what happens at x = π let us sketch the graph of fp(x),
obtained extending f by periodicity:

Figure 2: f(x) on the left, fp(x) on the right. Notice the little marker at the
points (−π, π), (π, π), (3π, π).
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Ff (π) =
1
2

(
f+p (π) + f

−
p (π)

)
= 1
2 (0 + π) =

π
2 . So f(π) 6= Ff (π). Indeed the

graph of Ff is

and notice that in this case the graphs of Ff and fp do not coincide!

In the lucky case in which you can calculate Ff (L) and Ff (−L) directly from
the expression for Ff you don’t need to follow the procedure that we presented
in Example 2 and 3, you can just compare the values of Ff (L) and Ff (−L) with
those of f(L) and f(−L).

SUMMARY

• Given a function f(x), continuous on the interval −L < x < L,

Ff (x) =
1

2
a0 +

∞∑

n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]

where

a0 =
1

L

∫ L

−L
f(x)dx, an =

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

and f(x) = Ff (x) at least for −L < x < L.
In general the convergence at the extrema needs to be checked case by case.
If f has a finite number of discontinuities, then at the continuity points we have
f(x) = Ff (x) and at the discontinuities Ff (x0) =

1
2 (f

+(x0) + f
−(x0)).

Remember that Ff (x) is a periodic function of period 2L.

• If we want to represent the function just on (0, L) we can either represent
it as a sum of cosines:

Ff (x) =
1

2
a0 +

∞∑

n=1

an cos
(nπx
L

)
 Half range cosine series

with

a0 =
2

L

∫ L

0

f(x)dx, an =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx,
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or as a sum of sines:

Ff (x) =

∞∑

n=1

bn sin
(nπx
L

)
 Half range sine series

with

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

Again, we will have f(x) = Ff (x) at the points of continuity of f . At the points
of discontinuity of f and at the extrema of the interval we have to check case
by case.

• Parseval’s theorem. If Ff (x) = f(x) on (−L,L) then

1

L

∫ L

−L
[f(x)]2 dx =

1

2
a20 +

∞∑

n=1

(
a2n + b

2
n

)

In the case of half range series this simplifies to

2

L

∫ L

0

[f(x)]2 dx =
1

2
a20 +

∞∑

n=1

a2n for half range cosine series

or to

2

L

∫ L

0

[f(x)]2 dx =

∞∑

n=1

b2n for half range sine series.
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