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Abstract. Markov Chain Monte Carlo (MCMC) methods are statistical methods designed
to sample from a given measure π by constructing a Markov Chain that has π as invariant
measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the
detailed balance condition with respect to π; such chains are therefore reversible. On the other
hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes
for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead
to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in
the study of non-reversible MCMC methods. In particular: i) we explain some of the difficulties
that arise in the analysis of non-reversible processes and we discuss some analytical methods
to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results
on irreversible diffusions are available for continuous-time processes; however, for computational
purposes one needs to discretize such dynamics. It is well known that the resulting discretized
chain will not, in general, retain all the good properties of the process that it is obtained from.
In particular, if we want to preserve the invariance of the target measure, the chain might
no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the
SOL-HMC algorithm [23], which results from a non-reversible discretization of a non-reversible
dynamics.

Keywords. Markov Chain Monte Carlo, non-reversible diffusions, Hypocoercivity, Hamil-
tonian Monte Carlo.

1. Introduction

The combined use of Bayesian statistics and Markov Chain Monte-Carlo (MCMC) sampling
methods has been one of the great successes of applied mathematics and statistics in the last
60 years. While the Bayesian approach constitutes a flexible framework for inference through
data assimilation, MCMC turns such a theoretical framework into practice by providing a pow-
erful sampling mechanism to extract information from the posterior measure. For this reason,
and because of the wide spectrum of problems that can be recast in Bayesian terms, MCMC
has been a revolution in the applied sciences. MCMC is employed in parameter estimation,
model validation and, ultimately, in inference. Combined with the Bayesian inference paradigm,
MCMC is of current use in finance, biology (population genetics, molecular biology), meteorol-
ogy, epidemiology, optimization, cryptography, molecular dynamics, computational physics (to
gain knowledge about statistical quantities of interest in the study of large particle systems in
their equilibrium state), in rare event sampling, in big data analysis and in the field of inverse
problems. This list is far from exhaustive.

The increasing popularity of MCMC and the need to tackle problems of growing complexity
have brought higher demands on the efficiency of such algorithms, which are often undeniably
costly. The answer to such demands has produced both a higher level of sophistication in the
design of MCMC algorithms and the introduction of a plethora of different approaches. We
would however be very unfair to MCMC if we described it as a mere algorithmic tool: the
study of MCMC has in fact opened (or it is related to) a range of beautiful questions in an
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unimmaginable wide range of areas of mathematics, from pure probability to analysis, all the
way to number theory [11, 36].

The purpose of MCMC is to sample from a given target distribution π or, more commonly,
to calculate expectations with respect to π, i.e. integrals of the form∫

χ
f(x)dπ(x) , (1.1)

when analytic (or deterministic) methods are not feasible. Here π and f are a measure and a
function, respectively, both defined on the state space χ. Broadly speaking, the calculation of
integrals (1.1) is of interest in the applied sciences for several reasons: i) for different choices of
the function f , such integrals represent various statistical properties of a system in equilibrium
(with stationary measure π) or properties of the posterior measure, π, in a Bayesian context;
ii) if Xt is the solution at time t of a given stochastic differential equation (SDE), then the
expectation

E[f(Xt)] (1.2)

can be recast in the form (1.1); iii) thanks to the Feynman-Kac formula, integrals of type (1.1)
are representations of the solution of a large class of PDEs, as well.

Roughly speaking (we will be more precise in Section 4), the basic prescription behind MCMC
can be explained as follows: construct a Markov Chain {xn}n∈N that converges to our target
distribution π. In this way, if we run the chain “long enough”, as n→∞ we will effectively be
extracting samples from π. Also, if the chain we constructed enjoys good ergodic properties, the
ergodic theorem can be employed, thereby providing an approximation for the quantity (1.1):

lim
n→∞

1

n

n−1∑
k=0

f(xk) = Eπ(f) :=

∫
χ
f(x)dπ(x). (1.3)

In order for this process to work efficiently, the constructed chain should: i) converge to equili-
birum as fast as possible (all the samples out of equilibrium are not needed); ii) once equilibrium
is reached, explore the state space as quickly and thoroughly as possible. This paper intends
to comment on some aspects related to point i). Regarding i): the classical MCMC framework
- and in particular the popular Metropolis-Hastings (M-H) technique (see Section 4.1) - typi-
cally makes use of reversible chains, i.e. chains which satisfy the detailed balance condition with
respect to π. However, it is a well documented principle that, loosely speaking, non-reversible
chains might converge to equilibrium faster than reversible ones. We will be more clear on this
matter in Section 3. For the moment let us just say that this observation has started to produce
a stream of literature aimed at improving the speed of convergence to equilibrium of MCMC
methods by designing algorithms that produce non-reversible chains. In this spirit, we will
present an algorithm, recently introduced in [23], which does not belong to the M-H framework,
as it produces a Markov chain which does not satisfy detailed balance with respect to the tar-
get measure. This is the SOL-HMC algorithm (Second Order Langevin- Hybrid Monte Carlo),
presented in Section 5. In the present paper we will mostly be concerned with irreversibility
and therefore we will only tangentially comment on another important aspect related to the
SOL-HMC algorithm: SOL-HMC does not suffer from the so called curse of dimensionality.
That is, the cost of the algorithm does not increase when the dimension of the space in which
it is implemented increases. We will be more precise on this point in Section 4.2.

The remainder of the paper is organized as follows: in Section 2 we recall some basic def-
initions, mostly with the purpose of fixing the notation for the rest of the paper (references
are given for those not familiar with the topic). Section 3 is devoted to the study of exponen-
tially fast convergence to equilibrium for irreversible dynamics. The Markov dynamics presented
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here, central to the development of the SOL-HMC algorithm, are hypoelliptic and irreversible;
i.e. their generator is non-elliptic and non self-adjoint, so classical techniques do not apply; in
order to study these degenerate dynamics the Hypocoercivity Theory has been recently intro-
duced in [38]. Section 3 contains a short account of such an approach. Section 4 is devoted to an
elementary introduction to MCMC, including the popular Random Walk Metropolis (RWM),
Metropolis Adjusted Langevin Algorithm (MALA) and Hybrid (or Hamiltonian) Monte Carlo
(HMC). The last section, Section 5, contains an example of an irreversible MCMC algorithm, the
so-called SOL-HMC (Second-Order Langevin-Hamiltonian Monte Carlo), introduced in [23]. In
this context we will explain how irreversibility can be obtained from the composition of Markov
transition probabilities that do satisfy detailed balance.

2. Preliminaries and Notation

In this section we briefly recall some basic facts that will be used in the following. More
details about the basic formalism introduced here can be found in [3, 25, 15, 12]. Consider an
ordinary stochastic differential equation in Rd of the form

dx(t) = b(xt)dt+ σ(xt)dWt,
1 (2.1)

where Wt is a d-dimensional standard Brownian motion and the drift and diffusion coefficients
(b : Rd → Rd and σ : Rd → Rd×d, respectively) are globally Lipshitz. It is a standard fact
that under these assumptions there exists a unique strong solution to the SDE (2.1). The
solution x(t) is a Markov diffusion process. Because b and σ are time-independent, x(t) is a
time-homogeneous Markov process.

To the process xt we can associate a Markov semigroup as follows. For any function f : Rd →
R, say f ∈ Bm, 2 and any point x ∈ Rd, we can define

f(x, t) := E [f(xt)|x0 = x] ,

where E denotes expected value (with respect to the noise Wt). Notice that the function f is
a deterministic function. By using the Itô formula, one can immediately see that f(x, t) solves
the Cauchy problem

∂tf(x, t) = Lf(x, t)

f(x, 0) = f(x), x ∈ Rd,
(2.2)

where L is the second order differential operator defined on smooth functions as

L =
d∑
i=1

bi(x)∂xi +
1

2

d∑
i,j=1

Σij(x)∂2
xixj , Σ(x) := σ(x)σT (x),

having denoted by σT the transpose of the matrix σ. The operator L is (under the assumptions
of the Hille-Yoshida Theorem) the generator of the Markov semigroup Pt associated with the
PDE (2.2); i.e., formally:

f(x, t) = etLf(x) = (Ptf)(x) .

With abuse of nomenclature, we will often refer to L as to the generator of the diffusion process
(2.1). The standard example belonging to this framework is the heat semigroup: in this case
the process x(t) is simply Brownian motion (i.e. in (2.1) b = 0 and σ is the identity matrix) and
the generator of the semigroup is the Laplacian operator.

1For any time-dependent process or function, we will use the notations ht and h(t) interchangeably.
2Bm := {bounded and measurable functions on Rd}
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We recall that a probability measure µ on Rd is invariant for the Markov semigroup Pt if, for
every h ∈ Bm ∫

Rd
(Pth)(x)µ(dx) =

∫
Rd
h(x)µ(dx) .

Using the dual semigroup, P ′t, acting on measures, this can also be rewritten as P ′tµ = µ or
L′µ = 0, where L′ denotes the L2-adjoint of L.3

In view of the link between the Markov process xt solution of the SDE (2.1) and the semigroup
Pt, every attribute of the semigroup will also hold for the process and viceversa, unless otherwise
stated. So e.g. we say that the measure µ is invariant for the process x(t) if it is invariant for the
semigroup associated to x(t). The measure µ is called invariant because if x(0) is distributed
according to µ, x(0) ∼ µ, then x(t) ∼ µ for every t ≥ 0. The process xt is ergodic if it admits a
unique invariant measure. In this case the only invariant measure is called the ergodic measure
of the process and it represents the equilibrium state (in law) of the system.

Central to our discussion will be the definition of reversibility.

Definition 2.1. A Markov semigroup Pt is reversible with respect to a probability measure µ
(or, equivalently, the probability measure µ is reversible for the Markov semigroup Pt) if for any
f, g ∈ Bm ∫

(Ptf)g dµ(x) =

∫
f(Ptg) dµ(x). (2.3)

In this case it is also customary to say that Pt satisfies the detailed balance condition with
respect to µ.

Notice that if µ is reversible then it is invariant as well. If xt is reversible with respect to µ and
x(0) ∼ µ then for any T > 0 and any 0 ≤ t1 ≤ . . . ≤ tk < T , the law of (x0, xt1 , . . ., xtk , xT ) is the
same as the law of (xT , xT−t1 , . . ., xT−tk , x0). In other words, the forward and the time-reversed
process have the same law (on this matter see e.g. [25, Section 4.6]). It is easy to show that Pt
is reversible with respect to µ if and only if the generator L is symmetric in L2

µ, where

L2
µ :=

{
functions f : Rd → C such that

∫
Rd
f2dµ <∞

}
.

Because we will be using discrete-time as well as continuous-time Markov processes, we men-
tion here that for a given Markov Chain xn, n ∈ N, on a state space S (tipically S will be a finite
or countable set, Rd or a separable Hilbert space H), we will denote by p(x,A), x ∈ S,A ⊂ S,
the transition probabilities of the chain (and by pn(x,A) the n-step transition probabilities). If
S is finite or countable the transition probabilities are specified by {p(x, y)}x,y,∈S . In this case
the detailed balance condition with respect to a measure π on S can be rewritten as follows:

π(x)p(x, y) = π(y)p(y, x), ∀x, y ∈ S. (2.4)

If the above holds, we say that xn is reversible with respect to π.
Finally, for a measure µ on Rd, we will use the same Greek letter to denote both the measure

and its density (when such a density exists), i.e. we will write µ(dx) = µ(x)dx; Z will always
denote a generic normalizing constant and for a differential operator A, D(A) will indicate the
domain of A.

3L is the generator of the dynamics and the associated evolution equation, equation (2.2), governs the evolution
of the observables. L′ is often refereed to as the Fokker-Planck operator; L′ describes the evolution of the law of
the process.
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3. Irreversibility

In this section we will be concerned with the study of exponentially fast convergence to equi-
librium for irreversible Markov dynamics, i.e. dynamics generated by non-symmetric operators.
As a term of comparison, let us start from the reversible case.

The theory concerning reversible Markov processes has been much more developed than the
theory for non-reversible ones. This is mostly due to the fact that the generator of a reversible
Markov process is a symmetric and, under some assumptions, self-adjoint operator; self-adjoint
operators enjoy good spectral properties [27], which makes the study of convergence to equilib-
rium more accessible than in the non self-adjoint, irreversible case.

The study of exponentially fast convergence to equilibrium for reversible processes has been
tackled using both probabilistic an analytic techniques. The most comprehensive reference on
the analytic approach is [3]. While we do not intend to review the existing methods, we would
like to recall some basic results. This is mainly to point out, by comparison, what are some of
the difficulties in studying the problem of exponentially fast convergence to equilibrium in the
irreversible case. Before stating the next definition we recall the following nomenclature: let
T be the generator of an ergodic Markov semigroup; suppose that the spectrum of T , σ(T ),
is only made of simple isolated eigenvalues, that all such eigenvalues have positive (negative,
respectively) real part and assume 0 ∈ σ(T ). Then the spectral gap of T , S(T ), is the smallest
(biggest, respectively) real part of the non-zero eigenvalues of T . Notice that if T is the generator
of a strongly continuous ergodic Markov semigroup then 0 ∈ S(T ), by the Koopman-Von
Neumann Theorem (see [7, Theorem 1.2.1]).

Definition 3.1. Given a Markov semigroup Pt with generator L, we say that a measure π which
is reversible for Pt satisfies a spectral gap inequality if there exists a constant α > 0 such that

α

∫
R

[
f −

∫
R
fdπ

]2

dπ ≤ −〈Lf, f〉π, for every f ∈ L2
π ∩ D(L). (3.1)

The largest positive number α such that (3.1) is satisfied is the spectral gap of the self-adjoint
operator L.

The term on the RHS of (3.1) is called the Dirichlet form of the operator L.

Remark 3.1. If L is a self adjoint operator then the form 〈Lf, f〉π is real valued. In particular
the spectrum of L is real. If L is the generator of a strongly continuous Markov semigroup and
the semigroup is ergodic then we already know that 0 is a simple eigenvalue of L. If (3.1) holds,
then 〈Lf, f〉π ≤ 0 for every f , therefore the self-adjoint operator −L is positive and all the
eigenvalues of −L will be positive. The biggest positive α such that (3.1) holds is the smallest
nonzero eigenvalue of −L, i.e. α is the spectral gap.4 The next proposition clarifies why spectral
gap inequalities are so important. Notice however that, at least on a formal level, it makes sense
to talk about spectral gap inequalities if one can guarantee that the quantity 〈Lf, f〉π is at least
real. This can not be guaranteed in general if L is non self-adjoint. �

Proposition 3.1. A measure π reversible with respect to the Markov semigroup Pt satisfies a
spectral gap inequality (with constant α) if and only if∫

R

(
Ptf −

∫
R
fdπ

)2

dπ ≤ e−2αt

∫
R

(
f −

∫
R
fdπ

)2

dπ , (3.2)

for all t ≥ 0 and f ∈ L2
π.

4This reasoning might appear more transparent if we take mean zero functions, that is f sych that
∫
f dπ = 0.
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A proof of the above proposition can be found in [15, Chapter 2]. The spectral gap inequal-
ity formalism is one of the most established techniques to study exponential convergence for
reversible diffusions. However this cannot be used - at least not as is - in the irreversible case
(on this point we also mention the related interesting paper [19]).

If irreversible diffusions are harder to study than reversible ones, it is natural to wonder
why one would want to employ them in the study of MCMC. The reason is readily explained:
plenty of numerical evidence - although not as many theoretical results - shows that irreversible
processes converge to equilibrium faster than reversible dynamics. We illustrate this idea with
an example (to the best of our knowledge this is one of the very few examples where rigorous
results are available). Consider the Ornstein-Uhlenbeck process (OU)

dYt = −Ytdt+
√

2dWt, Yt ∈ Rd . (3.3)

Yt is ergodic with unique invariant measure π(y) = e−|y|
2/2/Z. Yt is also reversible with respect

to π. Now consider the process Zt obtained from Yt by adding a non-reversible perturbation
to the drift, i.e. modify the OU process in such a way that the invariant measure of the new
process is still π but Zt is no longer reversible with respect to π:

dZt = (−Zt + γ(Zt))dt+
√

2dWt, with ∇ · (γ(z)e−V (z)) = 0 .

The condition ∇ · (γ(z)e−V (z)) = 0 is added in order to preserve the invariance of π. It can be
shown (see [21, 18, 24]) that S(Z) ≤ S(Y ) and that the process Zt converges faster than Yt.

One of the most popular approaches to study exponential convergence to equilibium in the
non-reversible case is given by the hypocoercivity Theory, which we briefly review below.

3.1. Hypocoercivity theory and Second Order Langevin Equation. Let us start by
introducing the Second Order Langevin (SOL) equation, which is possibly the simplest example
of dynamics that retains all the properties that we are interested in. Also, it is the dynamics
that we will use to construct the SOL-HMC algorithm in Section 5. By SOL we will mean the
following SDE (or slight variations):

dq = pdt

dp = −∂qV (q)dt− pdt+
√

2dWt,
(3.4)

where, (q, p) ∈ R2, V (q) ∈ C∞ is a confinig potential (i.e. V (q)→∞ as |q| → ∞ and V (q) grows
at least quadratically at infinity 5) and Wt is a one dimensional standard Brownian motion. The
generator of (3.4) is

L = p∂q − ∂qV (q)∂p − p∂p + ∂2
p (3.5)

and the corresponding Fokker-Planck operator is

L′ = −p∂q + ∂qV (q)∂p + ∂p(p·) + ∂2
p . (3.6)

Notice that L′ is non-uniformly elliptic. In particular, it is hypoelliptic. We will not linger on this
fact here and refer the reader to [39] for a coincise and clear introduction to the hypoellipticity
theory. We just observe that the fact that ∂t − L′ is hypoelliptic on R+ × R2 implies that the
law of the process (3.5) has a density for every t > 0. The dynamics generated by the operator
(3.5) is ergodic as well and the density of the unique invariant measure of such a dynamics is

ρ(q, p) =
e−(V (q)+p2/2)

Z
. (3.7)

5Under this assumption strong uniqueness and non-explosivity are guaranteed, see e.g. [35, Chapter 10]
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The dynamics described by (3.4) can be thought of as split into a Hamiltonian component,

q̇ = p

ṗ = −∂qV (q) (3.8)

plus a OU process (in the p variable, see (3.3)):

dq = pdt

dp = −∂qV (q)dt−pdt+
√

2dWt︸ ︷︷ ︸
OU process .

Indeed the equations (3.8) are the equations of motion of an Hamiltonian system with Hamil-
tonian

H(q, p) = V (q) +
p2

2
.

At the level of the generator this is all very clear: we can write the operator L as

L = LH + LOU ,

where

LH := p∂q − ∂qV (q)∂p (3.9)

is the Liouville operator of classical Hamiltonian mechanics and

LOU := −p∂p + ∂2
p

is the generator of a OU process in the p variable. By the point of view of our formalism, the
Hamiltonian dynamics (3.8) admits infinitely many invariant measures, indeed

−L′Hf(H(q, p)) = LHf(H(q, p)) = 0 for every f (smooth enough).

So any integrable and normalized function of the Hamiltonian is an invariant probability measure
for (3.8). Adding the OU process amounts to selecting one equilibrum.

To distinguish between the flat L2 adjoint of an operator T and the adjoint in the weighted
L2
ρ, we shall denote the first by T ′ and the latter by T ∗. The scalar product and norm of L2

ρ

will be denoted by 〈·, ·〉ρ and ‖ · ‖ρ, respectively. Notice now that the generator LH of the
Hamiltonian part of the Langevin equation is antisymmetric both in L2 and in L2

ρ. It is indeed
straightforward to see that

LH = −L′H .
Also, 〈LHf, g〉ρ = −〈f,LHg〉ρ for every f, g say in L2

ρ ∩ D(LH):

〈LHf, g〉ρ =

∫
R

∫
R

(p∂qf − q∂pf) gρ dpdq

= −
∫
R

∫
R
fp∂q(gρ) dpdq +

∫
R

∫
R
fq∂p(gρ) dpdq

= −
∫
R

∫
R
fp(∂qg)ρ+

∫
R

∫
R
qf(∂pg)ρ = −〈f,LHg〉ρ .

The generator of the OU process is instead symmetric in L2
ρ and in particular

LOU = −T ∗T,

where

T = ∂p, so that T ∗ = −∂p + p.
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In conclusion, the generator of the Langevin equation decomposes into a symmetric and anti-
symmetric part. Moreover, the antisymmetric part comes from the Hamiltonian deterministic
component of the dynamics, the symmetric part comes from the stochastic component.

Using Stone’s Theorem (see e.g. [27]) we also know that the semigroup generated by LH
is norm-preserving, while it is easy to see that the semigroup generated by LOU is dissipative,
indeed

d

dt
‖etLOUh‖2ρ = 2〈LOUetLOUh, etLOUh〉ρ

= −2〈T ∗Tht, ht〉ρ = −2‖Tht‖2ρ < 0 ,

where we used the notation ht(x) = etLOUh(x). In conclusion, so far we have the following
picture:

L = LH︸︷︷︸ − T ∗T︸︷︷︸
skew symmetric symmetric

↓ ↓
deterministic stochastic

conservative dissipative

This is precisely the setting of the hypocoercivity theory. The hypocoercivity theory, subject
of [38], is concerned with the problem of exponential convergence to equilibrium for evolution
equations of the form

∂th+ (A∗A−B)h = 0, 6 (3.10)

where B is an antisymmetric operator 7. We shall briefly present some of the basic elements of
such a theory and then see what are the outcomes of such a technique when we apply it to the
Langevin equation (3.4).

We first introduce the necessary notation. Let H be a Hilbert space, real and separable, ‖ · ‖
and (·, ·) the norm and scalar product of H, respectively. Let A and B be unbounded operators
with domains D(A) and D(B) respectively, and assume that B is antisymmetric, i.e. B∗ = −B,
where ∗ denotes adjoint in H. We shall also assume that there exists a vector space S ⊂ H,
dense in H, where all the operations that we will perform involving A and B are well defined.

Writing the involved operator in the form T = A∗A−B has several advantages. Some of them
are purely computational. For example, for operators of this form checking the contractivity of
the semigroup associated with the dynamics (3.10) becomes trivial. Indeed, the antisymmetry
of B implies

(Bx, x) = −(x,Bx) =⇒ (Bx, x) = 0. (3.11)

This fact, together with (A∗Ax, x) = ‖Ax‖2 ≥ 0, immediately gives

1

2

d

dt
‖e−tT h‖2 (3.11)

= −‖Aht‖2 ≤ 0 .

On the other hand, conceptually, the decomposition A∗A − B is physically meaningful as the
symmetric part of the operator, A∗A, corresponds to the stochastic (dissipative) part of the
dynamics, whereas the antisymmetric part corresponds to the deterministic (conservative) com-
ponent.

6Generalizations to the form ∂th+
(∑m

i=1Ai
∗Ai −B

)
h = 0 as well as further generalizations are presented in

[38]. We refer the reader to such a monograph for these cases.
7Notice that, for less than regularity issues, any second order differential operator L can be written in the form

A∗A−B.
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Definition 3.2. We say that an unbounded linear operator T on H is relatively bounded with
respect to the linear operators T1, ..., Tn if the domain of T , D(T ), is contained in the intersection
∩D(Tj) and there exists a constant α > 0 s.t.

∀h ∈ D(T ), ‖T h‖ ≤ α(‖T1h‖+ ...+ ‖Tnh‖).

Definition 3.3 (Coercivity). Let T be an unbounded operator on a Hilbert space H, denote its

kernel by K and assume there exists another Hilbert space H̃ continuously and densely embedded
in K⊥. If ‖ · ‖H̃ and (·, ·)H̃ are the norm and scalar product on H̃, respectively, then the operator

T is said to be λ-coercive on H̃ if

(T h, h)H̃ ≥ λ‖h‖
2
H̃ , ∀h ∈ K⊥ ∩D(T ),

where D(T ) is the domain of T in H̃.

Notice the parallel with (3.1). Notice also that, from the above discussion, for every h ∈ D(T ),
the number (T h, h) is always real. Not surprisingly, the following proposition gives an equivalent
definition of coercivity (cfr Proposition 3.1).

Proposition 3.2. With the same notation as in Definition 3.3, T is λ-coercive on H̃ iff

‖ e−T th ‖H̃≤ e
−λt ‖ h ‖H̃ ∀h ∈ H̃ and t ≥ 0.

Definition 3.4 (Hypocoercivity). With the same notation of Definition 3.3, assume T generates

a continuous semigroup. Then T is said to be λ-hypocoercive on H̃ if there exists a constant
κ > 0 such that

‖ e−T th ‖H̃≤ κe
−λt ‖ h ‖H̃ , ∀h ∈ H̃ and t ≥ 0. (3.12)

Remark 3.2. We remark that the only difference between Definition 3.3 and Definition 3.4
is in the constant κ on the right hand side of (3.12), when κ > 1. Thanks to this constant,
the notion of hypocoercivity is invariant under a change of equivalent norm, as opposed to the
definition of coercivity which relies on the choice of the Hilbert norm. Hence the basic idea
employed in the proof of exponentially fast convergence to equilibrium for degenerate diffusions
generated by operators in the form (3.10), is to appropriately construct a norm on H̃, equivalent
to the existing one, and such that in this norm the operator is coercive. �

We will state in the following the basic theorem in the theory of hypocoercivity. Generaliza-
tions can be found in [38].

Theorem 3.1. With the notation introduced so far, let T be an operator of the form T =
A∗A−B, with B∗ = −B. Let K = KerT , define C := [A,B], 8 and consider the norm

‖h‖2H1 := ‖h‖2 + ‖Ah‖2 + ‖Ch‖2 .

on K⊥. 9Suppose the following holds:

(1) A and A∗ commute with C;
(2) [A,A∗] is relatively bounded with respect to I and A;
(3) [B,C] is relatively bounded with respect to A, A2, C and AC,

8Given two differential operators X and Y we denote by [X,Y ] = XY − Y X the commutator between X and
Y .

9One can prove that space K⊥ is the same irrespective of whether we consider the scalar product 〈·, ·〉 of H or
the scalar product 〈·, ·〉H1 associated with the norm ‖ · ‖H1 .
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then there exists a scalar product ((·, ·)) on H1/K defining a norm equivalent to the H1 norm
such that

((h, T h)) ≥ k(‖Ah‖2 + ‖Ch‖2), ∀h ∈ H1/K, (3.13)

for some constant k > 0. If, in addition to the above assumptions, we have

A∗A+ C∗C is κ− coercive for some κ > 0, (3.14)

then T is hypocoercive in H1/K: there exist constants c, λ > 0 such that

‖e−tL‖H1/K→H1/K ≤ ce−λt.

Remark 3.3. Let K be the kernel of T and notice that Ker(A∗A) = Ker(A) and K = Ker(A)∩
Ker(B). Suppose KerA ⊂ KerB; then KerT = KerA. In this case the coercivity of T is
equivalent to the coercivity of A∗A. So the case we are interested in is the case in which A∗A is
coercive and T is not. In order for this to happen A∗A and B cannot commute; if they did, then
e−tT = e−tA

∗AetB. Therefore, since etB is norm preserving, we would have ‖e−tT ‖ = ‖e−tA∗A‖.
This is the intuitive reason why commutators (especially of the form [A,B]) appear in Theorem
3.1. �

Comment.[On the Proof of Theorem 3.1] We will not write a proof of this theorem but I
will explain how it works. The idea is the same that we have explained in Remark 3.2. Consider
the norm

((h, h)) := ‖h‖2 + a‖Ah‖2 + c‖Ch‖2 + 2b(Ah,Ch),

where a, b and c are three strictly positive constants to be chosen. Assumptions (1), (2) and (3)
are needed to ensure that this norm is equivalent to the H1 norm, i.e. that there exist constant
c1, c2 > 0 such that

c1‖h‖H1 ≤ ((h, h)) ≤ c2‖h‖H1 .

If we can prove that T is coercive in this norm, then by Proposition 3.2 and Remark 3.2 we
have also shown exponential convergence to equilibrium in the H1 norm i.e. hypocoercivity. So
the whole point is proving that

((T h, h)) ≥ K((h, h)),

for some K > 0. If (1), (2) and (3) of Theorem 3.1 hold, then (with a few lengthy but surprisingly
not at all complicated calculations) (3.13) follows. From now on K > 0 will denote a generic
constant which might not be the same from line to line. The coercivity of A∗A + C∗C means
that we can write

‖Ah‖2 + ‖Ch‖2 =
1

2
(‖Ah‖2 + ‖Ch‖2) +

1

2
(‖Ah‖2 + ‖Ch‖2)

≥ 1

2
(‖Ah‖2 + ‖Ch‖2) +

K

2
‖h‖2

≥ K‖h‖H1 .

Combining this with (3.13), we obtain

((h, T h)) ≥ k(‖Ah‖2 + ‖Ch‖2) ≥ K‖h‖H1 ≥ K((h, h)).

This concludes the sketch of the proof. Another important observation is that, in practice, the
coercivity of A∗A+C∗C boils down to a Poincaré inequality. This will be clear when we apply
this machinery to the Langevin equation, see proof of Theorem 3.2.

�

We now use Theorem 3.1 to prove exponentially fast convergence to equilibrium for the
Langevin dynamics. We shall apply such a theorem to the operator L defined in (3.5) on the
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space H = L2
ρ, where ρ is the equilibrium distribution (3.5). (The space S can be taken to be

the space of Schwartz functions.) The operators A and B are then

A = ∂p and B = p∂q − ∂qV ∂p,
so that

C := [A,B] = AB −BA = ∂q .

The kernel K of the operator L is made of constants and in this case the norm H1 will be the
Sobolev norm of the weighted H1(ρ):

‖f‖2H1
ρ

:= ‖f‖2ρ + ‖∂qf‖2ρ + ‖∂pf‖2ρ .

Let us first calculate the commutators needed to check the assumptions of Theorem 3.1.

[A,C] = [A∗, C] = 0, [A,A∗] = Id (3.15)

and
[B,C] = −∂2

qV (q)∂p . (3.16)

Theorem 3.2. Let V (q) be a smooth potential such that

|∂2
qV | ≤ α

(
1 + |∂qV |

)
, for some constant α > 0. (3.17)

Also, assume that V (q) is such that the measure e−V (q) satisfies a Poincaré inequality. 10 Then,
there exist constants C, λ > 0 such that for all h0 ∈ H1(ρ),∥∥∥∥e−tLh0 −

∫
h0 dρ

∥∥∥∥
H1(ρ)

≤ Ce−λt‖h0‖H1(ρ), (3.18)

where we recall that here L is the operator (3.5) .

Proof. We will use Theorem 3.1. Conditions (1) and (2) are satisfied, due to (3.15). In [38, page
56 and Lemma A.19] it is shown that condition (3) holds under the assumption (3.17) on the

potential V . Now we turn to condition (3.14). Let us first write the operator L̂ = A∗A+ C∗C

(notice that L̂ is elliptic):

L̂ = p∂p − ∂2
p + ∂qV ∂q − ∂2

q .

The operator L̂ is coercive if ∫ (
|∂qh|2 + |∂ph|2

)
dρ ≥ κ‖h‖2ρ.

The above is a Poincaré inequality for the measure ρ (as we have already observed, the kernel
of T is the set of constant functions, so it suffices to write the Poincaré inequality for mean

zero functions, as we have done in the above). Therefore, in order for L̂ to be coercive, it is

sufficient for the measure ρ = e−V (q)e−p
2/2 to satisfy a Poincaré inequality. This probability

measure is the product of a Gaussian measure (in p) which satisfies a Poincaré inequality, and

of the probability measure e−V (q). In order to conclude the proof it is sufficient, therefore, to
use the assumption that e−V (q) satisfies a Poincaré inequality. �

More details about the above proof can also be found in [25].
We mention that while the hypocoercivity theory has rapidly become one of the most popular

techniques to study return to equilibrium for hypoelliptic-irreversible processes, other avenues
have recently been opened [24], based on spectral theory and semiclassical analysis (in this
context, we would also point out the paper [13]). While the first approach mostly provides
qualitative results, the latter allows a more quantitative study. In other words, through the

10Theorem A.1 in [38] gives some sufficient conditions in order for e−V to satisfy such an inequality.
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hypocoercivity techniques we only know that some λ > 0 exists, such that (3.18) holds; the
spectral approach [24] gives instead the exact rate of exponential convergence, i.e. it determines
λ. However, in comparison to the hypocoercivity framework, spectral techniques only apply
to a more restricted class of hypoelliptic diffusions. Quantitative information for the Ornstein-
Uhlenbeck process has been obtained also by using hypocoercivity-type techniques [1].

4. Markov Chain Monte Carlo

A standard and practical reference on MCMC is the book [30]. A rigorous approach to the
theory of Markov chains and some theoretical results about MCMC are contained in [22]. The
case for using MCMC is passionately argued in [11].

As we have already mentioned in the Introduction, MCMC algorithms can be employed for
two purposes: i) sampling from a given target distribution π(x) which is known only up to its
normalizing constant or ii) approximate statistical quantities of π, that is, calculate integrals
of the form (1.1). In order to achieve either i) or ii), the MCMC approach consists in building
a Markov Chain xn that has π as (unique) invariant measure. Then, for example under an
assumption of positive recurrence, the ergodic theorem holds (e.g. for all f ∈ L1

π), and the
average on the left hand side of (1.3) is, for n large enough, a good approximation of the
integral on the right hand side. We will not discuss here the very important practical issue of
how big n should be and other related issues.

In algorithmical practice, it is a standard procedure to start by building a chain which admits
the target measure π as unique invariant measure. This obviously does not ensure that the
chain will converge to π (in whichever sense, see Example 4.1 below) and therefore a significant
amount of literature has been devoted to the study of convergence criteria applicable to MCMC
chains. Reviewing these criteria is beyond the scope of the present paper and we refer the reader
to [14, 22, 34] and references therein. However, for Markov Chains as well as for continuous time
Markov processes, it is still the case that the great majority of the convergence results concern
reversible processes. This is mostly due to the popularity of the Metropolis-Hastings algorithm,
which we introduce in Section 4.1. Before presenting the general algorithm, we start with a
simple example (see [2]).

Example 4.1. Suppose we want to sample from a measure π defined on a finite state space S.
In order to do so, we shall construct a Markov Chain xn that converges to π, in the sense that
if p(x, y) are the transition probabilities of the Markov chain xn then we want

lim
n→∞

pn(x, y) = π(y) . (4.1)

With the intent of constructing xn (or, equivalently, p(x, y)) we can proceed as follows. Let
q(x, y) be a an arbitrary transition probability on S. Suppose the transition matrix Q =
(q(x, y))(x,y)∈S is symmetric and irreducible. Given such a Q (usually called proposal transi-
tion matrix) and a probability distribution π(x) on S such that π(x) > 0 for all x ∈ S, let us
now construct a new transition matrix P = (p(x, y)) as follows :

p(x, y) =


q(x, y) if π(y) ≥ π(x) and x 6= y

q(x, y)π(y)
π(x) if π(y) < π(x) and x 6= y

1−
∑

x 6=y p(x, y) otherwise.

(4.2)

It is easy to check that the matrix P = (p(x, y)) constructed in this way is an irreducible
transition matrix. 11 Being the state space finite, this also implies that P is recurrent and
that there exists a unique stationary distribution. We can easily show that such an invariant

11Meaning that the whole state space is irreducible under P ; this implies that the state space is also closed
under P (here we mean closed in the sense of Markov Chains; that is, we say that a set A of the state space is
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distribution is exactly π as P is reversible with respect to π in the sense (2.4). (2.4) is obviously
true when x = y. So suppose x 6= y and π(y) ≥ π(x). Then, by construction, π(x)p(x, y) =
π(x)q(x, y) but also π(y)p(y, x) = q(y, x)[π(x)/π(y)]π(y) so that using the symmetry of q we get
π(y)p(y, x) = q(x, y)π(x) and we are done. If π(y) < π(x) we can repeat the above with roles of
x and y reversed. We are left with proving that the chain xn with transition matrix P converges
to π. We show in Appendix that convergence (in the sense (4.1)) happens for any proposal Q
unless π is the uniform distribution on S (see Lemma A.1). This is just to highlight, on a simple
example where calculations can be easily made by hand, that the convergence of the scheme can
depend on the target measure and not only on Q. More complex (and meaningful) examples on
this point can be found in [33]. �

The procedure (4.2) can be expressed as follows: given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) calculate

α(xn, yn+1) := min

{
1,
π(yn+1)

π(xn)

}
(4.3)

(3) set Xn+1 =

{
yn+1 with probability α(xn, yn+1)
xn otherwise.

In practice, if U [0, 1] is the uniform distribution on [0, 1], the algorithm that realizes the above
is

Algorithm 4.1. Given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) generate u ∼ U [0, 1];
(3) if u < π(yn+1)/π(xn) then Xn+1 = yn+1; otherwise Xn+1 = xn.

In words, given the state of the chain at time n, we pick the proposal yn+1 ∼ q(xn, ·). Then
the proposed move is accepted with probability α (4.3). If it is rejected, the chain remains where
it was. For this reason α(x, y) is called the acceptance probability.

Algorithm 4.1 is a first example of a Metropolis-Hastings algorithm. Intuitively, it is clear
why we always accept moves towards points with higher probability. We anyway make the
obvious remark that if we want to construct an ergodic chain (in the sense (1.3)) with invariant
probability π then the time spent by the chain in each point y of S needs to equal, in the long
run, the probability assigned by π to y, i.e. π(y). So we have to accept more frequently points
with higher probability.

4.1. Metropolis-Hastings algorithm. Throughout this section our state space is RN . For
simplicity we will assume that all the measures we use have a density with respect to the
Lebesgue measure, so π(x) will be the density of π and e.g. q(x, y) will denote the density of
the proposal q(x, ·). A very nice presentation of the theory underlying the M-H algorithm in
general state space can be found in [37].

A Metropolis-Hastings (M-H) algorithm is a method of constructing a time-homogeneous
Markov chain or, equivalently, a transition kernel p(x, y), that is reversible with respect to a
given target distribution π(x). To construct the π-invariant chain Xn we make use of a proposal
kernel q(x, y) which we know how to sample from and of an accept/reject mechanism with
acceptance probability

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
. (4.4)

closed if whenever x ∈ A and y is accessible from x then also y belongs to A. For a precise Definition see [10,
page 246])
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For simplicity we require that π(y)q(y, x) > 0 and π(x)q(x, y) > 0. The M-H algorithm consists
of two steps:

Algorithm 4.2 (Metropolis-Hastings algorithm). Given Xn = xn,

(1) generate yn+1 ∼ q(xn, ·);
(2) calculate α(xn, yn+1) according to the prescription (4.4)

(3) set Xn+1 =

{
yn+1 with probability α(xn, yn+1)
xn otherwise.

Lemma 4.1. If α is the acceptance probability (4.4),(and assuming π(y)q(y, x) > 0 and π(x)q(x, y) >
0) the Metropolis-Hastings algorithm, Algorithm 4.2, produces a π- invariant time-homogeneous
Markov chain. 12

Proof. A proof of this fact can be found in [37]. �

Remark 4.1. In order to implement Algorithm 4.2 we don’t need to know the normalizing
constant for π, as it gets canceled in the ratio (4.4). However we do need to know the normalizing
constant for q: q is a transition probability so by definition for every fixed x the function
y → q(x, y) is a probability density i.e. it integrates to one. However the normalizing constant
of q(x, ·) can, and in general will, depend on x. In other words, q(x, y) will in general be of the
form q(x, y) = Z−1

x q̃(x, y), with
∫
dy q̃(x, y) = Zx so that the ratio in the acceptance probability

(4.4) can be more explicitly written as

α(x, y) = min

{
1,
π(y)Zxq̃(y, x)

π(x)Zy q̃(x, y)

}
.

Clearly, if the proposal kernel is symmetric, q(x, y) = q(y, x), then there is no need to know the
normalizing constant for q, as the above expression for α reduces to (4.3). This is a big appeal
of algorithms with symmetric proposals, such as Random Walk Metropolis, which we introduce
below. �

Remark 4.2. Let us repeat that M-H is a method to generate a π-reversible time-homogeneous
Markov chain. As we have already noticed, the fact that the chain is π-reversible does not imply
that π is the only invariant distribution for the chain or even less that the chain converges to
π. The matter of convergence of the chain constructed via M-H is probably better studied case
by case (i.e. depending on the proposal we decide to use and on the target measure that we are
trying to sample from). Some results concerning convergence of the chain can be found in [22,
Chapter 20] and references therein or in [32, 33]. �

4.1.1. Random Walk Metropolis (RWM). A very popular M-H method is the so called Random
Walk Metropolis, where the proposal yn+1 is of the form

yn+1 = xn + σξn+1, σ > 0;

for the algorithm that is most commonly referred to as RWM, the noise ξ is Gaussian, i.e.
ξ ∼ N (0, σ2) so that q(x, y) ∼ N (x, σ2).13 Therefore the acceptance probability reduces to
α = min{1, π(y)/π(x)}. The case in which the noise ξ is Gaussian has been extensively studied in
the literature, for target measures defined on RN . We stress that the variables ξ1, . . . , ξn, . . . are
i.i.d. random variables, independent of the current state of the chain xn. Therefore the proposal
move doesn’t take into account any information about the current state of the chain or about
the target measure. This is in contrast with the MALA algorithm, Section 4.1.2 below, where

12 Lemma 4.1 can be made a bit more general, see [37].
13 In principle ξ could be chosen to be any noise with density g(x) symmetric with respect to the origin,

g(x) = g(|x|).
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the proposal move incorporates information about the target. This makes RMW a more naive
algorithm than MALA.

Moreover, RWM is not immune to the curse of dimensionality: the cost of the algorithm
increases with the dimension N of the state space in which it is implemented. Simply put:
sampling from a measure that is defined on RN is more expensive than sampling from a measure
defined on RN−1. Here by cost of the algorithm we mean the number of MCMC steps needed in
order to explore the state space in stationarity. In order to ameliorate this problem, it is crucial
to choose the proposal variance appropriately. In RN it is customary to consider σ2 = cN−γ

where c, γ > 0 are two parameters to be appropriately tuned, the most interesting of the two
being γ. If γ is too large then σ2 is too small, so the proposed moves tend to stay close to
the current value of the chain and the state space is explored very slowly. If instead γ is too
small, more precisely smaller than a critical value γc, the average acceptance rate decreases very
rapidly to zero as N tends to infinity. This means that the algorithm will reject more and more
as N increases. It was shown in the seminal paper [31] that the choice γ = 1 is the one that
optimally compromises between the need of moving far enough away from the current position
and the need of accepting frequently enough.

4.1.2. Metropolis Adjusted Langevin Algorithm (MALA). Consider the first order Langevin equa-
tion

dXt = −∇V (Xt)dt+
√

2β−1dWt (4.5)

where Xt ∈ Rd, V (x) is a confining potential and Wt is a d-dimensional standard Brownian
motion. β > 0 is a parameter (typically β−1 is the temperature) which from now on we fix to
be equal to one, β = 1. This dynamics is ergodic; the (unique) invariant measure has a density,
ρ(x), explicitly given by

ρ(x) =
e−V (x)

Z
, (4.6)

where Z is the normalizing constant. Moreover, under the stated assumptions on the potential,
Xt converges exponentially fast to the equilibrium ρ. If we want to sample from measures of the
form (4.6), it is a natural idea to construct a Markov Chain that converges to ρ by discretizing
the continuous-time dynamics (4.5). Unfortunately one can readily see that naive discretizations
can completely destroy the good properties of the dynamics (4.5). Indeed, as pointed out in [32],
suppose we discretize (4.5) by using the Euler scheme with step h; that is, suppose we create a
chain according to

Xn+1 ∼ N (Xn − h∇V (Xn), 2hId), Id = d-dimensional identity matrix.

Suppose your target distribution is Gaussian with zero mean and unit variance (corresponding

to V (x) = |x|2 /2) and choose h = 1. Then Xn ∼ N (0, 2) for every n. So clearly the chain
converges immediately, but to the wrong invariant measure. This is the most drastic example
of what can go wrong. In general when discretizing, the invariance of the target measure is
only approximately preserved. To correct for the bias introduced by the discretization one can
make use of the M-H accept-reject mechanism, which guarantees that the resulting chain will
be reversible with respect to the target measure; in this way we can guarantee that, if the chain
converges, it can only converge to the correct measure. To summarize, the MALA algorithm is
as follows: suppose at step n we are in Xn. From Xn we propose to move to Yn+1

Yn+1 := Xn − h∇V (Xn) +
√

2h ξn+1, ξn+1 ∼ N (0, 1) .

Using (4.4)14 we then accept or reject the move to Yn+1. If Yn+1 is accepted we set Xn+1 = Yn+1,
otherwise Xn+1 = Xn.

14In this case q(x, ·) ∼ N (x− h∇V (x), 2hId)
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We stress again that in the context of the MALA algorithm the accept-reject mechanism can
be seen as a way of properly discretizing the first order Langevin dynamics. The resulting chain
is reversible with respect to the target distribution. Finally, also the MALA algorithm sufferes
from the curse of dimensionality.

4.2. Sampling measures defined on infinite dimensional spaces. As in Section 3.1, let
H be a separable Hilbert space. Throughout the remainder of the paper we assume that C
is a bounded, positive and symmetric operator on H with associated eigenvalues {λ2

j}j∈N and

orthonormal eigenvectors {ϕj}j∈N, that is

Cϕj = λ2
jϕj .

We will also assume that C is trace class 15 and that for some κ > 1/2 we have

λj � j−κ.16

The next two algorithms that we present are aimed at sampling from measures on the space H,
in particular from measures of the form

dπ(q) ∝ e−Φ(q)dπ0(q), 17 π0 ∼ N (0, C), q ∈ H. (4.7)

That is, the measure π that we want to sample from is a change of measure from the underlying
Gaussian π0. By the Bayesian point of view, (4.7) can be interpreted to be a posterior measure,
given prior π0 and likelyhood Φ. More details on the functional setting and in general on the
material of this section can be found e.g. in [4, 36]. For background reading on Gaussian
measures on infinite dimensional spaces see [7]. It is natural to wonder why we would want to
sample from a measure that is defined on an infinite dimensional space. We explain this fact
with an example.

Example 4.2 (Conditioned Diffusions). Consider the Langevin equation (4.5) in a double well
potential. That is, V (x) is confining and has two minima, say x− and x+. Suppose we are
interested only in the paths Xt that satisfy (4.5), together with X(0) = x− and X(1) = x+. It is
well known that, at least for low temperatures, if we start the path in x−, the jump to the other
potential well is a rare event, so just simulating (4.5) subject to the initial condition X(0) = x−

does not sound like a good idea. The approach that we want to present here is the following:
one can prove that the measure on path space (i.e. on L2[0, 1]) induced by the diffusion (4.5),
with X(0) = x− and X(1) = x+, is indeed of the form (4.7) [36, Section 3.8 and references
therein]. Sampling from such a measure means extracting information from the desired paths.
�

If we want to sample from π by using the MCMC approach, then we need to construct a chain
xn, defined on H, {xn} ⊂ H, such that π is the only invariant measure of xn and xn converges to
π as well. In other words, we need to construct an algorithm that is well defined on the infinite
dimensional space H. Assume we have been able to find such an algorithm. It is clear that in
computational practice we cannot use the infinite dimensional algorithm directly. So instead of
using the chain xn, we will use the chain xNn , which is obtained by projecting each element of xn
on the space HN . Therefore {xNn } ⊂ RN . One can prove that the chain obtained in this way, as
projection of an infinite dimensional algorithm, does not suffer from the curse of dimensionality.
For example, the RWM algorithm suffers from the curse of dimensionality (and it is in fact not

15We recall that a bounded, positive and symmetric operator on a Hilbert space is trace class if∑∞
k=1〈Cϕk, ϕk〉 <∞.
16The notation � means : there esist two positive constants c1, c2 > 0 such that c1j

−κ ≤ λj ≤ c2j−κ.
17We use the symbol “∝” to mean “proportional to”, i.e. the LHS is equal to the RHS for less than a

multiplicative constant.
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well defined in infinite dimension). However it can be modified in such a way that the resulting
algorithm is well defined in H; such a modification is the pre-conditioned Crank-Nicolson (pCN)
algorithm (see [36]). It is also possible to prove that while the spectral gap of the RWM chain
tends to 0 as N →∞, the spectral gap of pCN does not, see [16].

4.3. Hybrid Monte Carlo. In view of the previous section, we will describe a version of the
HMC algorithm which is adapted to sampling from measures of the form (4.7) and is well
defined in infinite dimension [5]. A very nice introduction to HMC can be found in [26]. The
basic principle behind HMC is relatively simple: in order to sample from the measure π defined
on H we will create a Markov Chain (qk, vk) ∈ H × H that samples from the measure Π, on
H×H, defined as follows:

dΠ(q, v) ∝ dπ(q)dπ0(v), π0 ∼ N (0, C).

Notice that the measure Π is the product of our target measure with a Gaussian measure (in
the v component). So effectively, in the long run, the only component of the chain that we will
be interested in is the first one, which is the one that will be converging to π. The measure Π
can be more explicitly written as

dΠ(q, v) ∝ e−Φ(q)dπ0(q)dπ0(v), π0 ∼ N (0, C).

If we introduce the Hamiltonian

H(q, v) =
1

2
〈v, C−1v〉+

1

2
〈q, C−1q〉+ Φ(q), (4.8)

then one has
dΠ(q, v) ∝ e−H(q,v).

The Hamiltonian flow associated with the Hamiltonian function (4.8) can be written as

F t :

{
q̇ = v
v̇ = −q − C∇Φ(q) .

The Hamiltonian flow F t preserves functions of the Hamiltonian and, at least in finite dimen-
sions, the volume element dqdv. It therefore preserves the measure Π. For this reason it is a
natural idea to think of using a time-step discretization of the Hamiltonian flow as a proposal
move to create the chain (qk, vk). However, like in the MALA case, we still need to discretize
the flow F t. We discretize the Hamiltonian flow by “splitting” it into its linear and non-linear
part, i.e. by using the Verlet integrator. The Verlet integrator is defined as follows: let Rt and
Θt be the flows associated with the following ODEs:

Rt :

{
q̇ = v
v̇ = −q Θt :

{
q̇ = 0
v̇ = −C∇Φ(q)

(4.9)

and let
χτ := Θτ/2 ◦Rτ ◦Θτ/2 . (4.10)

A time step discretization (of size h) of the flow F t is then given by

χhτ = χτ ◦ · · · ◦ χτ
[
h

τ

]
times. (4.11)

We now have all the notation in place to introduce the HMC algorithm. Suppose at time k the
first component of the chain is in qk. Then

(1) pick vk ∼ N (0, C);
(2) compute

(q∗k+1, v
∗
k+1) = χtτ (qk, vk),

and propose q∗k+1 as next move;
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(3) calculate the acceptance probability αk, according to

αk = 1 ∧ e−(H(χtτ (qk,vk))−H(qk,vk)); (4.12)

(4) set qk+1 = q∗k+1 with probability α. Otherwise qk+1 = qk.

Remark 4.3. Some comments are in order:

• Notice that at each step the component vk is sampled independently from qk. If the
velocity variable was not resampled, the algorithm would be stuck in areas with approx-
imately the same probability.
• If H is infinite dimensional, the Hamiltonian function (4.8) is almost surely infinite.

However in order for the algorithm to be well defined, all we need is for the difference
(H(χtτ (qk, vk))−H(qk, vk) appearing in (4.12) to be finite. This is indeed the case (and
the choice of integrator was in fact driven by the need to satisfy this requirement [5]).
• The generated chain is reversible with respect to the target density function.
• The above algorithm is well posed in infinite dimension i.e. for (q, v) ∈ H ×H.

�

5. An irreversible MCMC algorithm: the SOL-HMC

We now want to construct an MCMC algorithm which results from appropriately discretizing
the Second Order Langevin equation. The algorithm that we will present has been introduced in
[23] and can be understood as a generalization of [17]. In order to carry out such a discretization
we will make use of a modification of the HMC algorithm which we have just presented. Again,
we want to sample from a measure π of the form (4.7). First of all, let us rewrite the SOL
equation in a way adapted to our context

dq = v dt

dv = [−q − C∇Φ(q)] dt− v dt+
√

2CdWt .
(5.1)

Equation (5.1)is well posed in an infinite dimensional context [23], it is ergodic and it admits
our target π as unique invariant measure. Again, like for the MALA algorithm, if we discretize
the equation naively we risk to destroy all the good properties of the dynamics. In particular, if
we were to discretize and then use the Metropolis-Hastings accept-reject mechanism, we would
end up with a chain that does sample from the correct measure, but such a chain would be
reversible. What we want to do here instead is to discretize the irreversible Markov dynamics
(5.1) in such a way to produce an irreversible chain. It is clear that in order to do so we will
have to leave the comfort of the Metropolis-Hastings setting.

In order to present the SOL-HMC algorithm, we first need to introduce the numerical inte-
grator that we will use. To integrate (5.1) numerically, we construct an integrator which takes
advantage of the structure of the equation highlighted in Section 3.1. Namely, we look again at
the splitting “Hamiltonian + OU process”. Recall the definition of the flows Rt, Θt, equation
(4.9), and define Ot, to be the map that gives the solution at time t of the system

Ot :

{
q̇ = 0

v̇ = −v dt+
√

2CdWt

Let χτ and χhτ be defined as in (4.10) and (4.11), respectively. For given positive parameters h
and δ (to be appropriately tuned), the proposal move and acceptance probability of the SOL-
HMC algorithm are then given by

(q∗, v∗) = (χhτ ◦ Oδ)(q, v) (5.2)

and
α = 1 ∧ e−[H(q∗,v∗)−H(Oδ(q,v))], (5.3)
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respectively. With this notation in place, the SOL-HMC algorithm proceeds as follows:

(1) given (qk, vk), let

(q′k, v
′
k) = Oδ(qk, vk)

and propose

(q∗k+1, v
∗
k+1) = (χuτ )(q′k, v

′
k);

(2) calculate the acceptance probability αk, according to (5.3);
(3) set

(qk+1, vk+1) =


(q∗k+1, v

∗
k+1) with probability α

Oδ(qk,−vk) with probability 1− α .
In words: if at step k we are in (qk, vk), we first calculate (q′k, v

′
k) (notice that q′k = qk). Then

we propose a move to (q∗k+1, v
∗
k+1). If the move is accepted then (qk+1, vk+1) = (q∗k+1, v

∗
k+1).

Otherwise we change the sign of the velocity, i.e. we consider (qk,−vk) and evolve for time
δ according to Oδ, so that (qk+1, vk+1) = Oδ(qk,−vk). Notice that in case of rejection of the
proposal (q∗k+1, v

∗
k+1) we do not stay where we started from, i.e. in (qk, vk), but we move to

Oδ(qk,−vk).

Remark 5.1. Again, let us make a few observations about the algorithm.

• The relevant energy difference here isH(q′, v′)−H(q∗, v∗) (rather thanH(q, v)−H(q∗, v∗));
indeed the first step in the definition of the proposal (q∗, v∗), namely the OU process
Oδ(q, v), is based on an exact integration and preserves the desired invariant measure.
Therefore the accept-reject mechanism (which is here only to account for the numeri-
cal error made by the integrator χhτ ) doesn’t need to include also the energy difference
H(q, v)−H(q′, v′).
• The flip of the sign of the velocity in case of rejection of (q∗, v∗) is there to guarantee

that the overall proposal moves are symmetric. This is done in order to ensure that the
acceptance probability can be defined only in terms of the ratio Π(q∗, v∗)/Π(q′, v′), i.e.
in terms of the energy difference H(q′, v′)−H(q∗, v∗). An interesting discussion on the
matter can be found in [20, Chapter 2].
• The algorithm is well posed in finite as well as in infinite dimension.
• Most importantly, the algorithm produces an irreversible chain. How did we lose re-

versibility? The important observation that this algorithm is based on is the following
[26]: detailed balance is not preserved under composition. That is, if we consider a
Markov transition kernel, say r, resulting from the composition of transition kernels,
each of them satisfying detailed balance, r does not, in general, satisfy detailed balance
as well. In the same way, each step of the SOL-HMC algorithm satisfies detailed balance;
however their composition does not. �

Beyond [17, 23] the only other MCMC irreversible algorithms that we know of are [6, 8] (see
also references therein). The advantages of irreversibility by the point of view of asymptotic
variance have also been investigated in [9, 28, 29].

Acknowledgments. The author is grateful to the anonymous referee for very useful com-
ments that helped improving the paper.

Appendix A.

Lemma A.1. With the setting and assumptions of Example 4.1, if π is not the uniform dis-
tribution then the chain xn with transition probabilities p(x, y) defined in (4.2) converges in the
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sense (4.1) to the target distribution π for any choice of the (irreversible and symmetric) pro-
posal matrix Q. If π is the uniform distribution then convergence may happen or not, depending
on Q.

Proof. (See [2] for more details on this proof) The proof is quite simple so we only sketch it. A
time-homogeneous Markov Chain (MC) on a finite state space S is said to be regular if there
exists a positive integer k > 0 such that pk(x, y) > 0 for all x, y ∈ S. Clearly a regular MC is
irreducible. It is easy to prove the following: if for any x and y in S there exists an integer n > 0
such that pn(x, y) > 0 and there exists a ∈ S such that p(a, a) > 0 then the chain is regular.
(Notice that k is independent of x and y whereas n = n(x, y) i.e. it depends on the choice of x
and y.) A standard result in the basic theory of MCs states that if xn is a regular chain on a
finite state space then the chain has exactly one stationary distribution, π, and

lim
n→∞

pn(x, y) = π(y), for all x and y ∈ S. (A.1)

With these premises, and assuming that π is not the uniform distribution on S, we want to
show that the chain with transition matrix P is regular. Recall that Q is irreducible hence P
is irreducible as well, therefore it is true that for all x, y there exists n = n(x, y) > 0 such that

pn(x,y)(x, y) > 0. Therefore we only need to find a state a ∈ S such that p(a, a) > 0. Let M be
the set M = {x ∈ S : π(x) = maxy∈S π(y)}. Because Q is irreducible there exist a ∈ M and
b ∈M c such that q(a, b) > 0 and clearly by construction π(a) > π(b). Notice also that from the
definition of P , p(x, y) ≤ q(x, y) for all x 6= y. Then

p(a, a) = 1−
∑
x 6=a

p(a, x) = 1−
∑
x 6=a,b

p(a, x)− p(a, b)

≥ 1−
∑
x 6=a,b

q(a, x)− q(a, b)π(b)/π(a)

= 1−
∑
x 6=a

q(a, x) + q(a, b) [1− π(b)/π(a)]

= q(a, a) + q(a, b) [1− π(b)/π(a)] ≥ q(a, b) [1− π(b)/π(a)] > 0.

On the other hand if π(x) is the uniform distribution on S then p(x, y) = q(x, y) so, because
q(x, y) is symmetric, detailed balance is still satisfied so π is still invariant 18. However if q(x, y)
is periodic then convergence in the sense (A.1) does not take place. (However ergodic averages
will still converge). �
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