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NON-STATIONARY PHASE OF THE MALA ALGORITHM
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The Metropolis-Adjusted Langevin Algorithm (MALA) is a Markov
Chain Monte Carlo method which creates a Markov chain reversible
with respect to a given target distribution, 7V, with Lebesgue den-
sity on RY; it can hence be used to approximately sample the target
distribution. When the dimension N is large a key question is to de-
termine the computational cost of the algorithm as a function of N.
One approach to this question, which we adopt here, is to derive dif-
fusion limits for the algorithm. The family of target measures that we
consider in this paper are, in general, in non-product form and are of
interest in applied problems as they arise in Bayesian nonparametric
statistics and in the study of conditioned diffusions. In particular,
we work in the setting in which families of measures on spaces of
increasing dimension are found by approximating a measure on an
infinite dimensional Hilbert space which is defined by its density with
respect to a Gaussian. Furthermore, we study the situation, which
arises in practice, where the algorithm is started out of stationarity.
We thereby significantly extend previous works which consider either
only measures of product form, when the Markov chain is started out
of stationarity, or measures defined via a density with respect to a
Gaussian, when the Markov chain is started in stationarity. We prove
that, in the non-stationary regime, the computational cost of the al-
gorithm is of the order N2 with dimension, as opposed to what is
known to happen in the stationary regime, where the cost is of the
order N/3.

1. Introduction. Metropolis-Hastings algorithms are popular MCMC methods used to sample
from a given probability measure, referred to as the target measure. The basic mechanism consists of
employing a proposal transition density ¢(z,y) in order to produce a reversible chain {xk}i‘;o which
has the target measure 7 as invariant distribution [Tie98]. At step k of the chain, a proposal move
y* is generated by using q(x,%), i.e. y¥* ~ q(z¥,-). Then such a move is accepted with probability
oz, y*):

m(y*)q(y*, =*) }

m(2¥)q (2, y¥)

The present paper aims at studying the computational cost of the MALA algorithm, when such
an algorithm is in its non-stationary regime and the measure 7 is in non-product form. We will
first introduce the class of target measures that we consider and then clarify the problem that is
subject of this paper.

Let (H,{-,-),] - ||) be an infinite dimensional separable Hilbert space and consider the measure

(1.1) alzk k) :min{l,
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m on H, defined as follows:

(1.2) AT exp(— W), 7 2 A(0,0).
dmg

That is, 7 is absolutely continuous with respect to a Gaussian measure mg with mean zero and co-
variance operator C. ¥ is some real valued functional with domain H CH,T: H — R. Measures
of the form (1.2) naturally arise in Bayesian nonparametric statistics and in the study of condi-
tioned diffusions [Stul0, HSVWO05]. In Section 2 we will give the precise definition of the space H
and identify it with an appropriate Sobolev-like subspace of H (denoted by H® in Section 2).The
covariance operator C is a positive, self-adjoint, trace class operator on H, with eigenbasis {)\?, ¢j}:

(1.3) Coj = Nigj, VjeN,

and we assume that the set {¢;},en is an orthonormal basis for #.
We will analyse the MALA algorithm designed to sample from the finite dimensional projections
7V of the measure (1.2) on the space

(1.4) 1D XN = span{¢;})L,

spanned by the first N eigenvectors of the covariance operator. Notice that the space X is iso-
morphic to RY. To clarify this further, we need to introduce some notation. Given a point = € #,
PN () is the projection of = onto the space X*; with slight abuse of notation, we will also denote
UN(z) := U(PN(z)) and Cy will be, effectively, an N x N diagonal matrix with i-th diagonal
component equal to )\?. More formally,

(1.5) UV =T oPN and Cy:=PNoCoPV.
With this notation in place, our target measure is the measure 7V (on XV =2 R") defined as

dmN

W(I) = M\I}Ne_\IIN(m), 7T(J)V ~ N(O,CN),
0

(1.6)

where My~ is a normalization constant. Notice that the sequence of measures {7V} yen approxi-
mates the measure 7 (in particular, the sequence {ﬂ'N }Nen converges to 7 in the Hellinger metric,
see [Stul0, Section 4] and references therein). In order to sample from the measure 7 in (1.6), we
will consider the MALA algorithm with proposal

(L7) g = 2N 1 5V log nV (2HY) + V25 0 PR,
where

N
N =SNG, &R N(0,1) iid,
=1

and & > 0 is a positive parameter. Roughly speaking, for any fixed N € N, the MALA algorithm

produces a (N-dimensional) Markov chain {z""}; C X" as follows: if the chain is in z*" at step

k, the algorithm proposes a move to y*V, defined in (1.7). The move is then accepted or rejected

according to the acceptance probability defined in (1.1) (with g(z*",.) the proposal kernel implied

by (1.7), see (3.5)). A detailed description of the algorithm will be given in Section 3. For the time

being it suffices to say that a crucial parameter to be appropriately chosen in order to optimize the
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performance of the algorithm is the proposal variance (or, informally, the ‘jump size’) J appearing
in (1.7). The choice of the proposal variance, and in particular the optimal scaling of § with NV, will
be our main subject of study in this paper. To explain the issue in more detail, set § = ¢ N~¢, where
£ > 0 and ¢ > 0 are positive parameters to be chosen. The latter parameter, (, is the most relevant
to our discussion, so we focus on describing how the performance of MALA is affected by the choice
of ¢. As is well known [RGG97, RR98, JLM15, JLM14], if ¢ is too small (so that ¢ is too big)
then the proposed moves are too far away from the current state and the algorithm tends to reject
them very often, therefore moving slowly (and this is more and more the case as the dimension N
increases). On the other hand, if ¢ is too big (so that the jump size is too small) then the algorithm
will accept the proposed moves more frequently but, because all the moves are close to each other,
the chain will anyway explore the state space slowly and inefficiently. It is therefore clear that one
needs to find the optimal value of ¢ that strikes the balance between these two opposing scenarios
and this is what we mean when we refer to the “optimal” choice of the proposal variance.

When the MALA algorithm is initialised in stationarity (that is, 2% is distributed according to
7V), the optimal choice of scaling for § is known to be § = £/N1/3 (see [PST12, RR98] and Section
1.1 for a more careful literature comparison). In the present paper we prove that, if the algorithm
is started out of stationarity, then, in the non-stationary regime, the optimal choice of scaling is
given by

0= —.
VN
We fix the above choice of § throughout the paper, unless otherwise stated. We will make further
comments on this point and on related literature in Section 1.1. We now come to explain the main
result of the paper.

Using the proposal (1.7) we construct the Metropolis-Hastings chain {z%"},cy and consider the

continuous interpolant

k

(1.8) 2™ (t) = (N2t — k)2 N 4 (k+1 — NY2)aPN | 4 <t < tpqy, where t), = Nz

The main result of this paper is the diffusion limit for the MALA algorithm, which we informally
state here. The precise statement of such a result is given in Theorem 5.2 (and Section 5 contains
heuristic arguments which explain how such a result is obtained). Below C([0,T];H) denotes the
space of H-valued continuous functions on [0, T], endowed with the uniform topology; oy, hy and by

are real valued functions, which we will define immediately after the statement, and x?’N denotes

the j-th component of the vector 28" € XV with respect to the basis {¢1,...,éx} (more details
on this notation are given in Subsection 2.1.)

Main Result. Let {z%"};cn be the Metropolis-Hastings Markov chain to sample from = and

constructed using the MALA proposal (1.7) (i.e. the chain (3.8)). Then, for any deterministic
initial datum 2% = PN (20), where 2° is any vector in H, the continuous interpolant =N defined

in (1.8) converges weakly in C([0,T];H) to the solution of the SDE

(1.9) da(t) = —he(S(t))[z(t) + CV U (x(t))] dt + /2he(S(t)) dW (t), 2(0) = Y,
where S(t) € Ry :={s € R:s >0} solves the ODE
]

2
Aj

o1&
(1.10) dS(t) = be(S(t)dt,  S(0) = lim N;

N—o0
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In, the above the initial datum S(0) is assumed to be finite and W (t) is a H-valued Brownian motion
with covariance C. !

The functions oy, hy, by : R — R in the previous statement are defined as follows:

(1.11)
(1.12)

(1.13)

RE

ar(s) =1A el (s=1)/2
hy(s) = Lay(s)

be(s) = 20(1 — s) (1 A efz(sfl)ﬂ) = 2(1 — s)hy(s).

MARK 1.1.  'We make several remarks concerning the main result.

Since the effective time-step implied by the interpolation (1.8) is N ~1/2 the main result
implies that the optimal scaling for the proposal variance when the chain is in its non-
stationary regime is § o« N~/2. More comments on this fact can be found in Section 5.
Notice that equation (1.10) evolves independently of equation (1.9). Once the MALA algo-
rithm (3.8) is introduced and an initial state 2° € # is given such that S(0) is finite, the real
valued (double) sequence S*%,

2
€T.:

N
1
1.14 N = —

0,N |2
started at SV := % Zf\il ’x")\g | is well defined. For fixed N, {S®"}, is not, in general, a

Markov process (however it is Markov if e.g. ¥ = 0). Consider the continuous interpolant
SIN)(t) of the sequence S¥V, namely

kN
KA

(1.15) S (1) = (NY2t — k) SN L (k+1 — NY20) 88N | ) <t < tyyq, tg = \/]%

In Theorem 5.1 we prove that SN)(t) converges in probability in C([0,T];R) to the solution
of the ODE (1.10) with initial condition Sp := limy_sc0 Sév. Once such a result is obtained,
we can prove that (V) (t) converges to z(t). We want to stress that the convergence of StV)(t)
to S(t) can be obtained independently of the convergence of 2N (t) to z(t).

Let S(t) : R — R be the solution of the ODE (1.10). We will prove (see Theorem 4.1) that
S(t) — 1 as t — oo. With this in mind, notice that hy(1) = ¢. Heuristically one can then
argue that the asymptotic behaviour of the law of x(t), the solution of (1.9), is described by
the law of the following infinite dimensional SDE:

(1.16) dz(t) = —0(z + CVU(2)) + V20dW (1).

It was proved in [HSVWO05, HSV07] that (1.16) is ergodic with unique invariant measure given
by (1.2). Our deduction concerning computational cost is made on the assumption that the
law of (1.9) does indeed tend to the law of (1.16), although we will not prove this here as it
would take us away from the main goal of the paper which is to establish the diffusion limit
of the MALA algorithm.

!The operator that here we denote generically by C, to avoid getting in too much notation at this stage, will be
more clearly defined in Section 2 and there denoted by Cs. More precisely, as we will explain, W (¢) is a Brownian
motion with covariance Cs, see Section 2, in particular (2.5) and (2.4).
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1.1. Related Literature. In the present paper we consider target measures in non-product form,
when the chain is started out of stationarity. When the target measure is in product form, a diffusion
limit for the resulting Markov chain was studied in the seminal paper [RGG97]. The work [RGG97]
is carried out under the following two assumptions: i) the chain is started in stationarity; ii) the
target measure p (on RY) is of the form

(1.17) p(z) = Hf\ile_v(zf'v), 2N o= (@, 2l) e RY.

In the above the potential V' : R — R is such that the measure p is normalized to be a probability
measure. Under such assumptions it was shown that the optimal scaling of the proposal variance
is 6~ N1/3 leading to the conclusion that, in stationarity, O (N 1/ 3) steps are required to explore
the target distribution. In [CRRO05] the same question was addressed in the case where the chain is
started out of stationarity and p is the density of a standard i.i.d. Gaussian, i.e. p ~ N (0, Iy), where
Iy is the N-dimensional identity matrix. For this Gaussian i.i.d. case the authors prove that the
optimal scaling is given by 6§ = ¢/N°¢ with ¢ = 1/3 if we start in stationarity and ¢ = 1/2 if we start
out of stationarity. The intuition behind the choice of scaling that we make in this paper is indeed
dictated by the results of [CRR05] and the diffusion limit that we prove for SV) can be seen as a
generalization of [CRR05, Lemma 4]. In this paper we show that the same holds also for the more
general non-product target (1.6) (more remarks on this point will be made in Section 5.1). Recently
the papers [JLM15, JLM14] made the significant extension of considering the product case (1.17)
for quite general potentials V', again out of stationarity. In such works the authors prove that, in
the non-stationary regime, the optimal scaling for the MALA proposal will depend, in general, on
the potential V. Again recently, diffusion limits for MALA started in stationarity have also been
considered for measures in non-product form in [PST12], using families of target measures found by
approximating (1.2), as we consider in this paper; once again the conclusion is that, in stationarity,
O(N 1/ 3) steps are required to explore the target distribution. In the present paper we combine
the settings of [PST12] and [JLM15] and make a further significant extension of the analysis to
consider measures in non-product form, when the chain is started out of stationarity, showing that
the optimal scaling of the jump size is 6 «« N~/2 in the transient regime.

We do not describe here in detail the relation between our results and the results of [JLM15,
JLM14]. We just mention that in [JLM15] the diffusion limit for the MALA algorithm started
out of stationarity and targeting measures of the form (1.17) is given by a non-linear equation of
McKean-Vlasov type. This is in contrast with our diffusion limit, which is an infinite-dimensional
SDE. The reason why this is the case is discussed in detail in [KOS16, Section 1.2]. The discussion
in the latter paper is referred to the Random Walk Metropolis algorithm, but it is conceptually
analogous to what holds for the MALA algorithm and for this reason we do not spell it out here.

We mention for completeness that the non stationary case has also been considered in [PST14,
OPPS16], for the pCN (preconditioned Crank-Nicolson) algorithm and for the SOL-HMC (Second
Order Langevin - Hamiltonian Monte Carlo) scheme, respectively. These algorithms are well-defined
in the infinite dimensional limit and hence do not require a scaling of the time-step which is inversely
proportional to a power of the dimension.

1.2. Structure of the paper. The paper is organized as follows. In Section 2 we introduce the
notation that we will use in the rest of the paper and the assumptions on the functional ¥ and on
the covariance operator C. In Section 3 we present in more detail the MALA algorithm. Section
4 contains the proof of existence and uniqueness of solutions for the limiting equations (1.9) and
(1.10). With these preliminaries in place, we give, in Section 5, the formal statement of the main
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results of this paper, Theorem 5.1 and Theorem 5.2. In Section 5 we also provide heuristic arguments
to explain how the main results are obtained. Such arguments are then made rigorous in Section 7,
Section 8 and Section 9. In particular, Section 7 contains preliminary estimates and the analysis of
the acceptance probability; Section 8 and Section 9 contain the proof of Theorem 5.1 and Theorem
5.2, respectively. The continuous mapping argument these proofs rely on is presented in Section 6.
The reader who wants to understand how the result is derived, without getting in too many details,
can skip the next three sections and move to Section 5.

2. Notation and Assumptions . In this section we detail the notation and the assumptions
(Section 2.1 and Section 2.2, respectively) that we will use in the rest of the paper.

1. Notation. Let (H,(-,-),| -||) denote a real separable infinite dimensional Hilbert space,
with the canonical norm induced by the inner-product. Let mg be a zero-mean Gaussian measure
on ‘H with covariance operator C. By the general theory of Gaussian measures [DZ92], C is a positive,
trace class operator. Let {¢;, )\? }j>1 be the eigenfunctions and eigenvalues of C, respectively, so that
(1.3) holds. We assume a normalization under which {¢;};>1 forms a complete orthonormal basis
of H. Recalling (1.4), we specify the notation that will be used throughout this paper:

e x and y are elements of the Hilbert space H;

e the letter N is reserved to denote the dimensionality of the space X~ where the target measure
7N is supported;

e 2V is an element of XV = RN (similarly for y" and the noise ¢VV);

e for any fixed N € N, 2% is the k-th step of the chain {z""},cny € XV constructed to sample
from 7?; a:f’N is the i-th component of the vector ¥ that is xk N.= (%N ¢;) (with abuse

of notation).

For every x € H, we have the representation x = ijl xj¢;, where z; := (x,¢;). Using this
expansion, we define Sobolev-like spaces H?®, s € R, with the inner-products and norms defined by

o0 [e.9]
(@y)s =D jPwy; and el =) %4l
j=1 J=1

The space (H?, (-,-)s) is also a Hilbert space. Notice that H° = H. Furthermore H* C H C H~* for
any s > 0. The Hilbert-Schmidt norm || - ||¢ associated with the covariance operator C is defined as

o0

Hx”c—Z)\ZQZZ ; reH,

and it is the Cameron-Martin norm associated with the Gaussian measure N (0,C). Such a norm is
induced by the scalar product

Similarly, Cx defines a Hilbert-Schmidt norm on X%,

2.1) ]2 = Z} ’% L N exV,



which is induced by the scalar product
<37N7yN>CN — <C71/2$N’C71/2yN>, N N c XN

For s € R, let L : H — H denote the operator which is diagonal in the basis {¢;};>1 with diagonal
entries j2°

Ls ¢j = j*¢;,

1
so that Lg ¢; = j°¢;. The operator Ly lets us alternate between the Hilbert space H and the
interpolation spaces H® via the identities:

RN

1 1
(@,y)s = (Liz,L3y)  and |zl = L3z

Since HLs_l/zcka = ||¢x|| = 1, we deduce that {¢y := Ls_l/Q(;Sk}kZl forms an orthonormal basis of

H?®. An element ys ~ N(0,C) can be expressed as
(2.2) y = Z \jpi®j with Pj R N(0,1) ii.d.

If > y )\jz j%% < 00, then y can be equivalently written as

o0

(2.3) =S "L 20 with  p; RN(0,1) iid.

Jj=1

For a positive, self-adjoint operator D : H — H, its trace in H is defined as
o
Tracey (D Z ¢j, Doj).
7j=1

We stress that in the above {¢; } jen is an orthonormal basis for (#, (-, -)). Therefore, if D H5 — He,
its trace in H® is

o0

Traceys(D Z (Ls 2¢], DL 2¢]>

7j=1

Since TraceHs(f)) does not depend on the orthonormal basis, the operator D is said to be trace
class in H® if Traceys(D) < oo for some, and hence any, orthonormal basis of H*. Because C is
defined on H, the covariance operator

(2.4) C, = LY/?cL}/?

is defined on H°. Thus, for all the values of r such that Traceys=(Cs) = _; )\?jQS < 00, we can think
of y as a mean zero Gaussian random variable with covariance operator C in ‘H and Cs in H*® (see
(2.2) and (2.3)). In the same way, if Traceys(Cs) < oo, then

(2.5) waj )pj = 2)\]] w;(t)o;,
7



where {w;(t)};>1 a collection of i.i.d. standard Brownian motions on R, can be equivalently under-
stood as an H-valued C-Brownian motion or as an H%-valued Cs-Brownian motion.
We will make use of the following elementary inequality,

2
o]

(2.6) )P =D G )G 0| <l vl VeeM, yen .
j=1

Throughout this paper we study sequences of real numbers, random variables and functions, indexed
by either (or both) the dimension N of the space on which the target measure is defined or the
chain’s step number k. In doing so, we find the following notation convenient.

e Two (double) sequences of real numbers {A*N} and {B*N} satisfy A*N < BRN if there
exists a constant K > 0 (independent of N and k) such that

Ak,N < KBk’N7

for all N and k such that {A*N} and {B*} are defined.

o If the A¥Ns and B*"s are random variables, the above inequality must hold almost surely
(for some deterministic constant K).

e If the A*Vs and B*"s are real-valued functions on H or H?, A®N = A*N(z) and BHN =
BRN (), the same inequality must hold with K independent of z, for all z where the A*Vs
and B*"s are defined.

As customary, Ry :={s € R:s >0} and for all b € Ry welet [ =nifn <b<n+1 for
some integer n. Finally, for time dependent functions we will use both the notations S(t) and S;
interchangeably.

2.2. Assumptions. In this section we describe the assumptions on the covariance operator C of
the Gaussian measure 7 RN (0,C) and those on the functional ¥. We fix a distinguished exponent
s > 0 and assume that ¥ : H* — R and Traceys(Cs) < co. In other words H? is the space that we
were denoting with A in the introduction. Since

(2.7) Traceys (Cs) = Y A35%,
j=1

the condition Traceys(Cs) < oo implies that A;j® — 0 as j — oo. Therefore the sequence {\;j°};
is bounded:

(2.8) Nt < C,

for some constant C' > 0 independent of j.

For each = € H?* the derivative V¥(z) is an element of the dual L(H?®,R) of H®, comprising the
linear functionals on H*. However, we may identify £(H*,R) = H~* and view V¥(z) as an element
of H™° for each x € H®. With this identification, the following identity holds

H—s‘

IV (@) | 3o ) = IV ()

To avoid technicalities we assume that the gradient of W(z) is bounded and globally Lipschitz.
More precisely, throughout this paper we make the following assumptions.
8



ASSUMPTIONS 2.1.  The functional ¥ and covariance operator C satisfy the following:
1. Decay of Eigenvalues )\g of C: there exists a constant k > % such that
)‘j = j_n.

2. Domain of U: there exists an exponent s € [0,k —1/2) such that U is defined everywhere on
H*.
3. Derivatives of W: The derivative of ¥ is bounded and globally Lipschitz:

(2.9) VU@ s [IV¥(2) - VI, S llz =yl
REMARK 2.2.  The condition ~ > % ensures that Traceys(Cs) < oo for any 0 < s < Kk — %
Consequently, mo has support in H* (mo(H®) = 1) for any 0 < s < k — % g
EXAMPLE 2.3.  The functional ¥(z) = /1 + ||z||? satisfies all of the above. O

REMARK 2.4. Our assumptions on the change of measure (that is, on W) are less general
than those adopted in [KOS16, PST12] and related literature (see references therein). This is for
purely technical reasons. In this paper we assume that ¥ grows linearly. If ¥ was assumed to grow
quadratically, which is the case in the mentioned works, finding bounds on the moments of the
chain {z*"};~; (much needed in all of the analysis) would become more involved than it already
is, see Remark B.1. However, under our assumptions, the measure 7 (or 7V) is still, in general, a
fully non-product measure. g

We now explore the consequences of Assumptions 2.1.

LEMMA 2.5. Let Assumptions 2.1 hold. Then
1. The function CV¥(x) is bounded and globally Lipschitz on H?®, that is

(2.10) ICV¥(2)]l, 1 and  [[CVE(z) = CVE(y)l], S |l —yll, -
Therefore, the function F(z) := —z — CV¥(2) satisfies

|F(z) = F)lly S lle —ylly  and |[F@)|; 1+ [l - (2.11)

s

2. The function ¥(x) is globally Lipschitz and therefore also WN (z) := U(PN(x)) is globally
Lipschitz:

(2.12) [0 (y) — ¥V (@) S [y — =l -

ProOOF. The bounds (2.10) are a consequence of (2.9). We show how to obtain the second bound
in (2.10):

[e.9]

eV () — eV = 3 X (V) - V)]
j=1
= S (V) - V)]
j=1

(2.9) ,
S ”x - y||57

~

SIVE(z) = V()2
9



where in the above we have used (2.8) and (V¥ (z) — VU(y)); denotes the j-th component of the
vector V¥ (x) — VU (y). With analogous calculations one can obtain the first bound in (2.10). As
for the second equation in (2.11):

(2.10)
IE)I S 1zl +1ICVEE)s S 1+ 1Izll,

~

Similarly for the first bound in (2.11). The proof of equation (2.12) is standard, so we only sketch
it: consider a line joining points = and y, y(t) = = + t(y — x),t € [0, 1]. Then

U(v(1)) = ¥(v(0)) = ¥(y) — ¥(x)

1
:/0 dt (VU((1)),y — 2) S [y —

having used (2.9) and (2.6) in the last inequality. An analogous calculation to the above can be
done for UV after proving (2.14) below. O

Before stating the next lemma, we observe that by definition of the projection operator PV we
have that

(2.13) ViV = PN oV o PV,

LEMMA 2.6. Let Assumptions 2.1 hold. Then the following holds for the function W and for
its the gradient:

1. If the bounds (2.9) hold for ¥, then they hold for UV as well:

(2.14) Ve (@) 1, |[VIV(2) - VeV )], Slle -yl

s

2. Moreover,

(2.15) CnVEN (2)|], S 1,
and
(2.16) vV (@)]], S 1.

We stress that in (2.14)-(2.16) the constant implied by the use of the notation “<” (see end of
Section 2.1) is independent of N.

PROOF OF LEMMA 2.6. The bounds (2.14) and (2.15) are just consequences of the definition of
UN and V¥ and the analogous properties of W. For the sake of clarity we just spell out how to
obtain (2.15):

N
CL e PV e PN @)|[F = 3 52N (VU (PN ()]
j=1
00 10

Z 2N V(PN (2) ]?<|ycv\P(PN(x))}|2(2<)1.
; < <

s

lewve (@)}

10



As for (2.16), using (2.8):

ICN VN (2) i [ (VI (2 } < i] [ (Ve a:))jr = VOV ()2, < 1.
=1

Jj=1

We would also like to recall that because of our assumptions on the covariance operator,

2
(2.17) EHC}V/Q&N H <1, uniformly in N,

where ¢V = Z;VZI §j¢; and §; 2 N(0,1) i.d.d., see [MPS12, (2.32)] or [KOS16, first proof of
Appendix A]

3. The algorithm. The MALA algorithm stems from the observation that 7 is the unique
stationary measure of the SDE

(3.1) dY; = Vieg 7™ (Y;)dt + V2dW}

where W is an X"-valued Brownian motion with covariance operator Cy. The algorithm consists
of discretising (3.1) using the Euler-Maruyama scheme and adding a Metropolis accept-reject step
so that the invariance of 7'V is preserved. The MALA algorithm to sample from =¥
Metropolis-Hastings algorithm with proposal

(3.2) g = BN g (P ey N (aRY) ) 4 VaaC P2

is therefore a

where

N
No=N"eNg BN N(0,1) i,
=1

We stress that the Gaussian random variables 5? N are independent of each other and of the current
position 2%V, Motivated by the considerations made in the introduction (and that will be made
more explicit in Section 5.1), in this paper we fix the choice

14

If at step k the chain is at 2%V, the algorithm proposes a move to y*¥ defined by equation (3.2).
The move is then accepted with probability
(3.4) aN(xk,N yk,N) _T yk’N)qN(yk’ka’N)

’ TN (kN gN (kN kN

where, for any ¥,y € RV ~ XV,

(3.5) gV (2N yN) o e 3@ )0V Iogm N @MIZ

2In this paper the proposal move from step k is denoted by v*. In [] it is denoted by y**T1. We flag this up as
the two papers naturally compare. Same observation applies to £* and ~*.
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If the move to y*! is accepted then z*t1N = y&N if it is rejected the chain remains where it was,

ie. 2PN = 28N Tn short, the MALA chain is defined as follows:
(3.6) :Uk—i-l,N — ,yk7Nylc,N + (1 _ ,yk,N)xk,N, .TUO’N — ’PN(xO)
where in the above

(37) 7k7N 2 BernOlllh(OéN(xka’ yk,N>)’

kN ~*N has Bernoulli law with mean o . Equivalently,

yk;,N)7

that is, conditioned on ( N(ahN gk

we can write

kN
Y

= 1{Uk,N§aN(xk,N7yk’,N)}g
with U%N £ Uniform [0, 1], independent of z*" and &+,

For fixed N, the chain {z%"};51 lives in XV = RY and samples from 7V. However, in view of
the fact that we want to study the scaling limit of such a chain as N — oo, the analysis is cleaner if
it is carried out in H; therefore, the chain that we analyse is the chain {2*}; C H defined as follows:
the first N components of the vector z* € H coincide with ¥ as defined above; the remaining
components are not updated and remain equal to their initial value. More precisely, using (3.2) and
(3.6), the chain 2* can be written in a component-wise notation as follows:

14 20
(3.8) $§c+1 — :Eerl’N _ xf,N 7 ,yk,N [Nl/g (l‘f’N + [CNV\IIN(I‘k’N)]i) + N1/ i Sk’N]

fori=1,..., N, while
= gk = 0 on H\ XV,

For the sake of clarity, we specify that [Cy VU™ (2%V)]; denotes the i-th component of the vector
CyVIUN (2FN) € 5. From the above it is clear that the update rule (3.8) only updates the first N
coordinates (with respect to the eigenbasis of C) of the vector z*. Therefore the algorithm evolves
in the finite-dimensional subspace XV. From now on we will avoid using the notation {z*}, for the
“extended chain” defined in H, as it can be confused with the notation z”, which instead is used
throughout to denote a generic element of the space X¥.

We conclude this section by remarking that, if 2%V is given, the proposal 4" only depends on

the Gaussian noise £ . Therefore the acceptance probability will be interchangeably denoted by
o (@, yN) or oM (2, €N).

4. Existence and uniqueness for limiting infinite dimensional SDE. The main results
of this section are Theorem 4.1, Theorem 4.3 and Theorem 4.5. Theorem 4.1 and Theorem 4.3 are
concerned with establishing existence and uniqueness for equations (1.9) and (1.10), respectively.
Theorem 4.5 states the continuity of the It6 maps associated with equations (1.9) and (1.10).
The proofs of the main results of this paper (Theorem 5.1 and Theorem 5.2) rely heavily on the
continuity of such maps, as we illustrate in Section 6.

The proofs of the results of this section are completely analogous to the proofs of the results
of [KOS16, Section 4]. We therefore only sketch them and refer the reader to [KOS16] for more
details.
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THEOREM 4.1.  For any initial datum S(0) € Ry, there exists a unique solution S(t) € R to
the ODE (1.10). Such a solution is strictly positive for any t > 0, it is bounded and has continuous
first derivative for all t > 0. In particular

Mg, 5 =1
and
(4.1) 0 <min{S(0),1} < S(t) < max{S(0),1}.

PROOF. Once the statement of Lemma 4.2 below is proved, the proof of the above theorem is
completely analogous to the proof of [KOS16, Theorem 4.1]. O

We recall that the definition of the functions ay, hy and by has been given in (1.11), (1.12) and
(1.13), respectively.

LEMMA 4.2. The functions ay(s), he(s) and \/h¢(s) are positive, globally Lipschitz continu-
ous and bounded. The function by(s) is globally Lipschitz and it is bounded above but not below.
Moreover, for any £ > 0, by(s) is strictly positive for s € [0,1), strictly negative for s > 1 and
be(1) = 0.

PrROOF OF LEMMA 4.2. When s > 1, ay(s) = 1 while for s < 1 ay(s) has bounded deriva-
tive; therefore ay(s) is globally Lipshitz. A similar reasoning gives the Lipshitzianity of the other
functions. The further properties of by are straightforward from the definition. ]

We now come to existence and uniqueness for equation (1.9), which we rewrite using the notation
of Lemma 2.5 as

da(t) = —he(S(8))F(x(t)) di + v/2he(S(1)) AW (1),

where W(t) is an ‘H®-valued Cs-Brownian motion. The above is intended to mean
t t
(4.2) z(t) = z(0) + / F(z(v))he(S(v))dv + / V' 2he(S(v))dW (v) .
0 0

THEOREM 4.3. Let Assumption 2.1 hold and consider equation (1.9)(or, equivalently, equation
(4.2) ), where W (t) is any H*-valued Cs-Brownian motion and S(t) is the solution of (1.10). Then
for any initial condition x(0) € H® and any T > 0 there exists a unique solution of equation (1.9)
in the space C([0,T); H?).

PrROOF. With the statement of Theorem 4.1 and Lemma 4.2 in place, the proof is completely
analogous to the proof of [KOS16, Theorem 4.3], so we omit it here. O

Consider now the following equation:
(4.3) dz(t) = [—z(t) — CVU(x(t))]he(S(t)) dt + d((2),
where S(t) is the solution of (1.10) and ¢(¢) is any function in C([0, T']; H®). Also, let &(¢) : Ry — R
be the solution of
(4.4) dS(t) = be(S(t)) dt + adw(t),

where w(t) is a real valued standard Brownian motion and a € R4 is a constant. Also, throughout
the paper the spaces C([0,7T]; H®) and C([0,T];R) are assumed to be endowed with the uniform
topology.
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REMARKS 4.4. Before stating the next theorem we need to be more precise about equations
(4.3) and (4.4).

e We consider equation (4.4) (which is (1.10) perturbed by noise) in view of the contraction
mapping argument (explained in Section 6) that we will use to prove our main results. Ob-
serve that (4.4) admits a unique solution, thanks to the Lipschitzianity of b,. Existence and
uniqueness of the solution of (4.3) can be done with identical arguments to those used to
prove existence and uniqueness of the solution to (1.9).

e We emphasize that (4.3) and (4.4) are decoupled as the function S(¢) appearing in (4.3) is
the solution of (1.10). This fact will be particularly relevant in the remainder of this section
as well as in Section 6.1 and Section 6.2.

O

The statement of the following theorem is crucial to the proof of our main result.

THEOREM 4.5.  With the notation introduced so far (and in particular with the clarifications
of Remarks 4.4) let x(t) and &(t) be the solutions of (4.3) and (4.4), respectively. Then, under
Assumption 2.1, the Ité maps

Ji o H x C([0,T); 1) — C([0,T); H* x R)
(w0, C(t)) — ()

and

J2 : Ry x C([0,T|;R) — C([0,T;;R)
(So, w(t)) — &(1)

are continuous maps.
PROOF. Analogous to the proof of [KOS16, Theorem 4.6]. O

5. Statement of main theorems and Heuristics of proofs. In order to state the main
results, we first set

N 2
s s : 1 ’xl‘
(5.1) HE = {:U e H: A}gnooﬁ Z 2 < oo} ,

where we recall that in the above z; := (z, ¢;).

THEOREM 5.1. Let Assumption 2.1 hold. Let 2° € HE and T > 0. Then, as N — oo, the
continuous interpolant SN (t) of the sequence {S*N}en C Ry (defined in (1.15)) and started at
SON = L Zf\il ’x?’Z /A2, converges in probability in C([0,T];R) to the solution S(t) of the ODE
(1.10) with initial datum S° := limpy_,oo SOV,

THEOREM 5.2. Let Assumption 2.1 hold. Let 20 € HE and T > 0. Then, as N — oo, the
continuous interpolant ™) (t) of the chain {a"N}yen € H* (defined in (1.8) and (3.8), respectively)
with initial state 2% := PN (20), converges weakly in C([0,T); H?) to the solution z(t) of equation
(1.9) with initial datum z°. We recall that the time-dependent function S(t) appearing in (1.9) is
the solution of the ODE (1.10), started at S(0) := limy_,o0 Zfil }x?‘Q /A2
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Both Theorem 5.1 and Theorem 5.2 assume that the initial datum of the chains z*% is assigned

deterministically. From our proofs it will be clear that the same statements also hold for random
initial data, as long as i) 2% is not drawn at random from the target measure 7V or from any
other measure which is a change of measure from 7 (i.e. we need to be starting out of stationarity)
and ii) SV and %" have bounded moments (bounded uniformly in N) of sufficiently high order
and are independent of all the other sources of noise present in the algorithm. Notice moreover that
the convergence in probability of Theorem 5.1 is equivalent to weak convergence, as the limit is
deterministic.

The rigorous proof of the above results is contained in Sections 6 to 9. In the remainder of this
section we give heuristic arguments to justify our choice of scaling § o« N~/2 and we explain how
one can formally obtain the (fluid) ODE limit (1.10) for the double sequence S*" and the diffusion
limit (1.9) for the chain z%~. We stress that the arguments of this section are only formal; therefore,
we often use the notation “ ~ ” to mean “approximately equal”’. That is, we write A ~ B when
A = B+ “terms that are negligible” as N tends to infinity; we then justify these approximations,
and the resulting limit theorems, in the following Sections 6 to 9.

5.1. Heuristic analysis of the acceptance probability. As observed in [PST12, equation (2.21)],
the acceptance probability (3.4) can be expressed as

(5.2) aN(xN, §N) =1A eQN(foN),

where, using the notation (2.1), the function Q¥ (z, &) can be written as

1)
(5:3) Q@)= =7 (Il 1ley ~ lle"1le, ) + @™, €%)
(52 2 53
=15 (112, = e )| - 11,
3/2 5/2
(54) - (i/i - 5\/5) <xch]1V/2§N>CN + Tg(xNafN)'

We do not give here a complete expression for the terms 7V (zV, V) and ri (2, V). For the time
being it is sufficient to point out that

NN, Ny =1 + 13

2 _ 83
@Y, eV) = rN<xN,§N> R Al
55/2

\f

where I3 and I} will be defined in (7.10) and (7.11), respectively. Because I3 and I3V depend on
v, rg contains all the terms where the functional ¥ appears; moreover rg vanishes when ¥ = 0.
The analysis of Section 7 (see Lemma 7.5) will show that with our choice of scaling, § = ¢/N1/2,
the terms ¥ and rg are negligible (for N large). Let us now illustrate the reason behind our choice

of scaling. To this end, set § = //N¢ and observe the following two simple facts:

(5.5) HchN )2, + = (VN (2N, e N ey

‘ 2

1 2
=w =)

N
(5.6) RN — ]‘bz
o h



and

(5.7)

N
1/2 N |2
ex?e||, =D ler =N,
=1

the latter fact being true by the Law of Large Numbers. Neglecting the terms containing W, at step
k of the chain we have, formally,

(5.8)

(5.9)

(5.10)

N/ kN ¢k+1,N £2 1-2¢ k,N
QN ("N, g1y o TN (5% -1)
1/2
_ éle?’CSk,N _ %N(lfSC)/Q (xk’NvCN/ & NV)ex
4 V2 VN
1/2
P s (N, ey SN

V2 VN

The above approximation (which, we stress again, is only formal and will be made rigorous in
subsequent sections) has been obtained from (5.4) by setting § = ¢/N¢ and using (5.6) and (5.7),

as follows:
.11) P2, - || ) ] = 69
leV]le, %2
c 1/2
T = s O e = (5.9),
55/2 1/2
—W@N,CN/ V)en = (5.10).
Looking at the decomposition (5.8)-(5.10) of the function @V, we can now heuristically explain the

reason why we are lead to choose ( = 1/2 when we start the chain out of stationarity, as opposed
to the scaling ¢ = 1/3 when the chain is started in stationarity. This is explained in the following
remarks.

RE

MARKS 5.3.  First notice that the expression (5.4) and the approximation (5.8)-(5.10) for

QN are valid both in and out of stationarity, as the first is only a consequence of the definition of
the Metropolis-Hastings algorithm and the latter is implied just by the properties of ¥ and by our
definitions.

If we start the chain in stationarity, i.e. #)Y ~ 7V (where 7V has been defined in (1.6)),
then 8N ~ 7V for every k > 0. As we have already observed, 7V is absolutely continuous
with respect to the Gaussian measure Wév ~ N(0,Cx); because all the almost sure properties
are preserved under this change of measure, in the stationary regime most of the estimates
of interest need to be shown only for 2V ~ 7{¥. In particular if 2V ~ 7}’ then " can be
represented as ¥ = Zi\il \ipi¢i, where p; are i.i.d. N(0,1). Therefore we can use the law
of large numbers and observe that ||xN||g,N = sz\il |pil* ~ N.

Suppose we want to study the algorithm in stationarity and we therefore make the choice
¢ = 1/3. With the above point in mind, notice that if we start in stationarity then by the Law
of Large numbers N1 "N ;> = S5V — 1 (as N — oo, with speed of convergence N—1/2).
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Moreover, if 2% ~ 7}, by the Central Limit Theorem the term <mN,C}V/2§N>CN/\/N is O(1)
and converges to a standard Gaussian. With these two observations in place we can then
heuristically see that, with the choice ( = 1/3 the term in (5.10) are negligible as N — oo
while the terms in (5.9) are O(1). The term in (5.8) can be better understood by looking at
the LHS of (5.11) which, with ¢ = 1/3 and " ~ 7', can be rewritten as

2 K e
(5.12) W’Z;(M —1&!7).

The expected value of the above expression is zero. If we apply the Central Limit Theorem
to the ii.d. sequence {|p:|* — |&[*}i, (5.12) shows that (5.8) is O(N'/2-2/3) and therefore
negligible as N — oo. In conclusion, in the stationary case the only O(1) terms are those in
(5.9); therefore one has the heuristic approximation

N IEAE
Q" (r,¢) NN<_4a2> .

For more details on the stationary case see [PST12].

If instead we start out of stationarity the choice ( = 1/3 is problematic. Indeed in [CRR05,
Lemma 3] the authors study the MALA algorithm to sample from an N-dimensional isotropic
Gaussian and show that if the algorithm is started at a point 2° such that S(0) < 1, then the
acceptance probability degenerates to zero. Therefore, the algorithm stays stuck in its initial
state and never proceeds to the next move, see [CRR05, Figure 2] (to be more precise, as
N increases the algorithm will take longer and longer to get unstuck from its initial state;
in the limit, it will never move with probability 1). Therefore the choice ¢ = 1/3 cannot be
the optimal one (at least not irrespective of the initial state of the chain) if we start out of
stationarity. This is still the case in our context and one can heuristically see that the root
of the problem lies in the term (5.8). Indeed if out of stationarity we still choose ¢ = 1/3
then, like before, (5.9) is still order one and (5.10) is still negligible. However, looking at (5.8),
if 2¥ is such that S(0) < 1 then, when k = 0, (5.8) tends to minus infinity; recalling (5.2),
this implies that the acceptance probability of the first move tends to zero. To overcome this
issue and make Q" of order one (irrespective of the initial datum) so that the acceptance
probability is of order one and does not degenerate to 0 or 1 when N — oo, we take ¢ = 1/2;
in this way the terms in (5.8) are O(1), all the others are small. Therefore, the intuition
leading the analysis of the non-stationary regime hinges on the fact that, with our scaling,

52
(5.13) QN (zMN, PNy ~ 5(5’“” —1);
hence
(5.14) N (PN €EN) = (1A @7 @ TET) o (SN,

where the function ay on the RHS of (5.14) is the one defined in (1.11). The approximation
(5.13) is made rigorous in Lemma 7.5, while (5.14) is formalized in Section 7.1 (see in particular
Proposition 7.4).

Finally, we mention for completeness that, by arguing similarly to what we have done so far,
if ¢ < 1/2 then the acceptance probability of the first move tends to zero when S(0) < 1. If
¢ > 1/2 then QY — 0, so the acceptance probability tends to one; however the size of the
moves is too small and the algorithm moves in phace space too slowly anyway.
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REMARK 5.4. Notice that in stationarity the function Q¥ is, to leading order, independent
of &; that is, QY and ¢ are asymptotically independent (see [PST12, Lemma 4.5]). This can be
intuitively explained because in stationarity the leading order term in the expression for Q¥ is
the term with 62||z||2. We will show that also out of stationarity Q" and ¢ are asymptotically
independent. In this case such an asymptotic independence can, roughly speaking, be motivated
by the approximation (5.13), (as the interpolation of the chain SV converges to a deterministic
limit). The asymptotic correlation of @V and the noise ¢ is analysed in Lemma 7.6.

5.2. Heuristic derivation of the weak limit of S*V. Let Y be any function of the random vari-
ables £#N and U¥¥ (introduced in Section 3), for example the chain 2%V itself. Here and through-
out the paper we use E o [Y] to denote the expected value of Y with respect to the law of the
variables £¥N’s and U®!V’s, with the initial state o of the chain given deterministically; in other
words, E_0(Y") denotes expectation with respect to all the sources of randomness present in Y. We
will use the notation Ej, [Y] for the conditional expectation of Y given 2%V B, [Y] := E,o [Y |25V ]
(we should really be writing Eév in place of Eg, but to improve readability we will omit the further

index N). Let us now decompose the chain $*V into its drift and martingale part:
k+1,N kN BN 1 kN
(5.15) S =S5 + —\/Nb N1/4M )
where
(5.16) b = VNE[SFHLN — gk
and
1
5.17 MEN . N1/4 [SkJrl,N _ §kN _ pN (kN } )
(517) Tt

In this subsection we give the heuristics which underly the proof, given in subsequent sections,
that the approximate drift bIZ’N = blz’N(:xk’N) converges to by(S*Y), 2 where by is the drift of (1.10),
while the approximate diffusion M%7 tends to zero. This formally gives the result of Theorem 5.1.
Let us formally argue such a convergence result. By (5.6) and (3.6),

- ):”Hl T o N+ 1= s
N Cn Cn .

(5.18) SEALN — Z

Therefore, again by (5.6),

1 2 2
B = VRSN — 8] = |k \yk’N’ ’c - H””k’N‘ )
(5.19) N [( ¢ Yollley THIF CN)

where the second equality is a consequence of the definition of ¥¥V (with a reasoning, completely
analogous to the one in [KOS16, last proof of Appendix A], see also (5.24)). Using (5.3) (with
§ = £//N), the fact that 7V is negligible and the approximation (5.13), the above gives

2
bEN = VNEL[SFHIN — g N —% (17" 012) %(S’“V —1) = by(S™N).

3Notice that S*" is only a function of z*~
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The above approximation is made rigorous in Lemma 8.5. As for the diffusion coefficient, it is easy
to check (see proof of Lemma 8.2) that

NEk[Sk+1’N . Sk,N]Q < 0.

Hence the approximate diffusion tends to zero and one can formally deduce that (the interpolant
of) S converges to the fluid limit (1.10).

5.3. Heuristic analysis of the limit of the chain z®N . .

the chain 2% i

The drift-martingale decomposition of
is as follows:

1 1
k+1,N _ kN kN kN
(5.20) x =" 4 7N1/2® + N1/4L
where ©FN = @FN (1#:V) is the approximate drift
(5.21) OkN .= V/NE, [wkH’N - xk’N}
and
1
.22 SO k)

is the approximate diffusion. In what follows we will use the notation ©(z,S) for the drift of
equation (1.9), i.e.

(5.23) O(z,5) = F(x)he(S), (2.9) € H® x R,

with F(z) defined in Lemma 2.5. Again, we want to formally argue that the approximate drift
OFN(zFN) tends to ©(zFN, S¥N) 4and the approximate diffusion L*¥V tends to the diffusion
coefficient of equation (1.9).

5.3.1. Approzimate drift.. As a preliminary consideration, observe that
(524) ]Ek‘ <,Yk,ch1V/2€k,N> — ]Ek ((1 A eQN(mk,N’gk,N)> C11\7/2§k’N> ’

see [KOS16, equation (5.14)]. This fact will be used throughout the paper, often without mention.
Coming to the chain "V, a direct calculation based on (3.2) and on (3.6) gives

(5.25) GHHLN kN — KNG RN oo (gRN)) 4 ’Yk’N\/%C}V/ka’N-
Therefore, with the choice § = £/v/N, we have
(5.26) + NY4V/2rR, [(1 A QN EN) 12 e N ]

The addend in (5.26) is asymptotically small (see Lemma 7.6 and notice that this addend would
just be zero if QN and ¥V were uncorrelated); hence, using the heuristic approximations (5.13)
and (5.14),

OF N = VNEg 2" — 2PN o —lay (SPN) (2PN 4 Cy VN (2BY))

(112)

(5.27) ha(SPN) (@ + ey VN (@)

the right hand side of the above is precisely the limiting drift ©(z%~, S&N),

4Note that in the limit the dependence of the drift on S*® becomes explicit.
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5.3.2. Approzimate diffusion.. We now look at the approximate diffusion of the chain z*:

Lk,N — N1/4(.’L‘k+1’N _ Qj‘k’N —Ek($k+1’N _ ZL’k’N)).

By definition,

2
(5.28) o ‘

2
— /N]Ek H:L‘k‘-l-l,N _ :Ek,N _
S

\/NHIEk <wk+1’N — ajk’N)

S

By (5.27) the second addend in the above is asymptotically small. Therefore

~ ﬁNEk ka—i-l,N _ kN
S

(3.6),(5.25)

2
&l

s

12

2
|
S
N N kN sk,N 2
= 2B, Y 02 (lAeQ (ah g >> }g]’?’N‘ .
j=1

The above quantity is carefully studied in Lemma 7.7. However, intuitively, the heuristic approx-
imation (5.14) (and the asymptotic independence of @V and ¢ that (5.14) is a manifestation of)
suffices to formally derive the limiting diffusion coefficient (i.e. the diffusion coefficient of (1.9)):

Ek‘

N
2 N(,.k,N ,k,N 2
~ 203 GENZE, [(1 A @@ "?:N‘
. ;1] ; k[( e ) &5

N 9 N
~ 20 N [(1 A (8N =172y ‘gj’?vN‘ ] ~ 20 AL A et (S5 =1)/2y
: ~

~ 20 Trace(Cs) o (SPY) V= (112 2Trace(Cy) he(S™N).

6. Continuous mapping argument. In this section we outline the argument which underlies
the proofs of our main results. In particular, the proofs of Theorem 5.1 and Theorem 5.2 hinge on
the continuous mapping arguments that we illustrate in the following Section 6.1 and Section 6.2,
respectively. The details of the proofs are deferred to the next three sections: Section 7 contains
some preliminary results that we employ in both proofs, Section 8 contains the the proof of Theorem
5.1 and Section 9 that of Theorem 5.2.

6.1. Continuous mapping argument for (4.4). Let us recall the definition of the chain {S*™},cn
and of its continuous interpolant S®¥), introduced in (1.14) and (1.15), respectively. From the
definition (1.15) of the interpolated process and the drift-martingale decomposition (5.15) of the
chain {S*"},cn we have that for any ¢ € [ty, try1),

1
(N) (o (N1/24 kN BN
SM(1) = (N2 —k) | S +—\/>b€ 1/4

= SEN (b — )by + NV — 1) MEY.

M* N] + (k+1—tNY2)gkN

Iterating the above we obtain
SNty = SON 4 (¢ — t)bp N + ZbJNer
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where

k—1
1 .
(6.1) wN (t) := ~iA > MIN 4 NVAE — ) MPN 1, <t <ty
=0

The expression for S(V)(#) can then be rewritten as

(6.2) SN (1) = §ON 4 /0 t be(SUN) (v))dv + WM (¢),
having set
(6.3) WM () = N () + w™ (1),
with
= ¢
(6.4) eN(t) = (t — )by + i ; b — /0 be(S™) (v))dw.

Equation (6.2) shows that
S(N) — jQ(SO’N, ’LZ)N),

where J5 is the 1t6 map defined in the statement of Theorem 4.5. By the continuity of the map
Jo, if we show that w" converges in probability in C([0,T]; R) to zero, then SN)(#) converges in
probability to the solution of the ODE (1.10). We prove convergence of @' to zero in Section 8.
In view of (6.3), we show the convergence in probability of @ to zero by proving that both eV
(Lemma 8.1) and w!¥ (Lemma 8.2) converge in Lo(Q2; C([0, T]; R)) to zero. Because {S%V} yen is a
deterministic sequence that converges to S°, we then have that (S%V, %) converges in probability
to (S°,0).

6.2. Continuous mapping argument for (4.3). We now consider the chain {zF"} ey C HS,
defined in (3.8). We act analogously to what we have done for the chain {S*"};cn. So we start
by recalling the definition of the continuous interpolant z(\), equation (1.8) and the notation
introduced at the beginning of Section 5.3. An argument analogous to the one used to derive (6.2)
shows that for any t € [tg, tg+1)

k
1 ,
(N)(p\ — 0N _ k,N N N
e () = 4 (t— )0 + g " 4+ (t
(t) ( ) N P (t)

(6.5) = 20N 4 / t Oz (v), S(v))dv + AN (¢),
0
where
(6.6) AN () = d (t) + o™ (t) + N (1),
k—1
(6.7) ™V (t) = NY4(t — ) LB + ﬁ > LN,
j=1
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k—1

Ny e (4 1 ORN L L iV 0™ (). $M (e)de
(63) O R | 6@, 5V @y,
(6.9) N (1) = / (6™ (), SN () - 6= (v), S(v)) | do.
0
Equation (6.5) implies that
(6.10) ™ = 7,2V, 4N,

where 7; is It6 map defined in the statement of Theorem 4.5. In Section 9 we prove that 7V
converges weakly in C([0,7]; H®) to the process 1, where the process 7 is the diffusion part of
equation (1.9), i.e.

(6.11) mwzﬂwmwwwm

with W, a H3-valued Cs-Brownian motion. Looking at (6.6), we prove the weak convergence of 7™V
to n by the following steps:

1. We prove that dV converges in Ly(Q; C([0,T]; H*)) to zero (Lemma 9.1);
2. using the convergence in probability (in C([0,T];R)) of SV) to S, we show convergence in
probability (in C([0,T];H*)) of vV to zero (Lemma 9.2);
3. we show that 1’V converges in weakly in C([0,T];H*) to the process 7, defined in (6.11)
(Lemma 9.3).
Because {29V} yey is a deterministic sequence that converges to 20, the above three steps (and
Slutsky’s Theorem) imply that (z%V, #") converges weakly to (2°,7). Now observe that x(t) =
J1(z%,n(t)), where x(t) is the solution of the SDE (4.2). The continuity of the map J; (Theorem
4.5), (6.10) and the Continuous Mapping Theorem then imply that the sequence {z™)} yen con-
verges weakly to the solution of the SDE (4.2) (equivalently, to the solution of the SDE (1.9)), thus
establishing Theorem 5.2.

7. Preliminary estimates and analysis of the acceptance probability. This section
gathers several technical results. In Lemma 7.1 we study the size of the jumps of the chain. Lemma
7.2 contains uniform bounds on the moments of the chains {z%"};cx and {S%V} rcn, much needed
in Section 8 and Section 9. In Section 7.1 we detail the analysis of the acceptance probability. This
allows us to quantify the correlations between v and the noise &%V, Section 7.2. Throughout
the paper, when referring to the function Qv defined in (5.3), we use interchangeably the notation
QN (BN yFN) and QN (zFN, €8N (as we have already remarked, given %%, the proposal y*% is
only a function of €5V, )

LEMMA 7.1. Let g > 1/2 be a real number. Under Assumption 2.1 the following holds:

2q 1 2q
kN kN kN
(7.1) EkHy Sl qu/2(1+Hx R
and
2
2 o Ry
N
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Therefore,

2q 1 2q
k+1,N _ kN < H
(7.3) EkH:c x .S Nq/2(1+ x . ),
and
(7.4) Ek‘ )karl’N _ BN ‘ ‘Zq < (SkNY 4 N9/2,
N

PROOF OF LEMMA 7.1. By definition of the proposal y*V, equation (3.2),

kN kN

Hy e jq = H&Jfkw +CNV\IJN(xk»N)) 4 \/%Cl/%kaHQq

< 3 ([l )+ e

Thus, using (2.15) and (2.17), we have
1
+ Na/2
1
<
~ Na/2 (1 * H“T

which proves (7.1). Equation (7.2) follows similarly:

i (e, + e @)

e

T4 HCNWN( RN

E, Hyk,N _ RN

2q 1
< ___
‘ NNQ( +

kN _ kN
el [ "

+

Nq/2
. 1/2 1. N || N kN2 . . N

Since HC N &Y HC =) j:1(£ 5 )* has chi-squared law, applying Stirling’s formula for the Gamma

function I' : R — Iéy we obtain

& e [ < Mg <

Hence, using (2.16), the desired bound follows. Finally, recalling the definition of the chain, equation
(3.6), the bounds (7.3) and (7.4) are clearly a consequence of (7.1) and (7.2), respectively, since

either zFt1LN = ¢ N (if the proposed move is accepted) or F TN — RN (if the move is rejected).
O
LEMMA 7.2. If Assumption 2.1 holds, then, for every q > 1, we have
(7.6) B0 (S5 S 1
(7.7) Epolo*|| 51,
uniformly over N € N and k € {0,1,...,[TvN]}.
PROOF OF LEMMA 7.2. The proof of this lemma can be found in Appendix B. ]
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7.1. Acceptance probability. The main result of this section is Proposition 7.4, which we obtain
as a consequence of Lemma 7.3 (below) and Lemma 7.2. Proposition 7.4 formalizes the heuristic
approximation (5.14).

LEMMA 7.3 (Acceptance probability). Let Assumption 2.1 hold and recall the definitions (5.2)
and (1.11). Then the following holds:

1 k,N\2 k,N||2
By [0 (@, €5) — ag(soM [ g LTI

~ VN

Before proving Lemma 7.3 , we state Proposition 7.4.

PROPOSITION 7.4. If Assumption 2.1 holds then

2
lim Eo|a (28N oY) — ap(SBN)| = 0.
N—o0

PRrROOF. This is a corollary of Lemma 7.3 and Lemma 7.2. O

ProOOF OF LEMMA 7.3. The function z +— 1 A e® on R is globally Lipschitz with Lipschitz

constant 1. Therefore, by (1.11) and (5.2),
2 25N — 1))
E, aN<xk,N7yk,N) _ ae(Sk,N)‘ <, ‘QN(xk,N’yk,N) _ ( 5 )
The result is now a consequence of (7.15) below. O

To analyse the acceptance probability it is convenient to decompose QV as follows:

(7.8) QN (N, y™) = I (@™, y™) + I (2", y™) + I (27, )
where
1 2 2 1 2 2
1Y@y = =5 171l — 1116y = 55 |12 = @ =™ |le,, = [1v™ = @ = 8)2"|[2,
0 2 2
R TP
1
1Y @ yN) = =5 [@:N — (1= 0N e VN (), — (N — (1 - 5)xN,chN(xN)>CN]
(7.10) — (N (") — o (")),
(7.11)
)
@Yy = =1 [lea v @M, — [lexve @), |-
LEMMA 7.5. Let Assumption 2.1 hold. With the notation introduced above, we have:
Gt VT |l M L S
(7.12) Ey, | I (2PN, ) — 5 T N
2 14 ||zRN 2
(7.13) B 15N, )| < ”ﬁ .
(7.14) By, | I (5N oV )’2 < %
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Therefore,

2 2
A Y W o e I I X
2 ~ VN
ProOOF OoF LEMMA 7.5. We consecutively prove the three bounds in the statement.

e Proof of (7.12). Using (3.2), we rewrite I{¥ as

(7.15) Ex |QN (a™N, Ny —

2 2
IN (N Ny = -0 (Hu = )2t — sen VN (o5 N) 4 vase P || |||l ) .
4 Cn Cn
Expanding the above we obtain:

EQ(Sk,N 1) 52 1/9 2 62
IN(geN Ny 2 T H / kNH
L@y 5 = 5 Cy¢ N
(716) + (Tg TN) rév Tﬁ?

where the difference (1] — ") is defined in (5.5) and we set

(7.17) rév :: _(53/2\%55/2) <$k’NaC]1V/2£k7N>cN’
(7.18) . [

For the reader’s convenience we rearrange (5.5) below:

52 o 53
N_ N _ kN N kN
ry — T 5 <w ,CNVU (x )>CN
& NoENy |2 07 N kNY /206N
(7.19) A )HCN+\/§<CNW (25), Cy e )

We come to bound all of the above terms, starting from (7.19). To this end, let us observe
the following:

Cn

2

2 N
(7.20) <xk,N’CNv\IJN(:L,k,N)> _ fo,N[v\pN(IEhN)]i
N i=1
(2.6) 2 (2.14) 2
(7.21) < ||| ive R, s e
Moreover,
1/2 kN || A
Y A ST
N j=1
hence

exvurasy,cie) [ <llovvun|[) fleie|l 2w
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From (7.19), (7.20), (2.16) and the above,

N __.N|2 HﬁkNui 1
(7.22) Ei|ry — V" S Nz T v
By (7.17),

1 kN p1/20k N

B [r' ’ Ns/zEk <x Oy 7€ >CN
N kN kNN 2

1 x; & 1 N
7.23 - —TF SiSi ) = —_gkN,
) e (S 50) -

where in the last equality we have used the fact that {fzk Noi=1,...,N } are independent,
zero mean, unit variance normal random variables (independent of #¥") and (5.6). As for

TN,
. N kN 56) (Sk,N)Q
k ‘7‘ } ~ N3 N
Lastly,
52 2 2 21
SN . 07 || 4172 kNH Y12 2 _
t 2HCN5 ey 2 2 NZ::€J !

Since Zjvzl §J2» has chi-squared law, Ej ‘FN‘Z < Var <N*1 Z;V 1§2> < N1, by (7.5). Com-

bining all of the above, we obtain the desired bound.
e Proof of (7.13) From (7.10),

IéV(xk,Njyk,N) _ [\I,N(yk,N) _ \I/N(xk,N) _ <yk,N . V‘I,N(xk,N)ﬂ

<yk,N - xk,N7 V\I,N(yk,N) _ V‘IJN(xk,N)>
(

<xk,N7v\IjN(xk,N)> < kN V\I,N >> Zdﬂ’

Jj=1

where d; is the addend on line j of the above array. Using (2.12), (2.14), (2.6) and Lemma
7.1, we have

kN2
o Le b

P UN

E, |d1|2 <, HykN _ kN

By the first inequality in (2.14),

HV\I,N(yk,N) _ V\I,N(xk,N)‘

<1

—S
Consequently, again by (2.6) and Lemma 7.1,

2
2 1t [l

ST UN

E, ’d2’2 <E, Hyk,N _ kN
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Next, applying (2.6) and (2.14) gives
[ [V @ + [y Ve )]
VN
B | | | |l 1 i | R
~ vN ~ VN ’
Thus, applying Lemma 7.1 then gives the desired bound.
e Proof of (7.14) This follows directly from (2.15).

-

|d3| <

O]

7.2. Correlations between the acceptance probability and the noise €Y. Recall the definition of

%N equation (3.7), and let

(724) Ek’N e 7k7NC]1\/'/2£k7N-

The study of the properties of €V is the object of the next two lemmata, which have a central
role in the analysis: Lemma 7.6 (and Lemma 7.2) establishes the decay of correlations between the
acceptance probability and the noise ¢*%V. Lemma 7.7 formalizes the heuristic arguments presented
in Section 5.3.2.

LEMMA 7.6. If Assumption 2.1 holds, then

2
2 1|

7.25 HE NS
(7.25) R VN
Therefore,
1/2 1 2
(7.26) <Ek5k’N, xk’N>S =Eg <Vk’NCN/ g, xk’N>S S W(l + kaN S).

LEMMA 7.7.  Let Assumption 2.1 hold. Then, with the notation introduced so far,

n

2
— Traceys (Cs)ag(Sk’N)’ = 0.

lim E,o
— 00 S

N

The proofs of the above lemmata can be found in Appendix A. Notice that if &5V and ~%V

(equivalently €%V and Q™) were uncorrelated, the statements of Lemma 7.6 and Lemma 7.7 would
be trivially true.

8. Proof of Theorem 5.1. As explained in Section 6.1, due to the continuity of the map Jo
(defined in Theorem 4.5), in order to prove Theorem 5.1 all we need to show is convergence in
probability of W (¢) to zero. Looking at the definition of w0 (t), equation (6.3), the convergence in
probability (in C([0, T];R)) of @ (t) to zero is consequence of Lemma 8.1 and Lemma 8.2 below.
We prove Lemma 8.1 in Section 8.1 and Lemma 8.2 in Section 8.2.

LEMMA 8.1. Let Assumption 2.1 hold and recall the definition (6.4) of the process e (t); then

2
lim E,o ( sup ‘eN(t)O =0.

N—00 te[0,T]
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LEMMA 8.2. Let Assumption 2.1 hold and recall the definition (6.1) of the process w™ (t); then

2
lim E,o [ sup |wN(t)‘ =0.
N—oo te[0,T7]

8.1. Analysis of the drift. In view of what follows, it is convenient to introduce the piecewise
constant interpolant of the chain {S*"},cy:

(8.1) SM(t) = SEN o <t < g,
where t;, = k:/\/N

PrOOF OoF LEMMA 8.1. From (8.1), for any t; <t < t;4+1 we have

t t k=1 4.
[ o500 = [ 050+ 3 [7 (s0ae
0 ti j=1 tj,1
=
= (t — ti)be(SPN) + —= ) " be(SHV).
(t — tk)be(S™™) \/N; o(S7)
With this observation, we can then decompose e (t) as
V(1) = e (t) — &3 (1),
where
= ‘
(8.2) el (1) = (1 = 1) O = bu($™N)) + = D (17 —bu(57Y)
7=0
t
(33) Y (0= [ [(55) - 05 o
0

The result is now a consequence of Lemma 8.3 and Lemma 8.4 below, which we first state and then
consecutively prove. O

LEMMA 8.3. If Assumption 2.1 holds, then

2
lim E,o ( sup ‘e{v(tH) =0.

N—oo te[0,T]

LEMMA 8.4. If Assumption 2.1 holds, then

2
lim E,o ( sup ’e?(t){) = 0.

N—roo te[0,T]
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PROOF OF LEMMA 8.3. Denoting E¥V := bIZ’N — by(SFN), by (discrete) Jensen’s inequality we
have

k—1
N |2 kN 1 k,N
sup |ey (t)|" = sup |(t —tx)E"Y + —= > E
tE[O,T]‘ L) t€[0,7] \/ﬁjzo
1 [TVN]-1
< EWN|?
g %
7=0
Using Lemma 8.5 below, we obtain
1 ng BN < ng Lt (S4N)! 4[|,
VN = VN = VN '
Taking expectations on both sides and applying Lemma 7.2 completes the proof. O

LEMMA 8.5. Let Assumption 2.1 hold. Then, for any N € N and k € {0,1,...,[TV/N]},

1 Gk.N 4 kN4
= e ygr| g TSI
PrROOF OF LEMMA 8.5. Define

2 2
o o 1 ey = 112 le
k \/N )
Then, from (5.19), (5.2), (1.11) and (1.13), we obtain

Yy =201 - S&N),

2 L2
‘bg,N B be(Sk,N)‘ _ ‘Ek (aN(xk,N7yk,N)YkN> _ az(sk,N)YkN’
2
< Ei [N (@, ANV — ae(Sk’N)YkN’

2 - 2
< oo - 2]

M~ 2 2
w8 |7 o @) — st

Since [V (zFN, y* V)| <1 and Y}V is a function of 2%V only, we can further estimate the above as
follows:

2 S 12 a2 2
8.4)  |obN - bg(Sk’N)’ <E, ‘YkN - YkNj + ’YkN‘ E, ’aN(a;k’N, RNy - ag(sk’N)‘
From the definition of I{¥, equation (7.9), we have

4
(8.5) YN = _Z N (ghN N,

l
Therefore,

54— L)
k k - 1 2 )

/ .
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which implies

20 |V sy

1
) 5 JN W

Ex(V¥ = VV)? < Ex <va(xk’N,yk’N) —2(SHN -1

As for the second addend in (8.4), Lemma 7.3 gives

- 1 k,N\2 kN2
\YkN\QEk\aN<x’f’N,yW>—aas’“N)25<1+<s’“’N>2>( H e ”S)

VN
L+ (SMY)! + [|oh N,
~ VN '

Combining the above two bounds and (8.4) gives the desired result. O

ProOF OF LEMMA 8.4. By Jensen’s inequality,

t 2 T 2
/ be(SM) — by(SEM)dw ) N / ‘be(Sq(JN)) — be(SM))| do.
0

0

sup
te[0,7)

Since by is globally Lipschitz,
T B T 9
/ |be(SN (v)) — be(SN (v y dv </ 1SN (v) — SN ()| dv
0 0
[TV/N] therr ) T ~ )
= Y / 1SN (v) — SN (v)] dv+/ 1SN (v) — SN (v)]” dv
t [T\/N]
(Sk+1,N . Skz,N)Q.

From (5.18) and (5.6),

1
SN = V| < 5 (I = )
2 1 N(ghN ENY
\ﬁ
IN (@ fNy 2(SHN — 1) 1 2(SHN —1)

f ! 2 VN 2

Combining the above with (7.12) we obtain
1+ (SBN)2 4 ||2=N )2
(86) Ek(sk—‘rl,]\f _ Sk,N)2 S ( ) H Hs
N

Taking expectations and applying Lemma 7.2 concludes the proof. O
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8.2. Analysis of the noise.

ProOOF OF LEMMA 8.2. After a calculation analogous to the one at the beginning of the proof
of Lemma 8.3, all we need to prove is the following limit:
1 [TVN]
Noy > Eux

k=0

2
Mk’N‘ 50 as N — oo.

By the definition of M*" equation (5.17), we have

Eyo MMV

T E,o [Sk—&-l,N _ kN _R, (5k+17N B Sk’N)r

2 1
<E, ‘SkJrl,N _ Sk,N‘ SN’
where the last inequality is a consequence of (8.6) and Lemma 7.2. This concludes the proof. [

9. Proof of Theorem 5.2. The idea behind the proof is the same as in the previous Section
8. First we introduce the piecewise constant interpolant of the chain {z*}zcn

(9.1) N @) = 2PN for ty, <t <ty

Due to the continuity of the map J; (Theorem 4.5), all we need to prove is the weak convergence of

AN (t) to zero (see Section 6.2). Looking at the definition of #V(t), equation (6.6), this follows from
Lemmas 9.1, 9.2 and 9.3 below. We prove Lemma 9.1 and Lemma 9.2 in Section 9.1 and Lemma
9.3 in Section 9.2.

LEMMA 9.1.  Let Assumption 2.1 hold and recall the definition (6.8) of the process d™ (t); then

2
lim E,o [ sup !dN(t)‘ =0.
N—o0 te[0,7]

LEMMA 9.2. If Assumption 2.1 holds, then vN (defined in (6.9)) converges in probability in
C([0,T;H?) to zero.

LEMMA 9.3. Let Assumption 2.1 hold. Then the interpolated martingale difference array n™ (t)
defined in (6.7) converges weakly in C([0,T]; H?®) to the stochastic integral n(t), defined in equation
(6.11).

9.1. Analysis of the drift.

PrROOF OF LEMMA 9.1. For all t € [tg,tx11), Wwe can write
(t — ;)0 N, 8PNy + —— N "0, 50Ny = [ 0@ (v), SM) (v))dv.

Therefore, we can decompose d (t) as

d¥(t) = di' (1) +dy (1),



where

k—1
1 . . A
N — o kN kN qk,N 7N 7N <j,N
AV (1) = (t — 1) [@ o(z"N, s )} + = > [N — @ (29N, §7N)]
and .
B0 = [ [0 ©),5V(w) - 0™ (w), 5M(w)] dv

0

The statement is now a consequence of Lemma 9.4 and Lemma 9.5. O

LEMMA 9.4. If Assumption 2.1 holds, then

2
. N o
A}gnOO]Exo (tes[l(l)%] Hdl (t)Hs> =0.

LEMMA 9.5. If Assumption 2.1 holds, then

2
. N .
A}gnoo]Ewo (tes[l(l)%] || da (t)HS> = 0.

Before proving Lemma 9.4, we state and prove the following Lemma 9.6. We then consecutively
prove Lemma 9.4, Lemma 9.5 and Lemma 9.2. Recall the definitions of ® and ©%Y  equations
(5.23) and (5.21), respectively.

LEMMA 9.6. Let Assumption 2.1 hold and set

(9.2) PPN = kN —g(ah N RN,
Then
B [0 5 3 owt ek
Jj=N+1

PrOOF OF LEMMA 9.6. Recalling (5.26) and (7.24), we have
2

S VN |[Bel (a5)
S

2
(9.4) + Hag(Sk’N)F(xk’N) — [Bra (@, )] (@ + ey vt (@)

S

CET i

S

)

where the function F' that appears in the above has been defined in Lemma 2.5. The term on the
RHS of (9.3) has been studied in Lemma 7.6. To estimate the addend in (9.4) we use (2.15), the
boundedness of oy and Lemma 7.3. A straightforward calculation then gives

2 2
(9.4) S [au(S"N) = ByaN (@, M) ||| @B+ en v e (@)

s

+ a5V [F@a) - @+ exvuN @) ||

S

4
R Gl il | Gl
~ VN

2

+[[evu i) - e v e k)

S
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From the definition of ¥¥ and V¥, equation (1.5) and equation (2.13), respectively,

2 2
] ‘CV\I’(:J:'“’N) —eyveN @B = ‘ ’CV\I/(:U’“’N) — e PV (VI (YY)

S S
oo o0

= > OETEVEEEE] S S (w)h

J=N+1 j=N+1

having used (2.14) in the last inequality. The statement is now a consequence of Lemma 7.2. [J

PROOF OF LEMMA 9.4. Following the analogous steps to those taken in the proof of Lemma 8.3,
the proof is a direct consequence of Lemma 9.6, after observing that the summation 372\, (A;5° )4
is the tail of a convergent series hence it tends to zero as N — oo. O

ProOOF OF LEMMA 9.5. By the definition of ©, equation (5.23), we have

[0 1), 58(1) - 0" (1), SYW)], = ||FEV (V) = P™)he(S™)

S

Applying (2.10) and (2.15) and using the fact hy is globally Lipschitz and bounded, we get
0@ (1), 5V (1) - 0a 1), s¥1)]|, 5 |[aV®) =M@ +a+ N,V E - sN ).
Thus, from the definitions (1.15), (8.1), (1.8) and (9.1), if tx <t < tx41, we have
[0 1), 58 (1) — 0" (1), SY )], S (¢ = kN [[* T — 25N
+(t— kVN)(1 + Hx

s

Applying (7.3) and (8.6) one then concludes

N2 (RN kN4
B [0 (1), 57(0) — 0N (1), S¥ 0)]|[* S (¢ - k)2 (”” s [, + (5 >)

N N

The remainder of the proof is analogous to the proof of Lemma 8.4. O

PrROOF OF LEMMA 9.2. For any arbitrary but fixed € > 0, we need to argue that

. N o

From the definition of vV we have

sup HUN(t)Hs S/OTHF(IE(N)(”))

t€[0,T

S () — S(v)) dv.

s

Using (2.11) and the fact that Hx(N) (75)”S < H:L‘kN‘ ‘S + ka“’N‘ ‘S (which is a simple consequence
of (1.8)), for any ¢ € [tx, tx+1)

T
sup HU (t) H ( sup ‘S(N)(t) — S(t)‘)/ HF(x(N)(v)) dv
t€[0,T] t€[0,7] 0 s
1 [TVN]-1
< S () — S(t 1+ —— N
N<t€sgé’pﬂ’ (t) ()D Ny ]Z:% |27,
:;aN N

=u
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Using Markov’s inequality and Lemma 7.2, given any d > 0, it is straightforward to find constant
M such that P [uN > M] < ¢ for every N € N. Thus

P[sup HUN(t)HSZ‘E] SIP’[aNuNZ€] :IF’[aNuNZe?,uNSM]+P[aNuN2€,uN>M]
te[0,7]

<IP’[aN2€/M] —|—]P’[UN>M] SIP’[aN25/M] =+ 4.

Given that the § was arbitrary, the result then follows from the fact that S®¥) converges in proba-
bility to S (Theorem 5.1). O

9.2. Analysis of the noise. The proof of Lemma 9.3 is based on [KOS16, Lemma 8.9]. For the
reader’s convenience, we restate [KOS16, Lemma 8.9] below as Lemma 9.7. In order to state such a
lemma let us introduce the following notation and definitions. Let ky : [0, 7] — Z4 be a sequence of
nondecreasing, right continuous functions indexed by N, with kx(0) = 0 and knx(T) > 1. Let H be
any Hilbert space and {X*N, F&N Yo<k<ky(r) b€ a H-valued martingale difference array (MDA),
i.e. a double sequence of random variables such that E[X®N|FN ] = 0, E[| X*V|?|FY ] < o
almost surely and sigma-algebras F*~1N C F*N_ Consider the process XV (t) defined by

kn(t)

XN(t) =Y XN

k=1

if kn(t) > 1 and kn(t) > lim,—0+ kn(t —v) and by linear interpolation otherwise. With this set up
we recall the following result.

LEMMA 9.7 (Lemma 8.9 [KOS16]). Let D : H — H be a self-adjoint positive definite trace class
operator on (H, ||-||). Suppose the following limits hold in probability

i) there exists a continuous and positive function f:[0,T] — Ry such that
kEn(T) 9 T
. k,N N
tim 3 B(|| X8| 1FY) = Tracen(D) / F(#)dt
- 0

N—oo

i) if {¢;}jen ts an orthonormal basis of H then

kn(T)
dim 7 E(XEN, o) (XN 6| FY) =0 for all i #
k=1
iii) for every fized € > 0,
kn(T) )
I EHX’“’NH 1 No_o ity
No3oo —~ ( {||Xk,NH22€}‘fk 1)=0 in probability

where 1,4 denotes the indicator function of the set A. Then the sequence X converges weakly in
C([0,T];H®) to the stochastic integral t fg  f(v)dW,, where Wy is a H-valued D-Brownian

motion.
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PROOF OF LEMMA 9.3. We apply Lemma 9.7 in the Hilbert space H°, with kx(t) = [tv/N],
XFN = L&N/NVA (LR s defined in (5.22)) and F}¥ the sigma-algebra generated by {y", ¢"N 0 <
h < k} to study the sequence 1™ (t), defined in (6.7). We now check that the three conditions of
Lemma 9.7 hold in the present case.

i) Note that by the definition of L*N, E[L*N|FN 1 = E,[LFN] almost surely.We need to show
that the limit

[TV/'N]
T

holds in probability. By (5.28),

T
= 2 Traceys(Cs )/0 he(S(uw))du,

L H ‘_E, ka-i-l,N _ kNP HE (ka,N l,k,N) 2
VN ; :
From the above, if we prove
[TVN] 9
(9.6) E, o Z HE ( kLN _ ’N) —0 as N — oo,
S

and that

[TV'N] . "
‘ i E, H +1,N N
0T Jm B

s

T
—2TraceHs(Cs)/ he(S(u))du, in probability,
0

then (9.5) follows. We start by proving (9.6):

HE’“ (xkﬂ,N - mk,N) j (35) kaN TN () + 1 HE’“ ( k, N(CN)l/ka,N) j
Aol

where the last inequality follows from (2.15) and (7.25).The above and (7.7) prove (9.6). We
now come to (9.7):

[TVN] 2 T

Z EkH k+LN _ kN _2TraceHs(Cs)/ he(S(u))du
s 0

( 8) [T\F]

2
Z Ek’ N A vA RN CAL!

s

[T\F]
N3/4 Z E, <xk,N_'_CNV‘IJN(xk,N)’C]lV/2§k,N>S

[T\ﬁ J

2 T
NN~ 2 Tracen: (€.) /0 he(S(w))dul
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The first two addends tend to zero in L; as N tends to infinity due to (2.15), (2.17) and
Lemma 7.2. As for the third addend, we decompose it as follows

20 [TV ] 1/2 2 T
il kN kN[|F .
iy kzo EkH’Y Cy ¢ HS 2 Tracey (CS)/O he(S(u))du

(112),(724) | o [TV .
< i Z EkH Z Traceys (Cs)ap(S™)
1 [TVN] T
9.8 + = Traceys (Cs)he(SE) — Tr SCs/hS dul .
(9.8) Wi kZ:O aceys (Cs)he(S™) — Traceys (Cs) ; e(S(u))du

The first addend in the above tends to zero in L due to Lemma 7.7. As for the term in (9.8),
we use the identity

T _ T\/N [TVN]
/0 ho(S™N (w))du = <T— [\/N]> he(SITVNLNY Z he(SN),
to further split it, obtaining:
(9.9) (9.8) / he(S (S () du
(9.10) + /0 he(S™ (w)) — he(S(u))du

Convergence (in Li) of (9.9) to zero follows with the same calculations leading to (8.6),
the global Lipschitz property of hy, and Lemma 7.2. The addend in (9.10) tends to zero in
probability since SV) tends to S in probability in C([0,T]; R) (Theorem 5.1) and the third
addend is clearly small. The limit (9.7) then follows.

ii) Condition ii) of Lemma 9.7 can be shown to hold with similar calculations, so we will not show
the details.

iii) Using (7.3) , the last bound follows a calculation completely analogous to the one in [KOS16,
Section 8.2] so we don’t repeat details here.

O

APPENDIX A: PROOFS OF RESULTS OF SECTION 77

In view of the proof of Lemma 7.6 and Lemma 7.7, let us decompose QY (5N €8N into a term

that depends on €% (the j-th component of kN, , and a term that is independent of &;, Q¥ :
p g J p j Js g, L

QN (z,6) = QY + Q7L
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where

N BN kN 55/2 03/ xﬁjNgny 55/2 \j kN TN (gEN
62
(A1) 2N<s”> I N ) I (RN )

We recall that I3 and I} have been defined in Section 7. Therefore, using (7.8),

(A2) 7 L - QN QJ - Il + QJ )
having set
~ 75/2 73/2 g N h N 55/2 2
N ._ _ _ J_ >3 kN N(y & ekNy2

PROOF OF LEMMA 7.6. (7.26) is a consequence of the definition (7.24) and the estimate (7.25).
Thus, all we have to do is establish the latter. Recalling that {¢;};en := {j~°¢; }jen is an orthonor-
mal basis for #°, we act as in the proof of [PST12, Lemma 4.7] and obtain

2 2
(BeemN, 65) |5 202 [ (ahN, 65
where Q;V has been defined in (A.1). Thus

(2

‘<Ek€k,N’¢j>s‘ §j23)\?< 3/2( kN)QE 5 )\2—1—]\7 5/2)\2151 [g?(vqlN(xk,N))ﬂ)
25 2

+ IENIE (|15 |+ |1 +

<N 3/2E ( -5 kN) + N~ 5/2 —QS(V\PN( ))?

1+ ||=*N|;
251270 7—2 | 2512
where the second inequality follows from the boundedness of the sequence {A;}, (7.13) and (7.14).
Summing over j and applying (2.14) we obtain (7.25). O
PROOF OF LEMMA 7.7. By definition of e¥V, and because 7v* = [y*]? (as v%" can only

take values 0 or 1)

B o+

Z]ZSAQE [ kN ‘fk N‘ ] _ ijQS)\?Ek [(1/\6QN( 2PN kN)) ‘géc,zvﬂ )
=1

Using the above, the Lipschitzianity of the function s +— 1 Ae®; (A.2) and the independence of Qév i
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and 5;3’]\7, we write

N
E, HEW g Trace(Cs)ag(Sk’N)) = B >N (1 A eQN> 1€;1> — Trace(Cs)ag(SFN)
s =
N N
< |Eg Zj%)\? (1 A er,L) &% — Trace(Cs)a(S™N)
j=1
N N
+E: ) 52N (1Ae9 1A e )] 1g)
S| (1ne) = (1acsi)]
N N
(A.4) < ijs/\?Ek (1 A er»l> — Trace(Cs)ay(S™Y)
j=1
N
(A.5) +{Ex > 52N QY141
j=1

We now proceed to bound the addends in (A.4) and (A.5), starting from the latter. Using (A.1)
and (A.3), we write

N N N
BB Y 57N QY1617 < BooBi Y 52N || 161 + BooBr Y 520 [ 1] 1517
j=1 j=1 j=1

N
BB Y 522 |0 |1

j=1
N N
SEp Y 52N (B \Iévf)w + BBy > 2N (Ex \Iév}z)l/g
j=1 Jj=1

N
T > 2N (@] 161).
j=1

The addends on the penultimate line of the above tend to zero thanks to Lemma 7.5, (2.7) and
Lemma 7.2. As for the last addend, using (A.3):

ijsAQE HQN‘M] } N3/4Z‘728)‘ ’ kN‘E ‘gkN’

N

1 25 NP1 25 kN |

+ N7 2 :32 ,\? ‘(CNV\IJN(xk,N))j‘Ek ‘gj ’ +N E :1‘]2 )\?Ek ‘gj ‘
]:

(A.6) (1+ H

1
where the last inequality follows from (2.15), (2.7), the boundedness of the sequence {\;};cn and
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by using the Young Inequality (more precisely, the so-called Young inequlity “with €”), as follows:
kN kN |3 kN|Z (2 AN
et el < [ (m e

This concludes the analysis of the term (A.5). As for the term (A.4), by definition of ay, equation
(1.11),

(1 A eQ?»’f) — ay(SHN) = (1 A lef) _ (1 A eI{V(Ik’va’“’NU

+ (1A ET) (1 PE02),

Because s — 1 A e is globally Lipschitz, using Lemma 7.5 and manipulations of the same type as
in the above, we conclude that also (A.4) tends to zero as N — oo. This concludes the proof. [

APPENDIX B: UNIFORM BOUNDS ON THE MOMENTS OF SEN AND X&N

PROOF OF LEMMA 7.2. To prove both bounds, we use a strategy analogous to the one used in
[PST14, Proof of Lemma 9]. Let {Ay, : k € N} be any sequence of real numbers. Suppose that there
exists a constant C' > 0 (independent of k) such that

(B.1) Apr1 — A < — (1+ Ay).

We start by showing that if the above holds then A; < e“T(Ag + CT), uniformly over k =
0,...,[TVN]. Indeed, from (B.1),

(i) e G5 (5 (o)

J

Thus, for all k =0, ..., [TVN],

(Ag + [T\/N]L 1+ —

[TV'N]
) \/N) < < \/N (Ao + CT).

C TV N
A, < (14—
’“—< VN )

Since [0,00) 3 N + (1+C/v/N)VY is increasing,

o\ C N
1+—) <[|14+— <Y <
j=0

VN

With this preliminary observation, we can now prove (7.6) and

i) Proof of (7.6). To prove (7.6) we only need to show that (B.1) holds (for some constant C' > 0
independent of N and k) for the sequence Ay = E,0(S*™)%. By the definition of SV, we

have 2
ghoiy _ g, PN NG (e gk k)

N N
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Therefore,

Ex() (Sk+1,N)q o ]EIO (Sk,N)q
(B.2)

m

; l
= Z E o (Sk,N)n HmkH’N - l‘k’NHCN (2 <xk+1,N _ xk,N’ $k7N>CN>
- x

n+m-+l=q N N
(n7m7l)7é(%0,0)

Thus, to establish (B.1) it is enough to argue that each of the terms in the right-hand side of
the above is bounded by (C/v/N)(1 +E(S%Y)4). To this end, set

ka-f—l,N _ $k,N‘ |2N m (2 <xk+1,N . xk,N’xk,N>CN>l

kN ._ k,N\n
TN, | (5%Y) K K

= Eonk (Sk’N)n

m l
ka+1,N _ xk,N‘ |(2:N (2 <$k+1,N — gk, xk,N>CN>
N N

By the Cauchy-Schwartz inequality for the scalar product (-, -)

Cn>?

! l !
<$k+l,N _ xk,N’xk,N>CN kaN‘ ‘CN ka-i-l,N _ xk,N’ ‘CN

N! = Nt
!
||+ — xk’NHCN

— (Sk:,N)l/2

NU/2 ’
which gives

2Ek kaJrl,N . xk,N‘ @::H

Jlﬁv S (Sk’N)nJrl/ Nm+/2

Using the bound (7.4) of Lemma 7.1, we also have

el ) L B

By Nmt1/2 ~ T NmAL2 N(m+i/2)/2°

Putting all of the above together (and using Young’s inequality) we obtain

Emo(sk’N)q 1
N2 T NmiiE

Now observe that (m+1/2)/2 > 1/2 except when (n, m,l) = (¢,0,0) or (n,m,l) = (¢—1,0,1).
Therefore we have shown the desired bound for all the terms in the expansion (B.2), except
the one with (n,m,l) = (¢ — 1,0,1). To study the latter term, we recall that ¥~ ¢ {0,1},
and use the definition of the chain (equations (3.2) and (3.6)) to obtain

YRS

<l,k+1,N _ xkz,N’ l,k,N>

TR LA
N

V5 <$k,N’ (CN)1/2§I¢,N>
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Combining (2.16) with the Cauchy-Schwartz inequality we have

5KCNVWN@%N%th> <N- 1/21+‘

)<N 1/2+N1/2SkN
Cn

where in the last inequality we used the following observation

o
2:2 kN22s:Z

S

o'} xk,N
AQ 25 S Z Nsk N
7j=1 7=1 7j=1 )\

ka,N

Recalling that <:L'k’N , (CN)l/ 2¢kN > Cn conditioned on z*V, is a linear combination of zero-
mean Gaussian random variables, we have

5 <mk,N’ (CN)1/2€I<:,N>C

2
<1+ N"V/%E,

<1+ VNSHY,
Putting the above together and taking expectations we can then conclude
(GhN)a-1 <xk+1,N _ xk,ijk,N>CN E [(S’“’N)q’l] N E [(S’“N)q]
N N VN

S (VN1 +E [(s5V)1]),

<xk,N’ (CN)l/ng,N>

N Cn

E

<

and (7.6) follows.
ii) Proof of (7.7). This is very similar to the proof of (7.6), so we only sketch it. Just as before,
it is enough to establish the following bound
2q
7D

E [kaN n 2m <wk+1,N _ kN xk,N>l] < L(l I E [HwkN
s s ’ s| ™ \/N

for each (n,m,l) such that n +m + [ = ¢ with the exception of the triple (n,m,l) = (¢, 0,0).

Applying the Cauchy-Schwartz inequality for (-,-), we have

l

LN kN

l

!
<$k+l,N _ xk,N’xk,N> < kaN SN kN
S S
Thus, Lemma 7.1 implies
2m l 2n-+1 2m—+1
o Hx PPN kN <xk+1,N _ $k,N’xk,N> < kaN E, ka—i-l,N _ kN
S S S

[N (1 N

~ N (m+1/2)/2
The above gives us the desired bound for all (n,m, 1) except for (n,m,l) = (¢ —1,0,1). Like
before, to study the latter case we observe

<$k+1,N _ xk,N7xk,N>s _ ,yk;,N(_\/lﬁ
+ ]\\r/li <(CN)1/2£I<;,N7$I€,N>S)
< f (1+ H kNH Ni/4,yk,N<(CN)1/2£k,N’$k,N>

< (1t |fe

~ VN

2
kN
(1],

+ <ch\pN(xka), xk’N>s)

s
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where penultimate inequality follows from the Cauchy-Schwartz inequality, (2.15), and the
fact that 4%~ € {0,1}, and the last inequality follows from Lemma 7.6. This concludes the
proof.

O

REMARK B.1. In [PST12] the authors derived the diffusion limit for the chain under weaker
assumptions on the potential ¥ than those we use in this paper. Essentially, they assume that W is
quadratically bounded, while we assume that it is linearly bounded. If ¥ was quadratically bounded
the proof of Lemma 7.6 would become considerably more involved. We observe explicitly that the
statement of Lemma 7.6 is of paramount importance in order to establish the uniform bound on
the moments of the chain 2* contained in Lemma 7.2. In [PST12] obtaining such bounds is not an
issue, since the authors study the chain in its stationary regime. In other words, in [PST12] the law
of %% is independent of k, and thus the uniform bounds on the moments of 2%V and S** are
automatically true for target measures of the form considered there (see also the first bullet point
of Remark 5.3). O
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