Civil Engineering 2 Mathematics Autumn 2011

M. Ottobre

First and Second Order ODEs

Warning: all the handouts that I will provide during the course are in no way exhaustive, they are just short recaps.
Notation used in this handout: $y(x), f(x), a_{1}(x), a_{2}(x), a(x), b(x)$ are scalar functions and $x \in \mathbb{R}$. We will often write just y instead of $y(x)$ and y^{\prime} is the derivative of y with respect to x.

- Classification. Consider the following differential equations

$$
\begin{equation*}
y^{\prime}+a(x) y=b(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=f(x) \tag{2}
\end{equation*}
$$

in the unknown $y(x)$.
Equation (1) is first order because the highest derivative that appears in it is a first order derivative. In the same way, equation (2) is second order as also $y^{\prime \prime}$ appears.
They are both linear, because y, y^{\prime} and $y^{\prime \prime}$ are not squared or cubed etc and their product does not appear. In other words we do not have terms like $\left(y^{\prime}\right)^{2}$, $\left(y^{\prime \prime}\right)^{5}$ or $y y^{\prime}$.
If $f(x)(b(x)$, respectively) is zero, then (2) ((1), respectively) is homogeneous, otherwise it is non homogeneous.
If $a_{1}(x)$ and $a_{2}(x)$ are constant, then (2) has constant coefficients.

Example 0.1.

$$
y^{\prime \prime}+5 y=x
$$

is second order, linear, non homogeneous and with constant coefficients.

$$
y^{\prime}+x^{2} y=e^{x}
$$

is first order, linear, non homogeneous.

$$
y y^{\prime \prime}+y^{\prime}=0
$$

is non linear, second order, homogeneous.
Important Remark: The general solution to a first order ODE has one constant, to be determined through an initial condition $y\left(x_{0}\right)=y_{0}$ e.g $y(0)=3$. The general solution to a second order ODE contains two constants, to be determined through two initial conditions which can be for example of the form $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$, e.g. $y(1)=2, y^{\prime}(1)=6$.

We will in general focus on linear equations. The only non linear ones that we will stumble across are Separable Equations:

$$
\left(\frac{d y}{d x}=\right) y^{\prime}=g(x) h(y) \quad \Rightarrow \quad \int \frac{d y}{h(y)}=\int g(x) d x
$$

(if $h(y)$ is non linear then the equation is non linear).
Now let's go back to the main object of our study.

- How do we solve equations of type (1)?

You might be in a very simple case:

$$
y^{\prime}=b(x) \quad \Rightarrow \quad y(x)=\int b(x)
$$

However, in general we will use the INTEGRATING FACTOR METHOD:
Step 1: Calculate the indefinite integral $A(x)=\int a(x) d x$.
Step 2: Multiply both sides of (1) by the integrating factor $e^{A(x)}$. Hence you get

$$
\begin{equation*}
e^{A(x)}\left(y^{\prime}+a(x) y\right)=e^{A(x)} b(x) \tag{3}
\end{equation*}
$$

Now notice that the LHS of (3) can be rewritten as $\left(e^{A(x)} y\right)^{\prime}$, in fact by the rule for the derivative of the product of functions and the chain rule we have

$$
\left(e^{A(x)} y\right)^{\prime}=e^{A(x)} a(x) y+e^{A(x)} y^{\prime} .
$$

Step 3: Equation (3) can be rewritten as

$$
\left(e^{A(x)} y\right)^{\prime}=e^{A(x)} b(x)
$$

Integrate both sides

$$
e^{A(x)} y=\int e^{A(x)} b(x) d x+C
$$

and obtain

$$
\begin{equation*}
y=e^{-A(x)} \int e^{A(x)} b(x) d x+e^{-A(x)} C \tag{4}
\end{equation*}
$$

The above formula (4) is the general solution. C is a generic constant and it can be calculated by using the initial conditions.

- How do we solve equations of type (2)?

Recap of available methods.
Case 1: If the equation is homogeneous with constant coefficients, i.e. if it is of the form

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+c y=0, \quad b, c \in \mathbb{R} \tag{5}
\end{equation*}
$$

then we write the associated auxiliary polynomial

$$
\lambda^{2}+b \lambda+c=0, \quad \Delta=b^{2}-4 c .
$$

If $\Delta>0$ the polynomial has two distinct real roots, $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and the solution to (5) is

$$
y(x)=A e^{\lambda_{1} x}+B e^{\lambda_{2} x}, \quad A, B \in \mathbb{R} .
$$

If $\Delta=0$ the polynomial has only one root, $\lambda=-\frac{b}{2}$, and the solution to (5) is

$$
y(x)=A e^{\lambda x}+B x e^{\lambda x} \quad A, B \in \mathbb{R}
$$

If $\Delta<0\left(b^{2}<4 c\right)$ the polynomial has two complex conjugate roots, $\lambda_{1}, \lambda_{2} \in \mathbb{C}$, namely

$$
\lambda_{1}=-\frac{b}{2}+i \omega, \quad \lambda_{2}=-\frac{b}{2}-i \omega, \quad \omega=\sqrt{\frac{4 c-b^{2}}{4}}
$$

and the solution to (5) is

$$
y(x)=e^{-\frac{b}{2} x}(A \cos (\omega x)+B \sin (\omega x)) \quad A, B \in \mathbb{R}
$$

Case 2: If the equation is homogeneous with NON constant coefficients, i.e. if it is of the form

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 \tag{6}
\end{equation*}
$$

FACT: If $y_{1}(x)$ and $y_{2}(x)$ are two (distinct) solutions of (6) then the general solution of (6) is

$$
y(x)=A y_{1}(x)+B y_{2}(x), \quad A, B \in \mathbb{R} .
$$

So our aim is finding y_{1} and y_{2}. Let's see what we can do.
METHOD OF ORDER REDUCTION. This method is based on having a certain amount of luck. What do I mean? Well, if for some reason a solution y_{1} rains on you, then this method allows you to find y_{2} which is the general solution. But you are still left with the problem of finding $y_{1} \ldots$ However, assume we have a solution y_{1} of (6). To find y_{2}
Step 1: Find $u(x)$ solution to

$$
\begin{equation*}
u^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+a_{1}\right) u=0 \tag{7}
\end{equation*}
$$

(using the integrating factor method, see (4)).
Step 2: The general solution y_{2} is

$$
y_{2}(x)=y_{1}(x) \int u(x) d x
$$

This is it. But, why is that? We need to show that y_{2} solves (6).

$$
y_{2}^{\prime}=y_{1}^{\prime} \int u+y_{1} u
$$

$$
y_{2}^{\prime \prime}=y_{1}^{\prime \prime} \int u+2 y_{1}^{\prime} u+y_{1} u^{\prime}
$$

Putting everything together

$$
\begin{gathered}
y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{2} y_{2} \\
=\underbrace{\left(y_{1}^{\prime \prime}+a_{1} y_{1}^{\prime}+a_{2} y_{1}\right)}_{\|} \int u+\underbrace{y_{1} u^{\prime}+\left(2 y_{1}^{\prime}+a_{1} y_{1}\right) u}_{\|}=0
\end{gathered}
$$

where the first addend vanishes because y_{1} is a solution and the terms in the second brace vanish because u solves (7).

Case 3: If the equation is NON homogeneous with NON constant coefficients, i.e. if it is of the form

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=f(x) . \tag{8}
\end{equation*}
$$

FACT: Let $y_{1}(x)$ and $y_{2}(x)$ be two (distinct) solutions of the homogeneous equation associated to (8), that is (6). Let \bar{y} be a particular integral of (8), then the general solution of (8) is

$$
\begin{equation*}
y(x)=A y_{1}(x)+B y_{2}(x)+\bar{y}(x), \quad A, B \in \mathbb{R} \tag{9}
\end{equation*}
$$

In other words, the general solution to (8) is

$$
y(x)=\text { general solution of homog. eqn. + particular int. of (8). }
$$

Because the method of order reduction worked so well before, let's see if we can employ it again. So, suppose you are given a solution y_{1} of the homogenous equation (6). Let us again look for a solution of (8) in the form

$$
y=y_{1} \int v
$$

and try and determine the equation that v has to satisfy in order for y to be a solution of (8). As before

$$
\begin{gathered}
y^{\prime}=y_{1}^{\prime} \int v+y_{1} v \\
y^{\prime \prime}=y_{1}^{\prime \prime} \int v+2 y_{1}^{\prime} v+y_{1} v^{\prime}
\end{gathered}
$$

Now

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=f(x) \Leftrightarrow y_{1} v^{\prime}+\left(2 y_{1}^{\prime}+a_{1} y_{1}\right) v=f(x)
$$

hence v has to solve the equation

$$
v^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+a_{1}\right) v=\frac{f(x)}{y_{1}} .
$$

v will then be of the form $v(x)=g_{1}(x)+C g_{2}(x)$ (see (4)) so that $\int v$ is of the form $\int v=G_{1}(x)+C G_{2}(x)+D$. Hence $y(x)$ is of the form (9) and it is therefore the general solution we were seeking.

Conservative Case: When $a_{2}=a_{1}^{\prime}$. In this case equation (8) reads

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{1}^{\prime} y=f(x)
$$

which can be rewritten as

$$
\left(y^{\prime}+a_{1} y\right)^{\prime}=f(x)
$$

so that integrating both sides and naming $F(x)=\int f(x)$ leads to

$$
y^{\prime}+a_{1}(x) y=F(x)
$$

This equation is in the form (1) and we know how to solve it. Notice that the above works also in case $f \equiv 0$.
Example 0.2. Solve

$$
y^{\prime}=-e^{x} y, \quad y(0)=1
$$

First solution: separable variables

$$
\int_{1}^{y} \frac{d y}{y}=-\int_{0}^{x} e^{x} d x \quad \Rightarrow \quad \log (y)=-e^{x}+1 \quad \Rightarrow \quad y=e \cdot e^{-e^{x}}
$$

Second solution: Integrating factor method. The integrating factor is

$$
A(x)=\int e^{x} d x=e^{x}
$$

Multiply both sides of the equation by $e^{e^{x}}$ and obtain

$$
\left(e^{e^{x}} y\right)^{\prime}=0 \quad \Rightarrow \quad e^{e^{x}} y=C \quad \Rightarrow \quad y=e^{-e^{x}} C
$$

Imposing $y(0)=1$ gives $C=e$.
Example 0.3. Given that $y_{1}=x$ is a solution of

$$
y^{\prime \prime}-\frac{x(x+2)}{x^{2}} y^{\prime}+\frac{x+2}{x^{2}} y=0
$$

find the general solution of

$$
y^{\prime \prime}-\frac{x(x+2)}{x^{2}} y^{\prime}+\frac{x+2}{x^{2}} y=x .
$$

Sketch of solution: let $y=x \int v$. In order for y to be a solution of the inhomogeneous equation, v has to solve $\quad v^{\prime}-v=1$ (during the exam you need to show all the steps that lead to the equation for v). We solve the equation for v by the integrating factor method and we get

$$
\begin{aligned}
v & =-1+C e^{x} \Rightarrow \int v=-x+C e^{x}+D \\
& \Rightarrow \quad y=-x^{2}+C x e^{x}+D x, \quad C, D \in \mathbb{R}
\end{aligned}
$$

and y is the general solution we were seeking.

