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We describe a new MCMC method optimized for the sampling of probability measures on Hilbert space which have
a density with respect to a Gaussian; such measures arise in the Bayesian approach to inverse problems, and in
conditioned diffusions. Our algorithm is based on two key design principles: (i) algorithms which are well-defined in
infinite dimensions result in methods which do not suffer from the curse of dimensionality when they are applied
to approximations of the infinite dimensional target measure on RN ; (ii) non-reversible algorithms can have better
mixing properties compared to their reversible counterparts. The method we introduce is based on the hybrid Monte
Carlo algorithm, tailored to incorporate these two design principles. The main result of this paper states that the
new algorithm, appropriately rescaled, converges weakly to a second order Langevin diffusion on Hilbert space;
as a consequence the algorithm explores the approximate target measures on RN in a number of steps which is
independent of N . We also present the underlying theory for the limiting non-reversible diffusion on Hilbert space,
including characterization of the invariant measure, and we describe numerical simulations demonstrating that the
proposed method has favourable mixing properties as an MCMC algorithm.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms for sampling from high dimensional probability distribu-
tions constitute an important part of Bayesian statistical inference. This paper is focussed on the design and
analysis of such algorithms to sample a probability distribution on an infinite dimensional Hilbert space H
defined via a density with respect to a Gaussian; such problems arise in the Bayesian approach to inverse
problems (or Bayesian nonparametrics) [Stu10] and in the theory of conditioned diffusion processes [HSV11].
Metropolis-Hastings algorithms [Has70] constitute a popular class of MCMC methods for sampling an ar-
bitrary probability measure. They proceed by constructing an irreducible, reversible Markov chain by first
proposing a candidate move and then accepting it with a certain probability. The acceptance probability
is chosen so as to preserve the detailed balance condition ensuring reversibility. In this work, we build on
the generalized Hybrid Monte Carlo (HMC) method of [Hor91] to construct a new non-reversible MCMC
method appropriate for sampling measures defined via density with respect to a Gaussian measure on a
Hilbert space. We also demonstrate that, for a particular set of parameter values in the algorithm, there
is a natural diffusion limit to the second order Langevin (SOL) equation with invariant measure given by
the target. We thus name the new method the SOL-HMC algorithm. Our construction is motivated by the
following two key design principles:

1. designing proposals which are well-defined on the Hilbert space results in MCMC methods which do not
suffer from the curse of dimensionality when applied to sequences of approximating finite dimensional
measures on RN ;
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2. non-reversible MCMC algorithms, which are hence not from the Metropolis-Hastings class, can have
better sampling properties in comparison with their reversible counterparts.

The idea behind the first principle is explained in [CRSW13] which surveys a range of algorithms designed
specifically to sample measures defined via a density with respect to a Gaussian; the unifying theme is
that the proposal is reversible with respect to the underlying Gaussian so that the accept-reject mechanism
depends only on the likelihood function and not the prior distribution. The second principle above is also
well-documented: non-reversible Markov chains, often constructed by performing individual time-reversible 1

steps successively [HHMS93, HHMS05], or by building on Hamiltonian mechanics [Hor91, DHN00, Nea10]),
may have better mixing properties.

Since the target distribution has support on an infinite dimensional space, practical implementation of
MCMC involves discretizing the parameter space, resulting in a target measure on RN , with N � 1. It is
well known that such discretization schemes can suffer from the curse of dimensionality: the efficiency of the
algorithm decreases as the dimension N of the discretized space grows large. One way of understanding this
is through diffusion limits of the algorithm. In the context of measures defined via density with respect to
Gaussian this approach is taken in the papers [MPS12, PST12] which show that the random walk Metropolis

and Langevin algorithms require O(N) and O(N
1
3 ) steps respectively to sample the approximating target

measure in RN . If, however, the algorithm is defined on Hilbert space then it is possible to explore the target
in O(1) steps and this may also be demonstrated by means of a diffusion limit. The paper [PST11] uses this
idea to study a Metropolis-Hastings algorithm which is defined on Hilbert space and is a small modification of
the random walk Metropolis method; the diffusion limit is a first order reversible Langevin diffusion. Moreover
the diffusion limits in [MPS12, PST12] are derived under stationarity whereas the results in [PST12] hold
for any initial condition. The above discussion has important practical consequences: as implied by the
above diffusion limits, algorithms which are well defined on the function spaces show an order of magnitude
improvement in the mixing time in these high dimensional sampling problems.

Here we employ similar techniques as that of [PST11] to study our new non-reversible MCMC method,
and show that, after appropriate rescaling, it converges to a second order non-reversible Langevin diffusion.
Our new algorithm is inspired by similar algorithms in finite dimensions, starting with the work of [Hor91],
who showed how the momentum updates could be correlated in the original HMC method of [DKPR87], and
the more recent work [BRVE12] which made the explicit connection to second order Langevin diffusions; a
helpful overview and discussion may be found in [Nea10]. Diffusion limit results similar to ours are proved in
[BRVE12, BRVE09] for finite dimensional problems. In those papers an accept-reject mechanism is appended
to various standard integrators for the first and second order Langevin equations, and shown not to destroy
the strong pathwise convergence of the underlying methods. The reason for this is that rejections are rare
when small time-steps are used. The same reasoning underlies the results we present here, although we
consider an infinite dimensional setting and use only weak convergence. Another existing work underpinning
that presented here is the paper [BPSSS11] which generalizes the hybrid Monte Carlo method for measures
defined via density with respect to a Gaussian so that it applies on Hilbert space. Indeed the algorithm
we introduce in this paper includes the one from [BPSSS11] as a special case and uses the split-step (non-
Verlet) integrator first used there. The key idea of the splitting employed is to split according to linear
and nonlinear dynamics within the numerical Hamiltonian integration step of the algorithm, rather than
according to position and momentum. This allows for an algorithm which exactly preserves the underlying
Gaussian reference measure, without rejections, and is key to the fact that the methods are defined on Hilbert
space even in the the non-Gaussian case.

We now define the class of models to which our main results are applicable. Let π0 and π be two measures

on a Hilbert space
(
H, 〈·, ·〉, ‖ · ‖

)
and assume that π0 is Gaussian so that π0 = N(0, C), with C a covariance

operator. The target measure π is assumed to be absolutely continuous with respect to π0 and given by the
identity

dπ

dπ0
(x) = MΨ exp

(
−Ψ(x)

)
, x ∈ H (1.1)

1For a definition of time-reversibility see Section 2.3.
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for a real valued functional Ψ (which denotes the negative log-likelihood in the case of Bayesian inference)
and MΨ a normalizing constant. Although the above formulation may appear quite abstract, we emphasize
that this points to the wide-ranging applicability of our theory: the setting encompasses a large class of
models arising in practice, including nonparametric regression using Gaussian random fields and statistical
inference for diffusion processes and bridge sampling [HSV11, Stu10].

In Section 2 we introduce our new algorithm. We start in a finite dimensional context and then explain
parametric choices made with reference to the high or infinite dimensional setting. We demonstrate that
various other algorithms defined on Hilbert space, such as the function space MALA [BRSV08] and function
space HMC algorithms [BPSSS11], are special cases. In Section 3 we describe the infinite dimensional setting
in full and, in particular, detail the relationship between the change of measure, encapsulated in Ψ, and
the properties of the Gaussian prior π0. Section 4 contains the theory of the SPDE which both motivates
our class of algorithms, and acts as a limiting process for a specific instance of our algorithm applied on a
sequence of spaces of increasing dimension N . We prove existence and uniqueness of solutions to the SPDE
and characterize its invariant measure. Section 5 contains statement of the key diffusion limit Theorem 5.1.
Whilst the structure of the proof is outlined in some detail, various technical estimates are left for Appendices
A and B. Section 6 contains some numerics illustrating the new algorithm in the context of a problem from
the theory of conditioned diffusions. We make some brief concluding remarks in Section 7.

The new algorithm proposed and analyzed in this paper is of interest for two primary reasons. Firstly, it
contains a number of existing function space algorithms as special cases and hence plays a useful conceptual
role in unifying these methods. Secondly numerical evidence demonstrates that the method is comparable
in efficiency to the function space HMC method introduced in [BPSSS11] for a test problem arising in
conditioned diffusions; until now, the function space HMC method was the clear best choice as demonstrated
numerically in [BPSSS11]. Furthermore, our numerical results indicate that for certain parameter choices
in the SOL-HMC algorithm, and for certain target measures, we are able to improve upon the performance
of the function space HMC algorithm, corroborating a similar observation made in [Hor91] for the finite
dimensional samplers that form motivation for the new family of algorithms that we propose here. From a
technical point of view the diffusion limit proved in this paper is similar to that proved for the function space
MALA in [PST12], extending to the non-reversible case; however significant technical issues arise which are
not present in the reversible case and, in particular, incorporating momentum flips into the analysis, which
occur for every rejected step, requires new ideas.

2. The SOL-HMC Algorithm

In this section we introduce the SOL-HMC algorithm studied in this paper. We first describe the basic ideas
from stochastic dynamics underlying this work, doing so in the finite dimensional setting of H = RN , i.e.,
when the target measure π(q) is a probability measure on RN of the form

dπ

dπ0
(q) ∝ exp(−Ψ(q)),

where π0 is a mean zero Gaussian with covariance matrix C and Ψ(q) is a function defined on RN . A key
idea is to work with an extended phase space in which the original variables are viewed as ‘positions’ and
then ‘momenta’ are added to complement each position. We then explain the advantages of working with
‘velocities’ rather than ‘momenta’, in the large dimension limit. And then finally we introduce our proposed
algorithm, which is built on the measure preserving properties of the second order Langevin equation. As
already mentioned, our algorithm will build on some basic facts about Hamiltonian mechanics. For a synopsys
about the Hamiltonian formalism see Appendix C.

2.1. Measure Preserving Dynamics in an Extended Phase Space

Introduce the auxiliary variable p (‘momentum’) and M a user-specified, symmetric positive definite ‘mass’
matrix. Let Π′0 denote the Gaussian on R2N defined as the independent product of Gaussians N(0, C) and
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N(0,M) on the q and p coordinates respectively, and define Π′ by

dΠ′

dΠ′0
(q, p) ∝ exp

(
−Ψ(q)

)
.

A key point to notice is that the marginal of Π′(q, p) with respect to q is the target measure π(q). Define the
Hamiltonian in H : R2N → R given by

H(q, p) = 1
2 〈p,M

−1p〉+ 1
2 〈q,Lq〉+ Ψ(q)

where L = C−1. The corresponding canonical Hamiltonian differential equation is given by

dq

dt
=
∂H

∂p
=M−1p ,

dp

dt
= −∂H

∂q
= −Lq −DΨ(q) . (2.1)

This equation preserves any smooth function of H(q, p) and, as a consequence, the Liouville equation cor-
responding to (2.1) preserves the probability density of Π′(q, p), which is proportional to exp

(
− H(q, p)

)
.

This fact is the basis for HMC methods [DKPR87] which randomly sample momentum from the Gaussian
N(0,M) and then run the Hamiltonian flow for T time units; the resulting Markov chain on q is π(q) in-
variant. In practice the Hamiltonian flow must be integrated numerically, but if a suitable integrator is used
(volume-preserving and time-reversible) then a simple accept-reject compensation corrects for numerical
error.

Define

z =

(
q
p

)
and

J =

(
0 I
−I 0

)
.

Then the Hamiltonian system can be written as

dz

dt
= J DH(z) (2.2)

where, abusing notation, H(z) := H(q, p). The equation (2.2) preserves the measure Π′.
Now define the matrix

K =

(
K1 0
0 K2

)
where both K1 and K2 are symmetric. The following SDE also preserves the measure Π′:

dz

dt
= −KDH(z) +

√
2KdW

dt
.

Here W = (W1,W2) denotes a standard Brownian motion on R2N . This SDE decouples into two independent
equations for q and p; the equation for q is what statisticians term the Langevin equation [PST12], namely

dq

dt
= −K1

(
Lq +DΨ(q)

)
+
√

2K1
dW1

dt
,

whilst the equation for p is simply the Ornstein-Uhlenbeck process:

dp

dt
= −K2M−1p+

√
2K2

dW2

dt
.
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Discretizing the Langevin equation (respectively the random walk found by ignoring the drift) and adding
an accept-reject mechanism, leads to the Metropolis-Adjusted Langevin (MALA) (respectively the Random
Walk Metropolis (RWM) algorithm).

A natural idea is to try and combine benefits of the HMC algorithm, which couples the position and
momentum coordinates, with the MALA and RWM methods. This thought experiment suggests considering
the second order Langevin equation2

dz

dt
= J DH(z)−KDH(z) +

√
2KdW

dt
, (2.3)

which also preserves Π′ as a straightforward calculation with the Fokker-Planck equation shows.

2.2. Velocity Rather Than Momentum

Our paper is concerned with using the equation (2.3) to motivate proposals for MCMC. In particular we will
be interested in choices of the matricesM, K1 and K2 which lead to well-behaved algorithms in the limit of
large N . To this end we write the equation (2.3) in position and momentum coordinates as

dq

dt
=M−1p−K1

(
Lq +DΨ(q)

)
+
√

2K1
dW1

dt
,

dp

dt
= −

(
Lq +DΨ(q)

)
−K2M−1p+

√
2K2

dW2

dt
.

In our subsequent analysis, which concerns the large N limit, it turns out to be useful to work with velocity
rather than momentum coordinates; this is because the optimal algorithms in this limit are based on ensuring
that the velocity and position coordinates all vary on the same scale. For this reason we introduce v =M−1p
and rewrite the equations as

dq

dt
= v −K1

(
Lq +DΨ(q)

)
+
√

2K1
dW1

dt
,

Mdv

dt
= −

(
Lq +DΨ(q)

)
−K2v +

√
2K2

dW2

dt
.

In the infinite dimensional setting, i.e., when H is an infinite dimensional Hilbert space, this equation is
still well posed (see (2.5) below and Theorem 4.1). However in this case W1 and W2 are cylindrical Wiener
processes on H (see Section 3.1) and L = C−1 is necessarily an unbounded operator on H because the
covariance operator C is trace class on H. The unbounded operators introduce undesirable behaviour in
the large N limit when we approximate them; thus we choose M and the Ki to remove the appearance of
unbounded operators. To this end we set M = L = C−1, K1 = Γ1C and K2 = Γ2C−1 and assume that Γ1

and Γ2 commute with C to obtain the equations

dq

dt
= v − Γ1

(
q + CDΨ(q)

)
+
√

2Γ1C
dW1

dt
, (2.4a)

dv

dt
= −

(
q + CDΨ(q)

)
− Γ2v +

√
2Γ2C

dW2

dt
, (2.4b)

or simply

dq

dt
= v − Γ1

(
q + CDΨ(q)

)
+
√

2Γ1
dB1

dt
, (2.5a)

dv

dt
= −

(
q + CDΨ(q)

)
− Γ2v +

√
2Γ2

dB2

dt
. (2.5b)

In the above B1 and B2 are H-valued Brownian motions with covariance operator C. This equation is well-
behaved in infinite dimensions provided that the Γi are bounded operators, and under natural assumptions

2Physicists often refer to this as the Langevin equation for the choice K1 ≡ 0 which leads to noise only appearing in the
momentum equation.
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relating the reference measure, via its covariance C, and the log density Ψ, which is a real valued functional
defined on an appropriate subspace of H. Detailed definitions and assumptions regarding (2.5) are contained
in the next Section 3. Under such assumptions the function

F (q) := q + CDΨ(q) (2.6)

has desirable properties (see Lemma 3.4), making the existence theory for (2.5) straightforward. We develop
such theory in Section 4 – see Theorem 4.1. Furthermore, in Theorem 4.2 we will also prove that equation
(2.5) preserves the measure Π(dq, dv) defined by

dΠ

dΠ0
(q, v) ∝ exp

(
−Ψ(q)

)
, (2.7)

where Π0 is the independent product of N(0, C) with itself. The measure Π (resp. Π0) is simply the measure
Π′ (resp. Π′0) in the case M = C−1 and rewritten in (q, v) coordinates instead of (q, p). In finite dimensions
the invariance of Π follows from the discussions concerning the invariance of Π′.

2.3. Function Space Algorithm

We note that the choice Γ1 ≡ 0 gives the standard (physicists) Langevin equation

d2q

dt
+ Γ2

dq

dt
+
(
q + CDΨ(q)

)
=
√

2Γ2C
dW2

dt
. (2.8)

In this section we describe an MCMC method designed to sample the measure Π given by (2.7) and hence,
by marginalization, the measure π given by (1.1). The method is based on discretization of the second
order Langevin equation (2.8), written as the hypo-elliptic first order equation (2.9) below. In the finite
dimensional setting a method closely related to the one that we introduce was proposed in [Hor91]; however
we will introduce different Hamiltonian solvers which are tuned to the specific structure of our measure,
in particular to the fact that it is defined via density with respect to a Gaussian. We will be particularly
interested in choices of parameters in the algorithm which ensure that the output (suitability interpolated to
continuous time) behaves like (2.8) whilst, as is natural for MCMC methods, exactly preserving the invariant
measure. This perspective on discretization of the (physicists) Langevin equation in finite dimensions was
introduced in [BRVE12, BRVE09].

In position/velocity coordinates, and using (2.6), (2.5) becomes

dq

dt
= v ,

dv

dt
= −F (q)− Γ2v +

√
2Γ2C

dW2

dt
.

(2.9)

The algorithm we use is based on splitting (2.9) into an Ornstein-Uhlenbeck (OU) process and a Hamiltonian
ODE. The OU process is

dq

dt
= 0 ,

dv

dt
= −Γ2v +

√
2Γ2C

dW2

dt
,

(2.10)

and the Hamiltonian ODE is given by

dq

dt
= v ,

dv

dt
= −F (q) .

(2.11)
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The solution of the OU process (2.10) is denoted by (q(t), v(t)) = Θ0(q(0), v(0); ξt); here ξt is a mean zero
Gaussian random variable with covariance operator C

(
I − exp(−2tΓ2)

)
. Notice that the dynamics given by

both (2.10) and by (2.11) preserve the target measure Π given in (2.7). This naturally suggests constructing
an algorithm based on alternating the above two dynamics. However, note that whilst (2.10) can be solved
exactly, (2.11) requires a further numerical approximation. If the numerical approximation is based on a
volume-preserving and time-reversible numerical integrator, then the accept-reject criterion for the resulting
MCMC algorithm can be easily expressed in terms of the energy differences in H. A flow ϕt on R2N is
said to be time-reversible if ϕt(q(0), v(0)) = (q(t), v(t)) implies ϕt(q(t),−v(t)) = (q(0),−v(0)). Defintion of
time-reversible and discussion of the roles of time-reversible and volume-preserving integrators may be found
in [SSC94].

To construct volume-preserving and time-reversible integrators the Hamiltonian integration will be per-
formed by a further splitting of (2.11). The usual splitting for the widely used Verlet method is via the
velocity and the position coordinates [Hor91]. Motivated by our infinite dimensional setting, we replace the
Verlet integration by the splitting method proposed in [BPSSS11]; this leads to an algorithm which is exact
(no rejections) in the purely Gaussian case where Ψ ≡ 0. The splitting method proposed in [BPSSS11] is via
the linear and nonlinear parts of the problem, leading us to consider the two equations

dq

dt
= v ,

dv

dt
= −q, (2.12)

with solution denoted as (q(t), v(t)) = Rt(q(0), v(0)); and

dq

dt
= 0 ,

dv

dt
= −CDΨ(q), (2.13)

with solution denoted as (q(t), v(t)) = Θt
1(q(0), v(0)). We note that the map

χt = Θ
t/2
1 ◦ Rt ◦Θ

t/2
1

is a volume-preserving and time-reversible second order accurate approximation of the Hamiltonian ODE
(2.11). We introduce the notation

χtτ = (χt ◦ · · · ◦ χt),
⌊τ
t

⌋
times

to denote integration, using this method, up to time τ . This integrator can be made to preserve the measure
Π if appended with a suitable accept-reject rule as detailed below. On the other hand the stochastic map Θt

0

preserves Π since it leaves q invariant and since the OU process, which is solved exactly, preserves Π0. We
now take this idea to define our MCMC method. The infinite dimensional Hilbert space Hs ×Hs in which
the chain is constructed will be properly defined in the next section. Here we focus on the algorithm, which
will be explained in more details and analyzed in Section 5.

Define the operation ′ so that v′ is the velocity component of Θδ
0(q, v). The preceding considerations

suggest that from point (q0, v0) ∈ Hs ×Hs we make the proposal

(q1
∗, v

1
∗) = χhτ ◦Θδ

0 (q0, v0)

and that the acceptance probability is given by

α(x0, ξδ) := 1 ∧ exp
(
H
(
q0, (v0)′

)
− H

(
q1
∗, v

1
∗
))
,

where

H(q, v) =
1

2
〈q, C−1q〉+

1

2
〈v, C−1v〉+ Ψ(q) , (2.14)

〈·, ·〉 denoting scalar product in H. One step of the resulting MCMC method is then defined by setting

(q1, v1) = (q1
∗, v

1
∗) with probability α(x0, ξδ)

= (q0,−(v0)′) otherwise.
(2.15)
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We will make further comments on this algorithm and on the expression (2.14) for the Hamiltonian in
Section 5, see Remark 5.6. Here it suffices simply to note that whilst H will be almost surely infinite, the
energy difference is well-defined for the algorithms we employ. We stress that when the proposal is rejected
the chain does not remain in (q0, v0) but it moves to (q0,−(v0)′); that is, the position coordinate stays the
same while the velocity coordinate is first evolved according to (2.10) and then the sign is flipped. This
flipping of the sign, needed to preserve reversibility, leads to some of the main technical differences with
respect to [PST11]; see Remark 5.13. For the finite dimensional case with Verlet integration the form of the
accept-reject mechanism and, in particular, the sign-reversal in the velocity, was first derived in [Hor91] and
is discussed in further detail in section 5.3 of [Nea10]. The algorithm (2.15) preserves Π and we refer to it as
the SOL-HMC algorithm. Recalling that v′ denotes the velocity component of Θδ

0(q, v), we can equivalently
use the notations α(x, ξδ) and α(q, v′), for x = (q, v) (indeed, by the definition of Θδ

0, v′ depends on ξδ).
With this in mind, the pseudo-code for the SOL-HMC is as follows.

SOL-HMC in Hs:

1. Pick (q0, v0) ∈ Hs ×Hs and set k = 0;
2. given (qk, vk), define (vk)′ to be the v-component of Θδ

0(qk, vk) and calculate the proposal

(qk+1
∗ , vk+1

∗ ) = χhτ (qk, (vk)′) ;

3. define the acceptance probability α(qk, (vk)′);
4. set (qk+1, vk+1) = (qk+1

∗ , vk+1
∗ ) with probability α(qk, (vk)′);

otherwise set (qk+1, vk+1) = (qk,−(vk)′);
5. set k → k + 1 and go to (2).

Theorem 2.1. Let Assumption 3.1 hold. For any δ, h, τ > 0, the Markov chain defined by (2.15) is invariant
with respect to Π given by (2.7).

Proof. See Appendix A.

Remarks 2.2. We first note that if δ → ∞ then the algorithm (2.15) is that introduced in the paper
[BPSSS11]. From this it follows that, if δ = ∞ and τ = h, then the algorithm is simply the funtion-space
Langevin introduced in [BRSV08].

Secondly we mention that, in the numerical experiments reported later, we will choose Γ2 = I. The solution
of the OU process (2.10) for v is thus given as

v(δ) = (1− ι2)
1
2 v(0) + ιw (2.16)

where w ∼ N(0, C) and e−2δ = (1−ι2). The numerical experiments will be described in terms of the parameter
ι rather than δ.

3. Preliminaries

In this section we detail the notation and the assumptions (Section 3.1 and Section 3.2, respectively) that
we will use in the rest of the paper.
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3.1. Notation

Let
(
H, 〈·, ·〉, ‖ ·‖

)
denote a separable Hilbert space of real valued functions with the canonical norm derived

from the inner-product. Let C be a positive, trace class operator on H and {ϕj , λ2
j}j≥1 be the eigenfunctions

and eigenvalues of C respectively, so that

Cϕj = λ2
j ϕj for j ∈ N.

We assume a normalization under which {ϕj}j≥1 forms a complete orthonormal basis in H. For every x ∈ H
we have the representation x =

∑
j xjϕj , where xj = 〈x, ϕj〉. Using this notation, we define Sobolev-like

spaces Hr, r ∈ R, with the inner products and norms defined by

〈x, y〉r =

∞∑
j=1

j2rxjyj and ‖x‖2r =

∞∑
j=1

j2r x2
j .

Notice that H0 = H. Furthermore Hr ⊂ H ⊂ H−r for any r > 0. The Hilbert-Schmidt norm ‖ · ‖C is defined
as

‖x‖2C = ‖C− 1
2x‖2 =

∞∑
j=1

λ−2
j x2

j .

For r ∈ R, let Qr : H 7→ H denote the operator which is diagonal in the basis {ϕj}j≥1 with diagonal entries
j2r, i.e.,

Qr ϕj = j2rϕj

so that Q
1
2
r ϕj = jrϕj . The operator Qr lets us alternate between the Hilbert space H and the interpolation

spaces Hr via the identities:

〈x, y〉r = 〈Q
1
2
r x,Q

1
2
r y〉 and ‖x‖2r = ‖Q

1
2
r x‖2.

Since ‖Q−1/2
r ϕk‖r = ‖ϕk‖ = 1, we deduce that {Q−1/2

r ϕk}k≥1 forms an orthonormal basis for Hr. A function
y ∼ N(0, C) can be expressed as

y =

∞∑
j=1

λjρjϕj with ρj
D∼ N(0, 1) i.i.d; (3.1)

if
∑
j λ

2
jj

2r <∞ then y can be equivalently written as

y =

∞∑
j=1

(λjj
r)ρj(Q

−1/2
r ϕj) with ρj

D∼ N(0, 1) i.i.d. (3.2)

For a positive, self-adjoint operator D : H 7→ H, its trace in H is defined as

TraceH(D)
def
=

∞∑
j=1

〈ϕj , Dϕj〉.

We stress that in the above {ϕj}j∈N is an orthonormal basis for (H, 〈·, ·〉). Therefore if D̃ : Hr → Hr, its
trace in Hr is

TraceHr (D̃)
def
=

∞∑
j=1

〈Q−
1
2

r ϕj , D̃Q
− 1

2
r ϕj〉r.
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Since TraceHr (D̃) does not depend on the orthonormal basis, the operator D̃ is said to be trace class in Hr
if TraceHr (D̃) <∞ for some, and hence any, orthonormal basis of Hr.

Because C is defined on H, the covariance operator

Cr = Q1/2
r CQ1/2

r (3.3)

is defined on Hr. With this definition, for all the values of r such that TraceHr (Cr) =
∑
j λ

2
jj

2r < ∞, we
can think of y as a mean zero Gaussian random variable with covariance operator C in H and Cr in Hr (see
(3.1) and (3.2)). In the same way, if TraceHr (Cr) <∞ then

B2(t) =

∞∑
j=1

λjβj(t)ϕj =

∞∑
j=1

λjj
rβj(t)ϕ̂j ,

with {βj(t)}j∈N a collection of i.i.d. standard Brownian motions on R, can be equivalently understood as
an H-valued C-Brownian motion or as an Hr-valued Cr-Brownian motion. In the next section we will need
the cylindrical Wiener process W (t) which is defined via the sum

W (t) :=
∞∑
j=1

βj(t)ϕj .

This process is Hr−valued for any r < − 1
2 . Observe now that if {ϕ̂j}j∈N is an orthonormal basis of Hr then,

denoting Hr ×Hr 3 ϕ̂1
j = (ϕ̂j , 0) and Hr ×Hr 3 ϕ̂2

j = (0, ϕ̂j), F = {ϕ̂1
j , ϕ̂

2
j}j∈N is an orthonormal basis for

Hr ×Hr. Let Cr : Hr ×Hr → Hr ×Hr be the diagonal operator such that

Crϕ̂
1
j = (0, 0), Crϕ̂

2
j = j2rλ2

j ϕ̂
2
j = (0, Crϕ̂j) ∀j ∈ N

and C̃r : Hr ×Hr → Hr ×Hr be the diagonal operator such that

C̃rϕ̂
1
j = j2rλ2

j ϕ̂
1
j = (Crϕ̂j , 0), C̃rϕ̂

2
j = j2rλ2

j ϕ̂
2
j = (0, Crϕ̂j) ∀j ∈ N. (3.4)

Consistently, B(t) := (0, B2(t)) will denote an Hr × Hr valued Brownian motion with covariance operator
Cr and B̃(t) := (B1(t), B2(t)) will denote a Hr ×Hr valued Brownian motion with covariance operator C̃r.
In other words, B1(t) and B2(t) are independent Hr-valued Cr-Brownian motions.

Throughout we use the following notation.

• Two sequences of non-negative real numbers {αn}n≥0 and {βn}n≥0 satisfy αn . βn if there exists a
constant K > 0 satisfying αn ≤ Kβn for all n ≥ 0. The notations αn � βn means that αn . βn and
βn . αn.

• Two sequences of non-negative real functions {fn}n≥0 and {gn}n≥0 defined on the same set Ω satisfy
fn . gn if there exists a constant K > 0 satisfying fn(x) ≤ Kgn(x) for all n ≥ 0 and all x ∈ Ω. The
notations fn � gn means that fn . gn and gn . fn.

• The notation Ex
[
f(x, ξ)

]
denotes expectation with variable x fixed, while the randomness present in ξ

is averaged out.

Also, let ⊗Hr denote the outer product operator in Hr defined by

(x⊗Hr y)z
def
= 〈y, z〉r x ∀x, y, z ∈ Hr.

For an operator A : Hr 7→ Hl, we denote its operator norm by ‖ · ‖L(Hr,Hl) defined by

‖A‖L(Hr,Hl)
def
= sup
‖x‖r=1

‖Ax‖l.

For self-adjoint A and r = l = 0 this is, of course, the spectral radius of A. Finally, in the following we will
consider the product space Hr ×Hr. The norm of w = (w1, w2) ∈ Hr ×Hr is

‖w‖2r×r := ‖w1‖2r + ‖w2‖2r.
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3.2. Assumptions

In this section we describe the assumptions on the covariance operator C of the Gaussian measure π0
D∼

N(0, C) and the functional Ψ. We fix a distinguished exponent s > 0 and assume that Ψ : Hs → R and
TraceHs(Cs) < ∞. For each x ∈ Hs the derivative DΨ(x) is an element of the dual (Hs)∗ of Hs (dual with
respect to the topology induced by the norm in H), comprising the linear functionals on Hs. However, we
may identify (Hs)∗ = H−s and view DΨ(x) as an element of H−s for each x ∈ Hs. With this identification,
the following identity holds:

‖DΨ(x)‖L(Hs,R) = ‖DΨ(x)‖−s;

furthermore, the second derivative ∂2Ψ(x) can be identified with an element of L(Hs,H−s). To avoid tech-
nicalities we assume that Ψ(x) is quadratically bounded, with first derivative linearly bounded and second
derivative globally bounded. Weaker assumptions could be dealt with by use of stopping time arguments.

Assumptions 3.1. The functional Ψ, covariance operator C and the operators Γ1,Γ2 satisfy the following
assumptions.

1. Decay of Eigenvalues λ2
j of C: there exists a constant κ > 1

2 such that

λj � j−κ.

2. Domain of Ψ: there exists an exponent s ∈ [0, κ− 1/2) such that Ψ is defined everywhere on Hs.
3. Size of Ψ: the functional Ψ : Hs → R satisfies the growth conditions

0 ≤ Ψ(x) . 1 + ‖x‖2s.

4. Derivatives of Ψ: The derivatives of Ψ satisfy

‖DΨ(x)‖−s . 1 + ‖x‖s and ‖∂2Ψ(x)‖L(Hs,H−s) . 1. (3.5)

5. Properties of the Γi: The operators Γ1,Γ2 commute with C and are bounded linear operators from
Hs into itself.

Remark 3.2. The condition κ > 1
2 ensures that TraceHr (Cr) < ∞ for any r < κ − 1

2 : this implies that
π0(Hr) = 1 for any τ > 0 and r < κ− 1

2 .

Remark 3.3. The functional Ψ(x) = 1
2‖x‖

2
s is defined on Hs and its derivative at x ∈ Hs is given by

DΨ(x) =
∑
j≥0 j

2sxjϕj ∈ H−s with ‖DΨ(x)‖−s = ‖x‖s. The second derivative ∂2Ψ(x) ∈ L(Hs,H−s) is the

linear operator that maps u ∈ Hs to
∑
j≥0 j

2s〈u, ϕj〉ϕj ∈ H−s: its norm satisfies ‖∂2Ψ(x)‖L(Hs,H−s) = 1 for
any x ∈ Hs.

The Assumptions 3.1 ensure that the functional Ψ behaves well in a sense made precise in the following
lemma.

Lemma 3.4. Let Assumptions 3.1 hold.

1. The function F (x) given by (2.6) is globally Lipschitz on Hs:

‖F (x)− F (y)‖s . ‖x− y‖s ∀x, y ∈ Hs.

2. The second order remainder term in the Taylor expansion of Ψ satisfies∣∣Ψ(y)−Ψ(x)− 〈DΨ(x), y − x〉
∣∣ . ‖y − x‖2s ∀x, y ∈ Hs. (3.6)

Proof. See [MPS12, PST11].
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4. SPDE Theory

In this section we study the SDE (2.5) in the infinite dimensional Hilbert space setting; we work under the
assumptions specified in the previous section. Recall that our goal is to sample the measure π in (1.1), but
that we have extended our state space to obtain the measure Π given by (2.7), with q marginal given by
π. Here Π0 is the independent product of π0 = N(0, C) with itself in the q and p coordinates. The finite
dimensional arguments in Section 2 show that the equation (2.5) preserves Π0. The aim of this section is to
show that these steps all make sense in the infinite dimensional context, under the assumptions laid out in
the previous section.

Theorem 4.1. Let Assumption 3.1 hold. Then, for any initial condition
(
q(0), v(0)

)
∈ Hs×Hs, any T > 0

and almost every Hs ×Hs-valued C̃s-Brownian motion B̃(t) = (B1(t), B2(t)), there exists a unique solution
of the SDE (2.5) in the space C([0, T ],Hs×Hs). Furthermore, the Itô map (B1, B2) ∈ C

(
[0, T ];Hs×Hs

)
7→

(q, v) ∈ C
(
[0, T ];Hs ×Hs

)
is Lipschitz.

Proof. If we define

x =

(
q
v

)
,

together with the operator

Γ =

(
Γ1 0
0 Γ2

)
,

then equation (2.5) takes the form

dx

dt
= G(x) +

√
2Γ
dB̃

dt
(4.1)

where

G(x) =

(
v − Γ1F (q)
−F (q)− Γ2v

)
. (4.2)

A solution of (2.5) satisfies the integral equation

x(t) = x0 +

∫ t

0

G
(
x(s)

)
ds+

√
2ΓB̃(t),

where x(0) = x0. By virtue of Lemma 3.4 we see that G : Hs × Hs → Hs × Hs is globally Lipschitz.
Furthemore, Remark 3.2 shows that B̃ ∈ C

(
[0, T ];Hs×Hs

)
almost surely. To prove existence and uniqueness

of a solution we consider the map Ξ : C
(
[0, T ];Hs ×Hs

)
7→ C

(
[0, T ];Hs ×Hs

)
defined by

Ξ(x)(t) := x0 +

∫ t

0

G
(
x(s)

)
ds+

√
2ΓB̃(t).

Since F is globally Lipschitz from Hs into itself, it follows that G is globally Lipschitz from Hs × Hs into
itself. This in turn implies that Ξ is Lipschitz and that, furthermore, the Lipschitz constant may be made
less than one, by choosing t sufficiently small. From this existence and uniqueness of a solution follows by
the contraction mapping principle, on time-intervals sufficiently small. The argument may then be repeated
on successive time-intervals to prove the result on any time-interval [0, T ].

Now let

Υ : (x0, B̃) ∈ Hs ×Hs × C
(
[0, T ];Hs ×Hs

)
7→ x ∈ C

(
[0, T ];Hs ×Hs

)
. (4.3)

The arguments used in Lemma 3.7 of [MPS12] show that Υ is Lipschitz continuous and hence the desired
properties of the Itô map follow.
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For N ∈ N, let HN denote the linear span of the first N eigenfunctions of C, PN : H 7→ HN denote the
projection map and ΨN = Ψ ◦ PN . Define QN = I − PN . Recall Equations (2.4). Let ΥN denote the Ito
map obtained by replacing DΨ by PNDΨN in (2.4).

The following is the key result of this section. Our choices of measure (2.7) and dynamics (2.4) have been
coordinated to ensure that the resulting stochastic dynamics preserves Π:

Theorem 4.2. For any initial condition
(
q(0), v(0)

)
∼ Π and any T > 0, the equation (2.4) preserves Π :(

q(T ), v(T )
)
∼ Π.

Proof. The proof follows along the lines of Theorem 3.1 of [BPSSS11]. The key idea is to exploit the fact that
for finite dimensional H, the invariance of Π under the dynamics (q(T ), v(T )) follows easily. From this, the
invariance for an infinite dimensional H follows from an application of the dominated convergence theorem
which we outline below.

We let W denote the Weiner measure on X = C([0, T ];Hs × Hs) induced by Brownian motions with
covariance the same as that of Π0. For any continuous, bounded function g : Hs ×Hs 7→ R and T > 0, we
need to show that ∫

H×X
g
(

Υ
(
q, v,W

))
exp

(
−Ψ(q)

)
dΠ0(q, v)dW(W )

=

∫
H
g(q, v) exp

(
−Ψ(q)

)
dΠ0(q, v). (4.4)

First, we claim that for any N ∈ N,∫
H×X

g
(

ΥN
(
q, v,W

))
exp

(
−ΨN (q)

)
dΠ0(q, v)dW(W )

=

∫
H
g(q, v) exp

(
−ΨN (q)

)
dΠ0(q, v). (4.5)

This follows from the fact that the flow ΥN preserves the invariant measure proportional to exp(−ΨN )Π0

as obtained below in Lemma 4.3.
In Lemma 4.4 below, we will show that ΥN converges pointwise to Υ. Thus by the continuity of g,

g
(

ΥN
(
q, v,W

))
converges pointwise to g

(
Υ
(
q, v,W

))
. Clearly, exp(−ΨN (q)) converges to exp(−Ψ(q))

pointwise. Since g is bounded and Ψ,ΨN are positive, by the dominated convergence theorem the right (resp.
left) hand side of of (4.5) converges to the right (resp. left) hand side of (4.4) and the claim follows.

Lemma 4.3. Let Assumption 3.1 hold. The measure ΠN ∝ exp(−ΨN )Π0 factors as the product of two
measures on PNHs and QNHs. The measure ΠN ∝ exp(−ΨN )Π0 is preserved by ΥN .

Proof. By construction the measure Π0 factors as the product of two measures µ0 = N(0, PNCPN ) and
µ⊥0 = N(0, QNCQN ). Since ΨN is 0 on QN , it follows that ΠN factors into µ1 ∝ exp(−ΨN )µ0 on PNHs and
µ⊥1 = µ⊥0 on QNHs.

Now, as explained in Section 2 for any N , µ1 is invariant for PNΥN . Also setting Ψ = 0 in (2.4) results
in an OU flow on Hs for which Π0 is invariant. Thus if DΨ is replaced by PNDΨN in (2.4), the resulting
flow on QN is an Orstein-Uhlenbeck process with invariant measure µ⊥1 . Since ΠN is a product of µ1 and
µ⊥1 , the result follows.

The following result shows the pointwise convergence of ΥN to Υ.

Lemma 4.4. Let Assumption 3.1 hold. As N →∞, ΥN (x0, B̃) converges to Υ(x0, B̃) for every (x0, B̃) ∈
Hs ×Hs × C

(
[0, T ];Hs ×Hs

)
.
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Proof. Proceeding similarly as in Theorem 4.1, set

dxN

dt
= GN (x) +

√
2Γ
dB̃

dt

where

GN (x) =

(
v − Γ1F

N (q)
−FN (q)− Γ2v

)
(4.6)

with FN (q) = q + CPNDΨN (q). Let x(t) denote the solution of (2.4) and xN above satisfies

xN (t) = x0 +

∫ t

0

GN
(
xN (s)

)
ds+

√
2ΓB̃(t), (4.7)

where x(0) = x0. Set e = x − xN . The pointwise convergence of ΥN to Υ is established by showing that
e→ 0 in the path space C

(
[0, T ];Hs ×Hs

)
. We first decompose:

G(x)−GN (xN ) =
(
G(x)−GN (x)

)
+
(
GN (x)−GN (xN )

)
. (4.8)

Next, it can be shown that GN is globally Lipschitz with the Lipschitz constant L independent of N (see
[PST12], Lemma 4.1). Thus we have ‖GN (x(t)) − GN (xN (t))‖s ≤ L‖e(t)‖s . Combining this bound with
(4.7) and (4.8),

‖e(t)‖s ≤
∫ t

0

L‖e(u)‖s du+

∫ t

0

‖G(x(u))−GN (x(u))‖s du .

Thus by Gronwall’s inequality, it suffices to show that

sup
0≤t≤T

‖G(x(t))−GN (x(t))‖s → 0

as N →∞. To this end, write

F (x)− FN (x) = (CDΨ(x)− CPNDΨ(x)) + (CPNDΨ(x)− CPNDΨN (x)) .

Since CDΨ is globally Lipschitz,

‖G(x(t))−GN (x(t))‖s . ‖(I − PN )CDΨ(x(t))‖s + ‖(I − PN )x(t)‖s . (4.9)

From the existence of a global solution for (2.4) as shown in Theorem 4.1, it follows that sup0≤t≤T ‖x(t)‖s <
∞. Thus from (4.9) we infer that sup0≤t≤T ‖G(x(t))−GN (x(t))‖s → 0, and the claim follows.

5. Diffusion Limit of Algorithms

The main result of this section is the diffusion limit Theorem 5.1: using the prescription (2.15) and setting
δ = h = τ , we construct a sequence of Markov chains xk,δ (i.e., for every fixed delta, {xk,δ}k is a Markov
chain) and consider the process zδ(t) which is the continuous time interpolant of the chain xk,δ. Then zδ(t)
converges to the solution of the SDE (5.9), which is a specific instance of (4.1), when Γ1 = 0. By Theorem
4.2, the flow (5.9) preserves the measure Π defined in (2.7).

More precisely, for q, v ∈ Hs, let x ∈ Hs ×Hs denote the pair x = (q, v); we recall that the norm of x is
then

‖x‖2s×s := ‖q‖2s + ‖v‖2s.
With the algorithm described in Section 2.3, taking δ = h = τ we construct the Markov chain xk+1,δ :=
(qk+1,δ, vk+1,δ) as follows

(qk+1,δ, vk+1,δ) = (qk+1,δ
∗ , vk+1,δ

∗ ) with probability αk,δ

= (qk,δ,−(vk,δ)′) otherwise,
(5.1)
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where
αk,δ = α(xk,δ, ξδ) := 1 ∧ exp

(
H
(
qk,δ, (vk,δ)′

)
− H

(
qk+1,δ
∗ , vk+1,δ

∗
))
.

We specify that in the above

(qk+1,δ
∗ , vk+1,δ

∗ ) = χδ ◦Θδ
0 (qk,δ, vk,δ) and ((qk,δ)′,−(vk,δ)′) =

(
qk,δ,−Pv

(
Θδ

0(qk,δ, vk,δ)
))
,

where for x ∈ Hs × Hs, we denote by Pq(x) and Pv(x) the projection of x on the q and v component,
respectively. Notice that introducing γk,δ ∼ Bernoulli(αk,δ), the algorithm (5.1) can be also written as

(qk+1,δ, vk+1,δ) = γk,δ(qk+1,δ
∗ , vk+1,δ

∗ ) + (qk,δ,−(vk,δ)′).

Following [PST11], we consider the piecewise linear and the piecewise constant interpolant of the chain
xk,δ, zδ(t) and z̄δ(t), respectively:

zδ(t) :=
1

δ
(t− tk)xk+1,δ +

1

δ
(tk+1 − t)xk,δ, tk ≤ t < tk+1, tk = kδ, (5.2)

z̄δ(t) := xk,δ tk ≤ t < tk+1, tk = kδ. (5.3)

Decompose the chain xk,δ into its drift and martingale part:

xk+1,δ = xk,δ + δGδ(xk,δ) +
√

2δSMk,δ

where

S =

[
Id 0
0 Γ2

]
,

Gδ(x) :=
1

δ
Ex
[
xk+1,δ − xk,δ|xk,δ = x

]
, (5.4)

Mk,δ :=
S−1/2

√
2δ

(
xk+1,δ − xk,δ − δGδ(xk,δ)

)
(5.5)

Mδ(x) := E
[
Mk,δ|xk,δ = x

]
. (5.6)

Notice that with this definition, if Fk,δ is the filtration generated by {xj,δ, γj,δ, ξδ, j = 0, . . . , k}, we have
E[Mk,δ|Fk,δ] = 0. Also, let us introduce the rescaled noise process

B̃δ(t) :=
√

2Sδ
k−1∑
j=0

M j,δ +

√
2S
δ

(t− tk)Mk,δ, tk ≤ t < tk+1. (5.7)

A simple calculation, which we present in Appendix A, shows that

zδ(t) = Υ(x0, B̂
δ), (5.8)

where Υ is the map defined in (4.3) and B̂δ is the rescaled noise process B̃δ plus a term which we will show
to be small:

B̂δ(t) := B̃δ(t) +

∫ t

0

[
Gδ(z̄δ(u))−G(zδ(u))

]
du;

we stress that in the above and throughout this section the map G(x) is as in (4.2) with Γ1 = 0.
Let B2(t) be an Hs-valued Cs-Brownian motion (we recall that the covariance operator Cs has been defined

in (3.3)) and Hs×Hs 3 B(t) = (0, B2(t)). Recall the SPDE (2.5) written in the form (4.1). The main result
of this section is the following diffusion limit of the Markov chain (5.1) to (4.1).
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Theorem 5.1 (Diffusion limit). Let Assumption 3.1 hold and let (Hs, 〈·, ·〉s) be a separable Hilbert space,
xk,δ be the Markov chain (5.1) starting at x0,δ = x0 ∈ Hs ×Hs and let zδ(t) be the process defined by (5.2).
If Assumption 3.1 holds then zδ(t) converges weakly in C([0, T ];Hs ×Hs) to the solution z(t) ∈ Hs ×Hs of
the stochastic differential equation

dz(t) = G(z)dt+
√

2Γ dB(t)

z(0) = x0.
(5.9)

The diffusion limit can be proven as a consequence of [PST11, Lemma 3.5]. Proposition 5.4 below is a
slightly more general version of [PST11, Lemma 3.5].

Proof of Theorem 5.1. Theorem 5.1 follows as a consequence of Proposition 5.4 and Lemma 5.5 below.

Consider the following conditions:

Condition 5.2. The Markov chain xk,δ ∈ Hs ×Hs defined in (5.1) satisfies

• Convergence of the approximate drift. There exist a globally Lipshitz function
G : Hs ×Hs → Hs ×Hs, a real number a > 0 and an integer p ≥ 1 such that

‖Gδ(x)−G(x)‖s×s . δa(1 + ‖x‖ps×s). (5.10)

• Size of the increments. There exist a real number r > 0 and an integer n ≥ 1 such that

E
[
‖xk+1,δ − xk,δ‖s×s|xk,δ = x

]
. δr(1 + ‖x‖ns×s). (5.11)

• A priori bound. There exists a real number ε such that 1− ε+ (a∧ r) > 0 (with a and r as in (5.10)
and (5.11), respectively) and the following bound holds:

sup
δ∈(0,1/2)

δεE
∑
kδ≤T

‖xk,δ‖p∨ns×s

 <∞. (5.12)

• Invariance principle. As δ tends to zero the sequence of processes B̃δ defined in (5.7) converges
weakly in C([0, T ];Hs×Hs) to the Brownian motion Hs×Hs 3 B = (0, B2) where B2 is a Hs-valued,
Cs-Brownian motion.

Remark 5.3. Notice that if (5.10) holds for some a > 0 and p ≥ 1, then

‖E[xk+1,δ − xk,δ|xk,δ]‖s×s . δ(1 + ‖x‖ps×s) (5.13)

and

‖Gδ(x)‖s×s . 1 + ‖x‖ps×s. (5.14)

Indeed

‖E[xk+1,δ − xk,δ|xk,δ = x]‖s×s = δ‖Gδ(x)‖s×s ≤ δ‖Gδ(x)−G(x)‖s×s + δ‖G(x)‖s×s . δ(1 + ‖x‖ps×s),

having used the Lipshitzianity of the map G(x). Analogously one can obtain (5.14) as well.

Proposition 5.4. Let Assumption 3.1 hold and let (Hs, 〈·, ·〉s) be a separable Hilbert space and xk,δ a
sequence of Hs×Hs valued Markov chains with x0,δ = x0. Suppose the drift martingale decomposition (5.4)-
(5.5)of xk,δ satisfies Condition 5.2. Then the sequence of interpolants zδ(t) defined in (5.2) converges weakly
in C([0, T ];Hs ×Hs) to the solution z(t) ∈ Hs ×Hs of the stochastic differential equation (5.9).
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Proof. Thanks to the Lipshitzianity of the map Υ in (5.8) (see Theorem 4.1), the proof is analogous to the
proof of [PST11, Lemma 3.5]. We sketch it in Appendix A.

Lemma 5.5. Let Assumption 3.1 hold and let xk,δ be the Markov chain (5.1) starting at x0,δ = x0 ∈
Hs ×Hs. Under Assumption 3.1 the drift martingale decomposition of xk,δ, (5.4)- (5.5), satisfies Condition
5.2.

The remainder of this section is devoted to proving Lemma 5.5, which is needed to prove Theorem 5.1.
First, in Section 5.1 we list and explain several preliminary technical lemmata, which will be proved in
Appendix B. The main one is Lemma 5.7, where we study the acceptance probability. Then, in Section 5.2
and Section 5.3, we prove Lemma 5.5; in order to prove such a lemma we need to show that if Assumption
3.1 holds, the four conditions listed in Condition 5.2 are satisfied by the chain xk,δ. To this end, Lemma 5.10
proves that (5.10) holds with a = 1 and p = 6; Lemma 5.11 shows that (5.11) is satisfied with r = 1/2 and
n = 6; the a priori bound (5.12) is proved to hold for ε = 1 and for any power of ‖xk,δ‖s×s in Lemma 5.12;
finally, Lemma 5.18 is the invariance principle.

Proof of Lemma 5.5. Lemma 5.5 follows as a consequence of Lemma 5.10, Lemma 5.11, Lemma 5.12 and
Lemma 5.18.

5.1. Preliminary Estimates

We first analyse the acceptance probability. Given the current state of the chain xk,δ = x = (q, v), the
acceptance probability of the proposal (q∗, v∗) is

αδ := α0,δ(x, ξδ) = 1 ∧ exp (H(q, v′)− H(q∗, v∗)) = 1 ∧ exp (∆H(q, v′)) . (5.15)

Similarly, we denote
γδ := γ0,δ ∼ Bernoulli(αδ).

For an infinite dimensional Hilbert space setting, the matter of the well-posedness of the expression for the
acceptance probability is not obvious; we comment on this below.

Remark 5.6. Before proceeding to the analysis, let us make a few observations about the expression
(5.15) for the acceptance probability.

• As we have already mentioned, the flip of the sign of the velocity in case of rejection of the proposal move
guarantees time-reversibility. As a consequence the proposal moves are symmetric and the acceptance
probability can be defined only in terms of the energy difference.

• We are slightly abusing notation in going from the original H(q, p) to H(q, v). However notice that
H(q, v) is preserved by the flow (2.11).

• The relevant energy difference here is H(q, v′)− H(q∗, v∗) (rather than H(q, v)− H(q∗, v∗)); indeed the
first step in the definition of the proposal (q∗, v∗), namely the OU process Θδ

0(q, v), is based on an
exact integration and preserves the desired invariant measure. Therefore the accept-reject mechanism
(which is here only to preserve the overall reversibility of the chain by accounting for the numerical
error made by the integrator χhτ ) doesn’t need to include also the energy difference H(q, v)− H(q, v′).

• The Hamiltonian H(q, v), defined in (2.14), is almost surely infinite in an infinite dimensional context;
this can be seen by just applying a zero-one law to the series representation of the scalar product
〈q, C−1q〉. However, in order for the acceptance probability to be well defined, all we need is for the
difference H(q, v′) − H(q∗, v∗) to be almost surely finite, i.e. for ∆H(q, v′) to be a bounded operator.
This is here the case thanks to the choice of the Verlet algorithm. Indeed from [BPSSS11, page 2212]
we know that

∆H(q, v′) = Ψ(q)−Ψ(q∗)−
δ

2
(〈DΨ(q), v′〉+ 〈DΨ(q∗), v∗〉)

+
δ2

8

(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

)
.
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More details on this fact can be found in [BPSSS11, page 2210, 2212, 2227].

Lemma 5.7. Let Assumption 3.1 hold. Then, for any p ≥ 1,

Ex
∣∣1− αδ∣∣p . δ2p(1 + ‖q‖4ps + ‖v‖4ps ). (5.16)

Proof. The proof of Lemma 5.7 can be found in Appendix B.

The above (5.16) quantifies the intuition that the acceptance rate is very high, i.e. the proposal is rejected
very rarely. Therefore the analysis of Section 5.2 and Section 5.3 is done by bearing in mind that “everything
goes as if αδ were equal to one”. We now state a few technical results, gathered in Lemma 5.8 and Lemma
5.9, that will be frequently used in the following.

Lemma 5.8. Let Assumption 3.1 hold. Then, for any q, q̃, v, ṽ ∈ Hs,

‖CDΨ(q)− CDΨ(q̃)‖s . ‖q − q̃‖s and ‖CDΨ(q)‖s . (1 + ‖q‖s); (5.17)

|〈DΨ(q), v〉| . (1 + ‖q‖s)‖v‖s;
|〈DΨ(q), v〉 − 〈DΨ(q̃), ṽ〉| . ‖v‖s‖q − q̃‖s + (1 + ‖q̃‖s)‖v − ṽ‖s; (5.18)

‖C1/2DΨ(q)‖ . 1 + ‖q‖s;
‖C1/2DΨ(q)− C1/2DΨ(q̃)‖ . ‖q − q̃‖s. (5.19)

Proof. See [BPSSS11, Lemma 4.1]

Recall that B2(t) is an Hs-valued Cs-Brownian motion and that ξδ is the noise component of the OU
process Θδ

0, i.e.

v′ = e−δΓ2v +

∫ δ

0

e−(δ−u)Γ2
√

2Γ2dB2(u) =: e−δΓ2v + ξδ. (5.20)

By integrating χδ and Θδ
0, the proposal move at step k, xk+1,δ

∗ = (qk+1,δ
∗ , vk+1,δ

∗ ), is given by

qk+1,δ
∗ = cos δqk,δ + sin δ

(
vk,δ

)′ − δ

2
sin δ CDΨ(qk,δ), (5.21)

vk+1,δ
∗ = − sin δqk,δ + cos δ

(
vk,δ

)′ − δ

2
cos δ CDΨ(qk,δ)− δ

2
CDΨ(qk+1,δ

∗ ). (5.22)

If γk := γk,δ ∼ Bernoulli(αk,δ), then the (k + 1)th step of the Markov chain is

qk+1,δ = γkqk+1,δ
∗ + (1− γk)qk,δ,

vk+1,δ = γkvk+1,δ
∗ − (1− γk)(vk,δ)′. (5.23)

Lemma 5.9. Let Assumption 3.1 hold. Then, for any p ≥ 1, we have

E‖ξδ‖ps . δp/2; (5.24)

E‖(vk,δ)′|xk,δ = x‖ps . 1 + ‖v‖ps ; (5.25)

E[‖qk+1,δ
∗ − qk,δ‖ps |xk,δ = x] . δp(1 + ‖q‖ps + ‖v‖ps). (5.26)

Proof. See Appendix B.
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5.2. Analysis of the drift

Let G(x) be the map in (4.2) with Γ1 = 0, i.e.

G(x) = G(q, v) =

[
v

−q − CDΨ(q)− Γ2v

]
,

and Gi(x) and Gδi , i = 1, 2, be the ith component of G and Gδ, respectively.

Lemma 5.10. Let Assumption 3.1 hold. Then, for any x = (q, v) ∈ Hs ×Hs,

‖Gδ1(x)−G1(x)‖s . δ (1 + ‖q‖6s + ‖v‖6s), (5.27)

‖Gδ2(x)−G2(x)‖s . δ (1 + ‖q‖6s + ‖v‖6s).

Proof. By (5.23),

qk+1,δ − qk,δ = γk(qk+1,δ
∗ − qk,δ),

vk+1,δ − vk,δ = γkvk+1,δ
∗ + (γk − 1)(vk,δ)′ − vk,δ. (5.28)

So if we define

A1 :=
1

δ
‖Ex

[
γδ(cos δ − 1)q

]
‖s,

A2 := ‖Ex
(
γδ

sin δ

δ
e−δΓ2v,

)
− v‖s

A3 :=

∣∣∣∣∣∣∣∣Ex [γδ sin δ

δ
ξδ − γδ sin δ

2
CDΨ(q)

]∣∣∣∣∣∣∣∣
s

and

E1 :=

∣∣∣∣∣∣∣∣q − Ex
(
γδ

sin δ

δ
q

)∣∣∣∣∣∣∣∣
s

,

E2 :=

∣∣∣∣∣∣∣∣CDΨ(q) + Ex
(
−γ

δ

2
cos δCDΨ(q)− γδ

2
CDΨ(qk+1,δ

∗ )

)∣∣∣∣∣∣∣∣
s

,

E3 :=

∣∣∣∣∣∣∣∣Ex(γδ cos δ

δ
e−δΓ2v

)
− 1

δ
v + Γ2v + Ex

[
γδ − 1

δ
e−δΓ2v

]∣∣∣∣∣∣∣∣
s

,

E4 :=
1

δ

∣∣∣∣Ex [γδ cos δ ξδ +
(
γδ − 1

)
ξδ
]∣∣∣∣
s
,

by the definition of Gδ (equation (5.4)) and using (5.20) and (5.21), we obtain

‖Gδ1(x)−G1(x)‖s ≤ A1 +A2 +A3 and ‖Gδ2(x)−G2(x)‖s ≤ E1 + E2 + E3 + E4.

We will bound the Ai’s and the Ei’s one by one. To this end, we will repeatedly use the following simple
bounds:

γδ, γk ∈ {0, 1} and 0 ≤ αδ ≤ 1; (5.29)

E[ξδ] = 0; (5.30)

‖E[(αδ − 1)ξδ]‖s ≤
[
E(αδ − 1)2

]1/2 [E‖ξδ‖2s]1/2 . δ5/2(1 + ‖q‖4s + ‖v‖4s). (5.31)
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(5.31) follows from using Bochner’s inequality 3 and Cauchy-Schwartz first and then (5.24) and (5.16). Using
(5.29), it is straightforward to see that

A1 ≤ δ‖q‖s.

As for A2,

A2 =

∣∣∣∣∣∣∣∣(I − Ex(αδ)
sin δ

δ
e−δΓ2

)
v

∣∣∣∣∣∣∣∣
s

≤
∣∣1− Ex(αδ)

∣∣ ‖v‖s +

∣∣∣∣∣∣∣∣Ex(αδ)

(
1− sin δ

δ
e−δΓ2

)
v

∣∣∣∣∣∣∣∣
s

≤ δ2(1 + ‖q‖4s + ‖v‖4s)‖v‖s + δ‖v‖s ≤ δ(1 + ‖q‖6s + ‖v‖6s),

having used, in the second inequality, (5.16) and (5.29). A3 is bounded by using (5.30), (5.31) and (5.17):

A3 ≤
∣∣∣∣∣∣∣∣ sin δδ Ex

[
(αδ − 1)ξδ + ξδ

]∣∣∣∣∣∣∣∣
s

+ ||Exδ CDΨ(q)||s

. δ5/2(1 + ‖q‖4s + ‖v‖4s) + δ(1 + ‖q‖s) ≤ δ(1 + ‖q‖4s + ‖v‖4s).

Hence (5.27) has been proven. We now come to estimating the Ei’s. Proceeding as in the bound for A2 above
we obtain:

E1 ≤
∣∣∣∣q − Ex(αδ)q

∣∣∣∣
s

+

∣∣∣∣∣∣∣∣Ex(αδ)

(
1− sin δ

δ

)
q

∣∣∣∣∣∣∣∣
s

≤ δ2(1 + ‖q‖4s + ‖v‖4s)‖q‖s + δ2‖q‖s ≤ δ2(1 + ‖q‖6s + ‖v‖6s).

Also,

E2 ≤
∣∣∣∣CDΨ(q)− Ex(αδ) cos δ CDΨ(q)

∣∣∣∣
s

+

∣∣∣∣∣∣∣∣12Ex [αδ cos δ CDΨ(q)− αδCDΨ(qk+1,δ
∗ )

]∣∣∣∣∣∣∣∣
s

.
∣∣∣∣(1− Ex(αδ))CDΨ(q)

∣∣∣∣
s

+ ‖(cos δ − 1)CDΨ(q)‖s +
∣∣∣∣Ex (CDΨ(q)− CDΨ(qk+1,δ

∗ )
)∣∣∣∣
s

. δ2(1 + ‖q‖6s + ‖v‖6s) + δEx‖qk+1,δ
∗ − q‖s

(5.26)

. δ(1 + ‖q‖6s + ‖v‖6s),

where the penultimate inequality is obtained by using (5.16) and (5.17).
For the last two terms:

E3 ≤
1

δ

∣∣∣∣Ex(αδ)(cos δ − 1)e−δΓ2v
∣∣∣∣
s

+
1

δ

∣∣∣∣Ex(αδ − 1)e−δΓ2v
∣∣∣∣
s

+
1

δ

∣∣∣∣Ex (e−δΓ2 − 1 + δΓ2

)
v
∣∣∣∣
s

(5.29)

. δ‖v‖s +
1

δ
E
∣∣αδ − 1

∣∣ ‖v‖s
(5.16)

. δ‖v‖s + δ(1 + ‖q‖4s + ‖v‖4s)‖v‖s . δ(1 + ‖q‖6s + ‖v‖6s).

Finally, from (5.30) and (5.31),

E4 ≤
1

δ

∣∣∣∣Ex(αδ cos δ ξδ)
∣∣∣∣
s

+
1

δ

∣∣∣∣Ex(αδ − 1)ξδ
∣∣∣∣
s

.
1

δ
‖Ex

[
(αδ − 1) cos δξδ + cos δξδ

]
‖s +

1

δ
‖Ex

[
(αδ − 1)ξδ

]
‖s ≤ δ3/2(1 + ‖q‖4s + ‖v‖4s).

This concludes the proof.

Let us now show that condition (5.11) is satisfied as well.

3Let (X, ‖·‖) be a Banach space and f ∈ L1((Ω,F , µ);X). Then ‖
∫
fdµ‖ ≤

∫
‖f‖dµ. For a proof of the Bochner’s inequality

see [PR07].
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Lemma 5.11. Under Assumptions 3.1, the chain xk,δ ∈ Hs ×Hs defined in (5.1) satisfies

E
[
‖qk+1,δ − qk,δ‖s|xk,δ = x

]
. δ (1 + ‖q‖s + ‖v‖s) , (5.32)

E
[
‖vk+1,δ − vk,δ‖s|xk,δ = x

]
. δ1/2

(
1 + ‖q‖6s + ‖v‖6s

)
. (5.33)

In particular, (5.11) holds with r = 1/2 and n = 6.

Proof. (5.32) is a straightforward consequence of (5.28), (5.29) and (5.26). In order to prove (5.33) we start
from (5.28) and we write

E
[
‖vk+1,δ − vk,δ‖s|xk,δ = x

]
= E‖γδv∗ + (γδ − 1)v′ − v‖s (5.34)

. E‖γδ (sin δq + δCDΨ(q) + δCDΨ(q∗)) ‖s (5.35)

+ E‖γδ cos δv′ − (1− γδ)v′ − v‖s. (5.36)

By using (5.29), (5.17) and (5.26) we get

E‖γδ (sin δq + δCDΨ(q) + δCDΨ(q∗)) ‖s . δ(1 + ‖q‖s). (5.37)

Notice that

E
∣∣γδ − 1

∣∣` = 1− E(αδ), ∀` ≥ 1. (5.38)

Therefore by (5.20) and (5.29) and repeatedly using (5.38),

E‖γδ cos δv′ − (1− γδ)v′ − v‖s . E‖
[
γδ cos δ − (1− γδ)

]
ξδ‖s

+ E‖(1− γδ)e−δΓ2v‖s + E‖γδ cos δe−δΓ2v − v‖s
(5.24)

. δ1/2 + E
∣∣1− αδ∣∣ ‖v‖s

+ E
∣∣1− γδ cos δ

∣∣ ‖e−δΓ2v‖s + ‖e−δΓ2v − v‖s
(5.16)

. δ1/2 + δ2(1 + ‖q‖4s + ‖v‖4s)‖v‖s
+ E

∣∣γδ − 1
∣∣ ‖e−δΓ2v‖s + E

∣∣γδ(cos δ − 1)
∣∣ ‖e−δΓ2v‖s + δ‖v‖s

. δ1/2(1 + ‖q‖6s + ‖v‖6s). (5.39)

Now (5.34), (5.37) and (5.39) imply (5.33).

Finally, the a priori bound (5.12) holds.

Lemma 5.12. Let Assumption 3.1 hold. Then the chain (5.1) satisfies

sup
δ∈(0,1/2)

{
δE

[∑
kδ<T

‖xk,δ‖`s×s

]}
<∞ for any integer ` ≥ 1. (5.40)

In particular, the bound (5.12) holds (with ε = 1 and for any moment of ‖xk,δ‖s×s).

Remark 5.13. Before proving the above lemma, let us make some comments. First of all, the estimate of
condition (5.12) is needed mainly because the process has not been started in stationarity and hence it is not
stationary. For the same reason an analogous estimate was needed in [PST11], as well. However there the
approximate drift grows linearly in x (see [PST11, Equation (25)]) and this is sufficient to prove an estimate
of the type (5.12). Here, because in case of rejection of the proposed move the sign of the velocity is flipped,
the approximate drift grows faster than linearly (see Lemma 5.10 and (5.14)). To deal with the change of
sign of the velocity we will observe that such a change of sign doesn’t matter if we look at even powers of
xk,δ – what matters is that in moving from xk,δ to xk+1,δ we always “move a short distance”– and we will
exploit the independence of vk,δ and ξδ, once xk,δ is given.
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Proof. If we show that (5.40) is true for every even ` then it is true for every ` ≥ 1. Indeed

‖x‖`s×s ≤ ‖x‖2`s×s + 1 so δ
∑
kδ<T

‖x‖`s×s . δ
∑
kδ<T

‖x‖2`s×s + 1 <∞.

Throughout this proof c will be a generic positive constant. We begin by recalling the definition of the map

Θ
δ/2
1 :

Θ
δ/2
1 (q, p) =

(
q, v − δ

2
CDΨ(q)

)
,

hence

‖Θδ/2
1 (x)‖2s×s = ‖q‖2s + ‖v‖2s +

δ2

4
‖CDΨ(q)‖2s − δ〈v, CDΨ(q)〉

(5.17)

≤ ‖q‖2s + ‖v‖2s + c δ2(1 + ‖q‖2s) + c δ‖v‖s(1 + ‖q‖s)
≤ (1 + c δ)‖x‖2s×s + c δ.

Because Rδ is a rotation, it preserves the norm, so also

‖χδ(x)‖2s×s = ‖Θδ/2
1 ◦Rδ ◦Θ

δ/2
1 (x)‖2s×s ≤ (1 + c δ)‖x‖2s×s + c δ. (5.41)

Now notice that by definition xk+1,δ = (qk+1,δ, vk+1,δ) is either equal to χδ(qk,δ, (vk,δ)′) = (qk+1,δ
∗ , vk+1,δ

∗ )
(if the proposal is accepted) or to (qk,δ,−(vk,δ)′) (if the proposal is rejected). Thanks to (5.41), in any of
these two cases we have

‖xk+1,δ‖2s×s ≤ (1 + cδ)‖(xk,δ)′‖2s×s + cδ,

where (xk,δ)′ = ((qk,δ)′, (vk,δ)′) = (qk,δ, (vk,δ)′). By (5.20),

‖(xk,δ)′‖2s×s ≤ ‖qk,δ‖2s + ‖vk,δ‖2s + ‖ξδ‖2s + 2〈e−δΓ2vk,δ, ξδ〉
= ‖xk,δ‖2s×s + ‖ξδ‖2s + 2〈e−δΓ2vk,δ, ξδ〉.

Therefore

E‖xk+1,δ‖2s×s = E{E[‖xk+1,δ‖2s×s|xk,δ]}
≤ (1 + c δ)E‖xk,δ‖2s + (1 + cδ)E‖ξδ‖2s
+ (1 + c δ)E{E[〈e−δΓ2vk,δ, ξδ〉|xk,δ]}+ c δ.

By the conditional independence of vk,δ and ξδ together with (5.30)

E{E[〈e−δΓ2vk,δ, ξδ〉|xk,δ]} = 0;

hence, using (5.24), we obtain

E‖xk+1,δ‖2s×s ≤ (1 + c δ)E‖xk,δ‖2s×s + c δ.

Iterating the above inequality leads to

E‖xk+1,δ‖2s×s ≤ (1 + c δ)[T/δ]E‖x0‖2s×s + c δ(1 + c δ)[T/δ] + c δ,

which implies

δ
∑
kδ<T

E‖xk,δ‖2s×s <∞.

We now need to show that for any j > 1,

δ
∑
kδ<T

E‖xk,δ‖2js×s <∞.

22



By the same reasoning as before we start with observing that

‖χδ(x)‖2js×s ≤ (1 + c δ)‖x‖2js×s + c δ + 2

j−1∑
l=1

(1 + c δ)l‖x‖2ls×sδj−l

≤ (1 + c δ)‖x‖2js×s + c δ

(notice that in the above j − l ≥ 1 because 1 ≤ l ≤ j − 1). Hence

E‖xk+1,δ‖2js×s ≤ (1 + c δ)E‖(xk,δ)′)‖2js×s + cδ.

From (5.20) we have

‖(xk,δ)′‖2js×s ≤ ‖xk,δ‖
2j
s×s + ‖ξδ‖2js×s + c

(
〈e−δΓ2vk,δ, ξδ〉

)j
+ c

j−1∑
l=1

‖xk,δ‖2ls×s‖ξδ‖2(j−l)
s + c

j−1∑
l=1

‖xk,δ‖2ls×s
(
〈e−δΓ2vk,δ, ξδ〉

)j−l
+ c

j−1∑
l=1

‖ξδ‖2ls
(
〈e−δΓ2vk,δ, ξδ〉

)j−l
.

Using again the conditional independence of vk,δ and ξδ, for any l > 1,

E
{
E
[(
〈e−δΓ2vk,δ, ξδ〉

)l |xk,δ = x
]}
≤ E

{
E
[
‖vk,δ‖ls‖ξδ‖ls|xk,δ = x

]}
≤ c δl/2 E‖vk,δ‖ls ≤ c δ E‖vk,δ‖ls.

Therefore,
E‖(xk,δ)′‖2js×s ≤ E‖xk,δ‖2js×s + δj + δE(1 + ‖xk,δ‖2js×s)

hence
E‖xk+1,δ‖2js×s ≤ (1 + c δ)E‖xk,δ‖2js×s + c δ

and we can conclude as before.

5.3. Analysis of the noise

Let us start with defining

Dδ(x) := E
[
Mk,δ ⊗Mk,δ|xk,δ = x

]
. (5.42)

This section is devoted to proving the invariance principle Lemma 5.18 below, as a consequence of the
following Lemma 5.16 and Lemma 5.17, which we prove in Appendix B. In order to state such lemmata,
consider the following set of conditions:

Condition 5.14. The Markov chain xk,δ ∈ Hs ×Hs defined in (5.1) satisfies:

(i) There exist two integers d1, d2 ≥ 1 and two real numbers b1, b2 > 0 such that∣∣∣〈ϕ̂`j , Dδ(x) ϕ̂
¯̀
i〉s×s − 〈ϕ̂`j ,Cs ϕ̂

¯̀
i〉s×s

∣∣∣ . δb1(1 + ‖x‖d1
s×s) ∀i, j ∈ N and `, ¯̀∈ 1, 2; (5.43)∣∣TraceHs×Hs(D

δ(x))− TraceHs×Hs(Cs)
∣∣ . δb2(1 + ‖x‖d2

s×s), (5.44)

where Cs is the covariance operator defined in (3.4).
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(ii) There exist four real numbers η1, η2, η3, η4 such that

b1 + 1− η1 > 0, b2 + 1− η2 > 0, 4r − η3 > 0, 4− η4 > 0.

Moreoever, the bound

sup
δ∈(0,1/2)

δη E
∑
kδ≤T

‖xk,δ‖ms×s

 <∞ (5.45)

holds for η = mini=1...4{ηi} and m = max{d1, d2, 4n, 4p}. In the above n and r are as in Condition
5.2.

Remark 5.15. Because ‖x‖bs×s . ‖x‖ds×s + 1 for all d ≥ b, if (5.45) holds with m = d, then it also hold
for any m ≤ d.

Lemma 5.16. If (5.11) is satisfied with r > 1/4 then the estimates (5.10) and (5.11) together with Con-
ditions 5.14 imply the invariance principle Lemma 5.18.

Proof. See Appendix B.

Lemma 5.17. Under Assumption 3.1, the estimates (5.43) and (5.44) hold with b1 = b2 = 1/6 and
d1 = d2 = 10.

Proof. See Appendix B.

Lemma 5.18. Under Assumption 3.1, the rescaled noise process Hs×Hs 3 B̃δ defined in (5.7), converges
weakly in C([0, T ];Hs × Hs) to Hs × Hs 3 B = (0, B2) where B2 is a Hs-valued, mean zero Cs Brownian
motion.

Proof of Lemma 5.18. We use Lemma 5.16. Thanks to Lemma 5.10, (5.10) is satisfied with a = 1 and p =
6. From Lemma 5.11, (5.11) holds with r = 1/2. As for Conditions 5.14, Lemma 5.17 proves that Condition
5.14 (i) holds. In view of Lemma 5.12, Condition 5.14 (ii) is satisfied with η1 = η2 = η3 = η4 = 1.

6. Numerics

Before describing the numerical results we highlight the fact that the function space MALA algorithm of
[BRSV08] is a special case of the function space HMC algorithm of [BPSSS11] which, in turn, is a special
case of the SOL-HMC algorithm introduced in this paper. All of these algorithms are designed to have
dimension-independent mixing times, and are indistinguishable from this point of view. However we expect
to see different performance in practice and our numerical experiments are aimed at demonstrating this. In
the paper [BPSSS11] it was shown that HMC is a significant improvement on MALA for bridge diffusions
[BPSSS11]. It is natural to try and show that the SOL-HMC algorithm can be more efficient than HMC. To
do this, we choose a target measure π defined with respect to a reference measure π0 which is a standard
Brownian bridge on [0, 100], starting and ending at 0, and with

Ψ(q) =
1

2

∫ 100

0

V
(
q(τ)

)
dτ

and V (u) = (u2 − 1)2. Thus we may take as H the space L2
(
(0, 100),R

)
. The properties of measures of

this type are studied in some detail in [OWW13]. For our purposes it is relevant to note that Eπ q(τ) = 0
for 0 ≤ τ ≤ 100. This follows from the fact that the function V is even and zero boundary conditions are
imposed by the Brownian bridge meaning that the measure is invariant under q 7→ −q. The precision (inverse
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covariance) operator for unit Brownian bridge on an interval [0, T ] is simply given by the negative of the
Laplacian with homogeneous Dirichlet boundary conditions. Furthermore samples may be drawn simply by
drawing a Brownian motion B(t) and subtracting tB(T )/T.

Because of these properties of π we expect that sufficiently long runs of MCMC methods to sample from
π should exhibit, approximately, this zero mean property. We may use the rate at which this occurs as a way
of discriminating between the different algorithms. To this end we define a quantity E(n), with n defined in
what follows as n = NdNM . Here Nd denotes the number of steps used in the deterministic integration; in
MALA, Nd = 1 and for our implementation of HMC, Nd > 1 is chosen so that such that τ = Nd h ≈ 1. The
integer NM is the number of MCMC steps taken. The quantity n is thus a measure of the total number of
numerical integration steps used and thus of the overall work required by the algorithm, noting that all the
algorithms involve more or less the same calculations per step, and that accept/reject overheads are minimal
compared with the cost arising from accumulation of numerical integration steps. We define the running
average

q̄ n(τ) =
1

NM

NM∑
i=1

qi(τ)

where the index i runs over the realizations NM of the path q. We then define the quantity E(n) as

E(n) =
1

100

∫ 100

0

∣∣q̄ n(τ)
∣∣dτ.

When viewed as a function of n the rate at which E(n) approaches zero determines the efficiency of the sam-
pling. The faster E decreases, the more efficient the sampling. All our numerical experiments are conducted
with the form of the SOL-HMC algorithm described in Remarks 2.2. Thus Γ2 = I and we use the parameter
ι to implicitly define δ.

For the first set of numerical experiments we use the SOL-HMC algorithm in the form which gives rise to
the diffusion limit, namely with δ = h so that we make only one step in the deterministic integration Nd = 1.
The key parameter is thus ι (and implicitly δ) given in (2.16). We consider the values ι = 0.9, 0.99, and 0.999.
The results are summarized in Figure 1. They demonstrate that SOL-HMC is indeed considerably better
than MALA, but is not better than HMC for this problem and this choice of parameters. For ι = 0.999, we
see a plateauing of the value for E for n between 500 and 1000. It seems that such behavior is due to the
sign-flip step when the proposal is rejected. As Horowitz [Hor91] noted for the standard finite dimensional
algorithm L2MC that we have generalized, “If it were not for this momenta reversal, it would be a near
certain conclusion that L2MC is more efficient than HMC”. Our findings are consistent with this remark.

The first set of experiments, in which HMC appeared more efficient than SOL-HMC , employed a value
of δ which corresponds to making small changes in the momentum in each proposal. For the second set
of numerical experiments we relax this constraint and take ι = 2−1/2 in all our SOL-HMC simulations.
This corresponds to taking an equal mixture of the current momentum and an independent draw from its
equilibrium value. Furthermore, these experiments use more than one step in the deterministic integration,
Nd > 1. For the HMC integration, we use Nd = 50, τ = 1 and of course, ι = 0. The results are summarized in
Figure 2 where we show the behaviour of the HMC algorithm in comparison with four choices of parameters
in the SOL-HMC algorithm: i) Nd = 10; ii) Nd = 25; iii) Nd = 50; and in iv) Nd is a random value,
uniformly distributed between 25 and 75, in each step of the MCMC algorithm. We see that if Nd ≥ 25 the
SOL-HMC algorithm shows improved behaviour in comparison with the HMC algorithm.

7. Conclusions

We have introduced a parametric family of MCMC methods, the SOL-HMC algorithms, suitable for sampling
measures defined via density with respect to a Gaussian. The parametric family includes a range of existing
methods as special parameter choices including the function space MALA and HMC methods introduced
in [BRSV08, BPSSS11]. Whilst both these algorithms are reversible with respect to the target, generic
parameter choices in the SOL-HMC algorithm lead to irreversible algorithms which preserve the target.
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Figure 1. The quantity E plotted as a function of number of iterations. The HMC algorithm has the best performance; MALA
has the worst. For the values of ι used (0.9, 0.99 and 0.999) SOL-HMC is considerably better than MALA, but not better than
HMC.

With one particular parameter choice we show that the algorithm has a diffusion limit to the second order
Langevin equation; this latter limit makes clear the role of irreversibility in the algorithm. Numerical results
indicate that the method is comparable with the function space HMC method of [BPSSS11] which, in turn,
is superior to the function space MALA method of [BRSV08]. Indeed, in the example studied, we are able
to exhibit situations for which the SOL-HMC algorithm outperforms the HMC method. Further application
of the method is thus suggested.

We make an important observation about the diffusion limits proved in this paper, Theorem 5.1, and in
[PST11], both of which concern algorithms that have been specifically designed to deal with target measures
defined via density with respect to a Gaussian; indeed both methods would suffer no rejections in the
pure Gaussian case. The limit theorems demonstrate that the number of steps required to sample may be
chosen independently of the dimension of the approximating space N . However, in contrast to the diffusion
limits identified in [MPS12, PST12] the theory does not reveal an optimal choice for the time-step, or an
optimal acceptance probability. The fact that an optimal acceptance probability, and implicitly an optimal
time-step, can be identified in [MPS12, PST12] is precisely because the proposal does not exactly preserve
the underlying Gaussian reference measure and the universal optimal acceptance probability is determined
purely by the Gaussian properties of the problem; the change of measure, and hence function Ψ, play no
role. Once improved methods are used, such as SOL-HMC and the pCN method analyzed in [PST11], which
exactly preserve the Gaussian structure, no such universal behaviour can be expected and optimality must
be understood on a case by case basis.
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Figure 2. Figure showing that SOL-HMC can exhibit faster mixing than HMC when run in the regime with ι = 2−1/2, for
appropriate choice of τ (reflected in the integer Nd which labels the graphs – 25, 50, 75 and 25− 75 for the random case). Note
that for HMC, by definition, ι = 0 and we fix τ ≈ 1. Note also that the vertical scale is half that of the previous graph.

Appendix A

This Appendix contains the proof of Theorem 2.1, of the identity (5.8) and a sketch of the proof of Proposition
5.4.

Proof of Theorem 2.1. By following the arguments given in Section 5.3 of [Nea10], it suffices to show χhτ
preserves Π when appended with the suitable accept-reject mechanism. We show this using the fact that the
finite dimensional version of the above algorithm preserves the corresponding invariant measure. Since the
proof of this is very similar to that of Theorem 4.2 we only sketch the details. For N ∈ N and t > 0 define
the map

χtN = Θ
t/2
N,1 ◦ R

t
N ◦Θ

t/2
N,1

where RtN and Θt
N are obtained by restricting Rt and Θt

1 respectively on the first N components of (q, v)
and with Ψ replaced by ΨN , as in the proof of Theorem 4.2. Also following the ideas used in the proof of
Theorem 4.2 it may be shown that limN→∞ χtN (q, v) = χt(q, v) for any t and (q, v) ∈ Hs × Hs. Now the
proof can be completed via a dominated convergence argument similar to that used in the proof of Theorem
4.2.

Proof of (5.8). We recall that for any integer j ≥ 0

xj+1,δ − xj,δ = δGδ(xj,δ) +
√

2δSM j,δ. (7.1)
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With this in mind (5.8) is a straightforward consequence of the definition of zδ(t) and z̄δ(t), given in (5.2)
and (5.3) respectively; indeed if tk ≤ t < tk+1 then

zδ(t) =
1

δ
(t− tk)xk+1,δ +

1

δ
(tk+1 − t)xk,δ

(7.1)
=

1

δ
(t− tk)

[
xk,δ +Gδ(xk,δ)δ +

√
2δSMk,δ

]
+

1

δ
(tk+1 − t)xk,δ

=
1

δ
(tk+1 − tk)xk,δ + (t− tk)Gδ(z̄δ(t)) +

√
2S
δ

(t− tk)Mk,δ

= xk,δ + (t− tk)Gδ(z̄δ(t)) +

√
2S
δ

(t− tk)Mk,δ

= xk,δ +

∫ t

tk

Gδ(z̄δ(u))du+

√
2S
δ

(t− tk)Mk,δ. (7.2)

Equation (5.8) comes from extending the above equality to the whole interval [0, t]. More precisely, taking
the sum for j = 0, . . . , k − 1 on both sides of (7.1), we obtain

xk,δ = x0 +

∫ tk

0

Gδ(z̄δ(u)) du+
√

2Sδ
k−1∑
j=0

M j,δ. (7.3)

Substituting (7.3) into (7.2) we obtain

zδ(t) = x0 +

∫ t

0

Gδ(z̄δ(u)) du+
√

2Sδ
k−1∑
j=0

M j,δ +

√
2S
δ

(t− tk)Mk,δ

= x0 +

∫ t

0

G(zδ(u))du+ B̃δ(t) +

∫ t

0

[
Gδ(z̄δ(u))−G(zδ(u))

]
du

= x0 +

∫ t

0

G(zδ(u))du+ B̂δ(t) = Υ(x0, B̂δ).

Proof of Proposition 5.4. Once (5.8) has been established, this proof is completely analogous to the
proof of [PST11, Lemma 3.5], which is divided in four steps. The only step that we need to specify here is
the third, the rest remains unchanged. Such a step consists in showing that

lim
δ→0

E

[∫ T

0

‖Gδ(z̄δ(u))−G(zδ(u))‖s×sdu

]
= 0,

where we recall that zδ(t) and z̄δ(t) have been defined in (5.2) and (5.3) respectively. To this end notice first
that if tk ≤ u < tk+1 then

zδ(u)− z̄δ(u) =
1

δ
(u− tk)xk+1,δ +

1

δ
(tk+1 − u− δ)xk,δ =

1

δ
(u− tk)(xk+1,δ − xk,δ).

Hence ‖zδ(u)− z̄δ(u)‖s×s ≤ ‖xk+1,δ − xk,δ‖s×s. By using this inequality together with (5.10) and (5.11), we
have, for tk ≤ u < tk+1,

E‖Gδ(z̄δ(u))−G(zδ(u))‖s×s ≤ E‖Gδ(z̄δ(u))−G(z̄δ(u))‖s×s + E‖G(z̄δ(u))−G(zδ(u))‖s×s
. δa(1 + E‖z̄δ(u)‖ps×s) + E‖zδ(u)− z̄δ(u)‖s×s
. δa(1 + E‖xk,δ‖ps×s) + δr(1 + E‖xk,δ‖ns×s) ≤ δa∧r(1 + E‖xk,δ‖p∨ns×s).
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Therefore, using (5.12),

E

[∫ T

0

‖Gδ(z̄δ(u))−G(zδ(u))‖s×s du

]
. δ1+(a∧r)

∑
kδ<T

(
1 + E‖xk,δ‖p∨ns×s

)
. δa∧r + δ1−ε+(a∧r)

(
δε
∑
kδ<T

E‖xk,δ‖p∨ns×s

)
→ 0.

Appendix B

This appendix contains the proof of several technical estimates contained in the paper. In particular, it
contains the proof of Lemma 5.7, Lemma 5.9, Lemma 5.16 and Lemma 5.17. We start with an analysis of
the acceptance probability. We recall that from [BPSSS11, page 2212] we know that

∆H(q, v′) = Ψ(q)−Ψ(q∗)−
δ

2
(〈DΨ(q), v′〉+ 〈DΨ(q∗), v∗〉)

+
δ2

8

(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

)
= FΨ +

δ2

8

(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

)
,

having set

FΨ := FΨ(x, ξδ) = Ψ(q)−Ψ(q∗)−
δ

2
(〈DΨ(q), v′〉+ 〈DΨ(q∗), v∗〉) .

Proof of Lemma 5.7. Let

α̃δ(x, ξδ) = α̃δ := 1 ∧ exp(FΨ) and ᾱδ(x, ξδ) = ᾱδ := 1 + FΨ1{FΨ≤0}.

Introducing the functions h, h̄ : R→ R defined as

h(y) = 1 ∧ ey and h̄(y) = 1 + y1{y≤0}

we have

αδ = h

(
FΨ +

δ2

8

(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

))
, (7.4)

α̃δ = h (FΨ) and ᾱδ = h̄ (FΨ) . (7.5)

Clearly,
Ex
∣∣1− αδ∣∣p . Ex

∣∣αδ − α̃δ∣∣p + Ex
∣∣α̃δ − ᾱδ∣∣p + Ex

∣∣ᾱδ − 1
∣∣p .

We will show that

Ex
∣∣αδ − α̃δ∣∣p . δ3p(1 + ‖q‖2ps + ‖v‖2ps ) (7.6)

Ex
∣∣α̃δ − ᾱδ∣∣p . Ex |FΨ|2p (7.7)

Ex
∣∣ᾱδ − 1

∣∣p . Ex |FΨ|p (7.8)
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The above three bounds, together with

Ex |FΨ|p . δ2p(1 + ‖q‖2ps + ‖v‖2ps ), (7.9)

imply (5.16). Let us start with (7.6): from (7.4) and (7.5) and using the Lipshitzianity of the function h we
have

Ex
∣∣αδ − α̃δ∣∣p = Ex

∣∣∣∣h(FΨ +
δ2

8

(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

))
− h(FΨ)

∣∣∣∣p
. Ex

∣∣∣δ2
(
‖C1/2DΨ(q∗)‖2 − ‖C1/2DΨ(q)‖2

)∣∣∣p
. δ2pEx

[
‖q∗ − q‖2ps + ‖q‖ps‖q∗ − q‖ps

]
. δ3p

(
1 + ‖q‖2ps + ‖v‖2ps

)
,

having used the elementary inequality ‖a‖2−‖b‖2 ≤ ‖a− b‖2 + 2‖b‖ ‖a− b‖ , (5.19) and (5.26). (7.7) follows

after observing that
∣∣h(y)− h̄(y)

∣∣ ≤ y2

2 . (7.8) is a consequence of
∣∣ᾱδ − 1

∣∣ =
∣∣h̄(FΨ)− h̄(0)

∣∣, together with
the Lipshitzianity of h̄. We are left with showing (7.9). To this end notice first that from (5.21)

Ex‖q∗ − q − δv′‖ps = Ex‖(cos δ − 1)q + (sin δ − δ)v′ − δ

2
sin δCDΨ(q)‖ps

. δ2p (1 + ‖q‖ps + ‖v‖ps) , (7.10)

having used (5.25) and (5.17). Analogously, from the definition of v∗ (5.21),

Ex‖v∗ − v′‖ps . δp (1 + ‖q‖ps + ‖v‖ps) . (7.11)

Therefore

Ex |FΨ|p = Ex
∣∣∣∣Ψ(q)−Ψ(q∗)−

δ

2
(〈DΨ(q), v′〉+ 〈DΨ(q∗), v∗〉)

∣∣∣∣p
≤ Ex |Ψ(q∗)−Ψ(q)− 〈DΨ(q), (q∗ − q)〉|p + Ex |〈DΨ(q), q∗ − q − δv′〉|

p

+ Ex
∣∣∣∣δ2 〈DΨ(q), v′ − v∗〉

∣∣∣∣p + Ex
∣∣∣∣δ2 〈DΨ(q)−DΨ(q∗), v∗〉

∣∣∣∣p
. Ex‖q∗ − q‖2ps + ‖DΨ(q)‖p−sEx‖q∗ − q − δv′‖ps
+ δp‖DΨ(q)‖p−sEx‖v∗ − v′‖ps + δpEx (‖q∗ − q‖ps ‖v∗‖ps) . δ2p

(
1 + ‖q‖2ps + ‖v‖2ps

)
,

where in the second inequality we have used (3.6) and (5.18), in the third (3.5) together with (7.10), (7.11),
Lemma 5.8 and Lemma 5.9. This concludes the proof.

Before starting the proof of Lemma 5.9, recall the notation (5.20)-(5.21).

Proof of Lemma 5.9. ξδ is an Hs valued Gaussian random variable with mean zero and covariance oper-
ator Cs(I−e−2δΓ2). Indeed Γ2 is a bounded operator from Hs into itself and B2 is an Hs valued Cs-Brownian
motion hence Cs(I − e−2δΓ2) is the product of a trace class operator times a bounded operator and therefore
it is a trace class operator itself. So

E‖ξδ‖ps .
(
E‖ξδ‖2s

)p/2
=
[
Trace(Cs(I − e−2δΓ2))

]p/2 ≤ (Trace(Cs)‖I − e−2δΓ2‖L(Hs,Hs)
)p/2

. δp/2.

This proves (5.24). (5.25) is a simple consequence of (5.24) together with (5.20). (5.26) follows from (5.21),
using (5.17) and (5.25):

E[‖qk+1,δ
∗ − qk,δ‖ps |xk,δ = x] . Ex‖q(cos δ − 1)‖ps

+ Ex‖ sin δv′‖ps + Ex‖δ sin δ CDΨ(q)‖ps
. δ2p‖q‖ps + δp‖v′‖ps . δp(1 + ‖q‖ps + ‖v‖ps).
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We now turn to prove Lemma 5.16. To this end we follow [PST11, Proof of Lemma 3.7], highlighting the
slight modifications needed in our context.

Proof of Lemma 5.16. In [Ber86, Theorem 5.1] it is shown that proving the weak convergence of B̃δ to
B boils down to showing that the following three limits hold in probability:

lim
δ→0

δ
∑
kδ<t

E
[
‖Mk,δ‖2s×s|Fk,δ

]
= tTraceHs×Hs(Cs); (7.12)

lim
δ→0

δ
∑
kδ<t

E
[
〈Mk,δ, ϕ̂`j〉s×s〈Mk,δ, ϕ̂

¯̀
i〉s×s|Fk,δ

]
= t 〈ϕ̂`j ,Csϕ̂

¯̀
i〉s×s, ∀i, j ∈ N, `, ¯̀∈ {1, 2}; (7.13)

lim
δ→0

δ
∑
kδ<t

E
[
‖Mk,δ‖2s×s1{‖Mk,δ‖2s≥δ−1ζ}|Fk,δ

]
= 0. ∀ζ > 0, (7.14)

Here Mk,δ and Dδ(x) have been defined in (5.5) and (5.42), respectively, and Fk,δ is the filtration generated
by {xj,δ, γj,δ, ξδ, j = 0, . . . , k}.

Limit (7.12) condition (5.44) implies that

E
[
‖Mk,δ‖2s×s|Fk,δ

]
= TraceHs×HsCs + e1(xk,δ)

where
∣∣e1(xk,δ)

∣∣ . δb2(1 + ‖xk,δ‖d2
s×s). Therefore

δ
∑
kδ<t

E
[
‖Mk,δ‖2s×s|Fk,δ

]
= tTraceHs×HsCs + δ

∑
kδ<t

E[e1(xk,δ)].

Thanks to (5.45), we have

δ
∑
kδ<t

E
∣∣e1(xk,δ)

∣∣ . δb2+1
∑
kδ<t

(1 + E‖xk,δ‖d1
s×s)

≤ δb2 + δb2+1−η2

(
δη2

∑
kδ<t

E‖xk,δ‖d2
s×s

)
δ→0−→ 0.

Limit (7.13) can be proved as a consequence of (5.43) and (5.45), acting as we did to show (7.12).
Limit (7.14) the Cauchy-Schwartz and Markov inequalities give

E
[
‖Mk,δ‖2s×s1{‖Mk,δ‖2s≥δ−1ζ}|Fk,δ

]
≤
(
E[‖Mk,δ‖4s×s|Fk,δ]

)1/2 (P[‖Mk,δ‖2s×s > δ−1ζ]
)1/2

≤ δ

ζ
E[‖Mk,δ‖4s×s|Fk,δ],

hence we need to estimate E[‖Mk,δ‖4s×s|Fk,δ]. To this end, we use (5.14) (which, we recall, is a conse-
quence of (5.10)) and (5.11):

E[‖Mk,δ‖4s×s|Fk,δ] =
1

δ2
E[‖xk+1,δ − xk,δ − δGδ(xk,δ)‖4s×s|Fk,δ]

.
1

δ2
E[‖xk+1,δ − xk,δ‖4s×s|Fk,δ] + δ2E‖Gδ(xk,δ)‖4s

. δ4r−2E(1 + ‖xk,δ‖4ns×s) + δ2E(1 + ‖xk,δ‖4ps×s).

Therefore

δ
∑
kδ<t

E
[
‖Mk,δ‖2s×s1{‖Mk,δ‖2s≥δ−1ζ}|Fk,δ

]
. δ2

∑
kδ<t

E
[
‖Mk,δ‖4s×s|Fk,δ

]
. δ4r

∑
kδ<t

E(1 + ‖xk,δ‖4ns×s) + δ4
∑
kδ<t

E(1 + ‖xk,δ‖4ps×s)

. δ4r−1 + δ4r−η3

(
δη3

∑
kδ<t

E‖xk,δ‖4ns×s

)
+ δ3 + δ4−η4

(
δη4

∑
kδ<t

E‖xk,δ‖4ps×s

)
→ 0.
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Proof of Lemma 5.17. We will show the following two bounds:∣∣∣〈ϕ̂`j , Dδ(x) ϕ̂
¯̀
i〉s×s − 〈ϕ̂`j ,Cs ϕ̂

¯̀
i〉s×s

∣∣∣ . δ1/6(1 + ‖x‖10
s×s) ∀i, j ∈ N and `, ¯̀∈ 1, 2; (7.15)∣∣TraceHs×Hs(D

δ(x))− TraceHs×Hs(Cs)
∣∣ . δ1/6(1 + ‖x‖10

s×s). (7.16)

Denote γ2 := ‖Γ2‖L(Hs), M
k,δ
1 := Pq(Mk,δ), Mk,δ

2 := Pv(Mk,δ) and recall from (5.6) that Mδ(x) =

[Mk,δ|xk,δ = x]. Then, from (5.5),

Mδ
1 (x) =

1√
2δ

[
q1,δ − q − E[q1,δ − q]

]
, (7.17)

Mδ
2 (x) =

1√
2δΓ2

[
v1,δ − v − E[v1,δ − v]

]
. (7.18)

In order to obtain (7.15) and (7.16), we start with studying M δ
1 (x) and M δ

2 (x). More precisely, we proceed
as follows:

• We first show the bound

E
[
‖Mk,δ

1 ‖2s|xk,δ = x
]

= E‖M δ
1 (x)‖2s . δ(1 + ‖x‖2s×s) (7.19)

and the decomposition

Mδ
2 (x) =

1√
2δΓ2

[
Rδ(x) + ξδ

]
, (7.20)

where Rδ(x), defined in (7.24), is such that

1

δ
E‖Rδ(x)‖2s . δ1/3(1 + ‖x‖10

s×s). (7.21)

• We then prove that (7.15) and (7.16) are a consequence of (7.19) and (7.20)-(7.21), together with∣∣∣∣ 1

2δγ2
E‖ξδ‖2s − TraceHsCs

∣∣∣∣ . δ2,

which is easily seen to hold true. Indeed by definition∣∣∣∣ 1

2δγ2
E‖ξδ‖2s − TraceHsCs

∣∣∣∣ =

∣∣∣∣TraceHs

[
Cs − Cse−2δΓ2

2δγ2
− Cs

]∣∣∣∣
≤ TraceHs(Cs)

∣∣∣∣1− e−2δγ2

2δγ2
− 1

∣∣∣∣ . δ2. (7.22)

(7.19) is a straightforward consequence of (7.17), using (5.28), (5.29) and (5.26):

E
[
‖Mk,δ

1 ‖2s|xk,δ = x
]
.

1

δ
E‖q∗ − q‖2s . δ(1 + ‖x‖2s).

Recalling that γδ ∼ Bernoulli(αδ) (with αδ defined by equation (5.15)), to decompose M δ
2 (x) we start from

(7.18) and use (5.28):

Mδ
2 (x) =

1√
2δΓ2

[
γδ(v∗ + v′)− E(γδ(v∗ + v′))− v′ − v + E(v′ + v)

]
.

By (5.20) and (5.30),

−v′ − v + E(v′ + v) = −v′ + Ev′ = −ξδ; (7.23)
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so (5.21) yields:

√
2δΓ2M

δ
2 (x) = (γδ − E(γδ))

[
−q sin δ − δ

2
cos δ CDΨ(q)

]
− ξδ

+ γδ
[
(cos δ + 1)v′ − δ

2
CDΨ(q∗)

]
− E

[
γδ
(

(cos δ + 1)v′ − δ

2
CDΨ(q∗)

)]
.

Let f(x) = fδ(x) + f̄(x), with

fδ(x) := −δ
2
CDΨ(q∗) and f̄(x) := (cos δ + 1)v′.

Then √
2δΓ2M

δ
2 (x) = (γδ − E(γδ))(−q sin δ − δ

2
cos δ CDΨ(q))

+ γδf − E(γδf)− ξδ

= (γδ − E(γδ))(−q sin δ − δ

2
cos δ CDΨ(q))

+ γδf − E(γδ)f +
[
E(γδ)− 1

]
f − E

[
(γδ − 1)f

]
+ f − Ef − ξδ.

However f̄ − Ef̄ = (cos δ + 1)(v′ − Ev′), so using (7.23)

f − Ef − ξδ = f̄ − Ef̄ + fδ − Efδ − ξδ = (cos δ)ξδ + fδ − Efδ;

therefore, setting

Rδ1(x) := (E(γδ)− γδ)(q sin δ +
δ

2
cos δ CDΨ(q))

Rδ2(x) := (γδ − Eγδ)f = (γδ − Eγδ)[(cos δ + 1)v′ − δ

2
CDΨ(q∗)]

Rδ3(x) := −E[(γδ − 1)f ] + [(Eγδ)− 1]f

Rδ4(x) := fδ − E(fδ) + (cos δ − 1)ξδ and

Rδ(x) :=

4∑
i=1

Rδi , (7.24)

we obtain (7.20). From now on, to streamline the notation, we will not keep track of the x-dependence in
Rδi (x) and Rδ(x). In other words, we will simply denote Rδi := Rδi (x) and Rδ := Rδ(x).

To prove (7.21) we bound E‖Rδi ‖2s, i = 1, . . . , 4. Observe first that

E(γδ − Eγδ)2 = E(αδ)(1− Eαδ) . δ2(1 + ‖x‖4s×s),

which is a consequence of (5.16) and (5.29). Therefore, by (5.17),

E‖Rδ1‖2s . E(γδ − Eγδ)2‖δq + δCDΨ(q)‖2s . δ3(1 + ‖x‖6s×s). (7.25)

Now notice that the Bochner’s inequality together with Jensen’s inequality give

‖Eg‖2s ≤ E‖g‖2s, for every Hs-valued, integrable g.

To bound Rδ2 we split it into two terms, namely

Rδ2 := (γδ − Eγδ)(cos δ + 1)v′ − (γδ − Eγδ)
δ

2
CDψ(q∗) =: Rδ21 +Rδ22.
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To estimate Rδ22 we use (5.29), (5.17) and (5.26):

E‖Rδ22‖2s . δ2
[
E‖CDΨ(q∗)− CDΨ(q)‖2s + ‖CDΨ(q)‖2s

]
. δ2(1 + ‖q‖2s).

To study Rδ21 instead, we write γδ − Eγδ = γδ − 1 + E(1− γδ) and we repeatedly use (5.38), obtaining:

E‖Rδ21‖2s . E
[
(γδ − Eγδ)2‖v′‖2s

]
. E

[
(γδ − 1)2‖v′‖2s

]
+ E(1− γδ)2E‖v′‖2s

(5.25)

.
(
E
∣∣γδ − 1

∣∣3)2/3 (
E‖v′‖6s

)1/3
+ E

∣∣1− αδ∣∣ (1 + ‖v‖2s)
(5.16)

. δ4/3(1 + ‖x‖8s×s) + δ2(1 + ‖x‖6s×s) . δ4/3(1 + ‖x‖8s×s).

Combining the estimates of Rδ21 and Rδ22 we get

E‖Rδ2‖2s . δ4/3(1 + ‖x‖8s×s). (7.26)

As for Rδ3, using E‖f‖2s . 1 + ‖x‖2s×s (which is a consequence of (5.17) and (5.25)),

E‖Rδ3‖2s ≤ E‖(E(γδ)− 1)f‖2s + ‖E[(γδ − 1)f ]‖2s
≤ (E(αδ)− 1)2E‖f‖2s + E‖(γδ − 1)f‖2s
(5.16)

. δ4(1 + ‖x‖8s×s)(1 + ‖x‖2s×s) +
(
E
∣∣γδ − 1

∣∣3)2/3 (
E‖f‖6s

)1/3
(5.38)

. δ4(1 + ‖x‖10
s×s) + δ4/3(1 + ‖x‖4s×s)2/3(1 + ‖x‖2s×s) ≤ δ4/3(1 + ‖x‖10

s×s). (7.27)

Now the last term: from (5.17), E‖fδ‖2s . δ2(1 + ‖q‖2s); therefore

E‖Rδ4‖2s . E‖fδ‖2s + δ4E‖ξδ‖2s . δ2(1 + ‖q‖2s). (7.28)

It is now clear that (7.21) follows from (7.25), (7.26), (7.27) and (7.28).
Let us now show that (7.15) and (7.16) follow from (7.19) and (7.20)-(7.21). We start with (7.16). By

definition,

TraceHs×Hs(D
δ(x)) = E

[
‖Mk,δ‖2s|xk,δ = x

]
= E

[
‖Mk,δ

1 ‖2s|xk,δ = x
]

+ E
[
‖Mk,δ

2 ‖2s|xk,δ = x
]

(7.29)

and
TraceHs×Hs(Cs) = TraceHs(Cs).

Also, ∣∣∣E [‖Mk,δ
2 ‖2s|xk,δ = x

]
− TraceHs(Cs)

∣∣∣ (7.20)
=

∣∣∣∣ 1

2δγ2
E‖Rδ + ξδ‖2s − TraceHs(Cs)

∣∣∣∣
≤ 1

2δγ2
E‖Rδ‖2s +

∣∣∣∣ 1

2δγ2
E‖ξδ‖2s − TraceHs(Cs)

∣∣∣∣+
1

δγ2
E〈Rδ, ξδ〉s

.
1

2δγ2
E‖Rδ‖2s +

∣∣∣∣ 1

2δγ2
E‖ξδ‖2s − TraceHs(Cs)

∣∣∣∣+
1

δ

(
E‖Rδ‖2s

)1/2 (‖ξδ‖2s)1/2
(7.22)

. δ1/3(1 + ‖x‖10
s×s) + δ2 + δ1/6(1 + ‖x‖5s×s) . δ1/6(1 + ‖x‖10

s×s). (7.30)

(7.29) and the above (7.30) imply (7.16). (7.15) can be obtained similarly. Due to the symmetry of Dδ(x),
all we need to show is that if at least one index between ` and ¯̀ is equal to 1 then

〈ϕ̂`i , Dδ(x)ϕ̂
¯̀
j〉s×s . δ1/2(1 + ‖x‖5s×s). (7.31)
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If instead ` = ¯̀= 2 we will prove that∣∣〈ϕi, Dδ
22(x)ϕj〉s − 〈ϕi, Csϕj〉s

∣∣ ≤ δ1/6(1 + ‖x‖10
s×s), (7.32)

where Dδ
22(x) = E[Mk,δ

2 ⊗Mk,δ
2 |xk,δ = x]. (7.31) and (7.32) imply (7.15). To prove the bound (7.31) observe

first that
E‖Mδ

2 (x)‖2s . 1 + ‖x‖10
s×s,

which follows from (7.20), (7.21) and (5.24). To show (7.31) suppose, without loss of generality, that ` =
1, ¯̀= 2. Then ∣∣〈ϕ̂1

i , D
δ(x)ϕ̂2

j 〉s×s
∣∣ ≤ E

∣∣〈Mδ(x), ϕ̂1
i 〉s×s〈Mδ(x), ϕ̂2

i 〉s×s
∣∣

≤
(
E‖M δ

1 (x)‖2s
)1/2 (E‖Mδ

2 (x)‖2s
)1/2 (7.19)

. δ1/2(1 + ‖x‖5s×s).

As for (7.32), let ξ := ξ0, i.e. let ξ be a mean zero Gaussian random variable with covariance operator Cs in
Hs. Then ∣∣〈ϕ̂2

i , D
δ(x)ϕ̂2

j 〉s×s − 〈ϕ̂2
i ,Csϕ̂

2
j 〉s×s

∣∣ =
∣∣〈ϕi, Dδ

22(x)ϕj〉s − 〈ϕi, Csϕj〉s
∣∣

=
∣∣E (〈Mδ

2 (x), ϕi〉s〈Mδ
2 (x), ϕj〉s

)
− E (〈ξ, ϕi〉s〈ξ, ϕj〉s)

∣∣
(7.20)

=

∣∣∣∣E〈Rδ + ξδ√
2δΓ2

, ϕi〉s〈
Rδ + ξδ√

2δΓ2

, ϕj〉s − E (〈ξ, ϕi〉s〈ξ, ϕj〉s)
∣∣∣∣

.
1

δ
E‖Rδ‖2s +

1

δ

(
E‖Rδ‖2s

)1/2 (E‖ξδ‖2s)1/2 +

∣∣∣∣ 1

2δγ2
E(〈ξδ, ϕi〉s)2 − E(〈ξ, ϕi〉s)

∣∣∣∣ ;
so, by using again (7.21) and (5.24) and with a reasoning analogous to that contained in (7.22) and (7.30),
we obtain (7.32).

Appendix C

We gather here some basic facts about Hamiltonian mechanics. For a more thorough discussion the reader
may consult [SSC94, Nea10].

Let us start from the Hamiltonian formalism in a finite dimensional setting. To a given real valued and
smooth function H(q, p) : R2N → R, we can associate in a canonical way a system of differential equations,
the so called canonical Hamiltonian system associated to H, namely

dq

dt
= DpH(q, p)

dp

dt
= −DqH(q, p) .

Using the symplectic matrix

J =

(
0 I
−I 0

)
,

and denoting z = (q, p) ∈ R2N , the canonical Hamiltonian system can be rewritten as

dz

dt
= JDzH(q, p) . (7.33)

The two properties of the Hamiltonian flow (7.33) that are relevant to our purposes are: i) smooth functions
of the Hamiltonian H remain consant along the solutions of (7.33); ii) the flow preserves the volume element
dz. As a consequence, the Hamiltonian dynamics preserves any measure with density e−H(z) with respect
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to Lebesgue measure. Clearly, an analogous discussion holds for any systems obtained by making the non-
canonical choice

Ĵ =

(
0 L
−L 0

)
, L any symmetric matrix,

with corresponding dynamics
dz

dt
= ĴDzH(q, p) .

This reasoning can be repeated in our infinite dimensional context (however in this case one cannot talk
about conservation of volume element dz). The Hamiltonian part of the equations considered in Section 2.2
is built precisely in this spirit. The change of variable which allows us to swap from momentum to velocity
variable corresponds to going from the canonical to the non canonical choice. In particular, once we fix
M = L = C−1 , our non-canonical symplectic matrix is

Ĵ =

(
0 C
−C 0

)
.

For more comments about the particular form of the Hamiltonian function in our infinite dimensional setting
see Remark 5.6 and [BPSSS11].
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