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Abstract
Various qualitative properties of solutions to the generalized Langevin equation
(GLE) in a periodic or a confining potential are studied in this paper.
We consider a class of quasi-Markovian GLEs, similar to the model that
was introduced in Eckmann J-P et al 1999 Commun. Math. Phys. 201
657–97. Ergodicity, exponentially fast convergence to equilibrium, short time
asymptotics, a homogenization theorem (invariance principle) and the white
noise limit are studied. Our proofs are based on a careful analysis of a
hypoelliptic operator which is the generator of an auxiliary Markov process.
Systematic use of the recently developed theory of hypocoercivity (Villani C
2009 Mem. Am. Math. Soc. 202 iv, 141) is made.

Mathematics Subject Classification: 82C31, 60H10, 35K10, 60J60, 60F17

1. Introduction

In this paper, we study various qualitative properties of solutions to the generalized Langevin
equation (GLE) in R

d

q̈ = −∇V (q) −
∫ t

0
γ (t − s)q̇(s) ds + F(t), (1)

where V (q) is a smooth potential (confining or periodic), F(t) a mean zero stationary Gaussian
process with autocorrelation function γ (t), in accordance to the fluctuation–dissipation
theorem

〈F(t) ⊗ F(s)〉 = β−1γ (t − s)I. (2)

Here β stands for the inverse temperature and I for the identity matrix. The dots in (1)
denote differentiation with respect to time. The GLE equation (1), together with the
fluctuation–dissipation theorem (2) appears in various applications such as surface diffusion [1]
and polymer dynamics [46]. It also serves as one of the standard models of non-
equilibrium statistical mechanics, describing the dynamics of a ‘small’ Hamiltonian system
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(the distinguished particle) coupled to one or more heat baths which are modelled as linear
wave equations with initial conditions which are distributed according to appropriate Gibbs
measures [44]. In this class of models the coupling between the distinguished particle and
the heat bath is taken to be linear and is governed by a coupling function ρ(x). The full
Hamiltonian of the ‘particle + heat bath’ model is

H(q, p, φ, π) = HDP (p, q) + H(φ, π) + λq

∫
ρ(x)∂qφ(x) dx, (3)

where HDP (q, p) denotes the Hamiltonian of the distinguished particle whose position and
momentum are denoted by q and p, respectively, and H(φ, π) is the Hamiltonian density of
the wave equation where φ and π are the canonically conjugate field variables. The linear
coupling in (3) is motivated by the dipole approximation from classical electrodynamics. By
integrating out the heat bath variables and using our assumptions on the initial conditions we
obtain (1), together with (2). The memory kernel γ (t) in (1) is given by the coupling function
through the formula

γ (t) =
∫

|ρ̂(k)|2eikt dk, (4)

where ρ̂(k) denotes the Fourier transform of ρ(x) [24, 44].
The GLE has also attracted attention in recent years in the context of mode reduction

and coarse-graining for high-dimensional dynamical systems [14]. One of the models that
has been studied extensively within the framework of mode elimination is the Kac–Zwanzig
model [13, 49] and its variants [3, 19, 28, 30]. In this model, the heat bath is modelled as a
finite-dimensional system of N harmonic oscillators with random frequencies and random
initial conditions distributed according to a Gibbs distribution at inverse temperature β. The
heat bath can be coupled either linearly or nonlinearly with the distinguished particle [29]. Just
as with model (3), we can integrate out the heat bath variables explicitly. Passing then to the
thermodynamic limit N → +∞, we obtain the GLE (1). The form of the memory kernel γ (t)

depends on the choice of the distribution of the spring constants of the harmonic oscillators in
the heat bath [14]. The Kac–Zwanzig model and its variants have proved to be very useful for
testing various methodologies and techniques such as transition state theory [2, 20].

The GLE (1) is a stochastic integrodifferential equation which is equivalent to the
original infinite-dimensional Hamiltonian system with random initial conditions. The infinite-
dimensionality of the original Hamiltonian dynamics with random initial conditions (or,
equivalently, the non-Markovianity of the finite-dimensional stochastic dynamics (1)) renders
the analysis of this dynamical system very difficult. This problem was studied in detail by
Jaksic and Pillet in a series of papers [24–26]. In these works, existence and uniqueness of
solutions as well as the ergodic properties of (1) were studied in detail. In particular, it was
shown that the process {q, p = q̇} is mixing with respect to the measure

νβ(dqdp) = 1

Zβ

e−βHDP (q,p) dqdp,

where Zβ is the normalization constant. To the best of our knowledge, no information
concerning the rate of convergence to equilibrium for the non-Markovian dynamics (1) is
known for general classes of memory kernels. Ergodic theory for a quite general class of
non-Markovian processes has been developed recently, see [16] and the references therein.

A class of memory kernels for which more detailed information on the long time
asymptotics of the GLE (1) can be obtained was considered by Eckmann, Hairer, Pillet and
Rey-Bellet in a series of papers [9–11, 45]. Based on a generalization of Doob’s theorem
on stationary, Markovian, Gaussian processes [8], it was observed in these works that when
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the memory kernel γ (t) has a rational spectral density, then the GLE (1) is equivalent to a
finite-dimensional Markovian system. This system is obtained by adding a finite number of
additional degrees of freedom which account for the memory in the system. These auxiliary
variables satisfy linear stochastic differential equations. As an example, we mention the case
where ρ̂(k) in (4) can be written as

|ρ̂(k)|2 = 1

|p(k)|2 ,

where p(k) = ∑M
m=1 cm(−ik)m is a polynomial with real coefficients and roots in the upper

half plane. Then the Gaussian process with spectral density |ρ̂(k)|2 is the solution of the SDE

p

(
−i

d

dt

)
x(t) = dW

dt
,

where W is a standard one-dimensional Brownian motion (see [44, proposition 2.3]). A related
finite-dimensional approximation of the infinite-dimensional dynamics (1) was introduced by
Mori in [36], see also [15] and the references therein. Mori’s technique is based on a continued
fraction expansion of the Laplace transform of the memory function γ (t).

Motivated by the above, in this paper we will consider finite-dimensional approximations
of the GLE. The general form of the Markovian approximation of (1) when d = 1 can be
written as [28]

Q̇m(t) = Pm(t), Qm(0) = q(0), (5a)

Ṗm(t) = − ∂qV (Qm(t)) + λTz(t), Pm(0) = p(0), (5b)

ż(t) = − Pm(t)λ − A z(t) + GẆ (t), z(0) ∼ N (0, I ), (5c)

where z : R
+ �→ R

m, λ ∈ R
m, A, G ∈ R

m×m and W(t) is an m-dimensional Brownian
motion. The fluctuation–dissipation theorem, which takes the form GGT = β−1(A + AT), is
assumed to be satisfied.

In this paper we will consider (5) with λ = (λ1, λ2, . . . , λm) and A diagonal with
Aii = αi > 0. This amounts to approximating the memory kernel by a sum of exponentials,

γm(t) =
m∑

i=1

λ2
i e−αi |t |. (6)

It is expected that the results proved in this paper are also valid in the more general case (5).
As remarked in [28], when A is invertible, the more standard Mori approximation [36] is
equivalent to (6) after an appropriate orthogonal transformation.

For this particular choice of λ and A the SDEs (5) become (we drop the subscripts m for
notational simplicity)

Q̇(t) = P(t), Q(0) = q(0), (7a)

Ṗ (t) = − ∇qV (Q(t)) +
m∑

j=1

λjzj (t), P (0) = p(0), (7b)

żj (t) = − λjP (t) − αjzj (t) +
√

2αjβ−1Ẇj , zj (0) ∼ N (0, β−1) (7c)

for j = 1, . . . , m. The process {Q(t), P (t), z(t)} ∈ R
d × R

d × R
md is Markovian with

generator −L given by

− L = p · ∇q − ∇qV (q) · ∇p +
m∑

j=1

λjzj (t) · ∇p

+
m∑

j=1

(−λjp · ∇zj
− αjzj · ∇zj

+ αjβ
−1
zj

)
. (8)
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This operator can be written in ‘sum of squares’ form

L = B +
m∑

i=1

d∑
j=1

A∗
ijAij ,

where Aij = −
√

β−1αi∂zij
, A∗

ij = −√
βαizij +

√
β−1αi∂zij

1 and

B = −p · ∇q + ∇qV · ∇p −
m∑

j=1

λj

(
zj · ∇p − p · ∇zj

)
(for more details on this notation we refer the reader to section 2.1). This is a degenerate second-
order elliptic differential operator of hypoelliptic type [23]. Convergence to equilibrium for
models of the form (7) has been studied using functional analytic techniques [9, 11]. Similar
results have also been proved using Markov chain techniques [34, 45]. In this paper we present
an alternative proof of exponentially fast convergence to equilibrium in relative entropy using
the recently developed theory of hypocoercivity [48].

The main objective of this paper is the rigorous analysis of the Markovian
approximation (7) to the GLE (1). Our main results can be summarized as follows.

1. We prove ergodicity and exponentially fast convergence to equilibrium for (7),
theorems 2.1, 2.2 and 2.3.

2. We obtain sharp estimates on derivatives of the Markov semigroup associated with the
SDE (7), theorem 2.4.

3. We prove a homogenization theorem (invariance principle) when the potential V (q) in (7)
is periodic and we obtain estimates on the diffusion coefficient, theorem 2.5. In order to
prove these results we prove compactness of the resolvent of the generator of the SDE (7),
proposition 2.1.

4. We study the white noise limit of the GLE (1), i.e. the limit as the noise F(t) in (1) (in
the Markovian approximation (7)) converges to a white noise process. We show that in
this limit the solution of (7) converges strongly to the solution of the Langevin equation

q̈ = −∇V (q) − γ q̇ +
√

2γβ−1Ẇ (9)

and we obtain a formula for the friction coefficient γ in terms of the coefficients
{λj , αj }mj=1, theorem 2.6.

The rest of the paper is organized as follows. In section 2 we state our main results and
we introduce the notation that we will be using. In section 3 we prove exponentially fast
convergence to equilibrium. In section 4 we prove estimates on the derivatives of the Markov
semigroup generated by −L defined in (8). In section 5 we prove the homogenization theorem
and the compactness of the resolvent of L. In section 6 we study the white noise limit. For the
reader’s convenience, background material on the theory of hypocoercivity is summarized in
appendix A. Finally, the proof of geometric ergodicity of the process (7) using Markov chain
techniques is presented in appendix B.

2. Statement of main results

We will use the notation X := T
d ×R

d ×R
dm and Y := R

d ×R
d ×R

dm. We will also denote
the process {q(t), p(t), z(t)} by x(t). When we study the dynamics (7) in X the potential

1 A∗
ij is the adjoint of Aij in the L2 space weighted by the invariant measure of the system. See section 2.1.
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V (q) is periodic, whereas when x(t) ∈ Y the potential will be taken to be confining. The
precise assumptions on the potential are given in assumption 2.1.

Using a slight modification of the argument used in the proof of [21, proposition 5.5] (see
also [48, theorem A.5]) we can prove that −L defined in (8) generates a contraction semigroup,
see proposition 3.1.

Our first result concerns the ergodicity of the SDE (7) in X or in Y . To prove the ergodicity
of the SDE in Y we need to make the following assumptions on the potential.

Assumption 2.1.

(i) V (q) ∈ C∞(Rd) is a confining potential.
(ii) There exist strictly positive constants β, σ such that 〈∇qV , q〉 � σV (q) + β‖q‖2 where

〈·, ·〉 and ‖ · ‖ denote the Euclidean inner product and norm, respectively.
(iii) There exists a constant c such that ‖∇2V ‖ � c, where ‖·‖ denotes the Frobenious–Perron

matrix norm and ∇2 the Hessian.

The density ρβ(q, p, z) of the invariant measure µβ(dq dp dz) of the process (7), which
is the unique solution of the stationary Fokker–Planck equation, is known:

ρβ(q, p, z) = 1

Zβ

e−β( 1
2 |p|2+V (q)+ 1

2 ‖z‖2), (10)

where Zβ is the normalization constant. This invariant measure is unique and the law of the
process (7) converges exponentially fast to µβ (geometric ergodicity).

Theorem 2.1 (Ergodicity). The solution of (7) with x(t) ∈ X and V (q) ∈ C∞(Td) is
geometrically ergodic. The same holds true when x(t) ∈ Y , provided that the potential
V (q) ∈ C∞(Rd) satisfies assumption 2.1.

The proof of this theorem, which is based on Markov chain-type arguments and which is
similar to the proof presented in [45], see also [34], can be found in appendix B.

We can prove exponentially fast convergence to equilibrium using tools from the theory of
hypocoercivity [48]. We will use the notation K := Ker(L) and H 1

ρ for the weighted Sobolev
space H 1 with respect to µβ on either X or Y .

Theorem 2.2. Let −L be the generator of the process x(t) ∈ X, the solution of (7) and assume
that V (q) ∈ C∞(Td). Then there exist constants C, λ > 0 such that

‖e−tL‖H 1
ρ /K →H 1

ρ /K � Ce−λt .

The same holds true when x(t) ∈ Y, provided that the potential satisfies assumptions 2.1(i)
and 2.1(iii).

Using the tools from [48] we can prove exponentially fast convergence to equilibrium
in relative entropy. The relative entropy (or Kullback information) between two probability
measures µ and ν with smooth densities f and ρ, respectively, is defined as

Hρ(f ) =
∫

f log

(
f

ρ

)
dx.

We will measure the distance in relative entropy between the law of the process x(t) at time
t and the equilibrium distribution . Since the operator ∂

∂t
+ L is hypoelliptic, the law of the

process x(t) in (7) has a smooth density with respect to Lebesgue which we will denote by ft .

Theorem 2.3 (Convergence to equilibrium). Let ft be the density of the law of the process
x(t) at time t and assume that Hρ(f0) < +∞ and V (q) ∈ C∞(Td). Then there exist constants
C, α > 0 such that

Hρ(ft ) � Ce−αtHρ(f0).
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The same holds true when x(t) ∈ Y , assuming that Hρ(f0) < +∞ and provided that the
potential V (q) satisfies assumption 2.1(i) and 2.1(iii).

Remark 2.1. In view of the Csiszar–Kullback (Pinsker) inequality
1

2
‖ft − ρ‖2

L1 � Hρ(ft ), (11)

Theorem 2.3 implies that, for initial data with finite relative entropy, we have exponentially
fast convergence to equilibrium in L1. For more details on inequality (11), we refer the reader
to [4, 32, 47].

The proofs of theorems 2.2 and 2.3 are presented in section 3.
Estimates on the Markov semigroup associated with the Langevin equation and its

derivatives can be proved using an appropriate Lyapunov function with time dependent
coefficients [17, 22]. In this paper we use similar techniques to obtain estimates on the Markov
semigroup and its derivatives for the Markovian approximation to the GLE, equation (7). We
introduce Ck, k = 0, 1, 2 with C0 = A, C1 = [A, B] and C2 = [C1, B] (see section 2.1). We
will use the notation L2

ρ := L2( · ; µβ(dx)) where · is either X or Y .

Theorem 2.4 (Estimates on derivatives of the Markov semigroup). Let −L be the gener-
ator of the process x(t) ∈ X, the solution of (7) with V (q) ∈ C∞(Td). Then the Markov
semigroup e−tL satisfies the bounds

‖Cke−tL‖L2
ρ→L2

ρ
� c

t
1+2k

2

, k = 0, 1, 2 and t ∈ (0, 1], (12)

for some (explicitly computable) positive constant c. The same holds true when x(t) ∈ Y ,
provided that the potential V (q) satisfies assumption 2.1(i) and (iii).

Remark 2.2. Theorem 2.4 is a short time asymptotics result. As noticed in [22], using
estimate (12) together with the semigroup property and the contractivity of the semigroup
we obtain that ∀h ∈ L2

ρ and ∀t > 0

‖Cke−tLh‖L2
ρ

=
∥∥∥Cke− 1

2 L
(

e−(t− 1
2 )Lh

)∥∥∥
L2

ρ

� c 2
1+2k

2 ‖e−(t−1/2)Lh‖L2
ρ

� c‖h‖L2
ρ
,

hence

‖Cke−tLh‖L2
ρ

� c

(
1 +

1

t
1+2k

2

)
‖h‖L2

ρ
k = 0, 1, 2, t > 0, h ∈ L2

ρ.

Remark 2.3. This result can also be obtained by applying theorem A.3. Malliavin calculus-
based arguments show that estimate (12) is sharp.

When the potential V (q) is periodic, the particle position, appropriately rescaled,
converges weakly to a Brownian motion with a diffusion coefficient which can be calculated
in terms of the solution of an appropriate Poisson equation. Results of this form have been
known for a long time for the Smoluchowski (overdamped) equation [42, chapter 13] as well
as for the Langevin dynamics [18, 40]. In this paper we prove a similar result for the GLE. We
will use the notation φe := φ · e, pe := p · e, where e denotes an arbitrary unit vector in R

d .
When V (q) is 1-periodic then q(t) enters in the definition of the process x(t) =

{q(t), p(t), z(t)} only mod 1, so we may replace q(t) by q(t) ∈ T
d := R

d/Z. The Markov
process x(t) = {q(t), p(t), z(t)} has state space T

d ×Rd ×R
md and, according to theorem 2.1,

it is an ergodic Markov process with invariant measure given by (10). For this process we prove
the homogenization theorem. To simplify the notation we shall drop the underbar from x(t)

and q(t).
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Theorem 2.5 (Homogenization). Let x(t) be the solution of (7) with V (q) ∈ C∞(Td) with
stationary initial conditions. Then the rescaled process qe

ε (t) := e ·εq(t/ε2) converges weakly
on C([0, T ], R) to a Brownian motion with diffusion coefficient D with

De := De · e = β−1
m∑

j=1

αj‖∇zj
φe‖2, (13)

where φe ∈ L2
ρ is the unique, smooth, mean zero, periodic in q solution of the Poisson equation

Lφe = pe (14)

on X. Furthermore, the following estimates hold

0 < De � 4

β

m∑
i=1

αi

λ2
i

. (15)

The proof of this theorem is based on a careful study of the Poisson equation (14). The
well-posedness of this equation follows from the compactness of the resolvent of L.

Proposition 2.1. Let −L be the generator of the process x(t) ∈ X, the solution of (7) and
assume that V (q) ∈ C∞(Td). Then L has compact resolvent in L2

ρ/K. The same holds true
when x(t) ∈ Y , provided that the assumptions of theorem 2.2 are satisfied.

Let q(t) be the solution of the Langevin equation (9) and let qγ (t) := q(γ t). It is well
known that this rescaled process converges strongly in the overdamped limit γ → +∞ to the
solution of the Smoluchowski equation [37, chapter 10]

q̇ = −∇V (q) +
√

2β−1Ẇ . (16)

Similar results have also been proven in infinite dimensions [6, 7]. In this paper, we prove a
result of this type for the convergence of solutions to the Markovian approximation of the GLE
to the Langevin equation in the strong topology and obtain a formula for the friction coefficient
that appears in the limiting Langevin equation.

Consider (1) with the rescaled noise process

Fε(t) := 1√
ε
F (t/ε), (17)

which is a mean zero stationary Gaussian process with autocorrelation function

γ ε(t) = 1

ε
γ (t/ε). (18)

For the memory kernel (6), γ ε(t) becomes

γ ε(t) =
m∑

j=1

λ2
j

ε
e− αj

ε
|t |. (19)

Consequently, the rescaled noise process (17) is obtained by rescaling the coefficients in (7)
according to λj → λj√

ε
, αj → αj

ε
. Under this rescaling the SDEs become

dq(t) = p(t)dt, (20a)

dp(t) = − ∇qV (q) dt +
1√
ε

m∑
i=1

λizi(t) dt, (20b)

dzi(t) = − λi√
ε
p(t) dt − αi

ε
zi(t) dt +

√
2αiβ−1

ε
dWi, i = 1, . . . , m. (20c)
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Theorem 2.6 (The white noise limit). Let {q(t), p(t), z(t)} ∈ X be the solution of (20) with
V (q) ∈ C∞(Td) and initial conditions having finite moments of all orders. Then the process
{q(t), p(t)} converges strongly, as ε → 0, to the solution of the Langevin equation{

dQ(t) = P(t) dt,

dP(t) =
(
−∇qV (Q(t)) − ∑m

i=1
λ2

i

αi
P (t)

)
dt +

∑m
i=1

√
2β−1λ2

i

αi
dWi,

(21)

with the same initial conditions as q and p. Furthermore, for any n � 1, the following estimate
holds:

‖q(t) − Q(t)‖n,∞ + ‖p(t) − P(t)‖n,∞ � Cε
1
2 , (22)

where ‖f (t)‖n,∞ := (E supt∈[0,T ] |f (t)|n)1/n. The same result holds true when
{q(t), p(t), z(t)} ∈ Y provided that the potential V (q) satisfies assumption 2.1(iii).
Consequently, the process {q(t), p(t)} converges weakly to the solution of the Langevin
equation {

dQ(t) = P(t) dt,

dP(t) = (−∇qV (Q(t)) − γP
)

dt +
√

2γβ−1 dW,
(23)

where the friction coefficient γ is given by the formula

γ =
m∑

j=1

λ2
i

αi

. (24)

Remark 2.4. Note that the friction coefficient in (24) is precisely

γ =
∫ +∞

0
γm(t) dt,

with γm(t) defined in (6), which is the formula for the friction coefficient that is commonly
used in statistical physics.

2.1. Notation

For x(t) = (q, p, z) ∈ Y := R
d × R

d × R
dm or x(t) ∈ X := T

d × R
d × R

dm consider the
operator L defined in (8):

− L = p · ∇q − ∇qV (q) · ∇p +

 m∑
j=1

λjzj

 · ∇p

+
m∑

j=1

(−αjzj · ∇zj
− λjp · ∇zj

+ β−1αj
zj

)
, (25)

with kernel K := KerL. The density of the invariant measure of the process x(t) is

ρβ(p, q, z) = 1

Zβ

e−β(V (q)+ 1
2 |p|2+ 1

2 |z|2), Zβ =
∫

e−β(V (q)+ 1
2 |p|2+ 1

2 |z|2) dp dq dz, (26)

where | · | denotes either the Euclidean or the matrix norm. In (25), ∇ is the gradient (or the
derivative when d = 1) and 
 the Laplacian. ∇2 denotes the Hessian and if O is an operator
then O∗ is its adjoint in L2

ρ := L2( · ; µβ(dx)). Define

B = −p · ∇q + ∇qV · ∇p −
m∑

j=1

λj

(
zj · ∇p − p · ∇zj

)
. (27)
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We easily check that B∗ = −B. To simplify the notation, we set β = αj = 1. When m = 1
then Ai = −∂zi

(derivative with respect to the ith component of z) so that A∗
i = −zi + ∂zi

and
we can write

L = B +
d∑

i=1

A∗
i Ai =: B + A∗A, (28)

where A is intended to be the row vector of operators (A1, . . . , Ad) ( the same for A∗). More
precisely, if m = 1 then: A : L2

ρ −→ L2
ρ ⊗ R

d , B : L2
ρ −→ L2

ρ , [A∗, A] : L2
ρ −→ L2

ρ , being

[A∗, A] := ∑d
j=1[A∗

j , Aj ]; on the other hand [A, A∗] : L2
ρ −→ L2

ρ ⊗ R
d ⊗ R

d is a matrix
of operators whose ij th component is given by [A, A∗]ij := [Ai, A

∗
j ]; in an analogous way

[A, A] : L2
ρ −→ L2

ρ ⊗ R
d ⊗ R

d is a matrix of operators with [A, A]ij := [Ai, Aj ]; finally
C := [A, B], C : L2

ρ −→ L2
ρ ⊗ R

d is a vector of operators, Ci = [Ai, B], i = 1 . . . d, and
the same holds for C2 := [C, B], C2 : L2

ρ −→ L2
ρ ⊗ R

d .
When m > 1 then (28) becomes

L = B +
m∑

i=1

d∑
j=1

A∗
ijAij (29)

with Aij = −∂zij
i.e. the partial derivative with respect to the j th component of zi , and

A∗
ij = −zij + ∂zij

. We will use the notation

L = B + A∗A, (30)

meaning either (28) or (29). For a detailed account on the use of this notation, see
[48, pp 14–15].

As for the norms, unless otherwise specified, ‖ · ‖ indicates the norm of L2
ρ , ‖ · ‖2

1 =
‖A · ‖2 + ‖C · ‖2 + ‖C2 · ‖2 is a kind of homogeneous H 1(Y ; µβ(dx)) =: H 1

ρ norm and
‖ · ‖2

H 1
ρ

= ‖ · ‖2 + ‖A · ‖2 + ‖C · ‖2 + ‖C2 · ‖2 is the usual inhomogeneous one. The inner

products in these Hilbert spaces are denoted by (·, ·), (·, ·)1 and (·, ·)H 1
ρ
, respectively.

3. Convergence to equilibrium

In this section we present the proofs of theorems 2.2 and 2.3. As a preliminary result we show
that −L given by (8) generates a contraction semigroup.

Proposition 3.1. Let −L be the generator of the process x(t) ∈ X, the solution of (7) and
assume that V (q) ∈ C∞(Rd). Then −L generates a contraction semigroup.

Proof. The proof is almost identical to the proof of proposition 5.5 in [21] and we will be very
brief2. Let L = B + A∗A. To simplify the notation, we will set all the constants equal to 1
and will also consider the case d = m = 1. Clearly, L is an accretive operator. Furthermore,
its domain of definition is dense in L2

ρ . Thus, we can consider its closure, which we will still
denote by L. We define T = L + 2I . From the Lumer–Phillips theorem, [43, theorem X 48],
to prove that L generates a contraction semigroup it is sufficient to show that the range of T is
dense in L2

ρ . For this it is sufficient to show that if

(f, T u) = 0 ∀u ∈ C∞
0 , (31)

2 Note, however, that rather than transforming L into a Schrödinger operator and working in a flat L2 space, we work
with the generator in its original form in the weighted L2 space.
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then f = 0. Note that equation (31) is equivalent to (A∗A−B +2I )f = 0 in the distributional
sense. Hence, by hypoellipticity (see equation (32)), this implies that f is a C∞ function.
Following the proof of [21, proposition 5.5], we introduce a family of cut-off functions

ζk(q, p, z) := ζ
(q

k

)
ζ

(
p

α(k)

)
ζ

(
z

ω(k)

)
, ∀k ∈ N+,

where ζ is a C∞ function satisfying ζ ∈ [0, 1], ζ = 1 on B(0, 1) and supp ζ ∈ B(0, 2), α(k)

and ω(k) are positive functions which we will choose later on. With calculations analogous
to those presented in [21, proposition 5.5] we have that for any u ∈ C∞,

(f, T (ζ 2
k u)) − (∂z(ζkf ), ∂z(ζku))

= (∂zf, ∂z(ζ
2
k u)) + (f, B(ζ 2

k u)) + 2(f, ζ 2
k u) − (∂z(ζkf ), ∂z(ζku))

= (ζk∂zf, u∂zζk)−(f ∂zζk, u∂zζk) − (f ∂zζk, ζk∂zu) + 2(f, ζ 2
k u) + (f, B(ζ 2

k u)).

Let now f be the solution of (31) and choose u = f in the above identity to obtain

2‖∂z(ζkf )‖2 + ‖∂z(ζkf )‖2 = ‖(∂zζk)f ‖2 − (f, B(ζ 2
k f )).

We use now the identity (f, B(ζ 2
k f )) = (ζkf

2, Bζk), which follows from the antisymmetry of
B, to deduce

2‖ζkf ‖2 � ‖f ∂zζk‖2 − (ζkf
2, Bζk).

Setting C̃(k) := sup|q|�2k |∂qV (q)|, we then have

2‖ζkf ‖2 � 1

ω2(k)
‖f ‖2 + ‖f ‖2 +

C̃(k)

α(k)
‖f ‖2 +

k

α(k)
‖f ‖2 +

k

ω(k)
‖f ‖2.

We now choose α(k) and ω(k) such that, as k → ∞, ω(k) → ∞, C̃(k)/α(k) → 0 and
k/α(k), k/ω(k) → 0. So, letting k → ∞, from the above inequality we obtain ‖f ‖2 = 0,
hence f = 0. �

3.1. Hypocoercivity

Background material on hypocoercivity is presented in appendix A. In this section we only
give the definition of hypocoercivity. To this end, let T be an unbounded operator on a Hilbert
space H with kernel K. Let H̃ be another Hilbert space continuously and densely embedded
in K⊥.

Definition 3.1 (Hypocoercivity). Assume T generates a continuous semigroup. Then T is
said to be λ-hypocoercive on H̃ if there exists a constant κ > 0 such that

‖ e−T t h ‖H̃� κe−λt ‖ h ‖H̃ ∀h ∈ H̃ and t � 0.

We say that an unbounded linear operator S on H is relatively bounded with respect to the
(linear unbounded) operators T1, . . . , Tn if D(S) ⊂ (∩D(Tj )) and ∃ a constant α > 0 s.t.

∀h ∈ D(S), ‖Sh‖ � α(‖T1h‖ + · · · + ‖Tnh‖).
The basic idea employed in the proof of exponentially fast convergence to equilibrium for
hypocoercive diffusions is to appropriately construct a scalar product on H 1

ρ by adding lower
order terms and then use the fact that hypocoercivity is invariant under a change of equivalent
norms, whereas coercivity does not enjoy such invariance. Finally, we note that S, the class
of Schwartz functions, is dense in D(A) ∩ D(B) as well as in L2

ρ . This guarantees that all the
operations performed with these (unbounded) operators are well defined.
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Set m = 1 = d , α = λ = β = 1. The first two commutators are

C1 = C = [A, B] = ∂p and C2 = [C, B] = ∂z − ∂q. (32)

Hence the operator is hypoelliptic [23]. Furthermore,

[A, A] = 0 [A, C] = 0 [A, C2] = 0, (33a)

[A, A∗] = I [C, A∗] = 0 [C2, A
∗] = −I, (33b)

[C2, B] = −∂2V ∂p − ∂p, (33c)

[C, C∗] = I [C∗
2 , C2] = −I − ∂2

qV , (33d)

where I is the identity operator.

3.2. Proof of theorem 2.2

Proof. We will use theorem A.2 . To this end, set

P = A∗A + C∗C + C∗
2C2

and note that Ker(P ) = K =: KerL contains only constants; in fact

Ker(P ) = Ker(A∗A) ∩ Ker(C∗C) ∩ Ker(C∗
2C2) = Ker(A) ∩ Ker(C) ∩ Ker(C2).

To show that K = Ker(A∗A) ∩ Ker(C∗C) ∩ Ker(C∗
2C2): the inclusion ⊇ is obvious. For the

other inclusion: if h ∈ K then ‖Ah‖2 + ‖Ch‖2 + ‖C2h‖2 = 0 ⇒ Ah = Ch = C2h = 0.
Theorem A.2 requires two sets of hypotheses to be fulfilled. Hypotheses 1, 2 and 3 in

theorem A.2 are quantitative assumptions, which are satisfied in our case with N = 2, C0 = A,
C1 = C, R1 = R2 = 0, R3 = [C2, B] (this is to have C3 = 0) and thanks to assumption 2.1(iii).
Hypothesis 4 requires, in our case, for the operator P to be κ-coercive on K⊥ ∼= L2

ρ/K. The
coercivity of P is equivalent to

‖Ah‖2 + ‖Ch‖2 + ‖C2h‖2 � κ‖h‖2,

that is, more explicitly,

‖∇zh‖2 + ‖∇ph‖2 + ‖ (∇z − ∇q

)
h‖2 � κ‖h‖2.

Using the fact that ‖a − b‖2 � ‖a‖2

3 − ‖b‖2

2 , we have

‖∇zh‖2 + ‖∇ph‖2 + ‖ (∇z − ∇q

)
h‖2 � 1

3

(‖∇zh‖2 + ‖∇ph‖2 + ‖∇qh‖2
)

so we just need

‖∇zh‖2 + ‖∇ph‖2 + ‖∇qh‖2 � κ‖h‖2

to hold true. Since µβ is a product measure, we only need to verify that3∫
|∇qh|2e−V (q) dq � µ

∫
(h − 〈h〉)2e−V (q) dq

holds true for some constant µ, where the notation 〈h〉 := ∫
he−V (q)dq has been used. It is a

standard result that if V (q) ∈ C2(Rd) is such that e−V (q)/Z is a probability density and

| ∇V (q) |2
2

− 
V (q)
|q|→∞−→ +∞ (34)

then e−V (q)/Z satisfies a Poincaré inequality (see, e.g. [48, theorem A.1]). From
assumption 2.1(iii), condition (34) is satisfied. We can conclude that there exist a scalar

3 To simplify the notation we have set β = 1.
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product ((·, ·)) inducing a norm equivalent to the inhomogeneous norm of H 1
ρ and a constant

λ̂ > 0 such that L is coercive in this norm:

∀h ∈ L2
ρ/K, ((h, Lh)) � λ̂((h, h)).

This implies that L is hypocoercive in this norm, hence it is hypocoercive on L2
ρ/K endowed

with the ‖ · ‖H 1
ρ

norm:

‖e−tLh0‖H 1
ρ

� Ce−λt‖h0‖H 1
ρ
. (35)

�

Remark 3.1. The orthogonal space to K is the same with respect to both the (·, ·)1 and the
(·, ·)H 1

ρ
norms; moreover, since P is coercive, these two norms are equivalent.

Remark 3.2. Theorem A.3 in appendix A allows us to state a similar result when the initial
datum is in L2

ρ . In fact, using remark 3.1,

‖e−tLh‖H 1
ρ

� c

t
5
2

‖h‖, t ∈ (0, 1]. (36)

So, putting together (35) and (36) we obtain, for 0 < t0 < t , t0 < 1:

‖e−tLh0‖H 1
ρ

= ‖e−(t−t0)Le−t0Lh0‖H 1
ρ

= ‖e−(t−t0)Lht0‖H 1
ρ

� ce−λ(t−t0)‖ht0‖H 1
ρ

� ce−λ(t−t0)‖e−t0Lh0‖H 1
ρ

� c
e−λ(t−t0)

t
5
2

0

‖h0‖, (37)

where the notation e−t0Lh0 =: ht0 has been used.

Remark 3.3. The proof is identical when m, d > 1. In this case we can think of A as a matrix
of operators, see (29).

3.3. Proof of theorem 2.3

Proof. For simplicity we present the proof of this result in one dimension, i.e. d = 1, and for
m = 1; we also set α = β = 1. The extension to arbitrary dimensions is straightforward.

Let ft denote the density of the law of the process x(t), i.e. the solution of the Fokker–Plank
equation

∂tft + L′ft = 0,

where L′ denotes the (flat) L2 adjoint of L, namely

L′ = p∂q − ∂qV ∂p + z∂p − p∂z − ∂z(z·) − ∂2
z .

We set ft = ρht . Then ht satisfies the equation

∂tht = Bht − A∗Aht . (38)

We apply theorem A.4 to the operator F = −B + A∗A with

A = −∂z, C1 = −∂p, C2 = −∂q, Z2 = I, R2 = −∂z.

Furthermore assumption 2.1(i) and (iii) together with the Holley–Strook perturbation lemma
imply that Z−1e−V (q) satisfies a logarithmic Sobolev inequality (LSI).
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Hypotheses 1, 2 and 4 are automatically satisfied. We put C2 = ∂q and we added the
remainder R2 in order to fulfill hypothesis 4. Hypothesis 3 is satisfied on account of assumption
2.1 (iii). Now consider the relative entropy Hρ(f ),

Hρ(f ) =
∫

f log

(
f

ρ

)
dq dp dr =

∫
h log h dρ, f = ρh (39)

and the Fisher information Iρ(f )

Iρ(f ) =
∫

f |∇ log(h)|2 dq dp dr =
∫

h|∇ log h|2 dρ, f = ρh. (40)

Then if the initial datum has finite relative entropy, we obtain that

Hρ(ft ) = O(e−tα) (41)

for some α > 0 and for t > 0. If the initial datum has also finite Fisher information then

Iρ(ft ) = O(e−tα), (42)

as well. �

Remark 3.4. We note that (42), together with the LSI, implies (41).

Remark 3.5. In view of the LSI, it is interesting to note that, by applying theorem A.5, we get
the following bounds:∫

ht |Ck log ht |2 dρ � c

t2k+1

∫
h0 log h0 dρ, (43)

for k = 0, 1, 2 and c an explicitly computable positive constant.

4. Bounds on the derivatives of the Markov semigroup

Throughout this section we will use the notation u = e−tLu0. We introduce the Lyapunov
function

F(t) = a0t‖Au‖2 + a1t
3‖Cu‖2 + a2t

5‖C2u‖2 + b0t
2(Au, Cu) + t4b1(Cu, C2u) + b2‖u‖2,

t ∈ (0, 1], (44)

where aj , bj , j = 0, 1, 2 are positive constants to be chosen.

Lemma 4.1. There exist constants aj , bj , j = 0, 1, 2 such that the time derivative ∂tF of the
Lyapunov function along the semigroup is negative.

Proof. We will calculate the time derivative of each term in (44) separately and using the
explicit relations (33):

∂t‖u‖2 = −2(Lu, u) = −2‖Au‖2,

∂t (Au, Au) = −2(Cu, Au) − 2‖A∗Au‖2 = −2(Cu, Au) − 2‖Au‖2 − 2‖A2u‖2,

∂t (Cu, Cu) = −2‖ACu‖2 − 2(C2u, Cu),

∂t (C2u, C2u) = ((2 + ∂2
qV )C2u, Cu) − 2‖AC2u‖2 + 2(Au, C2u),

∂t (Au, Cu) = −2(A2u, ACu) − (Au, Cu) − ‖Cu‖2 − (Au, C2u),

∂t (Cu, C2u) = −‖C2u‖2 − 2(ACu, AC2u) + 2‖Cu‖2 + (Cu, Au).
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Putting everything together we obtain

∂tF (t) = − 2a0t‖A2u‖2 − 2a1t
3‖ACu‖2 − 2a2t

5‖AC2u‖2 (45a)

− 2b0t
2(A2u, ACu) − 2b1t

4(ACu, AC2u) (45b)

+ (−2a0t + a0 − 2b2)‖Au‖2 + (3a1t
2 + 2b1t

4 − b0t
2)‖Cu‖2 (45c)

+ (5a2t
4 − b1t

4)‖C2u‖2 + (2b0t − 2a0t − b0t
2 + b1t

4)(Au, Cu) (45d)

+ (4b1t
3 − 2a1t

3 + 2a2t
5)(Cu, C2u) + (2a2t

5 − b0t
2)(Au, C2u). (45e)

Now we estimate the sum of the first and of the second line (i.e. the sum of all the terms where
A2, AC and AC2 appear). For t ∈ (0, 1] we have

(45a) + (45b) � − 2a0t‖A2u‖2 + 2b0t
2‖A2u‖‖ACu‖

+ 2b1t
4‖ACu‖‖AC2u‖ − 2a1t

3‖ACu‖2 − 2a2t
5‖AC2u‖2

� − 2a0t‖A2u‖2 + b2
0t‖A2u‖2 + t3‖ACu‖2 − 2a1t

3‖ACu‖2

+ b2
1t

3‖ACu‖2 + t5‖AC2u‖2 − 2a2t
5‖AC2u‖2.

Similarly for the sum of the remaining terms (those with A, C and C2) we have

(45c) + (45d) + (45e) � (−2a0t + a0 − 2b2)‖Au‖2

+(2b0t + 2a0t + b0t
2 + b1t

4)‖Au‖‖Cu‖ + (2a2t
5 + b0t

2)‖Au‖‖C2u‖
+(3a1t

2 + 2b1t
4 − b0t

2)‖Cu‖2 + (5a2t
4 − b1t

4)‖C2u‖2

+(4b1t
3 + 2a1t

3 + 2a2t
5)‖Cu‖‖C2u‖

� (−2a0t + a0 − 2b2)‖Au‖2 + a2
0‖Au‖2 + ‖Cu‖2

+
3

2
b2

0‖Au‖2 +
3

2
t2‖Cu‖2 +

1

2
b2

1‖Au‖2 +
t4

2
‖Cu‖2

+a2
2 t

5‖Au‖2 + t5‖C2u‖2 +
t2

2
b2

0‖Au‖2 +
t2

2
‖C2u‖2

+(3a1t
2 + 2b1t

4 − b0t
2)‖Cu‖2 + (5a2t

4 − b1t
4)‖C2u‖2

+2b2
1t

3‖Cu‖2 + t3‖C2u‖2 + a2
1 t

3‖Cu‖2 + t3‖C2u‖2

+a2
2 t

5‖Cu‖2 + t5‖C2u‖2.

Choosing the constants in such a way that b2 � a0 � b0 � a1 � b1 � a2 > 1/c , where c

is a constant depending on the bound on the second derivative of the potential, we obtain that
∂tF < 0 ∀t ∈ (0, 1]. �

Proof of theorem 2.4. We use the previous lemma to deduce

a0t‖Au‖2 + a1t
3‖Cu‖2 + a2t

5‖C2u‖2 + b0t
2(Au, Cu) + t4b1(Cu, C2u) + b2‖u‖2 < b2‖u0‖2.

(46)

This, in turn, implies that

‖∇zu‖2 = ‖Au‖2 <
κ

t
‖u0‖2,

‖∇pu‖2 = ‖Cu‖2 <
κ

t3
‖u0‖2,

‖∇qu‖2

3
− ‖∇zu‖2

2
� ‖∇qu − ∇zu‖2 = ‖C2u‖2 <

κ

t5
‖u0‖2

⇒ ‖∇qu‖2 � κ

t5
‖u0‖2,
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where κ is an explicitly computable positive constant. The previous inequalities are justified
by the fact that

a0t‖Au‖2 + a1t
3‖Cu‖2 + a2t

5‖C2u‖2 + b0t
2(Au, Cu) + t4b1(Cu, C2u)

�
(

a0t − b2
0

2
t

)
‖Au‖2 +

(
a1t

3 − t3

2
− t3 b2

1

2

)
‖Cu‖2 +

(
a2t

5 − t5

2

)
‖C2u‖2

and the second line is positive thanks to the choice of the constants we made. �

Remark 3.3 holds also in this case.

Remark 4.1. From estimates (12), similar estimates on A�e−tL•
, e−tL�

A•, C�e−tL•
, e−tL�

C•,
C�

2e−tL•
and e−tL�

C•
2 follow, where � and • stand for either the L2

ρ-adjoint or nothing. In fact

(i) (Ae−tLf, g) = (f, e−tL∗
A∗g) � ‖Ae−tLf ‖‖g‖ � κ√

t
‖f ‖‖g‖

⇒ (f, e−tL∗
A∗g) � κ√

t
‖f ‖‖g‖, choose f = e−tL∗

A∗g and the result on e−tL∗
A∗ follows.

(ii) Using [A, A∗] = I we have ‖A∗e−tLu0‖2 = ‖A∗u‖2 = ‖Au‖2 +‖u‖2, hence the estimate
for A∗e−tL. Taking the adjoint as in (i) we get the result for e−tL∗

A.
(iii) For Ae−tL∗

we can just repeat the proof we wrote for Ae−tL, since the only thing that
changes when considering L∗ is the sign of B, which does not play any role in the proof.
Now, by acting as in (i) and (ii), we obtain the results for e−tLA∗,A∗e−tL∗

and e−tLA.

5. The homogenization theorem

In this section we prove theorem 2.5. The proof of this theorem is based on standard techniques,
namely the central limit theorem for additive functionals of Markov processes [27, 31, 40],
which in turn is based on the martingale central limit theorem [12, theorem 7.1.4]. In order to
apply these techniques we need to study the Poisson equation

Lu = f. (47)

The boundary conditions for (47) are that u ∈ L2
ρ and it is periodic in q.

Proposition 5.1. Let f ∈ L2
ρ ∩C∞(X) with

∫
X

f µβ(dx) = 0. Then the Poisson equation (47)
has a unique smooth mean zero solution u ∈ L2

ρ ∩ C∞(X).

The proof of theorem 2.5 follows now from the above proposition.

Proof of theorem 2.5. To simplify the notation we present the proof for d = 1. When d > 1
the same proof applies to the one-dimensional projections qe := q ·e. In this case the diffusion
coefficient D is replaced by the projections of the diffusion tensor De := De · e.

We consider the process x(t) on X with stationary initial conditions. For non-stationary
initial conditions we need to combine the analysis presented below with the exponential
convergence to equilibrium, theorem 2.2. Since p ∈ L2

ρ ∩ C∞(X) and centred with respect
to the invariant measure µβ(dx), proposition 5.1 applies and there exists a unique mean zero
solution φ ∈ L2

ρ ∩ C∞(X) to the problem

Lφ = p. (48)

We use Itô’s formula to obtain

dφ = Lφ dt +
m∑

j=1

√
2αjβ−1∂zj

φ dWj.
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We combine this, together with (48) and the equations of motion to deduce

qε(t) := εq(t/ε2)

= εq(0) + ε

∫ t/ε2

0
p(s) ds

= εq(0) − ε
[
φ(q(t/ε2), p(t/ε2), z(t/ε2)) − φ(q(0), p(0), z(0))

]
+ ε

m∑
j=1

∫ t/ε2

0

√
2αjβ−1∂zj

φ dWj(s)

=: εRε + Mε.

Our stationarity assumption, together with the fact that φ ∈ L2
ρ , imply that

E|Rε |2 � C.

To study the martingale term Mε we use the martingale central limit theorem [12, theorem 7.1.4]
or [42, theorem 3.33]. We have that Mε(0) = 0, that Mε(t) has continuous sample paths and,
by stationarity, that it has stationary increments. Furthermore, by ergodicity and the fact that
the Brownian motions Wi(t), i = 1, . . . , m are independent, we deduce that

lim
ε→0

〈Mε
t 〉 = 2

m∑
i=1

αiβ
−1‖∂zi

φ‖2t a.s.

Note that in view of estimate (50), we have that ‖∂zi
φ‖ � C. The above calculations imply

that the rescaled process qε(t) := εq(t/ε2) converges weakly in C([0, t]; R) to a Brownian
motion

√
2DW(t) where

D = 2β−1
m∑

i=1

αi‖∂zi
φ‖2. (49)

Remark 5.1. Note that when d > 1 the convergence of the one-dimensional projections
qe

ε (t) := e · εq(t/ε2) does not imply the convergence of the process qε(t) = εq(t/ε2)

[18, remark 2.3]. The proof of the homogenization theorem in the multidimensional case,
which is also based on the analysis of the Poisson equation, is very similar and it is omitted.
Similar results for diffusion processes with periodic coefficients in arbitrary dimensions can
be found in e.g. [5, 41].

To prove estimate (15), we first show the upper bound and then the fact that the diffusion
coefficient is bounded away from zero. We set φ = gi + 1

λi
zi and use the Poisson equation

(48) to obtain

Lgi = −αi

λi

zi,

from which we obtain the estimate

αiβ
−1‖∂zi

gi‖2 �
m∑

j=1

αjβ
−1‖∂zj

gi‖2 = (Lgi, gi)

= αi

βλi

∫
gi∂zi

ρ dx = − αi

βλi

∫
ρ ∂zi

gidx

� αi

βλi

‖∂zi
gi‖.

Consequently,

‖∂zi
gi‖ � 1

λi

. (50)
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From this we obtain the following estimate on the diffusion coefficient D:

D =
m∑

i=1

αiβ
−1‖∂zi

φ‖2 = 1

β

m∑
i=1

αi

∥∥∥∥∂zi
gi +

1

λi

∥∥∥∥2

� 2

β

m∑
i=1

αi

(
‖∂zi

gi‖2 +
1

λ2
i

)

� 4

β

m∑
i=1

αi

λ2
i

.

The fact that D > 0 is easily seen by contradiction. Assume that D = 0. Then by (49),
‖∂zi

φ‖2 = 0 ∀i = 1, . . . , m. Hence φ = φ(q, p) and

Lφ = −p∂qφ + ∂qV ∂pφ +
m∑

i=1

λizi∂pφ = p.

Multiplying both sides by ez2
i /2 and then integrating with respect to zi we get

−
∫

p∂qφ ez2
i /2 dzi +

∫
∂qV ∂pφ ez2

i /2 dzi

+
∫

λiz
2
i ez2

i /2 dzi +
∑
j �=i

∫
λizizj ∂pφez2

i /2 dzi

=
∫

pz ez2
i /2 dzi,

from which we conclude that λi∂pφ = 0 for all i = 1, . . . , m. Hence φ = φ(q). By the same
reasoning we get that −p∂qφ = p, which does not have a periodic solution. �

We now prove proposition 2.1

Proof of proposition 2.1. To prove the compactness of the resolvent we use (37) ( for example
with t0 = 1/2) and the fact that the resolvent L−1

η := (ηI + L)−1 can be represented as the
Laplace transform of the semigroup:

‖L−1
η h‖H 1

ρ
�
∫ ∞

0
dte−ηt‖e−Lt h‖H 1

ρ
(51)

� C

∫ ∞

0
dte−ηte−λt‖h‖

� C

λ
‖h‖, (52)

where C is a constant that does not depend on η, since e−ηt � 1. The compactness of the
resolvent follows now from the compactness of the embedding of H 1

ρ into L2
ρ . �

Proof of proposition 5.1. This is a consequence of the compactness of the resolvent of
L, which allows us to use Fredholm’s theorem. Recall that we are considering the Poisson
equation Lφ = f where f ∈ Lρ ∩ C∞(X) and centred with respect to the invariant measure
µβ(dx).

Set Lηu = ηu + Lu. Fredholm’s theorem applies so either the solution of(
1

η
I − L−1

η

)
u = h̃, h̃ = L−1

η f/η
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exists and is unique (and hence, by construction the solution to (47) is unique) or
( 1

η
I − L−1

η )u = 0 admits a non-zero solution. We can rule out the latter option because

( 1
η
I − L−1

η )u = 0 is equivalent to Lu = 0; since we know that KerL contains only constants
and we require the solution to have mean zero, we can conclude that the only solution of the
equation Lu = 0 is u = 0.

6. The white noise limit

Throughout this section C denotes a generic constant and c(t) denotes a generic positive
increasing continuous function bounded on compacts [0,T]; both C and c(t) are independent
of ε, even though they can depend on the coefficients {λi, αi}i=1,...,m and they do depend on the
exponent n in estimate (22). To simplify the notation we present the proof in one dimension,
i.e. d = 1 and we set β = 1. The proof is exactly the same in arbitrary dimensions. Let
(Q(t), P (t)) ∈ R × R be the solution to system (21), and (q(t), p(t), z(t)) be the solution to
system (20), then

| q(t) − Q(t) |�
∫ t

0
| p(s) − P(s) | ds.

From (20c)

1√
ε

∫ t

0
dszi(s) = −

√
ε

αi

(zi(t) − zi(0)) − λi

αi

∫ t

0
dsp(s) +

√
2

αi

Wi(t),

so that, setting θi = λ2
i /αi , we have

p(t) − P(t) =
∫ t

0

(−∂qV (q(s)) + ∂qV (Q(s))
)

ds

+
m∑

i=1

θi

∫ t

0
(P (s) − p(s)) ds − √

ε

m∑
i=1

λi

αi

(zi(t) − zi(0)) .

We use the Lipshitz continuity of ∂qV (q) together with Hölder’s inequality to obtain

ηn(T ) := E sup
t∈[0,T ]

{| q(t) − Q(t) |n + | p(t) − P(t) |n}
� CT n−1

∫ T

0
E sup

s∈[0,t]
| q(s) − Q(s) |n dt

+ C

(
m∑

i=1

θn
i

)
T n−1

∫ T

0
E sup

s∈[0,t]
| p(s) − P(s) |n dt

+ Cε
n
2

m∑
i=1

(
λi

αi

)n

E sup
t∈[0,T ]

| zi(t) − zi(0) |n .

From this we deduce

ηn(T ) � Cc(T )

∫ T

0
dtηn(t) + Cε

n
2

m∑
i=1

E sup
t∈[0,T ]

| zi(t) − zi(0) |n .

From Gronwall’s lemma we then have

η(T ) � Cε
n
2

m∑
i=1

E sup
t∈[0,T ]

|zi(t) − zi(0)|n + Cc(T )ε
n
2

∫ T

0
dt

m∑
i=1

E sup
s∈[0,t]

|zi(s) − zi(0)|n

and the result now follows from proposition 6.1.
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Proposition 6.1. With the same notation and assumptions as in theorem 2.6 the following
estimate holds true:
m∑

i=1

E sup
t∈[0,T ]

|zi(t) − zi(0)|n � Cc(T )

[
m∑

i=1

E|zi(0)|n + E|p(0)|n + E|q(0)|n + 1

]
,

where c(t) is a positive increasing continuous function bounded on compacts [0, T ].

Proof. From (20c),

zi(t) = e− αi
ε

t zi(0) +
∫ t

0
e−(t−s)

αi
ε

(
− λi√

ε
p(s) ds +

√
2αi

ε
dWi(s)

)
. (53)

So from (20a), (20b) and (53) we have

q(t) + p(t) = −
∫ t

0
ds∂qV (q(s)) +

∫ t

0
dsp(s) + q(0) + p(0)

+
1√
ε

m∑
i=1

λi

[ ∫ t

0
dse− αi

ε
szi(0)

+
1√
ε

∫ t

0
dse− sαi

ε

∫ s

0
due

uαi
ε

(
− λip(u) du +

√
2αi dWi(u)

)]
.

By integration by parts,∫ t

0
dse− sαi

ε

∫ s

0
due

uαi
ε

(
−λip(u) du +

√
2αi dWi

)
= ε

αi

∫ t

0
(e−(t−u)

αi
ε + 1)

(
−λip(u) du +

√
2αi dWi(u)

)
,

hence, using again the Hölder continuity of V (q), we obtain

ξn(T ) := E sup
t∈[0,T ]

{|q(t)|n + |p(t)|n}
= Cc(T )

[∫ T

0
dtξn(t) + E

(|q(0)|n + |p(0)|n) + Cε
n
2

m∑
i=1

E|zi(0)|n + 1

]
and by Gronwall’s lemma

ξn(T ) � C

[
E
(|q(0)|n + |p(0)|n) + Cε

n
2

m∑
i=1

E|zi(0)|n
]

(1 + c(T )) ,

which implies

E sup
t∈[0,T ]

|p(t)|n �
[
E
(|q(0)|n + |p(0)|n) + Cε

n
2

m∑
i=1

E|zi(0)|n
]

(1 + c(T )) . (54)

Since by (53) we have

E sup
t∈[0,T ]

|zi(t)|n � C

(
E|zi(0)|n + E sup

t∈[0,T ]
|p(t)|n + 1

)
, (55)

Proposition 6.1 follows from (54) and (55). �
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Appendix A. Hypocoercivity

In this appendix we recall some of the main results from the theory of hypocoercivity, as
presented in [48]. Throughout this appendix we will use the notation introduced in section 2.1
and in definition 3.1.

Definition A.1 (Coercivity). With the same notation of definition 3.1, the operator T is said
to be λ-coercive on H̃ if

(T h, h)H̃ � λ‖h‖2
H̃ ∀h ∈ K⊥ ∩ D(T ).

The following proposition gives an equivalent definition of coercivity.

Proposition A.1. With the same notation as in definition A.1, T is λ-coercive on H̃ iff

‖ e−T t h ‖H̃� e−λt ‖ h ‖H̃ ∀h ∈ H̃ and t � 0.

Theorem A.2. Let L be an operator of the form L = A∗A + B, with B∗ = −B, K = KerL
and assume there exists N ∈ N such that

[Cj−1, B] = Cj + Rj 1 � j � N + 1, C0 = A, CN+1 = 0. (56)

Consider the following assumptions: for k = 0, . . . , N + 1

1. [A, Ck] is relatively bounded with respect to {Cj }0�j�k and {CjA}0�j�k−1.
2. [Ck, A

∗] is relatively bounded with respect to I and {Cj }0�j�k (here I indicates the
identity operator on L2

ρ).
3. Rk is relatively bounded with respect to {Cj }0�j�k−1 and {CjA}0�j�k−1.
4.

∑N
j=0 C∗

j Cj is κ-coercive for some κ > 0.

If assumptions 1–3 are satisfied then there exists a scalar product ((·, ·)) on H 1
ρ defining a

norm equivalent to the usual H 1
ρ norm and such that

∀h ∈ H 1
ρ /K, ((h, Lh)) � K

N∑
j=0

‖Cjh‖2, (57)

for some constant K > 0. Furthermore, if assumption 4 is satisfied, then there exists a constant
λ > 0 such that

∀h ∈ H 1
ρ /K, ((h, Lh)) � λ((h, h)).

In particular, L is hypocoercive in H 1
ρ /K, i.e.

‖e−tL‖H 1
ρ /K→H 1

ρ /K � Ce−λt

for some C, λ > 0.

Theorem A.3. With the same notation as in theorem A.2, if assumptions 1–3 are satisfied then

‖Cke−tLh‖ � C

tk+ 1
2

‖h‖, ∀k = 0, . . . , N,

for all functions h ∈ L2
ρ .
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Theorem A.4. Let V (x) ∈ C∞(Rd) such that µ(dx) = e−V (x) dx is a probability measure on
R

d and assume that L generates a semigroup on a suitable space of positive functions. Let
{Aj }1�j�M and B be first-order differential operators with smooth coefficients, with B = −B∗.
Assume there exists N ∈ N such that

[Cj−1, B] = Cj + Rj 1 � j � N + 1, C0 = A, CN+1 = 0.

If, for 0 � k � N + 1 the following assumptions are fulfilled

1. [A, Ck] is pointwise bounded with respect to A.
2. [Ck, A

∗] is pointwise bounded with respect to I and {Cj }0�j�k .
3. Rk is pointwise bounded with respect to {Cj }0�j�k−1.
4. [A, Ck]∗ is pointwise bounded relatively to I and A.
5. there exists a positive constant λ > 0 such that

∑
k C∗

k Ck � λI pointwise on R
d (I is the

identity matrix on R
d ).

6. The probability measure µ satisfies a logarithmic Sobolev inequality.

Then the Kullback information (39) and the Fisher information (40) decay exponentially fast
to zero.

Theorem A.5. With the same notation as in theorem A.4, let V (x) ∈ C∞(Rd) be such that
µ(dx) = e−V (x) dx is a probability measure on R

n and assume that L generates a semigroup
on a suitable space of positive functions. If assumptions 1–4 of theorem A.4 are fulfilled, then
the following bounds hold∫

ht | Ck log ht |2 dµ � C

t2k+1

∫
h0 log h0dµ ∀k = 0, . . . , N,

where ht = ft/ρ and ft is the density of the law of the process with generator −L.

Appendix B. Ergodicity

This appendix is devoted to the proof of theorem 2.1. We apply Markov chain techniques
[34, 35, 45] to prove ergodicity of the Markov process x(t) := {q(t), p(t), z(t)} given by (7).
To be more precise, we will study the ergodic properties of the following SDEs:

q̇ = p, (58a)

ṗ = −∇qV (q) + r, (58b)

ṙ = −p − r + Ẇ . (58c)

We consider both the case q ∈ R
d and q ∈ T

d and p, r ∈ R
d . L = −L is the generator of

the process. The extension to the case r ∈ R
md is straightforward, so we shall not present it.

Throughout this appendix (·, ·) denotes the Euclidean inner product. The main result of this
appendix is theorem 2.1, which we include here for the reader’s convenience.

Theorem B.1 (Ergodicity). The solution of (58) with x(t) ∈ X and V (q) ∈ C∞(Td) is
geometrically ergodic. The same holds true when x(t) ∈ Y , provided that the potential
V (q) ∈ C∞(Rd) satisfies assumption 2.1.

Following [34] and [33], let Pt(x, A) be the transition kernel of the Markov process x(t).
Consider the discretized process {xn}n∈N, obtained by sampling at the rate T > 0 and with
transition kernel P(x, A) := PT (x, A).

Lyapunov Condition. There exists a function G(x) : R
3d → [1, ∞) such that G(x) → ∞

as ‖x‖ → ∞ and LG(x) � −aG(x) + d̃ for some a, d̃ > 0.
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Minorization condition. There exist T > 0, η > 0 and a probability measure ν, with
ν(Cc) = 0 and ν(C) = 1 for some fixed compact set C in the phase space, such that

PT (x, A) � ην(A) ∀A ∈ B(R3d), x ∈ C.

Consider now the set G = {x ∈ R
3d : G(x) � 2d̃/a

γ−e−aT /2 } for some γ ∈ (e−aT /2, 1), G, a and

d̃ as in the Lyapunov condition. We will use the following result, the proof of which can be
found in [35].

Theorem B.2. If there exists a sampling rate T > 0 such that the resulting chain {xn}n∈N is a
Markov chain satisfying the minorization condition on the set G and there exists a function G

satisfying the Lyapunov condition, then the process is ergodic.

Assumption (�). Let Bs(y) ∈ R3d be the ball of radius s centred in y. For some fixed compact
set C we have

• Pt(x, A) has a density pt(x, y) which is continuous ∀(x, y) ∈ C × C, more precisely

Pt(x, A) =
∫

A

pt (x, y) dy ∀A ∈ B(R3d) ∩ B(C), ∀x ∈ C;

• ∀δ > 0 one can find a t̄ = t̄ (δ) such that

Pt̄ (x, Bδ(x
∗)) > 0 for some x∗ ∈ int(C), ∀x ∈ C.

We have the following result.

Lemma B.1. Assumption (�) �⇒ Minorization Condition.

We shall prove that, under the assumptions of theorems 2.1, B.2 applies, hence system (58) is
ergodic.

Proof of theorem B.1. Consider first the case x(t) ∈ X. Let V (q) be a C∞(Td) potential,
V (q) > −k for some positive constant k. Consider the function

G(x) = Ĉ +
B

2
‖p‖2 +

C

2
‖r‖2 + DV (q) + H(p, r),

where B, C, D, H and Ĉ are positive constants to be chosen. We have that

G(x) � Ĉ +
B

2
‖p‖2 +

C

2
‖r‖2 − H

2
‖p‖2 − H

2
‖r‖2 − Dk, (59)

so we need B > H , C > H and Ĉ > Dk. Moreover,

LG(x) = D(∇qV , p) − B(∇qV , p) − H(∇qV , r) + B(r, p) + H‖r‖2

− C(p, r) − H‖p‖2 − C‖r‖2 − H(p, r) + C

� H‖r‖2 +
H

4
‖∇qV ‖2 − H‖p‖2 − C‖r‖2 + C + H‖r‖2,

where we have chosen B = D = C + H . On the other hand, since V (q) � K ,

G(x) � −a

2
B‖p‖2 − a

2
C‖r‖2 − aKB − a

H

2
‖r‖2 − a

H

2
‖p‖2

so imposing also 2H − C � − a
2 (C + H), −H � − a

2 (B + H) for some a > 0, the Lyapunov
condition is satisfied. One possible choice is a = 1/4, B = 13/16, C = 5/8 and H = 3/16.

Note that from what we have just proven it follows that ∀l � 1 we have

LG(x)l � −alG(x)l + d̃l , (60)
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for some suitable positive constants al and d̃l . In fact,

∂qi
G(x)l = lG(x)l−1∂qi

G(x),

∂pi
G(x)l = lG(x)l−1∂pi

G(x)

and

∂2
ri
G(x) = ∂ri

[
lG(x)l−1∂ri

G(x)
] = l(l − 1)G(x)l−2(∂ri

G)2 + lG(x)l−1∂2
ri
G(x).

Furthermore, using (59), we obtain

l(l − 1)G(x)l−2(∂ri
G)2 � clG(x)l−1,

so that

LG(x)l � lG(x)l−1LG(x) + clG(x)l−1.

Hence, using what we have proven in the case l = 1, we obtain (60).
Consider now the case x(t) ∈ Y . We introduce the Lyapunov function

G(x) = Ĉ +
A

2
‖q‖2 +

B

2
‖p‖2 +

C

2
‖r‖2 + DV (q)

+ E(p, q) + F(q, r) + H(p, r) + M(∇qV , p).

Consequently,

∇qG = Aq + D∇qV + Ep + Fr + M∇2V (q) · p,

∇pG = Bp + Eq + Hr + M∇qV ,

∇rG = Cr + Fq + Hp.

Thus,

LG(x) = A(p, q) + D(∇qV , p) + E‖p‖2 + F(p, r) − B(∇qV , p)

− E(∇qV , q) − H(∇qV , r) + B(p, r) + E(q, r) + H‖r‖2

− C(p, r) − F(p, q) − H‖p‖2 + M(p, ∇2V (q) · p)

− C‖r‖2 − F(r, q) − H(p, r) + C − M‖∇qV ‖2 + M(r, ∇qV )

From assumption 2.1(iii) it follows that there exist constants β̃ and σ̃ such that

σ̃‖q‖2 − β̃‖∇qV ‖2 → +∞ as ‖q‖2 → +∞.

Hence, it follows that G satisfies the Lyapunov condition. Also in this case, one can prove that
the Lyapunov condition holds for G(x)l , l � 1, as well.

As for assumption (�), first of all let us note that, since the operator ∂t + L is hypoelliptic,
the transition probability has a density; because the SDE we consider has time independent
coefficients the density is C∞ provided that V (q) ∈ C∞ [38]. Moreover, studying the control
problem associated with dx = b(x) dt + σ dw, namely dX = b(X) dt + σ dU where U(t)

is a smooth control, and using the Stroock–Varadhan support Theorem, we can prove that
Pt(x, A) > 0 ∀x ∈ R

3d , t > 0 and for any open A ∈ R
3d .

Consider now the set Gl = {g : R
3d → R, measurable :| g(x) |� G(x)l}. Then there

exist constants k = k(l) and λ = λ(l), such that ∀g ∈ Gl

|Ex0g(x(t)) − ρ(g)| � kG(x0)e
−λt , t � 0, (61)

that is, the process is geometrically ergodic, see [33, theorem 3.2] or [35, theorem 15.0.1].
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[22] Hérau F 2007 Short and long time behavior of the Fokker–Planck equation in a confining potential and

applications J. Funct. Anal. 244 95–118
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