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Abstract

We first consider finite dimensional Markovian dynamics generated by operators of hypoco-
ercive type and for such finite dimensional models we obtain short and long time pointwise
estimates for all the derivatives, of any order and in any direction, along the semigroup. We then
look at infinite dimensional models (in (Rm)zd) produced by the interaction of infinitely many
finite dimensional dissipative dynamics of the type indicated above. For these models we study
finite speed of propagation of information, well-posedness of the infinite dimensional semigroup,
time behaviour of the derivatives and strong ergodicity.

1 Introduction

In this paper we consider infinite dimensional models of interacting dissipative systems with non-
compact state space. In particular we develop a basis for construction and analysis of dissipative
semigroups whose generators are given in terms of noncommuting vector fields and for which the
equilibrium measures are not a priori known. The ergodicity theory in the case where an invariant
measure is not given in advance, in noncompact subelliptic setup is an interesting and challenging
problem which was initially studied in [9] and we extend it in new directions in this paper developing
further strategy based on generalised gradient bounds. In the following we will first present the main
results of the paper and we will then relate them to existing results in the literature.

Hypoelliptic operators of hypocoercive type have received a lot of attention in recent years, see
[12] 24] and references therein, as they naturally arise in non-equilibrium statistical mechanics, for
example in the context of the heat bath formalism. These are second order operators on R™ in
Hormander form

L=273+B,
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where Zy and B are first order differential operators. The principal part is spanned by at least one
field Zp which, together with the term of first order B, generate fields Z;41 = [B,Z;],j =0,..,N -1
spanning the full Lie algebra. Therefore by Hormander theorem, (see e.g. [13], [6], [23] and references
therein), such semigroups have strong smoothing property. Motivated by [24], we will refer to these
generators as hypocoercive type operators (see Remark .

At the beginning of the paper, in Section 2, we describe a systematic inductive method which
allows to obtain quantitative short and long time estimates for the space-derivatives of the semigroup
generated by L. We obtain pointwise bounds on the derivatives of any order and in any space-
direction. The techniques of Section 2 were originally developed in [21] and are based on combining
the hypocoercive method presented in [12 [24] with the classic Bakry-Emery semigroup approach [2].
Section [2.1] contains an explanation of our technique and of its relations with the aforementioned
methods in a simplified setting, so that the involved notation of Section which is devoted
to proving the time behaviour of the derivatives in full generality, does not obfuscate the idea
behind the method we present. While obtaining such estimates is an interesting problem in itself,
a motivation for obtaining pointwise estimates comes from the fact that in the infinite dimensional
situation we are interested in this paper, typically one does not have any reference measure. As
a consequence, since we do not have integration by parts trick at our disposal, generally we need
to sacrifice estimates in direction of B. To the best of our knowledge, a purely analytical method
adapted to obtaining pointwise bounds on the time-behaviour of the derivatives of any order of
degenerate Markov semigroups was so far lacking. We now come to present the infinite dimensional
problem tackled in the subsequent sections of the paper.

Once we have studied the finite dimensional diffusion in R™ generated by the operator L, we
study systems of infinitely many interacting diffusions of hypocoercive type. This is done by con-
sidering the lattice Z% and, roughly speaking, ”place” an isomoprhic copy of our R™- diffusion at
each point of such a lattice. Finally, we let these dynamics interact, obtaining in this way an infinite
dimensional Markovian dynamics in (Rm)zd.

In Section 3 we provide a general construction of Markov semigroups in infinite dimensional
setup with an underlying space given as a subset of an infinite product space (including an infinite
product of noncompact Lie algebras). We improve there on the results described in [9] for semigroups
with all generating fields present in the principal part of the generator. First of all we relax the
conditions on the structure of the Lie groups and the principal part. Secondly we get a generalisation
of the allowed interaction including a second order perturbation part dependent on fields acting
on different coordinates. Additionally to that we prove stronger finite speed of propagation of
information estimates providing a tree bound decay when derivatives with respect to many different
coordinates act on the semigroup. This in particular allows us to prove smoothness of the semigroups
in our general infinite dimensional setup filling the important gap in the literature (one may also
expect that our estimates will provide some additional information about equilibrium measure).
Additionally this allows to provide some new criteria for ergodicity of the semigroups.

In Section 4 we provide a strategy for proving the existence of invariant measures for a semigroup.



Assuming a Lyapunov type condition for a generator of a finite dimensional semigroup acting on
a suitable unbounded function with compact level sets, we formulate conditions on the interaction
allowing to apply a weak compactness criterion for the generator of the infinite dimensional non
product semigroup constructed in Section 3.

In Section 5 we provide a criterion for uniqueness of invariant measure using first order as well
as the higher order estimates.

In general, it is an art how to apply our criterion to particular models. We provide number of
explicit examples of applications in [I7]. In such a companion paper, we provide concrete illustration
of the full flexibility of the theory developed in this paper with a variety of application areas and
including examples where the setting we provide here is applied in a non-standard way. This includes
a number of examples of infinite dimensional models with smoothing and ergodicity estimates, where
precise dependence on parameters can be obtained or where one has long time concentration along
some directions only.

1.1 Relation with literature

As we have already remarked, regarding the finite dimensional framework, the techniques of Section[2]
result from combining the Bakry-Emery semigroup approach [2] with the hypoelliptic/hypocoercive
methods proposed by Hérau and Villani, [12] 24]. As it is well known, the semigroup approach leads
to pointwise estimates, but it is mainly designed for elliptic dynamics. The more recent framework
proposed in [12] 24] is devised for degenerate diffusions but it requires an a priori knowledge of
the invariant measure p of the semigroup and it indeed produces estimates in the weighted space
L?(i). Both of these techniques are entirely analytical. Combining these approaches results in a
method that enjoys the perks of both of them: it is suited to the degenerate setup and it produces
pointwise estimates. Moreover, it doesn’t require any knowledge about the invariant measure and
it can be adapted to tackle infinite dimensional problems, as we show in this paper. As far as the
finite dimensional setting is concerned, another viable approach to study the time behaviour of the
space derivatives of the semigroup is the probabilistic one, via Malliavin calculus, see for example
[7] and references therein. However it might be technically involved to extend this technique to the
infinite dimensional framework that we are aiming for. In contrast, the method we propose is easy
to extend to the infinite dimensional setup.

We now come to explaining how our results for the infinite dimensional dynamics relate to
existing ones in the literature. The problem of construction and ergodicity of dissipative dynamics
for infinite dimensional interacting particle systems with bounded state space has a long history,
see e.g. [I8], [10] and references therein. For a construction of Markov semigroups on the space of
continuous functions acting on an infinite dimensional underlying space (well suited to study strong
ergodicity problems), we refer to [25] in fully elliptic operators, to [9] for the subelliptic setup, and
to [20] for Lévy type generators; these constructions will be even more extended in this paper.

An interesting approach via stochastic differential equations can be found in [8] (see also [5], [4]
and references therein). We mention also another approach via Dirichlet forms theory, see e.g. [1],



[22] and reference therein, which is well adapted to Ly theory.

For symmetric semigroups, recent progress has been made in proving the log-Sobolev inequality
for infinite dimensional Hormander type generators £ which are symmetric in the weighted space
Lo(p), defined with respect to a suitable nonproduct measure g ([19], [11], [16], [I4], [I5]). One
can therefore expect an extension of the established strategy ([25]) for proving strong pointwise
ergodicity for the corresponding Markov semigroups P; = e**, (or in case of the compact spaces
even in the uniform norm as in [I0] and references therein). To obtain a fully fledged theory in this
direction which could include for example configuration spaces given by infinite products of general
noncompact nilpotent Lie groups other than Heisenberg type groups, one needs to conquer a (finite
dimensional) problem of sub-Laplacian bounds (of the corresponding control distance) which for the
moment remains still very hard. We remark that in fully elliptic case a strategy based on classical
Bakry-Emery arguments involving restricted class of interactions can be achieved (even for nonlocal
generators see e.g. [20]). In case of the stochastic strategy of [], the convexity assumption enters
via dissipativity condition in a suitable Hilbert space and does not improve the former one as far as
ergodicity is concerned; (although on the other hand it allows to study a number of stochastically
natural models). In subelliptic setup involving subgradient this strategy faces serious obstacles, see
e.g. comments in [3].

To summarize, the purpose of this paper is twofold: regarding the finite dimensional setup, we
improve on the methods presented in [24] by adapting the hypocoercive techniques to problems
in which an invariant measure might not be a priori known; in infinite dimension, we provide
results about systems of infinitely many interacting diffusions, thereby completing and extending
the framework of [9] 20 25].

2 Short and Long Time Behaviour of n-th Order Derivatives in
Finite Dimensions.

Consider a second order differential operator on R, of the form
L=273+B, (1)

where Zy and B are first order differential operators. We will assume the following commutator
structure:

Assumption 1 (CR.I). Assume that for some N € N, N > 1, there exist N differential operators



Z1, ..., ZN such that the following commutator relations hold true:

[B, Z']:Zj“, forall j=0,...,N—1, (2)
(B, Zy] = ch ’
Zi. Z)] Zc”hzh, for all 0<i,j <N,

for some constants c; € R, j =0,..,N —1, cy € [0,00) and c;j € R, with cpjp, =0 for h > j—1.

The main result of this section is Theorem regarding the time behaviour of fields of any
order along the semigroup. In order to state such a theorem we first need to introduce some notation
and to further detail our framework.

We will assume that the collection of differential operators B and Zy, Z1,...,Zx span R™ at
each point. E| For Zy;, k; € {0,..,N}, I =1,..,n, and n € N, we set

ka = Zk1,.v,kn = Zk et

1

Ze..

In the following we will be referring to terms of the form Zy ,, f and ZoZy f = (ZoZy, - ... Zy, [) as
terms of length n and terms of length n + 1 starting with Zy, respectively. We will use e;, I =1,..,n
with (€;);m, = dym, for the standard basis in R™, and have k = lelwn k;e; with non-negative integer
coefficients k;, [ = 1,..,n, and we set
n
Kl o= K.
=1

In the following || - ||c indicates the supremum norm. We will use the notation P, := e
t > 0, for the semigroup generated by the operator L and set f; = e’ f for any continuous bounded
functions f.

For some strictly positive constants ax, = ag, . k.,bkn = bky, k> 0 <k < N, I =1,..,n, and
d, (to be chosen later), we define the following time dependent quadratic forms

tL
)

QO f, = d|f,|?

1Strictly speaking, this assumption is not needed in the finite dimensional case. However it will be needed in the
infinite dimensional problem. In R™, it is simply the case that one will obtain estimates in all the directions that can
be obtained from the successive commutators between Zp and B, including Zy but not B.




and

N
TV = > ait Nz fi)

j=0
N
rVf =T f + Z bit* (Zj1fe)(Z; f1), (3)
j=1
Q=15+ Q.. (4)

For general n > 2 we therefore set,

nlN
fgn)ftz Z ak,nt2|k‘n+nlzk,n‘ft‘2

k|n=0
B nlN
o =T f + S bt N T ey fi) (Zaen fr),
0<|Kln: k1>1
Q=1 i+ Q" VS, (5)

We prove the following result.

Theorem 2.1. Suppose the operators B,Z;, j = 1,..,N satisfy Assumption (CR.I) and P, = etk
1s a Markov semigroup with generator L given by . Then for allm € N and for all 0 <[ < n
there exist strictly positive constants ax, by, d;,d; and T' € (0, 00| such that

dt\V <tV f < dy (Pf?> = (Pf)?),  forall 1<1<n and0<t<T. (6)

Moreover if c; =0 and cojp, =0 for all j =1,..,N, then T = oo, and in particular we have

C c .
1 Zscn fill26 < WIIPJZ — (Pef)?[los < m;g{k“f —clZ,  forall t>0, (7)

with some constant C € (0,00) independent of t and f.

Before coming to the proof of Theorem [2.I] we make a couple of remarks in order to give some
more intuition about the statement of such a theorem.

Remark 2.1. In words, Theorem states the following: under the general commutator relations
of Assumption (CR.I), the time behaviour of the first inequality in is valid only for 0 <t < T
with T small enough, typically T' < 1, i.e. in all generality we can only obtain a short time estimate.
However, if we assume for example that the fields Z;,7 = 0,..., N commute and that Zy commutes
with B then the time behaviour (@ is valid for any ¢ > 0. In this paper we work under the relatively



general Assumption (CR.I). We would like to emphasize that the technique we use to prove Theorem
[2.1]is quite flexible and might give better results depending on the case at hand. In particular one
might be able to improve on the time interval in which the estimate is valid when exact knowledge
of the constants appearing in Assumption (CR.I) is available. This improvement might also be
obtained in cases where

[B,Zj] = aij+1, for all j = O, . 7]\/v - 1,

for some large positive constants «;. When the generator contains a dilation operator it is also
possible to obtain exponential decay. We have illustrated this fact with an (infinite dimensional)
example in [17], see also Theorem

Remark 2.2. Notice that the above proposition is coherent with Hormander’s rank nomenclature,
as it agrees with the heuristics according to which for any differential operators X and Y, r(XY) =
r(X)+rY) r([X,Y]) = r(X)+7r(Y), where r(X) denotes the rank of the operator X. In particular,
Zy is an operator of rank 1 and B is an operator of rank 2, so that r(Z;) =2j+1, forany 0 < j < N
and r(Zg, ... Zy,) =235 kj +n.

Because new vector fields are obtained only through commutators with the rank 2 operator B, we
will refer to L as to a hypocoercive-type operator, in analogy with the setting considered in [24].
However we would like to stress that despite this clear analogy, the setting in which we are going
to work is quite far from the one of the hypocoercivity theory. Indeed, as we have mentioned in
the introduction, here we do not assume the existence of a reference (equilibrium) measure and the
estimates we obtain are pointwise.

Remark 2.3. Because of the linearity of the operator, all the results of Theorem [2.1] still hold if

M
L:ZZ3,2+B7

i=1

for some M > 1. We do not present the results in such generality only to avoid having cumbersome
notations, especially in the proof of Theorem and in the infinite dimensional setting.

The proof of Theorem is quite lengthy although in principle not complicated. We believe
that the lengthy calculations that such a proof requires might obscure the simple idea behind it;
especially, they might conceal the flexibility of our approach. In order to clearly explain the strategy
of proof, we gather in Section below a simple explanation of the principle behind our approach
with a sketch of the proof of Theorem in the simple case m = 2 and N = n = 1. The full proof
of Theorem 2.1] is instead deferred to Section 2.2



2.1 Strategy of proof of Theorem 2.1} combining semigroup and hypocoercivity
methods

In this section we fix n = N = 1 and m = 2, i.e. we consider a Markov generator on R? of the
form and we assume that B, Zy and Z; := [B, Zy| span R? at each pointE| We are interested
in determining the time behaviour of the fields Zy and Z;, along the semigroup f; := 'L f, i.e. we
want to study the time behaviour of Zyf; and Z; f;. Notice that in this simple case the quadratic
form le) defined in - which, for the purposes of this section, we will just denote by Q; - reduces
to

Qi(fe) = d|fil* + aot | Zo fil” + art® | Z1 fi)* + 0> (Zo 1) (21 f),

where d, ag,a; and b are strictly positive constants to be determined later. To explain why we use
such a time-dependent quadratic form, let us start with a simple observation: suppose we consider,
instead of @y, the function @Q; defined as follows:

Qi(fe) = d|fil? + aot | Zofol? + art® | Z0 fo)

If we could prove B
0(Qefr) <0 for t in some interval say [0, 7], (8)

then we would be done as the above would imply

-1
da;
+3

—1
dag

Qift < Qof = d|f|2 = |Z0ft|2 < |f|2 and |Z1ft|2 < |f\27

for all t € [0,T]. However, as long as we use the time dependent form Qs, is in general not true.
Indeed, roughly speaking, in order to prove , one usually needs to prove that

O(Qif) < —r <|Z0ft\2—i—\Z1ft]2> ,  for some k > 0.
If we use the form Qy, the negative terms —x |Z1 ft\Q will not appear in the expression for at(Qt fi).
The mixed term (Zofi)(Z1f:) is added to the quadratic form precisely to solve this issue. Such
a trick has been introduced in [I2] and then pushed forward in [24]. However in both cases the
quadratic form did not contain the pointwise values of the function f; and its derivatives, but rather
the weighted L? norm of such quantities. It is important to stress that, using the quadratic Young’s

inequality, i.e.
Vz,y e R,0>0 lzy| < (9)

with 0 a constant times a suitable positive power of ¢, we can show that there exists a suitable choice
of the constant b such that @, is still positive. Indeed, choosing d = ¢/b, we obtain

Qu(fy) = d|fe” + tlag — b2/2) | Zo fo? + t*(ar — 1/2) | Z1fi* > 0. (10)

*In many applications one finds that only Zo and Z; are actually needed to fully span R?. See for example [17].




Hence, choosing ag > b?/2 and a; > 1/2 guarantees the positivity of Q;f;. Unfortunately, even
after this modification, it is still the case that the inequality 0;(Q;f;) < 0 is in general not true. We
therefore devise another strategy, which makes use of the classic Bakry-Emery semigroup approach:
instead of trying to prove that 0;(Qf;) < 0, we show

0s(P—sQs(fs)) <0 for t in some interval [0, T7. (11)
Integrating the above inequality in [0, ] we obtain

Po(Q(fr)) — P(Qof) <0
= Qu(fy) < d||f||3, forte[0,T],

which, thanks to , implies the sought bounds. Notice that in the above we used the contractivity
of the Markov semigroup. In general one will just have Q.(f;) < Pi(f2).
A straightforward calculation shows that proving the property reduces to showing

(=L + 8,)(Q:(f2)) < 0.

Proving such an inequality is done by repeatedly using the Young’s inequality, in the same way

shown in .
We now turn to the full proof of Theorem

2.2 Proof of Theorem [2.1]

Throughout the proof of Theorem we will often use some elementary facts, which we gather in
Lemma Lemma [2.2] and Lemma [2.3] below, for the reader’s convenience.

Lemma 2.1. For anyn € N and k = (ki, .., k) and any smooth function f the following relations
hold true:

L Zynf? =2 (LZynf) (Zicnf) = +2|Z0Zacn f 2,
23\ Zinf1* = 2(Z3Zxnf) (Zacnf) + 2| Z0Zac n 1,
If [Zn,B] =0 then
n
Zun. Bl=— > Ziie,m- (12)
1<j:k;#N

The above equality also simply holds if kj # N for all j = 1,...,N. Finally, if coj, = 0 for all j
(i.e. if [Zo, Z;] =0 for all j) then Ly, L] = [Zy r, B] for any n > 1.



Proof of Lemma[2.1l The first relation is a general property of a generator of (sub)diffusion with
second order part given by Zy and the second is a just a different version of the same. Recalling
that for any three operators X, Y and W,

(XY, W] = X[V, W] + [X, W]y, (13)
from , for k1 # N, we have
Zyn,Bl=Zi, [ Zy - Zoy, Bl — Zjy 4121y -+ oo Ly = Z) [ 2y + -+ Zhpyy B) — Loy (14)

Iterating one obtains . Regarding the last statement, this can be obtained, when [Zy, Z;] = 0
for any j, by using . O

Lemma 2.2. Let X and Y be first order differential operators and £ = X?>+Y . Assume £ generates
a semigroup such that for any smooth functions h also hy = e€'*h is smooth. Then for any differential
operators W,V (of any order 1 > 0), we have

(—2 + g) Why-Vh = —X? (Wht . Vht) -Y (Wht . Vht) + (WSht)(Vht) + (Wht)(VSht)
t
= —2XWhy - XVhy + (W, L]hy) - Vg + Why - ([V, £]hy).

Lemma 2.3. Suppose
N

Zk Zol = — Y coui-
0<i<k—1

Then there exist real numbers My y , = Mg x> Sk k' = Sk /> Such that
[Zxns Zg] = Z Mk 202x/ n + Z C 2K/ n
K/ K’

with 0 < K| < |klp — 1 < nN.
The proof of the above Lemma [2.3] can be found after the proof of Theorem

Proof of Theorem[2.1. We will show that given n € N, for all 0 < [ < n one can choose the
coefficients ay, bk, d; € (0,00), so that

for all 0 <1 <n, Os [Pt,S (le)fsﬂ < 0;
hence, integrating on [0, ], for ¢t € (0,T] (for some T' > 0 to be determined later), we get

At = (@ 11) < P (QF o) = dP.s?

10



Because

0 [Py (QU£.)] = Pios (—LQU £ + 0,01 1)

and the semigroup P; preserves positivity, the whole thing boils down to proving that Vn > 1 there
exist strictly positive constants {ax, : 0 < |k|, < nN}, {bx, : 0 < |k|, < nN with k&; > 1} and
d,, € (0,00) such that

vt > 0, (—L+8,) <Q,§”)ft> < 0. (15)

In order to streamline the proof we first consider Assumption (CR.I) with ¢; = 0 and cy;, = 0 for
all j =1,..,N, i.e. we first prove . Later we will explain how to remove this restriction (at the
cost of obtaining bounds that are valid only for small 7") and obtain (@

e Proof of (7). Suppose that Assumption (CR.I) holds with ¢; = 0 and cgj, = 0 for all
j=1,..,N. We will prove by induction on n. The inductive basis, i.e. the proof that for n =0

there exists d € (0,00) such that V¢ >0 (=L + 9;) ng) fi <0, is straightforward. Indeed
(=L +8) il = =Z3| 1> = BIfil> + 2fiLfs = =2|Z0 fi* < 0,

where we simply used the fact that Zg is a second order differential operator and B is a first order
differential operator.

Now we make an inductive assumption that for any n > 1 and for all [ = 1,..,n — 1 there
exist strictly positive constants {ax; : 0 < [k|; <IN}, {bx; : 0 < |k} < IN with k; > 1} and
dj, d; € (0,00), such that

V>0 (—L+8) (Q,E"’l)ft> <0,

and -
Vi=1,..,n—1 qTVf <1V

Under this inductive assumption we need to prove that there exist strictly positive constants
{axn : 0 < |k|,, <nN}, {bkn: 0 <|k|, <nN with k; > 1} and d,,,d,, € (0,00) such that

ve>0  (—L+a) (@) <0

and o
dr™M <1y,

Because we are assuming that (—L + 0;) <Q§n_1) ft> < 0, for some appropriate choice of the con-

11



stants, looking at , we only need to study the following quantity:

nN
(L0 (TF) = (CL+0) D acat™r " Zicn fi?

‘k|n:0
nN
+ (—L + 8t) Z bk7nt2|k‘n+n71(Zk—el,nft)(Zk,nft)‘
0<|k]|n:k1>1

We stress that throughout this calculation, we intend for all the constants byy1 g, k, to be
equal to zero. To further expand the expression on the right hand side of the above, we use Lemma
together with Lemma for our generator , and we obtain

(—L+ ) (an)ft> _
nN
-2 Z ak,nt2|k|n+n|ZOZk,nft|2 (16)
k|n=0
nN
—2 Y bt TN 2oy 1) (Z0Zacn 1) (17)
0< K| k1 >1
nN
+ Z ak,n(2‘k|n +n)t2|k|n+n_1|zk,nft|2 (18)
|k|n=0
nN
+ ) bkl 0= DR Zy ) (Zaen fo) (19)
0<]k|n:k1>1
nN
+2 Z ak,nt2|k|n+nzk,nft : [Zk,nv L]ft (20)
[k|n=0
nN
+ Z bk,nt2|k|n+n_1 {([Zk—el,na L]ft)zk,nft + (Zk—e1,nft)[zk,n, L]ft} . (21)
0<|K|n:k1>1

We control these terms as follows. Let us set

0:= @6+ (@), M= @8+ 9, [m]:= @)+ R

and study these addends separately. Recall now the quadratic Young’s inequality @D, which we
will repeatedly use. In particular we will choose 0 in @D to be a constant times a suitable positive
power of t. The time dependent factor will be relevant for bounds involving factors with differential

12



operators of different rank to obtain time dependences of appropriate homogeneity. We have

nN
<=2 > ant®™ " ZgZy o fil® (22)
k|, =0
niN
2 3 b (bent®™ T 2B oy i+ P 2T i ) - (28)
0<|K|n:k1>1

We look separately at the terms with k; = 0 and at the terms with k; > 0. In doing so, we need
to notice that terms of the form |Z2Z, - ...« Zx, f¢| (i.e. those with k; = 0) come from when
k1 = 0 but also from the first addend in when k1 = 1. Hence

N
] <2 Z (—aoky, .. kn + b%kgkn) g2lk—kerfntn ‘Zgzkz,..,knft
ko, on =0
nN

2
+ 2 Z (_akl,k%m,kn + bk1+1,k2,...,]€n + 1) t
0<|k|n:k1>1

‘ 2

2|k|n+n

| ZoZnen fi]?

with the understanding that by, 1 = 0 if £; = N. Thus we can make term [I] nonpositive choosing

1
§ak17k2w~-:kn > bil—"—l,kz,...,kn + 17 kl 2 O (24)

We can and do assume that similar strict inequality is satisfied on induction level n — 1. We repeat
the same kind of procedure for [II], applying first Young’s inequality and then looking separately at
the two cases k1 = 0 and k1 > 0 to get

niN
M < Y awn(lkly + )Mtz o
|k[n>0
1 nN
5 D b+ — 1) (B i i T R 2o )
0<|K|n:k1>1
nN c
<(2nN+n) > (GO,kz,...,kn + ibl,kz,...,kn> PRt 20 Z ey S
|k[»>0
nN c
+ (2nN +n) Z <ak1,.‘.,kn & Ok, 1 kg §bk1,..,kn> g2kt Zy
0<|Kln:k1>1

with € < (2nN +n)~! to be chosen later. Before turning to [I1I] notice that, because of our current

13



simplified assumption, we have [Zx, B] = [Zy, Z;] = 0 for all j; therefore we have [Zy ,,, L] = [Zx p, B]
(see last statement of Lemma and by

n
[Zk,n’ L] = - Z Zk—l—ej,n-
1<j:k; AN

Using this, we have

nN n
M1 = -2 3" axat®™ " Ziafo- | D Zireynf

|k|n=0 1<j:k;#N
niN n
§ : 2|k|n+n—1 § :
- bk,nt [l Zk7e1+ej,nft Zk,nft
0<|k|n:k1>1 1<j:k;#N
nlN n
2|k|p+n—1
- n —er1,nJt +e;.nJt
> byt 2/ln Zi oy nf > Zuiesnt
0<|k|n:k1>1 1<j:k;#N

= [ITIa] + [I11b] + [IT1¢].

Each of the sums on the right hand side is bounded using @ to adjust the power of ¢ according to
the rank of the corresponding differential operators as follows:

n

niN
_ _ 2
Ma] < > aent™™ " | agnt ™ [ Zunfol” + arennt Y |Zicre,nf]

|k|»=0 1<j:k;#N
nN

< 3 (ad,, +n2) 2tz g
‘k|n:0

14



Also,

nlN
2|k|n —1 2
[I:[Ib] = - Z bk,nt [Kltn ‘Zk,nft|
0<|k|n:k1>1
niN n
2|k|n —1
- Z bk,nt [kl Z Zk—e1+ej,nft Zk,nft
0<|k|n:k1>1 2<j:k;#N
niN
2|k|n —1 2
< - Z bk,nt [lntn ‘Zk,nft|
0<|k|n:k1>1
1 niN n
2k -1 2 2
+ b Z bk,nt [Klntn (TL - 1) Z |Zk—e1+ej,nft‘ + |Zk,nft|
0<|k|n:k1>1 2<j:k;#N
niN n
1 (n—1) 2\k|ntn—1 2
= ) ~glkn T Y birer—epn | P Ziu il
0< |K|n:k1 >1 2<j:k;#N
1 nN n
2|k|n+n—1 -2 2 —1,2 2
e <o > bt bt Zae il bt Y [ Zacre, o fif
0< |K|n:k1>1 1<jik; #N
niN b2 n nN n
k+ei,n ntn— 2 n 2
_ Z : 1 t2\k\ +n—1 ’Zk,nft‘ + 5 Z 752|k| +n+1 Z ‘Zk+ej,nft‘
0<[K|5:0<ki <N—1 0<|k|n:k1>1 1<j:k;#N
nlN 512{ nN b12{ n2
+e1,m 2|k|,+n—1 2 +e1,n 2|k|n+n—1 2
< > 5 ! Mt 20 Z i+ Y > 32 Kt | Zug il
0<|K|n:k1=0 0<|K|n:k1>1

We now combine and reorganize the bounds of [III] separating terms with k1 = 0 which need to be
offset by level (n—1), (if necessary scaling coefficients of Qs by a positive sufficiently large constant),
and the ones with k1 > 1 which can only be offset by negative contribution in [IIIb], as follows.

niN
W< 7 (af, +n?) 2Rt |z, £l
‘k|n:0
nN n
1 n—1 _
+ Z _Qbk,n + ( 2 ) Z bk-l—el—e]-,n t2|k|n+n ! |Zk,nft’2
0<|k]p:k1>1 2<jik; AN
+ Y K 2 Ty ki Y | T o | M 2y
2 2 2
0<K|n:k1=0 0< K|n:k1>1
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Therefore

niN

b2
IEEY (aim +n2 4 k+291n> 2Kt 20 Z il
0§‘k|n:k1:0

ZnN 2 2 1 (n—1) Zn bi+e n " 2|k|n+n—1 2
1, ntn—
+ Ak n +n"— ibk,n + 9 . bk+e1 —e;,n + 9 + ? 14 " |Zk,nft| :
0<|k|n:k1>1 2<j:k;#N

Combining this with bound of [II] and separating the terms with k3 = 0 (which need to be offset
by level (n — 1)) and the ones with k; > 1 which can only be offset by the negative contribution in
[IIIb], we obtain

niN niN
Ml Y Ao 202 i+ Y Bz, B
0<|k|pn:k1=0 0<|k|n:k1>1

-----

b2
where Ay i, = (20N + 1) (08,0 b + 501k, k) + (ag,kQ b 02 lkr‘ék”> and

_ £
By = (2nN +n) (akl,...,kn e ok 1k §bk1,..,kn>

2 2 1 (n — 1) - b12<+e1,n n?
+ i + 07— §bk7n + ) Z bk+e1—ej7n + 2 + 9
2<j:k;#N
1
=3 (1 —en(2N +1)) bk, + (2nN + n) (ak,n + 871bk+e17n)
n

n—1 b2 n2
+ag, +n’+ (n—-1) > bter—eyn + k*;“” + 5
2<j:k;#N

We note that the terms involving Ay, . r, can be offset by Qtnfl) (possibly at a cost of multiplying
by a sufficiently large positive constant). On the other hand choosing en(2N + 1) < 1 and the
coeflicients so that we have

1 _
Bxn < —3 (1 —en(2N + 1)) bxp + (2nN +n) (akm +¢ 1bk+e1,n)

2 2, (n—1) S b12<+e1 no n?
+ap, +n+ S birer—ejn - S <0,
2<jik; #N

this and can be represented as the following condition

2 .
akm, >> bk+e1,n7 bkm, >> a‘k,na bk,n >> bk+e1,n7 bk,n >> bk+e1—ej7n7 ] 2 27 (25)
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with a convention z >> y meaning x > Cy? + C’ with some constants C,C’ € [1,00) sufficiently
large and possibly dependent on n, but not on k. In this way we get .
We are now left with proving the following statement

d,T(M fs <TM £, (26)

for some d,, € (0,00). To this end, we will use the lower bound implied by the quadratic Young
inequality
2
T
—’a‘—by|2§xy, Vr,y € R, 0> 0.

We separate the terms with k1 = 0 from the terms with k1 > 0 to we get

N

an)ft = Z |:a0’k27""knt2(2?:2 kﬂ)-"_n ‘ZOZkE et anft|2
k2,..,kn=0

+ bl,k:z,...Jcnltz(Z?:2 K (202 - T ) (B Zhy - T 1) ]

N N
2|k|, + 2
+ Z Z Ay, kb L3 n’Zkl anft’
k?a"7k7L:0k1:1

N N
+ D by kTN (T Ty Za ) (Zi Dy T 1)
k2, k=0 k1 =2

We now use the inequality (??7) on the second and fourth line of the above equations, with o =

b% and 0 = b#, respectively and obtain
17192 ~~~~~ kn k17k2 ~~~~~ kn
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N
an)ft > Z |:a0,k2,...,knt2(2j:2 kj)+n ‘Z()Zk2 e anft|2
ka2, kn=0

2 2
2o k) nl <_b1,k2,...,kn Z0Zks - - - Zi fol

t

—t|Z1 2y - ... - anfty"’)]

N N

2|k| + 2

+ E g gy, gt 20 Z fi
k27--7kn:0k51:1

N N
i Z Zt2|k|n+n—1

O3k | 21 Zy - T il
(_ 15.5Kn 1 2 —t|Zk;1Zk;2Zk2nft‘2

t
k2,...,kn=0k1=2

N

Z Z (aO,kQ,...,kn - b%,kz,...,kn) t2(2j:2 k‘j)‘i"’l ‘ZOZ]{/‘Q Teee” anft’2
k27~~’kn:0
N N
2

+ Z Z (@i = Oy 1, — 1) 2| Zy o 2 S

k2,...kn=0k1=1

Because of , Ak oo — C’bzﬁlyk%_’kn — " > 0, with some C,C’" > 1 so one can choose ¢,, > 0 so
that the desired bound is satisfied. This ends the proof of the simplified case, i.e the proof of
(7.

e Proof of @ We now turn to the proof of @, i.e. we remove our simplifying assumption.
In this case the expression — remains unaltered, as well as the analysis of the terms [I] and
[IT], as we used our simplifying assumption only to estimate [III]. We therefore concentrate on the
terms [I11].

Note that if in Assumption (CR.I) cyj, = 0 for all j but ¢; # 0, then no longer holds. More
precisely, if [Zy, Z;] = 0 for all j then it is still true that [Zy ,,, B] = [Zky, L], but in this case (12))
needs to be modified to take into account [Zy, B] # 0. So, when we expand the expression for [III],
we get the following additional terms:

nN
[ATI] == Z ci |2 Z Z 5}€j,Nak,nt2‘k|n+nZk,nft ) Zk+(i—N)ej,n
i=0,..,N 0<|klp j=1,-n

nN

+ Z Z 5kj7ka,nt2|kl"+n_1 ((Zk—el—i—(i—N)ej,nft)(Zk,nft) + (Zk—e1,nft)(Zk+(i—N)ej,nft))
0<|k|n:k1>1j=1,..,n

Since by our assumption ¢y > 0, we either get additional negative term (when i = N) with coefficient
cNak,nt2|k|"+” which can be used to beat those coming from the second sum with mixed terms, or

18



we can apply quadratic Young inequality to get terms as before but with a higher power of ¢t which
for sufficiently small time do not change inequality obtained before in the simplified case. Now we
discuss the general case, ¢; # 0, cojp, = 0 for h > j — 1 and not all of them are equal to zero. In this
case it is no longer true that [Zy ,, L] = [Zk ,, B], which is why we need to use Lemma to study
[ITI]. Using such a lemma we find that, together with the terms in [ATI], we also have the following
additional contributions to [III]:

nN

ATI =2 Y agnt®™ "2y fi[Zacn, Z0) 1
Km0
nN

+ Y bent®™M T ((Zamey s Z0)11) Zacn o+ (Zac—ey ) [Zacins Z3) 1)
0§|k|n:k121

niN
2k
=2 > ant’M 2y f > MwZoZinf
[KI=0 [ <[l —1

niN
+2 > ant? Tz fy > ki

[k[n=0 K| <|K[n—1
niN
byt 2/Kln =1 ZoZ y/ V4 7
+ k,n M 202% nft - Lxnft + Cux 2k nft - L ft
0§‘k|n:k121 |k’\n<|k—e1|n—1 |k’\n<|k—e1|n—1

nN
+ Z bk’nt2|k|n+n_l Z nk,k/(zk—el,nft) : ZOZk’,nft + Z Ck,k’(zk—el,nft) . Zk’,nft
0<|k|n:k1>1 |k |n<|k|n—1 K/ |n<|k|n—1

Because of our restriction on |k’|, all new terms come with a higher power of ¢ and therefore for
sufficiently small time they can be offset by the principal terms discussed in the first stage (when
all ¢; and cor were assumed to be zero). The proof is concluded once we observe that in order to
prove the lower bound , we did not use the simplified form of Assumption (CR.I) and hence
such a bound still holds in this general case. O

Proof of Lemma[2.3 . Observe that, with {X,Y} = XY + Y X =2XY — [X,Y], we have

N
Zk,. Z8) = {20, [Zn,. Zo]} = =Y _ cony1,{Z0, Z1,}
1;=0
N N
=2 Z Cok;1; 2021, + Z Vist; 21y
1;=0 1;=0
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with
N

Vi;l; = § Cok;1Coll; -

=0
Using the commutator relation and the above, we get for 0 < ky,..,k, < N

(Zen, Z3) = Z Zp - by 1 Znys Z3) 2y e T,
=2 Z Z COkyly Ziy * -+ Ly 20720, Dy - -+ Do,
j=11;=0

n
+ ZZijlel i Ty DDy e Dy
j=11=0

We repeat the commutation process involving the operator Zy until we bring it to the left. In this
way we obtain

(Zacns 28] =D _ M Z0Zin + Y Crere Zicn
k/ Kk’

with the following linear operators

n N
ank/Zk’n = —22 Z COkjl; Zky * - Lhj 121 Dkjyny " - Ly,
j=11;=0
and
n j—1 N
> G Zen =42 cont,onty Zhy Lo Bt Ly Ly Lty T T,
/ J=2 i=2 1;,;=0

3

N
+ E cOklllcijljZl;leQ et Zk 1Zl Zk]+1 .. an
J=21;,l;=0
N

—|—ZZ Z.Zkl-...-ijleljijH-...-an.
j=11;=0

3

Finally we note that because of our assumption on ¢ ; 5, the summation over k' is restricted by a
condition |K'| < k| — 1. O
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3 Infinite Dimensional Semigroups

From this section on we focus on infinite dimensional dynamics on (]Rm)Zd. The present section
is organized as follows: in Section we present the setting and notation used in this infinite
dimensional context. In view of the heavily computational nature of this part of the paper, Section
is complemented with Subsection which explains the strategy used throughout this section
in a simplified scenario. In Section we prove the well posedness of the infinite dimensional
dynamics generated by the operator (Theorem and in Section the smoothing properties
of the associated infinite dimensional semigroup (Theorem. Section provides the preliminary
estimates needed to prove the results of Section and Section in particular finite speed of
propagation of information type of bounds.

3.1 Setting and notation

The set Z%, d € N with a distance dist(x,y) = Zle |21 — 1], will be called a lattice. If aset A C Z%is
finite, we denote that by A CC Z?. Let Q = (Rm)zd. Foraset A CC Z% and w = (w, € R™), a0 € Q
we define its projection wy = (wy € R™)zen and set Qp = (Rm)A. A smooth function f:Q — R is
called a cylinder function iff there exists a set A CC Z¢ and a smooth function ¢, : Q4 — R such
that f(w) = ¢a(wa). The smallest set for which such representation is possible for a given cylinder
function f is denoted by A(f). We will then say that f is localized in A. It is known (see e.g. [10])
that the set of cylinder functions is dense in the set of continuous functions on ).

If Z is a differential operator in R™, we denote by Z, an isomorphic copy of the operator Z
acting only on the variable w,, i.e. Z, is a copy of Z acting on the copy of R™ placed at = € Z.
In particular we will consider families of first order operators D, Y, ., T € Z% and a € I for some
finite index set I, which are isomorphic copies of operators at the origin zg = 0. In other words, D
and {Y,}aes are first order operators on R™; D, and {Y, . }aes are, for every x € Z%, copies of D
and {Y,}aer, acting on the copy of R™ placed at = € Z¢.

We will assume the following commutation relations

Assumption 2 (GCR). For any z,y € Z¢ we have:

o Ifx#vy, then
Yo Yoyl = [Yau Dyl =0, for any a, B € I;

e For every a € I, and x € 74

[Ya:r:aD ]:K'Ocyal‘7 Ko >0

Yaxayﬁx anﬁv VT 9
vel

with some real constants cqp- .
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We will denote ¢ = sup, g er [Capy| -

Remark 3.1. We remark that in general, if the constants c,g, # 0, a compatibility condition
(coming from Jacobi identity) may force all k, = 0. The case when ko > 0 for all a will be called
stratified case.

Later it will be convenient to use the following notation for operators of order n € N:

Y=Y, ,,...Y,

S ln,Tn

where x = (z1,..,2,), T; € 74, ie. x C Z% is a subset of Z¢ of cardinality n. Also, we denote

YIP =Y YR = Y Waw-Yw Sl

Llyeestn €1

For some J C I (arbitrary but fixed) we set

Y}, = Z V2,

a€eJ

and
Viaf P =D Yaufl*
aed
For z € Zd, if 4z = {q.2}er is a collection of real valued functions (more details about these
functions are given below), we set

qz - Y:c = Z qL,$}/L,CC'
el

Analogously, for G,y = {6484y }ases, We introduce

Gy - Y2 ¥, = Z Sapay - You¥ay
a,Be]

and write

Say - (Yaf)(Yyg) = Z Sapay - Yauf)  (Ysy9)-
a,BET

For every v C ¢ C I and z C x C Z% we will also use the notation ¥ = ¢\ v and z = x \ z.

Both q, and &,, will be assumed to be smooth functions of w which in particular can depend on
wy, Yy # x, but all entries of these "matrices” are real valued cylinder functions, so they only depend
on a finite number of coordinates in Z¢. It is also assumed that S.y < 204y in the sense of quadratic
forms. To stress the cardinality of x = (z1,...,7,) C Z% as a subset of Z¢, we write [x| = n
(same thing for ¢ = (v1,..., 1) € I*, we write |¢| = £.) A number of additional technical conditions,
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necessary for development of nontrivial infinite dimensional theory, will be provided later.
For a finite set A CC Z% we consider the following Markov generator

La=) Lit+ Y ay- Y+ Y 6, VY, (27)

x€Z4 yeEA y,y' €A

where
Ly =Y}, + By — ADq

with some constant A > 0 and

B:): = Z ba,xYa,z = b:): : Y:ca
ael

with by = {ba,z € R}aer. We will refer to q, and &, as to interaction functions. When such
functions satisfy the following two conditions

Ya,y9-=0 for dist(y,x)>R (28)
Sy 4y =0 for dist(y,y)>R (29)

for some R > 0, we talk about finite range interaction.

The semigroup generated by L, is well defined as an infinite product semigroup, denoted by
P) = etr. Will also use the following notation f* = PAf. One way of intuitively understanding
the dynamics generated by L, is the following: each of the operators L, is an hypoelliptic diffusion
of the type studied in Section [2] taking place in the copy of R™ placed at = € Z%. If the last two
addends in the definition of £ were identically zero, then the dynamics generated by £ would
simply consist of infinitely many copies of the same hypoelliptic diffusion evolving independently
of each other. The last two addends in make such diffusions interact. However, because A
contains only a finite number of points in Z¢ (and the interaction functions will always assumed to
be of finite range), only finitely many of such diffusions interact “directly” under the action of Lj.
The main purpose of this section is to show that, in the limit A — Z¢, the semigroup generated on
(]Rm)Zd by the operator

L= ZL$+ Z%'Yy+ Z Syy - Yy Yy (30)

€L yezZd y,y' €24

is well posed. In order to achieve this result, some further technical assumptions on the interaction
functions will be necessary, see statement of Theorem [3.2} some of these assumptions are purely
technical. In order to explain the structure of the remainder of the section and clarify the approach
used to construct the infinite dimensional semigroup, we make the following remark, which should
hopefully serve as a navigational chart through the technical results of this section.
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3.1.1 Structure of Section 3

In this remark we explain the strategy that we are going to use to construct the infinite dimensional
semigroup, in its simplest version. In order to do so, we work in a simplified scenario. The details
of the general strategy illustrated in this remark need technical modifications in our setting, but the
bulk of the approach remains analogous.

e Only for the purpose of this subsection, consider the operator
La=D Lo+ ay-Yy=2 LotD > diyViy-
x€Z4 yeEA x€Z4 yeA i€l
We want to show

Jim P (2) = Puf (@),

for every cylinder function f. Consider two sets A, A’ C Z such that A(f) C A ¢ A’ and we
then construct an increasing sequence of sets. Here for simplicity we take {An}o<m<ar, such
that A(f) € Ag = A, Ay = A and Apy1 \ A = {hAn}, i.e. Ayiq is obtained from Ay, by
adding the singleton hp,,. We denote by L, the Markov generator

EAm = Z L, + Z Zq@yn,y

reZd yEAm i€l

and PtA ™ the corresponding semigroup. If we show that the sequence {73{\'“ f(z)} is a Cauchy
sequence then we are done. From the identity

t d t
Pl —ping = [asg (Pipiver) = [as [Pinenn,, - engPim ] e)

we have

_ _ N-1
1PAf = PN floo < S IR f = P fllo
m=0

N-1 t
<3 [ sl Lan — £r )P
m=0 0
N—-1 t
<> / ds Y 1| Gin Yo S oo (32)
m=0 0 i€l

The above is a simplified version of the calculation in the proof of Theorem [3.2]- in that setting
also second derivatives of fé\ "1 would appear in the last step, and this is one of the reasons
why one cannot choose this simple sequence of increasing sets. In any event, what is important
to notice is that in appears the derivative of fé\ "1 at hy. This brings us to the next
point.
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e Recall that in the above we fixed a cylinder function f, supported on A(f). From the con-
struction in the previous point, hy ¢ A(f). Hence the need to find estimates on the derivatives
of Y; P at a point € Z% which is out of A(f). This is precisely the kind of estimates that
we recover in Theorem In order to study the well posedness of the infinite dimensional
semigroup we would need, in our case, only second order derivatives. We find the estimates
for derivatives of any order as they will be needed in the following.

e Finally, once the infinite dimensional semigroup is obtained we prove, for such a semigroup,
smoothing results similar to those shown to hold in Section [2| for the finite dimensional case.
Such results will be used to study the ergodicity of the dynamics.

3.2 Strong approximation property
We begin with the following preliminary result.

Proposition 3.1. Suppose the commutator relations of Assumption (GCR) hold. Moreover, as-
sume the interaction functions are such that

1) sup [|gaz|loc < 00
a,z
)Gy yy = Oy Syt (Wy, W)

i4i) sup Z Z (1612 + 16447 2y]) <

2€L e yyed

n—1
iv) sup Z Z Z Z Z‘Yg;l)ngyy/ < 00

(L,x).\Ll—nyezd,y ~eT =1 (8, ‘z)‘c(L x) y'€z

ZZZSHP S Y Mgl < oo

yezd Bl k=1 %) (3.2)C (ex): y|=k

Then for any A C Z2, for any cylinder function f with A(f) C A and for any x = (21,...,x,) C Z%
we have

g'pt . ‘Yan‘ <Pt 4 Vi ‘Yan’2+Z Z B(l) ) ‘Yg)f;\ 2

s |=1 2zCx
|z|=t

n—1
XY Y Ay |y, YO

=1 yeA zCx:|z|=l =0 ZC‘X‘,yZEA
z|=

)Y PA
(33)
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for some constants € € (0,1), B( n(z), Axn(z Y), B,(()n(z y) > 0 and vy, independent of f and t.

Remark 3.2. We clarify that in the last addend of , the following notation has been used:

2
l+1) L Z 2
‘Y ‘ T |YL1,21YLz722>"'7YLl,217YLl+1,yf‘
L1yesli41

We refrain from writing here a full expression of the constants B)((n( ), .Ag(ln(z Y), BY (z,y) > 0

xX,n
(however such expressions can be found in the proof of Proposition E What is important for our

purposes is that, in case of finite range interaction (see (28)-(29)), such coefficients vanish unless
diam(x\ z) < R.

Proof of Proposition[3.1. The proof of this proposition is deferred to Appendix A. O

Integrating the differential inequality gives

n—1 t 9
VLR < e PP+ 30 Y ) [ asen Pt [y g

=1 zCx
|z[=l

—i—azz Z Axnzy/dseV"(ts)PtAs

=1 yeA zCx:|z|=l

t
l Vn(l—S l
VX e [ e

=0 zCx,yeA
|z[=1

2
YJ,ng) fsA

Taking the supremum norm, the above bound can be simplified as follows

n—1 t
Y22 < et Yef2 + 30 Biu(a) / ds v |y P A2,
=1 zCx 0
|z|=1

n—1 .
! vn(l—S l
+EZZ Z Ag‘y)n(z7y)/0 dse (t )HYvaY;)fsAHZO

I=1 yeA zCx:|z|=l

t
s (1+1)
eSS By | s (34)

=0 sz yeA
|z|=1

where we have used the contractivity property of the Markov semigroup with respect to supremum
norm. The norm in the first term on the right hand side does not depend on time and is zero if
xNA(f) = 0; the second sum involves lower order terms and integration with respect to time (and it
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may be empty if n = 1); the third sum involves integration with respect to time and differentiations
at sites which are not in x and are performed in mild directions (from principal part of the generator
with indices from J), but the order can be up to n; the last is of similar nature as the third, except
that all directions are involved.

In case when the interaction is of finite range, one can simplify expression considerably by
using Remark [3.2] Indeed in this case we can replace them by their supremum Cj and restrict the
summation over y by a condition dist(y,x) < R. For the rest of the paper we set

1= 11 floo-
Then we get the following result.

Lemma 3.1. Under the assumptions of Proposition for all x = (x1,...,3,) C Z%, if and
hold, then

n—1 t
YRR < et YafiP+cod. Y / ds e )|y L) fA )2
= zCx 0

|z|=l,diam(x\z)<R

n—1 t
v (t—s l
oY XY [ty
=1 SN zCx:

y :
dist(y,x)<R |z|=l,diam(x\z)<R

n—1 t
+CoY, > / ds eV (It A,
=0 zCx,yEA " 0

|z =L, dist(y,x) <

The special cases n = 1,2 will be immediately relevant for the construction of the limit of the
semigroups P} as A — Z?, so we state such cases explicitly in the next Lemma

Lemma 3.2. Under the assumptions of Lemma[3.1], for n =1, we have

t
IVfA2 < e fI2+Co Y / ds 19|y, fA |2 (35)
cA 0

dist(y,z)<R

For n =2, with some C1 € (0,00) dependent only on Cy and cap~, we have

t
I A2 < e YO FI2+ Co S / ds e[V, 22
0

zZEX
t
va 3 [dsent
cA 0
dist(y,x)<R
t
+200 Y / ds ey A2,
zEX,YENA 0 ’

dist(y,x)<R
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The constants vi and vay in the above are as in the statement of Proposition |3.1].
Using the above lemmata, we prove the following result.

Theorem 3.1 (Finite speed of propagation of information). Suppose the assumptions of Lemma
hold. Then for any smooth cylinder function f with A(f) C A and for any n € N, there
exist constants B,c,v € (0,00), independent of f but possibly dependent on n, such that for all
x = (21,...,2,) C Z4,

1YY FA? < Bect—odeA) §™ 1y @ g2 (36)
I=1,..,n
where l
YOr2= 3 vy
z:|z|=1

and d(x,A(f)) denotes the length of the shortest tree connecting each component of x and A(f).

Proof of Theorem [3.1] The case n = 1 is well known, see e.g. [9, [10] and references there in. The
estimate is essentially based on inductive use of the Gronwall type inequality using the fact that
the first term on its right hand side is zero unless x € A(f), so if you start from d(z, A\(f)) > NR
to get a nonzero term you need to make at least N steps producing multiple integral of that order
which is responsible for a factor of the form e“*(N!)~! with C' < vi 4+ Cp(2R)? (for more details see
[9, [10]).

For n = 2, using with n =1, we get

1Y A2 < 2| YD £ + Brettt-0dEAD Sy, )2
YyeEX

t
r20, Y /0 ds 2= YD A2,

ZEX,yEA
dist(y,x)<R

for some constants ¢, 71 € (0,00). We will use this relation inductively taking into the account that
as long as z € A(f), we have HY;Q) fl? = 0. Thus the first term on the right hand side will not give
nonzero contribution until we apply our procedure at least N = d(x, A(f))/(2R) times, but to reach
that we will produce multiple integral of order N giving a factor (N!)~!. This implies the following
bound

1Y A2 < Byeeat=v2dter) (Z I fI2+ > |!ny|!2> :
z y
The general case is proven by induction with respect to n. We suppose that

forall 1<k<n-—landz:|z|=k  [Y{IFN? < By S ecrtod@AD) S~y ()2,

Z€Z I=1,...,n
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Then, using Lemma |3.1] we get

n—1 t
YR < et Y 1P+ G Y S / ds ey ) f?
0

=1 zCx
|z|=1

n—1 t t
saY S [sentd [ty O
=1 0 0

= zCx,yEA
|z|=l,dist(y,x)<R

n—1 t
+CoY . > /O ds ¥ =YD FA.
=0

zCx,yEA
|z|=l,dist(y,x)<R

3.3 Existence of the infinite dimensional semigroup

In this section we prove, through an approximation procedure, that the infinite dimensional semi-
group is well posed. We work under the assumption that the interaction functions are bounded,
together with their derivatives of any order. Furthermore, we assume that the interaction is short
range and we denote by R > 0 the range of interaction. This is the meaning of the assumptions in
the following theorem.

Theorem 3.2. Suppose Assumption (GCR) is satisfied and, for every x € 7%, the fields {YJ@, B}
form a Hérmander system. Suppose that the following conditions are satisfied

k
SUp[[gazlloe <00, sup [ YShga4lle0 < 00
a,z ’Y,Z,B:y,k
k
Syt = Oystyy Sy (wWy, wy ) sup |’Yt(x)zew’7yy"|oo <0

a,z,7,Y 9,y k

and — hold. Then, for any continuous compactly supported cylinder function f, the following
limit exists
Pf = lim PN
A—7Z4

and its extension defines a strongly continuous Markov semigroup on C(2). Moreover, P(C(2)) C
C>(Q).

In addition, for any continuous compactly supported function f and all x € Z with x| = n, we
have

YOPf = lim YPN .
A—74
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Proof. We consider a lexicographic order ({zj € Z¢, <}en) on the lattice so that
Ty 2 Tpp1 = d(x,0) < d(2p41,0)

with d(z,y) = maxj—1, 4|z — yi|, and such that A; = {z; : i < j} is a connected set. For a smooth
cylinder function f with bounded derivatives and A(f) C A;, we have

t
PP = | [ as (P (L0~ £0) PV )
0

Using the definition of the generators and our finite speed of propagation of information estimate

(Theorem [3.1)), we get

t
Pt =] < s (oo | 1P 1))

t
[ s {3 U, 1Y PO f 4 160,00 - [P 1)

YEAj+1
< teCt—v-d(z;,A(f)) sup ||qe|| - Hy(l)fH
X

+ote e AN 2R 2RI sup |Gy | - Y 1],
zy

with flq. || = 3,

have

eyl = 22, 1657/ 2ylloo. Hence for any Ay and A, k < m, we

1P p =M p < ST pte) p o P f| < Arem 3 AERAD (Y @ || 4 YD £,

k<j<m

with a constant
A; = 2te“! Bmax <sup Il |l ,62”R|2R\dsup HGMH> ,
T xy

where B = Zj e~ 24 M) | Hence, for any t > 0, the sequence P f j € N, is Cauchy in the
space of continuous functions equipped with the uniform norm and there exists a (positivity and
unit preserving), densely defined linear operator P; such that

1Pef — PO £l < Ae 39ALAD (1Y@ £]| + YD £)).

By the density of smooth cylinder functions and contractivity of Py, it can be extended to all
C(92). Using the last estimate one can also show the semigroup property for P;. The fact that
P(C(Q)) C C*(Q) follows by Hérmander’s theorem.
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Next we consider sequences of derivatives. For x C A; and n = |x|, arguing as above and using

the definition of the generators, for a smooth cylinder function f with bounded derivatives and
A(f) C Aj, we have

VPN -y | =

/0 ds Y)({n)Pt(i\i) Qz; Yi(t? T Z (nyj Y?(J%:)J + ijy YQ) ) Ps(Aj)f

x5y
yeEN; 11

Applying Theorem 3.1 to YYVP) F with

A
F= + § y:rfj : +6x]y Y;(p{i)y) ,Pg ])fv
?JGA]+1

we get the following estimate

HY Ptgl)FH < BeC ”Z 3

I=1 zCA |z|=l

with A; = {z € Z¢ : d(x, A;) < R}. We note that for the cylinder function f, the function F is also
a smooth cylinder function with A(F) = A Thus the sum over z C A such that |z| = [ contains
less than 7 (|A;| + 2R)! terms. Each of the terms can be bounded as follows

TS vp ol MR

k=1|z|=k

00 b b ol (ot I e

z'zjy
d(y,x;)<Rk=1|2'|=k
with

2
D= max sup

=L f0 €2 |a|=1} b= 1|2/ |=k

Dy = lmax sup Z Z Z <max HYS\;’?)G%

" {a €24 |2l =1} d(y,x ;) <R k=1 |2/|=k

)

’Yz\z’ Az

)Yz\z’ 693]'1/

)
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Since each tree connecting points in z'z;, z'yx; and z'z;y with A(f) is of length at least d(xj, A(f)),
applying Theorem [3.1] we obtain

HYS)FHQ < De(Cs—vd(z;.A(f))) Z Z HYSf)
k=1,...,14+2 |2 |=k

with some constant D € (0, 00) independent of s, z; and the function f. Combining our estimates
we arrive at

Y)((n)fpt(AJ)f _ Y)((”)fpt(Aj—l)f < D/e%(Ct—vd(a:j,A(f))) Z Z HY(k f”
=1,...,n+2 |z'|=k

with some constant D" € (0, c0) independent of ¢, z; and the function f. Using a similar telescopic
expansion as in the proof of existence of the limit for the semigroup, this implies that the sequence
Y(n)P(A )f, j € N, is Cauchy in the supremum norm for every n € N and x, x| = n. This ends the
proof of the theorem. O

3.4 Smoothing properties of infinite dimensional semigroups

In this section we extend Theorem 2.1 to infinite dimensions, proving smoothing estimates in the
setup when the fields at each site of Z? satisfy the commutation relations of Assumption (CR.I).
Now our generator has the form

L =L+ Ly
with
L= Z L,
z€eZd
where
Ly =275,+ By — AD,
and

Lint = Z dz - Zz + § ny’ ’ ZJ,yZJ,y’7
x€Zd y,y' €24

recalling that J C I . For notational simplicity we only describe one component type system, with
Siiyy = Gooyy = Syy and Zj, = Zy,, but provide sufficient detail to make clear how to recover
(n)

the more general case with many components. For n € N, we introduce the form T}
For n =1, we consider the following quadratic form

I\gl) Z F(l)

zeZd

as follows.
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with Fglgg( f) being an isomorphic copy of the form defined in Section 2
FEE(ft) = Z (ait2i+1|Zi,xft|2 + bit%Zi—l,xft . Zi,xft),
i=0,...,.N

with the convention that Z_; = Zj (so de facto there is no spurious term in the second sum on the
right hand side). We moreover set

2 =10 + d*.
For n > 1, we define

o= > T,

xezZnd
with I‘ETQ (9) = I‘(’T;) (g9,9), where
niN niN
FZX (gv h)E Z ak,nt2|k‘n+nZk,n,xg'zk,n,xh + Z bk,nt2|k|n+n_1 (Zk—el ,n,x.g) (Zk,n,xh);
k| =0 0<|K|n:k1>1

here and later Zxpx = Zi 21 -+ Zkpa, » for X = (T1,...,2,) € Z" and k = (k1,..kn) €
{1,...,N} x {0,...,N}*~1. We also define

-1
Qi"(9) = 11" (9) + Q" (9).
with some ¢, > 0 to be chosen later. The main result of this section is the following.

Theorem 3.3 (Infinite Dimensional Smoothing Estimates). Suppose that for every x,y € Z¢

qujy =0 lfj > 1, (37)

> ik =0 ifk > i, (38)
j=1,...,.N

ciok =0 if k> 1, (39)

> cioncror =0 if 1 >, (40)
k=1,..,N

and recall that the commutator relations of Assumption (CR.I) are assumed to hold at each site.
Then, there exist coefficients a;,b;,d, e € (0,00) and ty € (0,1), such that if

sup ||Z]€j7qu7;y|| < &,

kj,zj,8,Y

then for any t € (0,t9) one has

T (f) < d(P(f?) = (Puf)?).

=1,...,n
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Observe that, if Assumption (CR.I) holds, is redundant as c;op = —cgix = 0 for & > 7 — 1.
Also, the assumptions in the statement of this theorem are all purely technical and are there in
order to enable us to extend the technique introduced in Section [2| for the finite dimensional setting
to the present infinite dimensional environment.

Proof. We begin with an estimate for the case n = 1. For f, = P;f = e'“ f, we have

0P QI (f.) = Pies(0s — £)QUV(f,)
-2 Z Z Pis(ais* T EL(Zinfs) + bis157Ec(Zicrafss Ziwfs)) — 2dEc(fs)

2€74d i=0,..,N

+ > Y PsRais® N Ziafs [ Ziws L1fs) + 0i5* ((Zic1,a, L1 fs - Ziofs + Zicrahs - [ Ziws £1£5))
7 i=0,...,N

+ Z Z Pt—S((Qi + 1)ai32i|Zi,mfs|2 + 2ibi32i_1zi—1,xfs : Zi,me)
z€Z%i=0,...,.N

= (D,

where E¢(V, W) = L(L(VW)—VLW —(LV)W) and E£(V) = E£(V, V) and Z_1 = 0. The right-hand
side can be written as
(I) = (1I) + (11I),

with

D) =-2>" > Pis(ais® €L, (Zinfs) + 0:is” EL, (Zirafs, Zinls)) — 2dEL, ()

x€Zi=0,...,N

+ Z Z Pt—s(2ai52i+1(zi,:cfs : [Zi,:r;a Lx]fs) + 2bi32i([Zi—l,xa Lx]fs : Zi,:cfs + Zi—l,xfs : [Zi,:z:u Lx]fs))

rc7di=0,...,N
0D Peo(2i 4 Vais™ | Ziaf* + 2005”7 Zirwfo - Zinfs),
rezd i=0,...,.N
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and

(III) =2 Z Z ,Pt—s(aiSziJrlgLy (Zi,xfs) + biSZigLy (Zi—l,xf57 Zi7$f8)) (41)
z,y€zd i=0,...,N
_9 Z Syyr - Z Z Prsais® N ZoyZinfs) - (Zoy Ziwfs) (42)
v,y €24 z,y€Zd i=0,...,.N
—2 Z Syy - Z Z Pi—sbis® (ZoyZi-1afs) - (Zoy Zixfs) (43)
y,y'€Z4 z,ycZdi=0,....N
+ Z Z Pi—s (2ais2i+1 (Zisfs | Ziw:Qy - Z,] fs)) (44)

x’yEZd i=0,...,N

T Z Z Pr—s (2bz’52i ([Zi—l,:m dy - Zy] s Zi,rfs + Zi—l,rfs ’ [Zm«, Ay - Zy] fs)) (45)
x7yEZd i=0,...,N

" Z Z Z Pt*s(QaiS%H(Zi"’ffs NZiw, Syyr - ZoyZoyfs)) (46)
y,y' €24 xeZd i=0,...,.N
" Z Z Z Pt—5(2bi82i([Zi_17x7 ny/ ) ZOJ/ZO,y']fS ’ Zi,a:fs (47)

2€24 y,y' €74 i=0,...,.N
+ Zicrafo [ Zin Oy ZoyZoylfs). (49)

We have studied (II) (called the ‘free part’ later on) before. From our assumptions about the free
part, is strictly negative and can be made so that it dominates contributions from —. The
contributions from — can not be dominated by the free part without additional assumptions
about the interaction which we will discuss in the following. First of all we remark that

Ziw,ay - Zy] = Z (Ziwiy) Zjy + Oay Z Cijkdjz Lk,
j=1,..,N jk=1,...,N

Assumptions and enable us to dominate the terms involving these commutators by the
free part for small times. The newly generated terms will come accompanied by a sufficiently high
power of s so they will be irrelevant for small times. Next we note that

[Zi,:cv ny’ ’ ZO,yZO,y’] = (Zi,ﬂceyy’) ’ ZO,yZO,y’

+5xy Z CiOk 6czzy’ ZO,y’ Zk,ac
k=1,....N

+5xy5a:y’ Z CiOkckOZny Zl,z
ki=1,.,N

+5xy’ Z CiOkGy:c ZO,ka,:c .
k=1,..,N
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For the corresponding terms to be dominated by the free part it is sufficient that and hold,
because in this case the terms will be accompanied by a sufficiently large power of s. (One can in
fact see that implies ) Thus, under the conditions —, for sufficiently small time we
have

aspt—ngl) (fs) S 0.
Hence, we arrive to the following smoothing estimates for infinite dimensional system, when n =1
L0 (f) < d(Pf? = (Puf)?).

Now we proceed by induction. We have
0, = 0P(f) = (ar8) (1) =[BT (£) = [t T (1)

where

[L,rgfil} (g9,h) = L (r;fx(g, h)) —1")(Lg, h) — TY(g, L)

and similarly for the second commutator involving Liys.

Analogously to the proof of Theorem let us start with assuming for simplicity that Zj,
fields commute with all the other Z, , fields; in this case the terms which will appear on the nth
level will be as follows

niN
) Z Z Z ak,n82|k‘n+n€Ly (Zk,n,xfs) (49)

yEZd XEan ‘k‘n:O

nN
-2 Z Z Z bk,ns2|k‘n+n_1(€Ly (Zkfel,n,xfm Zk,n,xfs) (50)

y€Z xeZnd 0<|k|pn:k1 >1

nN
—2 Z ny/ ’ Z Z ak7n82|k|"+nZ07ka’n7xfs ' ZO,y'Zk,n,xfs (51)
y,y' €24 xe€zZn4 |k|,=0
nN
23 6, Y S b 2 e ek Zoy T (52)
y,y' €24 x€Z4 0< [K|n:k1 >1
nN
+230 D0 D0 ans I o [Znxo 0y 2] S (53)
yeZd xezZn? |k|pn=0
nN
+ 2 Z Z Z bk7n82|k\n+n—1 [Zk—el,n,qu ’ Zy] fs : Zk,n,xfs (54)

y€Z xeZnd 0<|k|p:k1>1
+ Zk—e1,n,xfg : [Zk,n,xa qy . Zy] fs- (55)
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Under the conditions for which the original finite dimensional case is negative, (49)-(50) are also
negative and, if &,/ is assumed sufficiently small, they can dominate contributions from and
(52). As discussed before one has the following expressions for the commutators in and

n n—1
[Zk,n,w qy- Zy] - Z Z (Zk\ﬁvn—l,x\iq"y> ' ZE,Z@ZM + iy - [Zicnx, Ziy)
=1 =1 QCZ,ECk:
|x\Z|=1

and

n n—1
[Zk—el,n,xa q,- Zy] = Z Z Z (Zk—el\ﬁ,n—l,x\iqiy> ’ Zﬂ7l7§Zi,y + Qiy [Zk—ehn,xa Zi,y] ’

i=1 | I=1 zCczkck—e;
[x\z|=l

with a rule that Zk\E,n—l,x\aqy’ Zk—el\ﬁ,n—l,x\aqy # 0 only in the case when dist(z;,y) < R for each
x; €x\Z,i=1,...,1. In both cases we produce the terms of order at most n, but the terms with
I < n—1 will be accompanied by higher power of time s and can be compensated for sufficiently
small time by terms in an_l) by a choice of sufficiently large ¢,. When [ = n — 1 and ¢ = 0 the
corresponding terms can be compensated by terms coming from the derivative of anfl) for small
times provided ¢, is sufficiently large. Otherwise for [ = n — 1 and i # 0, the corresponding terms
can be dominated by terms coming from the derivative of the free part (i.e. the part coming from
the commutator with L) provided SUP; - iy HZ;%zj qin is sufficiently small.

As in the finite dimensional case of Theorem if we no longer assume that the Zy, fields
commute with all the other Z, ., then we will obtain extra terms. Such terms can be controlled,
like in the proof of Theorem thanks to our assumptions on the commutators. We do not repeat
the whole calculation here, as it is completely analagous to the one done in finite dimensions. [

4 Existence of Invariant States for the Infinite Dimensional Semi-
groups

In this section we consider the operators £ which are obtained as the limits of £, as A 1 Z¢. We
will provide a strategy for the associated semigroups P; which a priori may depend on the initial
configuration. To start with, consider the operator L given in Section 2, on R™ equipped with a
metric d. For any x € Z%, we consider the semi-distance d,(w) = d(w,), (Rm)Zd Sw={wy, €
R™}, 74, and set pz(w) = ¢(dz(w)), for some smooth increasing ¢ with bounded derivative. Given
summable weights (e, € (0,00)) 74, D pezd €2 < 00, we define the set

Q=qwe (Rm)zd : Z €xpz(w) < 00

x€Z4
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The following assumption plays a key role in the proof of our results.

Assumption 3. There exists a smooth function p : R™ — R, which satisfies p(u) — oo as d(u) —
00, whose level sets {p < L}, L > 0 are compact, and satisfies the Lyapunov-type condition

Lp < Cy — Cyp, (56)

for some constants C1 > 0 and Cs > 0.

Examples of generators for which p = ¢(d) satisfies will be given elsewhere [17]. The moral
behind Theorem below is the following: roughly speaking, if we are able to exhibit a Lyapunov
function p for the finite dimensional dynamics, then ) _,4 p, (Where p, is a "copy” of p acting at
T € Zd) is a candidate Lyapunov function for the infinite dimensional generator; this is, provided
some assumptions involving the interaction functions are satisfied, see and . With this in
mind, we have the following result on existence of invariant measures.

Theorem 4.1. Suppose that p satisfies Assumption[3 and let P, be the semigroup generated by

L= Le= > Q- Zu— Y. Sy ZoyZoy (57)

erd $EZd yy/GZd
y#y’
If p is such that
- Z Qe Zppe < C3+ Z N,y Py (58)
y€Z4 y€Z4

for some C3 > 0, with 13,y € (0,00), S = sup,eza Yy ezd Nay < 00, satisfying

Z €xlay < Caey (59)

xeZd

with some positive constant Cy < Cy, then there exists a subsequence (tx)ren C R and a probability
measure [, such that p,(Q) =1 and

Pu f(w) = po(f), (60)
as k — oo, for all bounded smooth cylinder functions f and all w € €.

Remark 4.1. One can see that, if Ny, =0 for |z —y| > R, for some R € (0,00), condition is
satisfied for polynomially as well as exponentially decaying weights.

Proof. The proof of Theorem [4.1] consists of the following steps. We start by constructing a Lyapunov
function for the operator £ using suitable function p. We then use this function to deduce that the
corresponding semigroup converges weakly to a probability measure, pointwise with respect to the
initial configuration w € 2. Finally, we show that the limit measure is independent of the initial
configuration.
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We consider ) 74 pz, with p, as above. Since Zj.,p, = 0 whenever x # y, using , we

obtain

Lpy = Lypz — Z Qe - Zzpz < C1— Copr — Z Ao * LaPa
€A €A

Thus if
- Z qz - prac < CB + Z Nz y Py

TE€EZY yeZY

with some 7,4 € (0,00), S = sup,¢zd ZyEZd Ny < 00, then, with C = C; + Cs, we have

d —
ZPips = PiLps < C = CoPips + EZ: Ny Pepy
ye

Hence

t
Pipa(w) < C+e Ppy(w)+ > 77x7y/ dse” =P p,
yEZ4 0

and for any summable weights €, € (0,00) we have

t
P eape(@) SCS+e @Y eopaw)+ D ew ) My / dse=C2(=5)p p,

€L €24 x€Zd  yeZd 0

If we have

Z €xlzy < Caey

xC€Z4

with some constant Cy € (0,00), then for

=P Z esz(w)

x€Z4

we get the following relation
~ t
F,<CS+e “F, + 04/ dse= (=) .
0

This implies that

sup Fy < (1—&)™* (C’S + Fo)
0<s<t

(61)

(62)

which is finite and uniformly bounded in ¢, provided that & = % € (0,1) and Y 74 €2pz(w) < 00,

i.e. we have
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sup | Py Z expr | (W) <A —R)H[CS+ Z €x0z (W) (63)

>
20 x€Z4 xC€Z4

(Strictly speaking one applies first all the above arguments to a smooth cutoff p2 < A < oo of
po and after applying the formal Gronwall arguments, we pass to the limit A — oo. This is more
lengthy to write, but there is no technical difficulty in that.)

The existence of such uniform bound implies ([9], Section 3.2) the weak convergence of a
subsequence of (Pt):>o for an initial configuration w € €, i.e. the existence of a sequence (tx)reny C R
and a measure p,, such that for all bounded and smooth cylinder functions f

P f(w) = po(f),

as k — oo, for all w € Q. Consider the set

Op=_we (Rm)Zd : Z €xpz (@) < L

x€Z4

Using Markov’s inequality we obtain, for all w € €,

1 1 _

Ue(Qp) >1— 7 Sup Py E €xpz | (W) >1— 7 (1-r)"'|Cs+ E €xpz (W) ,
>0

= zeZd zezd

and thus taking the limit as L — oo, we conclude that p,,(2) = 1.

5 Ergodic Properties of the Infinite Dimensional Semigroups

First of all we note that in the general case for which the semigroup was constructed in Section 3,
and the Lie algebra is stratified (see Remark [3.1)) for each 2 € Z¢ with the corresponding dilation
generator D,, one can show the following result.

Theorem 5.1. Consider

L= ZLx—qu-Yx— Z 6yy,~YO,yY(),y,—AZDx

xcZ4 TEA yy €z xcZ4
y#y’

with X > 0, P, = ' and
Ly, =Z3%, + Ba,
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where J C I. For every n € N there exists A, € (0,00) such that for any X > X\, one has

S7TYRfiE<e™t N (Y

xeznd xeznd

with some m, € (0,00). Hence for any w,w’ € Q5 = {0 : Y, pa % < oo}, defined with
some € (0,00), we get
|Pif(w) = Pif(W)] < Ce™™ Y |Yaf]
x€Z4

with some m € (0,00) independent of a smooth cylinder function f and some constant C' dependent
on A(f).

For the full gradient bound estimate see e.g. [I7]. The ergodicity statement follows via similar
strategy as in [9]. We consider the lexicographic order on the lattice introduced in the proof of
Theorem and an interpolating sequence of points

g 1fk>j

xk?

With this interpolation we consider the following telescopic expansion

Pf(w) = Puf(w') = 3 (Pf @40 = Pif(w®))

k

and notice that for a piecewise differentiable unit speed path 'ys ) such that 'y( )0 = w(’,? and 79:)1 =

w;],iﬂ) with tangent vectors given by Y (such a path exists by Chow’s Theorem, see e.g. [6]), we

have

’Ptf(w(’”l ‘ _

dm vyzkaf<w£’f>>‘<d<wm, Iy, Pfl-

The sum of such terms over {k : d(zy, O) > C't}, with suitable constant C' € (0, 00), can be bounded
using finite speed of propagation of information by a factor converging exponentially quickly to zero
with respect to t. The remaining contribution can be estimated as follows.

Z ’Ptf(w(k-&-l)) — Ptf(w(k))‘ <04 max (|wl, [wl]) - [YP.f]
k:d(z,0)<Ct d(z,0)<Ct

Thus for w,w’ in the set g, to get the uniqueness of the limit (and possibly also uniqueness of
invariant measure supported by this set) it is sufficient to show

|YPtf| S C/t—d—Q(s

with some finite constant C’. A similar idea to prove uniqueness of the limit lim; .o, P;f can be
used in the situation when additional restrictions on the commutation relations are imposed.
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Theorem 5.2. Suppose that Assumption (CR.I) is satisfied with c; = 0 and co;, =0, j,k=1,..,N.
Suppose that

Zi,xqjy =0 lfj > 1

Zj:l,...,N Cijkdjz = 0 ifk >1
Suppose additionally that

Zi,ijy =0 ifj #i
and
Zi,kak’,yy’ =0

Then, there exists coefficients a;, b;,dg,e € (0,00), such that if

sup Hij,quin <g,

k] sZ5 77:7y

then for any t € (0,00) one has

T (1) < do(Pi(f2) — (Pif)?)

I=1,....n
Hence, in case [d + 26] < N, for any bounded cylinder function f, if

(B, Zo, Zjen )P f]] < Ct747%,

maz)

for some constant C € (0,1) and jmax = min([d + 26|, N), then the limit limy_, o P, f(w) is unique
forw € Q5.

We notice that the decay in the directions of Z; with j > [d + 26] is automatically sufficiently
fast. Thus for the question of uniqueness it is sufficient to concentrate on estimates in direction
B and Zj, j < [d+ 26]. Finally we mention that in the same situation one can take advantage of
higher order estimates as follows.

Theorem 5.3. Under the conditions of Theorem [5.3, assume the higher order bounds including
Y = (B,Z) are true globally in time. If for some configuration w € Qs one has for any bounded
cylinder function f,

Y P, (@) < Cpt =42,

for some constants C,, € (0,1) and n < nmax = [d + 20], with Y = (B,Z), then the limit
limy_yo0 P, f(w) is unique for all w € Q.

This result follows in the similar fashion as before re-expanding vak P f ('ygk)) sufficiently many
times.
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Appendix A
This Appendix is devoted to the proof of Proposition

Proof of Proposition[3.1 Fort > s> 0, we have:

O s —Pﬁ_s{( La+ ) ey }
= PELa (V0 2 (V0f) (Y0 f) +2 (Y0 f) [Vl £] £
(64)
First we note that
LA YR N 4 2 (YY) LAYl st = =2 3 v Yr A
z€74
-2 Z 6ZZ'. (YZYfo;\) ’ (Y;«"Yfo;X) ; (65)
z,2' €N

the last addend in can instead be decomposed as follows:

2 (Y7o fN) [Y7o £a] 2

= Z fos Yzlxv Z] fsA (Tl)
z€74

+2zzqﬂx fo [Y?xvyﬁ,z] fsA (T2)

zeN Bel

+ZZZ fos YZxaqﬂ,Z] YB,ZféA (T3)
zeN Bel

+ Z Z 267%22 fos ) ([ LX’Y 72] Yy o+ Y52 [YL xvY ]) fA (T4)
z,2'eNyy'ed

+ Z Z [foagw’ﬂ’]) Y%ZYVCZ’fSA' (Ts)
z,2'EANyy' €T

To estimate each of the above terms we use lengthy but elementary arguments of which we list the
result in Lemma [5.1] to Lemma [5.5] below, and briefly sketch an idea of the proof.

The estimates of (71) and (7%) in the first two lemmas below are based on our locality assumption,
i.e. the fact that YE@ and L, Yg . commute unless z € x, and the structure of L., together with
the quadratic Young’s inequality @D We recall the notation ¢ = sup, ., 3 |caysl, Where ¢, are as
in Assumption (GCR).
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Lemma 5.1 (Estimate of (T1)). Under the assumptions of Proposition 3.1, for any € € (0,00) we
have

23| (YELA) (Y ST L £ < Mﬁ+An)\Y>(<")f§\\2+€Zn:IYJ,ijx(")f?!27

z€Z4 Jj=1
where k = infaer Ko, b= SUPaes pezi [bae| and A, = 2nbe|I| + ne 1| + 2P (I +1).
Lemma 5.2 (Estimate of (T3)). Under the assumptions of Proposition [3.1]

ST s (YIRS [V Yas] 12| < 2ngelr] (Y £

L zeA Bel

with ¢ = sup,, , l|da,z|]oo-

The key to the next estimate is contained in the following commutator expression. For any
sufficiently smooth function g, we have

-l l
Y=Y XY e (¥ Y
=0 ~yCu:|v|=l zCx:|z|=l
where

onll) = {1 iL< n/2

—1 otherwise,

and with the convention that Y,(YO)z = id and the elements of «, are ordered in the same way as in
¢ and those of z,7 in the same way as in x.

Lemma 5.3 (Estimate of (T3)). Under the assumptions of Proposition 3.1, for any € € (0,1), we
have

SIS (YY) [Yiias] Vau | < B YA

Lt |yeA B
(k
+e g g xk Z y |Y(zzl)fs |

k=0 zCx,yeZd

with

B.=Y sip Y 1YY Pasylle

yezd Bl k=1 %) (5,2)C (1,x): | =k
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and i
Bch(Za y) = 5{sz:|z|:k} Sﬁup ||Y'(V:’L; )qﬁ,y”oo-
7’7

We remark that when we consider an interaction with finite range R € N, i.e. when qg, is a
cylinder function dependent only on coordinates w, with dist(z,y) < R, we have

Y{, Mg, =0, dist(z,9) > R

The next estimate uses our locality assumption together with the quadratic Young’s inequality.

Lemma 5.4 (Estimate of (T4)). Under the assumptions of Proposition[3.1], for any e € (0,1)

Z Z Z 26y yy (szfﬁ) ([fo,Y ,y] Yyy + Yy [Y?xv Y, ,y’}) fé\

Lo |yy'eAyyed

<O Y2 4 e Yo, YA
yeEA

with positive constants

—_

Cn < Cm sup Z Z (1852l + Sy 2y]) + 7n20”(m2 +1),

2€LY cpd g

[\)

where C,, = 2¢ SUD~ ey 2ezd 27,61 ‘67/7%‘.
The last estimate is similar to that of (Tg).
Lemma 5.5 (Estimate of (T5)). Under the assumptions of Proposition for any n > 1, for
everyl=1,....n, for anyx = (21,...,2,) C Z% and for every z C x there exist positive constants
! .
D,({,)n(z,y) € (0,00), satisfying
!
sup Y Di(z,y) < o
|x|=n,zCx

yeZ4

such that for any € € (0,1) the following bound is true

Z ( LXfA) Z Z ([YE’Q, W/,yy’DY%yYV’,y/f;\

yy' €Ny €J
2 n W 2
£ Y Dl [

DS Dln(z,y) [V, YE 12

=1 yeA zCx:|z|=l =1 zCx:|z|=l

for some D,((l)n(z) € (0,00),l=1,..,n, z C x.
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We remark that because of our strong assumption of locality of &,/ 4./, we have

(n=0) _ -
Y;z Syt yy =0, if

Now we combine all estimates of Lemma [5.1| to Lemma i.e. all the estimates of (T1)- (T5):

[2(YixfS) [Yix £a] £

n
<(=Ank o+ Ay) [YEFAR 4 e N0 |V, Yo fA P2

j=1
+ 2nge|I| [YR M2

n—1
_ k+1
e BAYIA 4 Y0 S Berlzy) [TV FAP

k=0 zCx,yEA
|z|=k

+Cu | Y2IM +en?C > Y, YRFA)
yeA

—i—azz > Dz, y) [V, Y £

=1 yeA zCx:|z|=l

This can be rewritten as follows:

2(Y0sd) Yool 22 e 3 Al |y, v p |

=1 yeA zCx:|z|=l

n—1
+(=ank+ An) (YRR 437N BO(2)

+5Z Z xkzy|Y

k=0 zCx,yeA
lz|=k

LY Dl Y

2

2
AU

(66)

where Aﬁf’n (z,y) and B,(cl%(z) are positive constants depending on the constants appearing in (66)).

46



Putting this together with and , we obtain

0
P YR <P S =2 3T Vo YR =2 3 6 D (VYL - (Ve Vi)
z€74 2,2/ EA L
PPN S Ay [y, v
=1 yeA zCx:|z|=l

n—1 9
+ (k4 A Y2243 S BY () ‘Yél)fé\
=1 zCx
|z|=t

n—1
l 1+1
+e 33 Bz YLV PP
1=0 zCxy
|z|=t

Assuming that for some § € (0,1) we have S,,» < §1Id in the sense of quadratic forms, we can
simplify the above as follows.

SR YEA P, 201 - 0) 3 VY
2€74
PPN Y A [y, v
=1 yeA zCx:|z|=l

+ (—Ank+ A,) ’Yan +ZZan z) ’Y;l)fSA2
=] zCx
|z|=l

+5Z Z B,((ln |Y(l+1 fA‘

1=0 =Cx.y

|z]=!

Choosing ¢ so that esupy Ag?%(z, y) < 2(1—0), we get the following bound

DA YA SPLL S (A An) [YEFAP +ZZB (@) [Y 052"

=1 zCx
|z|=l

n—1
DI P UTEHIREIES S S T,

=1 yEA sz;‘zl:l =0 zC‘x‘yleA
Z|=
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Setting

v = (—Ank+ A,), (67)

we obtain the statement of Proposition O
References

[1] S. Albeverio, Y.G. Kondratiev and M. Rockner, Symmetrizing measures for infinite dimen-

[10]

[11]

[12]

sional diffusions: an analytic approach, ”Geometric analysis and nonlinear partial differential
equations” (Stefan Hildebrandt et al., eds.), Springer, Berlin, 2003, pp. 475-486.

D. Bakry and M.Emery, Diffusions hypercontractives. In: Sém. de Probab. XIX. Lecture Notes
in Math., vol. 1123, pp. 177-206. Springer, Berlin 1985.

D. Bakry, F. Baudoin, M. Bonnefont and D. Chafai, On gradient bounds for the heat kernel on
the Heisenberg group, J. Func. Analysis 255 (2008), 1905-1938.

F. Baudoin, M. Hairer and J. Teichmann, Ornstein-Uhlenbeck processes on Lie groups, J. Func.
Analysis 255 (2008), 877-890.

F. Baudoin and J. Teichmann, Hypoellipticity in infinite dimensions and an application in
interest rate theory, Ann. Appl. Probab. 15 (2005), 1765-1777.

A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for
their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.

D. Crisan, K. Manolarakis, C. Nee. Cubature methods and applications. Paris-Princeton Lectures
on Mathematical Finance, Springer Verlag (2013).

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge Univ.
Press (1992).

F. Dragoni, V. Kontis and B. Zegarlinski, Ergodicity of Markov Semigroups with Hérmander
Type Generators in Infinite Dimensions. Potential Analysis 37 (2011) 199-227.

A. Guionnet and B. Zegarlinski, Lecture notes on Logarithmic Sobolev Inequalities. Séminaire
de Probabilités, XXXVI, vol. 1801, pp. 1-134. Lecture Notes in Math. Springer (2003).

W. Hebisch and B. Zegarliriski, Coercive inequalities on metric measure spaces. J. Funct. Anal.
258 (2010) 814-851.

F. Hérau. Short and long time behavior of the Fokker-Planck equation in a confining potential
and applications, J. Funct. Anal., 244(1): 95-118, 2007.

48



[13]
[14]
[15]

[16]

[17]

L. Hérmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147-171.
J. Inglis, Coercive inequalities for generators of Hormander type. PhD Thesis, IC 2010.

J. Inglis, V. Kontis and B. Zegarlinski, From U-bounds to isoperimetry with applications to
H-type groups, J. Funct. Anal. 260 (2011) 76-116.

J. Inglis and I. Papageorgiou, Logarithmic Sobolev inequalities for infinite dimensional
Hormander type generators on the Heisenberg group. J. Pot. Anal. 31 (2009) 79-102.

V. Kontis, M. Ottobre and B. Zegarlinski, Long- and short-time behaviour of some
hypocoercive-type operators in infinite dimensions: an analytic approach, Imperial College
London, 2012.

T.M. Liggett, Interacting Particle Systems. Springer 1985, Stochastic Interacting Systems: Con-
tact, Voter and Exclusion Processes. Springer 1999.

P. Lugiewicz and B. Zegarliniski, Coercive inequalities for Hérmander type generators in infinite
dimensions, J. Funct. Anal. 247 (2007) 438-476.

Xu Lihu and B. Zegarlinski, Existence and Exponential mixing of infinite white a-stable Systems
with unbounded interactions, Electronic J. Probab. 15 (2010) 1994-2018; Ergodicity of finite
and infinite dimensional a-stable systems Stoch. Anal. Appl. 27 (2009) 797-824.

M. Ottobre. Asymptotic Analysis for Markovian models in non-equilibrium Statistical Mechan-
ics, PhD Thesis, Imperial College London, 2012.

M. Rockner, Ly-analysis of finite and infinite dimensional diffusion operators, Stochastic PDE’s
and Kolmogorov’s equations in infinite dimensions (Giuseppe Da Prato, ed.), Lect. Notes Math.,
vol. 1715, Springer, Berlin, 1999, pp. 65-116; An analytic approach to Kolmogorov’s equations
in infinite dimensions and probabilistic consequences, XIVth International Congress on Math-
ematical Physics 2003, World Scientific 2005, pp. 520-526.

N. T. Varopoulos, L. Saloff-Coste and T. Couhlon. Analysis and geometry on groups. Cambridge
Univ. Press, Cambridge, 1992.

C. Villani, Hypocoercivity. Mem. Amer. Math. Soc., 202 (950), 20009.

B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin
systems on a lattice, Comm. Math. Phys. 175 (1996), no. 2, 401-432.

49



	Introduction
	Relation with literature

	Short and Long Time Behaviour of n-th Order Derivatives in Finite Dimensions.
	Strategy of proof of Theorem 2.1: combining semigroup and hypocoercivity methods
	Proof of Theorem 2.1

	Infinite Dimensional Semigroups
	Setting and notation
	Structure of Section 3

	Strong approximation property
	Existence of the infinite dimensional semigroup
	Smoothing properties of infinite dimensional semigroups

	Existence of Invariant States for the Infinite Dimensional Semigroups
	Ergodic Properties of the Infinite Dimensional Semigroups

