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Abstract. In this paper we consider diffusion semigroups generated by second order differen-
tial operators of degenerate type. The operators that we consider do not, in general, satisfy the
Hörmander condition and are not hypoelliptic. In particular, instead of working under the Hörman-
der paradigm, we consider the so-called UFG condition, introduced by Kusuoka and Strook in the
eighties. The UFG condition is weaker than the uniform Hörmander condition, the smoothing effect
taking place only in certain directions (rather than in every direction, as it is the case when the
Hörmander condition is assumed). Under the UFG condition, Kusuoka and Strook deduced sharp
small time asymptotic bounds for the derivatives of the semigroup in the directions where smooth-
ing occurs. In this paper, we study the large time asymptotics for the gradients of the diffusion
semigroup in the same set of directions and under the same UFG condition. In particular, we iden-
tify conditions under which the derivatives of the diffusion semigroup in the smoothing directions
decay exponentially in time. This paper constitutes therefore a stepping stone in the analysis of
the long time behaviour of diffusions which do not satisfy the Hörmander condition.

Keywords. Diffusion Semigroups, Parabolic PDE; Uniformly Finitely Generated Condition; De-
rivative Estimates; Exponential Bounds, Long time Asymptotics.

AMS Classification (MSC 2010). 60H10, 35K10, 35B35, 35B65

1. Introduction

Consider the stochastic differential equation (SDE) in RN

Xt = X0 +

∫ t

0
V0(Xs)ds+

√
2

d∑
i=1

∫ t

0
Vi(Xs) ◦ dW i(s), (1)

where V0, . . . , Vd are smooth vector fields on RN , ◦ denotes Stratonovich integration and, for each i,
W i(t) is an N -dimensional standard Brownian motion. The Markov semigroup {Pt}t≥0 associated
with the SDE (1) is defined on the set Cb of continuous and bounded functions, as

(Ptf)(x) := E [f(Xt|X0 = x)] . (2)

We recall that, given a vector field V on RN , we can think of V both as a vector-valued function
on RN and as a first order differential operator on RN :

V = (V 1(x), V 2(x), . . ., V N (x)) or V =
N∑
j=1

V j(x)∂j , x ∈ RN , ∂j = ∂xj , (3)

and we shall do so throughout the paper. With this notation, the Kolmogorov operator associated
with the semigroup Pt is the second order differential operator given on smooth functions by

L = V0 +
d∑
i=1

V 2
i . (4)

The study of Markov semigroups associated with SDEs of the form (1) has a long history and
the literature on the matter is vast. Most of such literature deals with the case in which the
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operator L is elliptic or hypoelliptic; more specifically, a large body of work has been dedicated to
the study of the diffusion semigroup (2) in the case in which the vector fields V0, . . . , Vd satisfy the
Hörmander condition, in one of its many forms. As is well known, under the (parabolic) Hörmander
condition, the transition probabilities of the semigroup Pt have a smooth density; furthermore, Ptf
is differentiable in every direction and u(t, x) := (Ptf)(x) is a classical solution of the Cauchy
problem

∂tu(t, x) = Lu(t, x)

u(0, x) = f(x).

In the present paper we will relax the hypoellipticity assumption and work in the setting in
which the vector fields V0, . . . , Vd satisfy a weaker condition, the so-called UFG condition. The
acronym UFG stands for Uniformly Finitely Generated. Informally, denoting by C∞b (RN ) the set

of smooth bounded functions with bounded derivatives, this condition states that the C∞b (RN )-
module W generated by the vector fields {Vi, i = 1, ..., d} within the Lie algebra generated by
{Vi, i = 0, 1, ..., d} is finite dimensional. In particular, we emphasize that the UFG condition does
not require that the vector space {W (x)|W ∈ W} is homeomorphic to RN for any x ∈ RN ; indeed,
the dimension of the space {W (x)|W ∈ W} is not even required to be constant over RN . Hence,
in this sense, the UFG condition is weaker than the Hörmander condition. We give a precise (and
easier to check) statement of the UFG condition in Section 2, see Definition 2.1.

In a series of papers [11, 12, 13, 14], Kusuoka and Stroock have analyzed the smoothness prop-
erties of diffusion semigroups {Pt}t≥0 associated with the stochastic dynamics (1) when the vector
fields {Vi, i = 0, 1, ..., d} satisfy the UFG condition. In particular they showed that, under the
UFG condition, the semigroup Pt is no longer differentiable in the direction V0; however it is still
differentiable in the direction V := ∂t−V0 and therefore a rigourous PDE analysis can still be built
starting from the stochastic dynamics (1). In this case one can indeed prove that for every f ∈ Cb,
the function u(t, x) := (Ptf)(x) is a classical solution of the Cauchy problem{

Vu(t, x) =
∑d

i=1 V
2
i u(t, x)

u(0, x) = f(x).
(5)

More precisely, u is twice continuously differentiable in the directions of the vector fields Vi, i =
1, ..., d and once continuously differentiable in the direction V0 = ∂t−V0, when viewed as a function
(t, x) 7→ u(t, x) over the product space (0,∞)×Rd (the notion of classical solution for the PDE (5)
and further background material are gathered in the Appendix).

This fundamental result was obtained by using probabilistic methods based on the use of the
Malliavin calculus (see [6, 18]). The small time asymptotics of (Ptf)(x) constitutes the theoretical
backbone for the development of a new class of algorithms, termed cubature methods, introduced
by Kusuoka, Lyons, Ninomiya and Victoir in the last ten years [15, 17, 19]. Such algorithms, which
work under the UFG condition, provide high order approximations of the law of the solutions of
SDEs (and therefore can be used to compute statistical quantities of interest) and are faster than
their classical counterparts, see [6]. The study of UFG-diffusions has therefore opened interesting
and promising research avenues both in the field of PDE theory and in the field of stochastic
simulations.

The papers [11, 12, 13] introduce the UFG condition in the context of the theory of diffusion
semigroups. However related conditions had already independently appeared, in a completely
different setting, in the work of Hermann [9], Lobry [16] and Sussman [22]. In these works, such a
condition was considered for control theoretical purposes. More details on the nature of the UFG
condition will be given in Section 2.

Under the UFG condition, Kusuoka and Strook proved sharp estimates on short-time behaviour
of the semigroup Pt. Further work on the subject was carried out in [18], where a wealth of results
regarding the short-time asymptotycs are derived. To the best of our knowledge nothing is known



POINTWISE GRADIENT BOUNDS FOR DEGENERATE SEMIGROUPS (OF UFG TYPE) 3

so far about the long-time behaviour of the semigroup under the UFG condition. In this paper,
we provide the first step towards understanding the long-time asymptotics of this class of (possi-
bly) degenerate diffusions; in particular, we obtain pointwise estimates on the time-behaviour of
the (space) derivatives of the function u(t, x) = (Ptf)(x). This is the first result concerning the
long-time behaviour of UFG semigroups. The main result of the paper can be informally stated as
follows (see Theorem 4.2 for a precise statement)

Theorem. If the vector fields {Vi, i = 0, 1, ..., d} satisfy both the UFG condition and some quanti-
tative assumption (the “obtuse angle condition ” (33)) then, for any bounded continuous function f
(not necessarily smooth), any t0 ∈ (0, 1) and any vector field, V, belonging to the C∞b (RN )-module
W, there exist constants ct0 , λ > 0 such that

|V Ptf(x)|2 ≤ ct0e−λt for all x ∈ RN and all t > t0.

We emphasize that the UFG condition alone does not suffice to ensure the exponential decay of
the coefficients. For a simple counterexample take the one-dimensional Ornstein-Uhlenbeck process
with positive drift constant a > 0. Then the semigroup is uniformly elliptic (hence it satisfies the
UFG condition) but one has ∂xPtf = eatPt(∂xf) (see also Note 4.3 on this point).

From a technical point of view, the methods we use in this paper are analytic; indeed, the strategy
we use to prove our main result, Theorem 4.2, is a variation of the classic approach established by
Bakry (see [1, 2]) to deduce exponential decay estimates and is similar to the approach adopted
by Dragoni, Kontis and Zegarliński in [7]. We defer to Note 3.3 a more careful comparison with
this strand of the literature. Here we just emphasise the pointwise nature of the above inequality.
It is indeed customary to obtain bounds for the derivatives of semigroups in Lp spaces weighted
by an appropriate invariant measure. This is not possible here, in absence of an obvious invariant
measure to exploit.

To summarize, the aim of this paper is twofold: i) first, we move another step forward in the
Kusuoka-Stroock programme and we produce results that are applicable to the study of cubature
methods; ii) second, we extend the classic semigroup approach of Bakry, which was introduced in
the context of elliptic diffusions and then applied to hypoelliptic processes, to semigroups which are
more general than hypoelliptic. In particular, regarding the latter point, the estimates obtained
in this paper, together with the mentioned control-theoretical results of Herrmann, Lobry and
Sussman ([9, 16, 22]), will form the stepping stone for future work on the ergodic theory for SDEs
with generator which does not necessarily satisfy the Hörmander condition (Corollary 4.10 is a
simple example in this spirit). On a related note, we would like to emphasize that some commonly
used diffusion processes do not satisfy the Hörmander condition, but satisfy the UFG condition;
the simplest of such examples is Geometric Brownian motion. Another important motivation for
the current work is to provide the basis of the asymptotic (in time) analysis of the error incurred
by the high order numerical approximations produced by cubature methods.

The paper is organized as follows: in Section 2 we introduce the UFG condition and the necessary
notation. In Section 3 we present a version of the classical Bakry technique, adapted to our context.
In Section 4 we present our main results concerning the exponential decay of the derivatives of the
semigroup and explain how such estimates can be obtained by employing the techniques presented
in Section 3. In Subsection 4.1 we show one way of using our estimates to obtain information on
the behaviour of the semigroup itself. More detailed results in this direction will be the object of
future work. In Section 5 we gather all the proofs of the results of Section 4.

2. The UFG condition and notation

Fix d ∈ N and let A be the set of all n-tuples, of any size n ≥ 1, of integers of the following form

A := {α = (α1, . . ., αn), n ∈ N : αj ∈ {0, 1, . . ., d} for all j ≥ 1} \ {(0)} .
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For the sake of clarity, we stress that all n-tuples of any length n ≥ 1 are allowed in A, except the
trivial one, α = (0) (however α = (j) belongs to A if j ∈ {1, . . ., d}). We endow A with the product

α ∗ β := (α1, . . ., αh, β1, . . ., β`),

for any α = (α1, . . ., αh) and β = (β1, . . ., β`) in A. If α is an element of A, we define the length of
α, denoted by ‖α‖, the integer

‖α‖ := h+ card{i : αi = 0}, if α = (α1, . . ., αh) .

For any m ∈ N,m ≥ 1, we then introduce the sets

Am = {α ∈ A : ‖α‖ ≤ m}

and if B is any set, |B| will denote the cardinality of the set B. 1

Given a vector field (or, equivalently, a first order differential operator) V = (V 1(x), V 2(x),
..., V N (x)) on RN , we refer to the functions {V j(x)}1≤j≤N as to the components or coefficients of

the vector field. We say that a vector field on RN is smooth or that it is C∞ if all the components
V j(x), j = 1, . . ., N , are C∞ functions. Given two differential operators V and W , the commutator
between V and W is defined as

[V,W ] := VW −WV .

Let now {Vi : i = 0, . . ., d} be a collection of vector fields on RN and let us define the following
“hierarchy” of operators:

V[i] := Vi i = 0, 1, . . ., d

V[α∗i] := [V[α], V[i]], α ∈ A, i = 0, 1, . . ., d .

Note that if ‖α‖ = h then ‖α ∗ i‖ = h+ 1 if i ∈ {1, . . ., d} and ‖α ∗ i‖ = h+ 2 if i = 0. If α ∈ A is a
multi-index of length h, with abuse of nomenclature we will say that V[α] is a differential operator
of length h. We can then define the space Rm to be the space containing all the operators of the
above hierarchy, up to and including the operators of length m (but excluding V0):

Rm :=
{
V[α], α ∈ Am

}
. (6)

Let

span{Rm} :=

vector fields V on RN : V =
∑
β∈Am

ϕα,βV[β](x)

 ,

where the functions ϕα,β in the above belong to the set C∞V (RN ) of bounded smooth functions,

ϕα,β = ϕα,β(x) : RN → R, such that

sup
x∈RN

∣∣∣V[γ(1)] . . . V[γ(n)]ϕα,β

∣∣∣ <∞ (7)

for all n and all γ(1), . . ., γ(n), α and β in Am. With this notation in place we can now introduce
the definition that will be central in this paper.

Definition 2.1 (UFG Condition). Let {Vi : i = 0, . . ., d} be a collection of smooth vector fields on
RN and assume that the coefficients of such vector fields have bounded partial derivatives (of any
order). We say that the fields {Vi : i = 0, . . ., d} satisfy the UFG condition if there exists m ∈ N
such that for any α ∈ A of the form

α = α′ ∗ i, α′ ∈ Am, i ∈ {0, . . ., d},
there exist bounded smooth functions ϕα,β ∈ C∞V (RN ) such that

V[α](x) =
∑
β∈Am

ϕα,βV[β](x) .

1We hope that this does no create confusion when x ∈ RN , in which case |x| is the euclidean norm of x.
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We emphasize that the set of vector fields appearing in the linear combination on the right hand
side of the above identity, does not include V0.

Example 2.2. Consider the following first order differential operators on R2

V0 = sinx ∂y V1 = sinx ∂x .

Then {V0, V1} do not satisfy the Hörmander condition (e.g. there is always a degeneracy at x = 0)
but they do satisfy the UFG condition with m = 4. If the role of the fields is exchanged, i.e. if we
set

V0 = sinx ∂x, V1 = sinx ∂y

then {V0, V1} still satisfy the UFG condition, this time with m = 1 (indeed, [V0, V1] = cosxV1). �

Note 2.3. Under the assumption (7) on the functions ϕ, if the UFG condition holds for some
m ∈ N then it also holds for any n ≥ m,n ∈ N. In other words, if the UFG condition holds for
some m in N then for any V[γ] with ‖γ‖ > m one has

V[γ] =
∑
β∈Am

ϕγ,βV[β](x)

for some bounded functions ϕγ,β. For this reason it is appropriate to remark that in the remainder
of the paper, when we assume that “the UFG condition is satisfied for some m”, we mean the
smallest such m. �

In this paper we will consider diffusion semigroups {Pt}t≥0 of the form (2); that is, we consider
Markov semigroups associated with the stochastic dynamics (1). In particular, we will be interested
in studying the semigroup Pt when the vector fields {V0, V1, . . ., Vd} satisfy the UFG condition. We
recall that a semigroup Pt of bounded operators is Markov if

Pt1 = 1 and Ptf ≥ 0 when f ≥ 0 ,

where, in the above, 1 denotes the function identically equal to one. Denoting by ‖ · ‖∞ the
supremum norm, the above implies that if ‖f‖∞ <∞ then ‖Ptf‖∞ ≤ ‖f‖∞, i.e. the semigroup is
a contraction in the supremum norm.

The UFG condition is strictly weaker than the uniform Hörmander condition (see [4]). However
one can still prove that, when such a condition is satisfied by the vector fields {V0, V1, . . ., Vd}
appearing in the generator (4), the semigroup Pt still enjoys good smoothing properties: if f(x) is
continuous then (Ptf)(x) is differentiable in all the directions spanned by the vector fields contained
in Rm (we recall that the set Rm is defined in (6)). 2

Moreover, whilst the function u(t, x) := (Ptf)(x) may not be differentiable in the direction V0

or in the time variable, it is still differentiable in the direction V := ∂t − V0, and it is the unique
classical solution of the Cauchy problem

Vu(t, x) =

d∑
j=1

V 2
j u(t, x) (8)

u(0, x) = f(x),

provided the initial datum f is continuous and bounded. For the reader’s convenience we include
in Appendix the definition of classical solution for the PDE (8).

2Actually, differentiability holds in all the directions spanned by the vector fields V[α], α ∈ A. Notice that
differentiability in the direction V0 does not in general hold under the UFG condition. This is one of the major
differences with the uniform Hörmander condition, see [6, Section 2.9].
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Suppose now, and for the remainder of this section, that the operators {V0, V1, . . ., Vd} satisfy
the UFG condition for some m > 0. We can then construct the vector field V, containing all the
vector fields (operators) V[α], α ∈ Am:

V :=
(
V1, . . ., Vd, . . . , V[α], . . .

)
. (9)

The vector V has |Am| entries; using the notation (3), each entry (i.e. each vector V[α], α ∈ Am)
can be expressed as follows:

V[α] = (V 1
[α], . . ., V

N
[α]).

Therefore V can be rewritten as

V =
(
V 1

1 , . . ., V
N

1 , . . ., V 1
d , . . ., V

N
d , . . . , V 1

[α], . . ., V
N

[α], . . .
)
.

It is clear from the above that we can think of V as a function from RN to RN |Am|. However we
will most often think of V as a vector of operators rather than as a vector of vectors and therefore
we will adopt the notation (9). More in general, the space of vectors with |Am| entries, where each

entry is an operator in span{Rm}, will be denoted by R|Am|. Clearly, V ∈ R|Am|.

We emphasize that if X ∈ R|Am| , then X will always be denoted in bold font while the component
of X corresponding to the multi-index α is simply a differential operator and it is therefore denoted
by X[α]. If Vj is any first order differential operator, we also write

VjV =
(
VjV1, . . ., VjVd, . . ., VjV[α], . . .

)
.

Given a collection of strictly positive numbers {a[α]}α∈Am and any f(x) : RN → R (smooth enough
so that the expression below makes sense), we can define the following quadratic form:

(Γf)(x) :=
∑
α∈Am

a[α]

∣∣(V[α]f)(x)
∣∣2 , x ∈ RN . (10)

If a multi-index α is of length k, we will denote it by αk (when we want to emphasize its length)
and V[αk] will be the corresponding first order operator of length k (obviously, for a given k ∈ N,
there are many multi-indices of length k and, correspondingly, many operators of length k). With
this more detailed notation, the quadratic form Γ can equivalently be expressed as

(Γf)(x) =

m∑
k=1

∑
{αk,‖αk‖=k}

a[αk]

∣∣V[αk]ft(x)
∣∣2 .

Also, if we define the following bilinear form on R|Am|

〈Xf,Yf〉Am :=

m∑
k=1

∑
αk:‖αk‖=k

a[αk](X[αk]f)(Y[αk]f), X,Y ∈ R|Am|, (11)

where f is any smooth enough function, then the quadratic form Γ can be rewritten as

Γ(f) = ‖Vf‖2Am , (12)

where ‖ · ‖Am is the (semi) norm induced by the bilinear form 〈·, ·〉Am . We stress that the definition
of the bilinear form 〈·, ·〉Am depends on the choice of the constants {a[α]}α∈Am . For j ≥ 0 we also
define the linear mappings Λj ,Λ : span {Rm} → span {Rm} as follows:

ΛjV[α] =


V[α∗j] if ‖α ∗ j‖ ≤ m∑

β∈Am ϕα∗j,βV[β] if ‖α ∗ j‖ > m ,
(13)

and

Λ := Λ0 +

d∑
j=1

ΛjΛj . (14)
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With abuse of notation, we keep denoting by Λj also the linear mapping Λj : R|Am| → R|Am| that
acts on the component [α] of the vector V as follows:

(ΛjV)[α] := ΛjV[α].

Analogous use of notation holds for Λ as well.

Note 2.4. In view of Proposition 3.1 below, we remark that all the objects defined so far, in
particular the quadratic form Γ and the maps Λ and Λj , make sense, at least formally, irrespective
of whether the UFG condition holds. In other words, the integer m appearing in the definitions of
such objects could be any integer. Obviously, when the UFG condition holds with m, then all such
definitions become meaningful for our purposes. �

If the UFG condition holds with m, then we will denote by Pol the set of functions f which are
differentiable in the directions V[α], α ∈ Am, (but not necessarily in other directions) and such that∣∣(V[α]f)(x)

∣∣2 ≤ κ(1 + |x|q), (15)

for some κ, q > 0. When, given a function f ∈ Pol, we want to stress the value of the constant κ
such that the above holds, we write f ∈ Pol(κ).

We conclude this section by gathering some preliminary basic facts that we will repeatedly use in
the remainder of the paper and by presenting a simple example to illustrate the notation introduced
so far.

• If X,Y and Z are any three first order differential operators then

[X,Y Z] = [X,Y ]Z + Y [X,Z] .

• If L is the operator (4), using the above we find that for any vector field V[α]:

[V[α],L] = V[α∗0] +
d∑
j=1

V[α∗j∗j] + 2
d∑
j=1

VjV[α∗j] (16)

= ΛV[α] + 2
d∑
j=1

VjΛjV[α] .

Example 2.5 (UFG-Heisenberg Lie algebra). We call this example the UFG-Heisenberg Lie alge-
bra, as it is obtained by a modification of the so-called Heisenberg Lie algebra (which is the Lie
algebra of vector fields that are invariant with respect to the action of the Heisenberg group on R3,
see [3]). More precisely, set d = 2 and N = 3 and consider the operators

X1 := ∂x −
y

2
∂z, X2 := ∂y +

x

2
∂z, X3 := [X1, X2] := ∂z,

X0 := xX1 + yX2 + 2zX3 = x∂x + y∂y + 2z∂z .

The Lie algebra generated by {X0, X1, X2} is usually referred to as the Heisenberg Lie algebra. The
vector fields {X0, X1, X2} satisfy the Hörmander condition hence the operator L = X0 +X2

1 +X2
2 is

hypoelliptic on R3. If the above fields are slightly modified, we obtain new vector fields, {V0, V1, V2},
that no longer satisfy the Hörmander condition, but satisfy the UFG condition instead. Indeed, let
again d = 2 and N = 3 and consider the operators

V0 := −k(x∂x + y∂y + 2z∂z), V1 := −y∂z, V2 := ∂y + x∂z, k > 0.

The operators {V0, V1, V2} satisfy the UFG condition with m = 2, as

[V1, V0] = −kV1, [V2, V0] = −kV2

[V1, V2] = ∂z = V12, [V12, V0] = −2kV12, [V12, V1] = [V12, V2] = 0 .
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Therefore, in this example we have A2 := {1, 2, (1, 2), (2, 1)} and span{R2} = span{V1, V2, V[1∗2] =:
V12}. Because V21 := V[2∗1] = −V12, V21 doesn’t need to be in the list of the base fields of R2 (for
the same reason it can also be omitted in the definition of Γ below, as the constants a1, a2, a12

are anyway arbitrary). Using the definition (10), the quadratic form Γ associated with the UFG-
Heisenberg group is

(Γf)(x) = a1 |V1ft|2 + a2 |V2ft|2 + a12 |V12ft|2 .
The vector V is V = (V1, V2, V12) and the mappings Λ1 and Λ2 give

Λ1V = (0,−V12, 0), Λ2V = (V12, 0, 0) ,

while for Λ0 we have

Λ0V = (−kV1,−kV2,−kV3).

�

3. Preliminary results: a Bakry-type approach

In this section we consider Markov semigroups associated with operators L of the form (4), for a
given set {V0, V1, . . ., Vd} of vector fields. We recall that the class of functions Pol has been defined
immediately after Note 2.4.

Proposition 3.1. Let ft := Ptf0 be the diffusion semigroup defined in (2).

(a) Let m be any positive integer and assume the initial datum f0 is a bounded smooth (in every
direction) function such that ‖V[α]f0‖∞ <∞ for all α ∈ Am. Consider the quadratic form Γ defined
in (10):

(Γft)(x) :=
∑
α∈Am

a[α]

∣∣V[α]ft(x)
∣∣2 ,

for some strictly positive constants {a[α]}{α∈Am} (to be chosen). Suppose there exists λ > 0 such
that the following inequality holds:

d

ds
Pt−sΓ(fs(x)) ≤ −λPt−sΓ(fs(x)) for any x ∈ RN . (17)

Then

Γ(ft) ≤ e−λt‖Γ(f0)‖∞, for all t ≥ 0; (18)

therefore, ∣∣V[α]ft(x)
∣∣2 ≤ 1

a[α]
‖Γ(f0)‖∞e−λt for all α ∈ Am, t ≥ 0 .

(b)Suppose, in addition, that the vector fields {V0, . . ., Vd} satisfy the UFG condition (for some
m). In this case, if (17) holds when f0 is smooth (and ‖V[α]f0‖∞ < ∞), then the following holds
for any f0 ∈ Pol(κ): for every open ball B(0,K) of radius K and for all α ∈ Am,

sup
x∈B(0,K)

∣∣V[α]ft(x)
∣∣2 ≤ κ cK e−λt, (19)

where cK > 0 is a constant dependent on K.

(c) If the vector fields {V0, . . ., Vd} satisfy the UFG condition (for some m) and (17) is satisfied
for any smooth initial datum, then then following holds when f0 is only continuous and bounded
(but not necessarily smooth): for any t0 ∈ (0, 1) and any K > 0 there exists a constant ct0,K > 0
such that

sup
x∈B(0,K)

∣∣V[α]ft(x)
∣∣2 ≤ ct0,K e−λ(t−t0)‖f0(x)‖2∞ for all α ∈ Am and all t > t0. (20)
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Moreover, if the coefficients of the vector fields {V0, . . ., Vd} are bounded, then the constant ct0,K
does not depend on K and we have the uniform bound∣∣V[α]ft(x)

∣∣2 ≤ ct0 e−λ(t−t0)‖f0(x)‖2∞ for all α ∈ Am and all t > t0. (21)

Before proving the above result we make the following remark, which we will use in the proof of
Proposition 3.1. We will make several comments on the above statement in Note 3.3.

Note 3.2. If the initial datum f0 is bounded and continuous and the UFG condition holds, then
(Ptf0) is differentiable in the directions V[α], α ∈ Am (see [11]-[14]). Because we are assuming that
the vector fields {V0, . . ., Vd} are smooth, the semigroup is differentiable an arbitrary number of
times in such directions. Moreover the following short time asymptotic holds: for any ball of radius
K, B(0,K), and for any α ∈ Am,

sup
x∈B(0,K)

∣∣V[α](Ptf0)(x)
∣∣ ≤ c

t‖α‖/2
sup

x∈B(0,K)

[(
1 + |x|‖α‖

)]
‖f0(x)‖∞, (22)

for some constant c > 0 (which does not depend on x, t or f0). Details about the above short-time
asymptotics (and many other results of this type) can be found in [18] (see in particular [18, pages
68-80]). Furthermore, when the vector fields V[α] have bounded coefficients, the following holds:∣∣V[α](Ptf0)(x)

∣∣ ≤ c̃

t‖α‖/2
. (23)

Proof of Proposition 3.1. (a) This is completely standard: By applying Gronwall’s lemma, from
(17) we deduce

Pt−sΓ(fs) ≤ e−λs PtΓ(f0), for all 0 < s ≤ t . (24)

Therefore, using (24) for s = t and the contractivity of the semigroup Pt in the supremum norm
gives the result. Notice in particular that if f0 is smooth in every direction then also (Ptf0)(x) is
smooth in every direction (see Appendix); in particular, it is smooth in t as well, hence all of the
above is justified.
(b) We prove this statement in the Appendix, see Lemma 6.5.
(c) Using Note 3.2, notice that for any t0 ∈ (0, 1) the function Ptf0 belongs to the set Pol(κ);
in particular, by (22), the constant κ appearing in (15) is, for this function, κ = t−m0 c‖f0(x)‖∞.
Therefore, by part (b), for any fixed 0 < t0 < 1 and for any t ≥ t0, we can write∣∣V[α](Ptf0(x))

∣∣2 =
∣∣V[α](Pt−t0Pt0f0(x))

∣∣2 ≤ e−λ(t−t0)ct0,K‖f0(x)‖∞.
If the coefficients of the V[α]’s are bounded, then (23) gives (21) by acting analogously to what we
have just done. �

Note 3.3. Proposition 3.1 part (a) provides a general framework to deduce the exponential
decay for the derivatives of diffusion semigroups; part (a) is just the classic Bakry approach[1, 2],
readapted to our purposes. In particular:

• Proposition 3.1 part (a) is not a smoothing result, it is just a long time asymptotics. Indeed
in the statement of part (a) we assumed that the initial datum f0(x) is a smooth function
with bounded derivatives. This is to make sense of the expression (Γf0)(x) and to be able
to take time-derivatives in (17). Such a result is quite general and it is independent of
whether the UFG condition holds (see also Note 2.4 in this respect).
• Once the exponential decay (18) is obtained for smooth initial data, one can use the semi-

group property and the smoothing effects which are guaranteed to hold under the UFG
condition (and quantified by the estimates (22)- (23)) in order to prove exponential decay
of the derivatives of the semigroup for any initial datum f0(x) which is just continuous and
bounded. This is the content of part ((b) and) (c) of Proposition 3.1. Therefore, in the
proof of our main results we just need to focus on showing exponential decay for smooth
initial data.
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• The analysis used here is based on the adaption of the Bakry technique used in [7]. The
difference between the quadratic forms Γ that we use here and those considered in [7] is the
appearance of the constants a[αk]. That is, the quadratic form used in [7] can be obtained
from ours by just setting a[αk] = 1 for all a[αk]. Introducing the positive parameters a[αk],
which can be conveniently chosen, allows us to have a better estimate for the decay rate λ
(see Note 5.1). To the best of our knowledge, the idea of introducing such parameters first
appeared in [8] and was then further developed in [23]. However [8, 23] work in weighted
spaces, the weight being the invariant measure of the semigroup. Here there is no obvious
invariant measure to exploit, hence we have to work in a pointwise setting, similar to [7].

�

The result of Proposition 3.1 part (a) hinges only on proving (17). The following elementary
lemma gives a sufficient condition to verify (17). Before stating the next lemma we observe that,
with our assumptions on the coefficients of the SDE (1), classic arguments show that the operator
L and the semigroup commute on a set of sufficiently smooth functions (say e.g. on the set C∞V ,
defined just before Definition 2.1).

Proposition 3.4. Assume the same setting of Proposition 3.1 part (a). If there exists a real number
λ > 0 such that

(−L+ ∂t) Γ(ft) ≤ −λΓ(ft) ∀t > 0 (25)

then (17) holds.

Proof. This is again standard so we only sketch it.

d

ds
Pt−sΓ(fs(x)) = −LPt−sΓ(fs) + Pt−s∂sΓ(fs) .

We can now use the fact that the semigroup commutes with its generator (on a set of sufficiently
smooth functions) and the positivity preserving property of Markov semigroups, and therefore
conclude the proof. �

4. Main Results: Long time behaviour of derivatives of the semigroup

If X is a first order differential operator on RN , L is the operator (4) and ft(x) := (Ptf0)(x)
then

(−L+ ∂t) |Xft|2 = −2

d∑
j=1

|VjXft|2 + 2 ([X,L]ft) (Xft), (26)

whenever f0 is smooth. The identity (26) is obtained by using (8) and the fact that X and all the
Vj ’s are first order differential operators (see [21, Lemma 2.2]). Recall that if a multi-index α is of
length k we will denote it by αk. In view of (25), we use (26) to calculate the following

(−L+ ∂t)Γ(ft)
(26)
= −2

m∑
k=1

∑
αk

a[αk]

d∑
j=1

∣∣VjV[αk]ft
∣∣2 + 2

m∑
k=1

∑
αk

a[αk]

(
[V[αk],L]ft

) (
V[αk]ft

)
(16)
= −2

m∑
k=1

∑
αk

a[αk]

d∑
j=1

∣∣VjV[αk]ft
∣∣2 + 4

m∑
k=1

∑
αk

a[αk]

d∑
j=1

(
VjV[αk∗j]ft

) (
V[αk]ft

)
+ 2

m∑
k=1

∑
αk

a[αk]

(
[V[αk], V0]ft

) (
V[αk]ft

)
+ 2

m∑
k=1

∑
αk

a[αk]

d∑
j=1

(
V[αk∗j∗j]ft

) (
V[αk]ft

)
.
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Notice that if V[αk] is a field of length k, from (16) one can see that the commutator between
V[αk] and L will contain second order operators summed up with first order operators of length at
most k + 2. For this reason, when we calculate the commutators [Vαm ,L] and [Vαm−1 ,L], we can
make use of the UFG condition and express such commutators in terms of fields of length at most
m. This fact will be repeatedly used in the proofs of Section 5.

We now split the above expression as follows:

(−L+ ∂t)Γ(ft) = S(ft) + F(ft) (27)

where

S(ft) := −2
m∑
k=1

∑
αk

a[αk]

d∑
j=1

∣∣VjV[αk]ft
∣∣2 + 4

m∑
k=1

∑
αk

a[αk]

d∑
j=1

(
VjV[αk∗j]ft

) (
V[αk]ft

)
(28)

(13)
= −2

d∑
j=1

‖VjVft‖2Am + 4
d∑
j=1

〈VjΛjVft,Vft〉Am (29)

and

F(ft) := +2

m∑
k=1

∑
αk

a[αk]

(
[V[αk], V0]ft

) (
V[αk]ft

)
+ 2

m∑
k=1

∑
αk

a[αk]

d∑
j=1

(
V[αk∗j∗j]ft

) (
V[αk]ft

)
(14)
= 2〈ΛVft,Vft〉Am . (30)

Notice that F(ft) contains only first order operators (vector fields), while S(ft) contains second
order as well as first order operators (see also the expression for S(ft) at the beginning of the proof
of Lemma 4.2, in particular the terms with (∗∗)).

Theorem 4.1. Let m be a positive integer and Ptf0 =: ft be the semigroup associated with the
SDE (1), i.e. the semigroup (2). With the notation introduced so far, assume the following two
conditions are satisfied by the vector fields {V0, V1, . . ., Vd} appearing in (1):

• there exists a collection of strictly positive constants {a[α]}α∈Am such that the corresponding
bilinear form (11) satisfies

S(ft) = −2
d∑
j=1

‖VjVft‖2Am + 4
d∑
j=1

〈VjΛjVft,Vft〉Am ≤ γ‖Vft‖2Am , (31)

for some constant γ > 0 (possibly dependent on the collection {a[α]}α∈Am);
• there exists µ > γ such that

F(ft) = 2〈ΛVft,Vft〉Am ≤ −µ‖Vft‖2Am , (32)

where 〈·, ·〉Am is the bilinear form defined by the same constants for which (31) holds.

Then (25) holds with λ = µ− γ. Therefore (18) holds for any smooth initial datum.

Proof of Theorem 4.1. Trivially, from (27), (29), (30), (31), (32) and recalling the notation (12):

(−L+ ∂t)Γ(ft) ≤ (γ − µ)‖Vft‖2 = −λΓ(ft) .

�
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If we divide both sides of (32) by ‖Vft‖2Am , then it becomes clear that imposing condition (32) is

equivalent to requiring that (there exists a bilinear form on R|Am| ' RN |Am| such that) the “angle”
between the vectors ΛVft and Vft is obtuse.

We now establish conditions under which (31) and (32) hold.

Theorem 4.2. Let {Vi : i = 0, . . ., d} be the vector fields appearing in (1). Then the following
holds:

i) If the vector fields {Vi : i = 0, . . ., d} satisfy the UFG condition for some m ∈ N, then there
exists a choice of the constants {a[α]}α∈Am such that (31) is satisfied.

ii) Suppose the assumption of the above point i) is satisfied and assume that there exists a real
number λ0 > 0 such that, for every α ∈ Am and every smooth enough function f ,(

V[α]f
) (

[V[α], V0]f
)
≤ −λ0

∣∣V[α]f
∣∣2 . (33)

If λ0 is big enough then (32) holds with µ = λ0. Hence there exists λ > 0 such that (18) holds
for any smooth initial datum. Therefore, by Proposition 3.1 part (c), if the initial datum f0 is
continuous and bounded, then for any t0 ∈ (0, 1) and any K > 0 there exists a constant ct0,K > 0
such that

sup
x∈B(0,K)

∣∣V[α]ft(x)
∣∣2 ≤ ct0,K e−λ(t−t0)‖f0(x)‖∞ for all α ∈ Am and all t > t0.

If the coefficients of the vector fields {V0, . . ., Vd} are bounded, then∣∣V[α]ft(x)
∣∣2 ≤ ct0 e−λ(t−t0)‖f0(x)‖∞ for all x ∈ RN , α ∈ Am and all t > t0. (34)

Note 4.3. Let us clarify the statement of Theorem 4.2. According to part i) of Theorem 4.2,
if the UFG condition holds then one can fix a bilinear form 〈·, ·〉Am such that (31) holds. In the
statement of part ii) of the theorem we intend (32) to be satisfied for the same bilinear form. An
explicit estimate on how big λ0 is will be given in the proof, see (44). Obviously the estimate
(44) is quite general and can be made more precise when explicit knowledge of the functions ϕ’s
appearing in the UFG condition is available. We also remark that (33) is a slight generalization
of the so-called dilation condition, which has been considered in the literature for elliptic and
hypoelliptic semigroups (see [7, Section 2] and references therein). More generally, (33) replaces
in a quantitative way the exact dilation structure of stratified Lie groups. Still regarding (33),
notice that one cannot expect that the UFG condition alone could yield exponential decay of the
derivatives of the semigroup (as we have already pointed out in the introduction, if L is uniformly
elliptic then it satisfies the UFG condition, but not every elliptic dynamics has derivatives that
decay exponentially fast), therefore some quantitative condition on the vector fields has to be
imposed. �

Let us present some examples of UFG generators that satisfy the assumptions of Theorem 4.2,
in particular condition (33).

Example 4.4 (UFG-Grušin Plane). Let d = 1 and N = 2, i.e. consider the operator L = V0 + V 2
1

on R2, with

V0 = kx∂x, V1 = x∂y, k > 0.

The fields {V0, V1} satisfy the UFG condition with m = 1, as [V1, V0] = −kV1. It is easy to see that
(25) holds with λ = 2k (for every k > 0). Indeed, by direct calculation:

(−L+ ∂t) |V1ft|2
(26)
= −2

∣∣V 2
1 ft
∣∣2 + 2([V1,L]ft)(V1ft)

= −2
∣∣V 2

1 ft
∣∣2 − 2k |V1ft|2 ≤ −2k |V1ft|2 .
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We name this example the UFG-Grušin plane as it results from a small modification of the so-called
UFG-Grušin plane, given by the operators

X0 := x∂x + 2y∂y, X1 := ∂x, X2 := x∂y.

It is easy to verify that the operator X0 +X2
1 +X2

2 verifies the Hörmander condition.

Example 4.5. The operators {V0, V1, V2} defined in Example 2.5 satisfy the assumptions of
Theorem 4.2. In particular in this case one can obtain the following result, the proof of which can
be found in Section 5. �

Lemma 4.6. Let d=2 and consider the operator L of the form (4) acting on R3, where the fields
V0, V1, V2 are those defined in Example 2.5. With the notation introduced in Example 2.5, we have
that for every k > 0, (25) holds with λ = k, i.e.

(−L+ ∂t)Γ(ft) ≤ −kΓ(ft).

We include the proof of the above lemma in Section 5 for two reasons: i) to show on a simple
example how the proof of Theorem 4.2 works in practice, without all the cumbersome notation
that one needs to prove the result in general; ii) to show that, thanks to the freedom to choose the
constants appearing in the definition of Γ (see Note 5.1), the general lower bound for λ given in
(44) can be improved when we explicitly know the functions ϕ’s deriving from the UFG condition.

Note 4.7. The quadratic form Γ(ft) includes the derivatives of the semigroup but not the semigroup
ft itself. Therefore the results of this paper only give information on the behaviour of the derivatives;
in Subsection 4.1 below we use such results to obtain some (partial) information on the asymptotic
behaviour of the semigroup ft = Ptf . An analogous observation holds for the derivatives in the
direction V0. Notice that our result does not imply anything regarding the behaviour in the direction
V0, as V0 is not contained in the definition of Γ. This is again a structural fact. Indeed, under just
the UFG condition, one is not even guaranteed differentiability in the direction V0, let alone decay,
see [6, Section 2.9]. However it was proved that under the so-called V0-condition (see Definition 4.8
below), the semigroup Pt is differentiable in the direction V0 as well. In this case our results cover
such a direction as well. �

Definition 4.8 (V0-condition). With the notation introduced so far, we say that the V0-condition
is satisfied if there exist functions ϕβ ∈ C∞V such that

V0 =
∑
β∈A2

ϕβV[β].

Corollary 4.9. Suppose that the assumptions of Theorem 4.1 are satisfied. If the V0 condition
holds, then there exist positive constants c, λ > 0 such that

|V0ft|2 ≤ ce−λt,
say for any smooth f0.

Finally we observe, although without proof, that the same strategy used in this paper can be
adapted to obtain estimates on the derivatives of any order along the semigroup. This can be done
inductively (on the order of the derivative) using, at step n of the induction, the quadratic form

(Γ(n)f)(x) :=

n∑
k=1

∑
α(j)∈Am

a[α(k),...,α(1)]

∣∣∣V[α(k)] . . . V[α(1)]ft(x)
∣∣∣2 .

That is, the quadratic form Γ(n) contains all the derivatives of order at most n, in all the directions
contained in Rm. A similar inductive procedure has been used, for hypoelliptic semigroups of
hypocoercive type, in [20, 21].
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4.1. Decay of the semigroup. Let x and y be two points in RN and, for some given α ∈ Am,
suppose there exists an integral curve of V[α] joining x and y. That is, suppose there exists η(τ) :

[0, 1]→ RN such that

d

dτ
η(τ) = V[α](η(τ)), η(0) = x, η(1) = y.

We stress that in the above V[α] has to be intended as a vector field rather than as a differential
operator. More generally, we say that y is reachable from x, and write x ∼ y, if there exists
an integer M > 0 and M points in RN , z1, . . ., zM , such that z1 = x, zM = y and for every
i = 1, . . .,M − 1, there exists an α(i) ∈ Am such that the integral curve of V[α(i)] is well defined and

joins zi with zi+1. The relation ∼ is an equivalence relation. We denote by Ux the set of points
reachable from x (clearly, if y ∼ x then Ux = Uy).

Corollary 4.10. Let Pt be the semigroup (2) and assume for simplicity that the fields V[α] have
bounded coefficients. Suppose that the assumptions of Theorem 4.2 hold. Then for any f(x) con-
tinuous and bounded, for any x ∈ RN and for any y ∈ Ux there exists λ > 0 such that

|(Ptf)(x)− (Ptf)(y)| ≤ ce−λt, for all t > 0,

where c > 0 is a constant independent of t.

Proof. We just need to prove the result for M = 1 (that is, when y can be reached from x moving
along the integral curve of one of the V[α]’s). For any fixed t > 0, by definition of directional
derivative we have

d

dτ
(Ptf)(η(τ)) = (V[α]Ptf)(η(τ))

(see also Note 6.1 in the appendix). Integrating the above between 0 and 1 and using (34) we
obtain the result. �

5. Proofs of Main results

Throughout this section, if ϕ(x) is a function, we denote

ϕ̄ := sup
x
|ϕ(x)| .

We also set

Ām := {α ∈ A : ‖α‖ = m}.

We make the (obvious) remark, that if the UFG condition holds for some m ∈ N, then for all the
multi-indices α of length at most m, we have

ϕ̄jα∗j,β := sup
x
|Vj(ϕα∗j,β)| <∞, ∀j = 1, . . ., d. (35)

We also recall the Young’s inequality

|a b| ≤ a2

2ε
+
b2ε

2
, for all a, b ∈ R and ε > 0, (36)

which we will repeatedly use throughout the proofs of this section.

Proof of part i) of Theorem 4.2. The case m = 1 is straightforward and can be dealt with directly,
so throughout the proof we take m > 1. Looking at (28), notice that if ‖αk‖ = m then ‖αk ∗ j‖ =
m + 1 when j ∈ {1, . . ., d}, so we can apply the UFG condition to the operator V[αk∗j]. So from
(28) we obtain
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S(ft) = −2

m∑
k=1

∑
αk

a[αk]

d∑
j=1

∣∣VjV[αk]ft
∣∣2

+ 4

m−1∑
k=1

∑
αk

a[αk]

d∑
j=1

(
VjV[αk∗j]ft

) (
V[αk]ft

)
?

+ 4
∑
αm

a[αm]

d∑
j=1

∑
β∈Am

ϕjαm∗j,β
(
V[β]ft

) (
V[αm]ft

)
∗∗

+ 4
∑
αm

a[αm]

d∑
j=1

∑
β∈Am

ϕαm∗j,β
(
VjV[β]ft

) (
V[αm]ft

)
4

Let us now set, for any multi-index γ ∈ Am,

Jγ := sup
j=1,...,d
β∈Am

ϕ̄γ∗j,β and Hγ := sup
j=1,...,d
β∈Am\γ

ϕ̄jγ∗j,β .

With these definitions in mind, let us start estimating each of the above terms, beginning with the
last.

Terms with 4: For each αm ∈ Ām,

4a[αm]

d∑
j=1

∑
β∈Am

ϕαm∗j,β
(
VjV[β]ft

) (
V[αm]ft

)
≤ 2

d∑
j=1

∑
β∈Am

[
1{Jαm 6=0}

∣∣VjV[β]ft
∣∣2 + a2

[αm]J
2
αm

∣∣V[αm]ft
∣∣2]

= 2a2
[αm]J

2
αmd |Am|

∣∣V[αm]ft
∣∣2 + 21{Jαm 6=0}

d∑
j=1

∑
β∈Am

|VjVβft|2

Terms ∗∗: For each αm ∈ Ām, we have

4a[αm]

d∑
j=1

∑
β∈Am

ϕjαm∗j,β
(
V[β]ft

) (
V[αm]ft

)
≤ 4a[αm]

d∑
j=1

ϕjαm∗j,αm
∣∣V[αm]ft

∣∣2 + 4dHαma[αm]

∑
β∈Am\{αm}

(V[β]ft)(V[αm]ft)

≤ 4a[αm]

d∑
j=1

ϕjαm∗j,αm
∣∣V[αm]ft

∣∣2
+ 2d1{Hαm 6=0}

∑
β∈Am\{αm}

∣∣V[β]ft
∣∣2 + 2da2

[αm]H
2
αm (|Am| − 1)

∣∣V[αm]ft
∣∣2

Terms ?: for every k = 1, . . .,m− 1,

4a[αk]

d∑
j=1

(
VjV[αk∗j]ft

) (
V[αk]ft

)
≤ 2d

∣∣V[αk]ft
∣∣2 +

d∑
j=1

2a2
[αk]

∣∣VjV[αk∗j]ft
∣∣2 (37)
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Putting the above estimates together, after setting

J :=
∑

αm∈Ām

1{Jαm 6=0},

we obtain

S(ft) ≤
m∑
k=1

∑
αk∈Āk

cαk
∣∣V[αk]ft

∣∣2 (38)

+
m∑
k=1

d∑
j=1

∑
αk∈Āk

∣∣VjV[αk]ft
∣∣2 [−2a[αk] + 2

(
J + 1{k>1}1{αk=αk−1∗j}a

2
[αk−1]

)]
(39)

where

cαm := 2a2
[αm]J

2
αmd |Am|+ 4a[αm]

d∑
j=1

ϕjαm∗j,αm + 2d
∑

βm∈Ām\{αm}

1{Hβm 6=0} + 2da2
[αm]H

2
αm (|Am| − 1)

and, for k = 1, . . .,m− 1

cαk := 2d+ 2d
∑

αm∈Ām

1{Hαm 6=0} .

With the purpose of making sure that the terms in (39) are negative we can simply choose

a[α1] > max{0,J }, and a[αk] > J + a2
[αk−1] for all k = 2, . . .,m . (40)

Therefore, once all the a[α1] have been fixed, all the other coefficients can be chosen through
the above recursive relation. This choice allows to fix all the constants in the expression for the
quadratic form Γ. Assuming that any choice satisfying (40) has been made, one then has

S(ft) ≤
m∑
k=1

∑
αk∈Āk

cαk
∣∣V[αk]ft

∣∣2 ≤ γ‖Vft‖2,
having set

γ := max
αk∈Ak
k=1,...,m

cαk
a[αk]

.

�

Proof of part ii) of Theorem 4.2. For simplicity, suppose m > 3. The case m ≤ 3 can be studied
analogously (and it is in fact less involved). We notice again that if ‖αk‖ = m−1 (m, respectively)
then ‖αk ∗ j ∗ j‖ = m+ 1 (m+ 2, respectively). Therefore we can again apply the UFG condition
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to the vector fields V[αk∗j∗j] (appearing in (28)-(29)) when ‖αk‖ = m− 1 or m, obtaining

2〈ΛVft,Vft〉
(33)

≤ −2
m∑
k=1

∑
αk

a[αk]λ0

∣∣V[αk]ft
∣∣2

+ 2

m−2∑
k=1

∑
αk

a[αk]

d∑
j=1

(
V[αk∗j∗j]ft

) (
V[αk]ft

)
�

+ 2
∑

αm−1∈Ām−1

a[αm−1]

d∑
j=1

∑
β∈Am

ϕαm−1∗j∗j,β
(
V[β]ft

) (
V[αm−1]ft

)
�

+ 2
∑

αm∈Ām

a[αm]

d∑
j=1

∑
β∈Am

ϕαm∗j∗j,β
(
V[β]ft

) (
V[αm]ft

)
∗

Like in the proof of part i) of Theorem 4.2, we set

Iγ := sup
j=1,...,d
β∈Am\γ

ϕ̄γ∗j∗j,β

and estimate all the above terms, starting from the last.

Terms with ∗: For each αm ∈ Ām,

2a[αm]

d∑
j=1

∑
β∈Am

ϕαm∗j∗j,β
(
V[β]ft

) (
V[αm]ft

)
≤ 2a[αm]

d∑
j=1

ϕαm∗j∗j,αm
∣∣V[αm]ft

∣∣2 + 2dIαma[αm]

∑
β∈Am\{αm}

(
V[β]ft

) (
V[αm]ft

)
= 2a[αm]

d∑
j=1

ϕαm∗j∗j,αm
∣∣V[αm]ft

∣∣2
+ d

∑
β∈Am\{αm}

[
a2

[αm]I
2
αm

∣∣V[αm]ft
∣∣2 +

∣∣V[β]ft
∣∣2 1{Iαm 6=0}

]

= 2a[αm]

d∑
j=1

ϕαm∗j∗j,αm
∣∣V[αm]ft

∣∣2
+ da2

[αm]I
2
αm

∣∣V[αm]ft
∣∣2 (|Am| − 1) + d1{Iαm 6=0}

∑
β∈Am\{αm}

∣∣V[β]ft
∣∣2

Terms �: For each αm−1 ∈ Ām−1,

2a[αm−1]

d∑
j=1

∑
β∈Am

ϕαm−1∗j∗j,β
(
V[β]ft

) (
V[αm−1]ft

)
≤ 2a[αm−1]

d∑
j=1

ϕαm−1∗j∗j,αm−1

∣∣V[αm−1]ft
∣∣2

+ da2
[αm−1]I

2
αm−1

(|Am| − 1)
∣∣V[αm−1]ft

∣∣2 + d1{Iαm−1 6=0}
∑

β∈Am\{αm−1}

∣∣V[β]ft
∣∣2 .
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Terms �: for every k = 1, . . .,m− 2,

2a[αk]

d∑
j=1

(
V[α∗j∗j]ft

) (
V[αk]ft

)
≤ d

∣∣V[αk]ft
∣∣2 +

d∑
j=1

a2
[αk]

∣∣V[αk∗j∗j]ft
∣∣2 . (41)

Overall one obtains:

2〈ΛVft,Vft〉 ≤
m∑
k=1

∑
αk∈Āk

∣∣V[αk]ft
∣∣2 (−2a[αk]λ0 + `αk

)
(42)

where

`αm := da2
[αm]I

2
αm (|Am| − 1) + d

∑
βm∈Ām\{αm}

1{Iαm 6=0}

+ 2a[αm]

d∑
j=1

ϕαm∗j∗j,αm + d
∑

αm−1∈Ām−1

1{Iαm−1 6=0} + 1{αm=αm−2∗j∗j}a
2
[αm−2]

`αm−1 := 2a[αm−1]

d∑
j=1

ϕαm−1∗j∗j,αm−1 + da2
[αm−1]I

2
αm−1

(|Am| − 1)

+ 1{αm−1=αm−3∗j∗j}a
2
[αm−3] + d

∑
αm∈Ām

1{Iαm 6=0} + d
∑

αm−1∈Ām−1

1{Iαm−1 6=0}

and, for k = 1, . . .,m− 2

`αk := d+ 1{k−2>0}1{αk=αk−2∗j∗j}a
2
[αk−2] + d

∑
αm∈Ām

1{Iαm 6=0} + d
∑

αm−1∈Ām−1

1{Iαm−1 6=0} .

Looking at (42), we then impose

− 2a[αk]λ0 + `αk ≤ −a[αk]λ0 ∀k = 1, . . .,m , (43)

that is,

a[αk]λ0 ≥ `αk , ∀k = 1, . . .,m .

It is clear that given any two sets of positive constants, a[αk] and `αk , there always exists at least
one λ0 > 0 satisfying the above. In particular one can choose any λ0 such that

λ0 > max
αk∈Āk
k=1,...,m

`αk
a[αk]

. (44)

If λ0 satisfies (44), and hence (43), from (42) ne has

2〈ΛVft,Vft〉 ≤ −λ0

m∑
k=1

∑
αk∈Āk

a[αk]

∣∣V[αk]ft
∣∣2 = −λ0‖Vft‖2.

This concludes the proof. �

Proof of Lemma 4.6. Consider the quadratic form

Γ(ft) = a1 |V1ft|2 + a2 |V2ft|2 + a12 |V12ft|2 .
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From Proposition 3.1 and Proposition 3.4 it is clear that we only need to show the inequality
(−L+ ∂t)Γ(ft) ≤ −kΓ(ft). Using (26), let us therefore calculate the following:

(−L+ ∂t)Γ(ft) = −2a1

∣∣V 2
1 ft
∣∣2 + 2a1 ([V1,L]ft) (V1ft)− 2a1 |V2V1ft|2

− 2a2

∣∣V 2
2 ft
∣∣2 + 2a2 ([V2,L]ft) (V2ft)− 2a2 |V1V2ft|2

− 2a12 |V1V12ft|+ 2a12 ([V12,L]ft) (V12ft)− 2a12 |V2V12ft|2 .
The commutators appearing in the above can be calculated, and they are

[V1,L] = −kV1 + 2V2V12

[V2,L] = −kV2 + 2V1V21 = −kV2 − 2V1V12

[V12,L] = −2kV12, .

Therefore

(−L+ ∂t)Γ(ft) = −2a1

∣∣V 2
1 ft
∣∣2 − 2a1 |V2V1ft|2 − 2a1k |V1ft|2

− 2a2

∣∣V 2
2 ft
∣∣2 − 2a2 |V1V2ft|2 − 2a2k |V2ft|2

− 2a12 |V1V12ft|2 − 2a12 |V2V12ft|2 − 4a12k |V12ft|2

+ 4a1 (V2V12ft) (V1ft)− 4a2 (V1V12ft) (V2ft) .

If we use the Young’s inequality (36) (with ε = a1 for the first inequality and ε = a2 in the second)
we can estimate the terms on the last line as

4a1 (V2V12ft) (V1ft) ≤ 2a2
1 |V2V12ft|2 + 2 |V1ft|2 (45)

4a2 (V1V12ft) (V2ft) ≤ 2a2
2 |V1V12ft|2 + 2 |V2ft|2 (46)

Therefore,

(−L+ ∂t)Γ(ft) ≤ (−2a1k + 2) |V1ft|2 + (−2a2k + 2) |V2ft|2 − 4a12k |V12ft|2 ♠

− 2a1

∣∣V 2
1 ft
∣∣2 − 2a1 |V2V1ft|2 − 2a2

∣∣V 2
2 ft
∣∣2 − 2a2 |V1V2ft|2(

−2a12 + 2a2
2

)
|V1V12ft|2 +

(
−2a12 + 2a2

1

)
|V2V12ft|2 ♥

Looking at the terms ♠, we choose a1 and a2 such that

− 2aik + 2 ≤ −aik =⇒ ai ≥
2

k
i = 1, 2 (47)

and a12 such that −4a12k ≤ −a12k, which is true e.g. for any a12 > 1. Then, looking at the terms
♥, we choose a12 much bigger than a1 and a2, more precisely we choose a12 such that

−2a12 + 2a2
i < 0, i = 1, 2.

Because for any k > 0 one can find a1 > 0 and a2 > 0 such that (47) is satisfied, this concludes the
proof. �

Note 5.1. If the constants a1, a2, a12 had not been introduced, i.e. if a1 = a2 = a12 = 1, then
we would have only been able to prove the result for k > 1/2 (by making better use of the Young
inequality in (45) and (46)).

6. Appendix

We define here the notion of classical solution u of the PDE (5). The notion is quite natural:
we will require u to be continuously differentiable (twice) in the direction of every vector field
Vi, i = 1, ..., d. As a consequence of the need that u satisfies (5), we will also require u to be
continuously differentiable in the direction V0 = ∂t−V0, when viewed as a function (t, x) 7→ u(t, x)
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over the product space (0,∞) × RN . However we will not require u to be differentiable in either
the time direction ∂t or the direction V0.

The analysis of u hinges on being well approximated by solutions of the PDE (5) with smooth
initial condition (and therefore smooth for all t ≥ 0). The approximation is done in such way that,
in the limit, only the differentiability in the directions Vi i = 1, ..., d and V0 = ∂t−V0 is preserved,
but not that in the time direction ∂t or in the direction V0. This is to be expected as the smoothing
effect only takes place in the directions Vi, i = 1, ..., d. An extreme case where the UFG condition
holds is when all the Vi, i = 1, ..., d are equal to zero. Take, for example, the transport equation

∂tu(t, x) = V0u(t, x)

u(0, x) = f(x).

For example, assume that N = 1, V0 = ∂
∂x . In this case, the solution is explicitly given by

u(t, x) = f(t+ x), x ∈ R and t ≥ 0. Obviously should f not be differentiable (choose for example
f(x) = |x|, x ∈ R), we will not expect differentiability in either the time direction ∂t, or the space
direction ∂

∂x . However u will be differentiable in the direction V0 = ∂t − V0. In fact, u is constant
in the direction V0 = ∂t− V0, as V0u = 0. In this extreme case, no additional smoothness is gained
because of the absence of any second order differential operator in the PDE (5).

At the other end of the spectrum we have the case when the vector fields Vi, i = 0, ..., d, satisfy the
Hörmander condition. In this case the smoothing effect occurs in every direction. In particular, u
becomes differentiable in the V0 direction, and since u is differentiable in the direction V0 = ∂t−V0,
u will also be differentiable in the time direction. In this case, the notion of a classical solution
defined below coincides with the standard notion of a classical solution.

Finally, we remark that the Hörmander condition is not necessary to ensure that u becomes
differentiable in the V0 direction (and therefore also in the time direction). If the vector fields Vi
i = 0, ..., d satisfy the UFG condition and V0 belongs to A 3, then it is still the case that u becomes
differentiable in the V0 direction and in the time direction.

To introduce rigourously the classical solution of the PDE (5) we need several spaces of functions,
which we come to introduce. For an open ball B ⊂ RN and for a function ϕ in C∞V (B) (that is,
for any smooth bounded real-valued function ϕ with bounded derivatives on B of any order in the
directions V[α], α ∈ Am), we set

‖ϕ‖V,1B,∞ = ‖ϕ‖B,∞ +
∑
α∈Am

‖V[α]ϕ‖B,∞

and then define D1,∞
V (B) as the closure of C∞V (B) in Cb(B̄) w.r.t. ‖·‖V,1B,∞.4 More generally, for k > 1,

we can define by induction

‖ϕ‖V,kB,∞ = ‖ϕ‖V,k−1
B,∞ +

∑
α1,...,αk∈Am

‖V[α1] . . . V[αk]ϕ‖B,∞, ϕ ∈ C∞V (B).

We then define Dk,∞V (B) as the closure of C∞V (B) in Cb(B̄) w.r.t. ‖ · ‖V,kB,∞. In particular, we can

define Dk,∞V (RN ) as

Dk,∞V (Rd) =
⋂
r≥1

Dk,∞V (B(0, r)),

where B(0, r) stands for the d-dimensional ball of center 0 and radius r. For v ∈ Dk,∞V (RN ),
V[α1] . . . V[αk]v is understood as the derivative of v in the directions V[α1] . . . V[αk], with α1, . . . , αk ∈

3For example, if V0 is a linear combination of the vector fields Vi, [Vi, Vj ], i, j = 1, ..., d.
4Notice that this closure is well defined, see [5, Section 2.3]
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Am. Similarly, for ϕ ∈ C∞V (B) and k ≥ 0, we set

‖ϕ‖V,k+1/2
B,∞ = ‖ϕ‖V,kB,∞ +

N∑
i=1

∑
α1,...,αk∈Am

‖V[α1] . . . V[αk]Viϕ‖B,∞.

(Above, ‖ · ‖V,0B,∞ = ‖ · ‖B,∞.) We then define Dk+1/2,∞
V (B) as the closure of C∞V (B) in Cb(B̄) w.r.t.

‖ · ‖V,k+1/2
B,∞ and we set

Dk+1/2,∞
V (RN ) =

⋂
r≥1

Dk+1/2,∞
V (B(0, r)), k ≥ 0.

Note 6.1. Note that any function in D1,∞
V (RN ) is differentiable along the solutions of the ordinary

differential equation γ̇t = V (γt), t ≥ 0, for V ∈ Am. In particular, any function in D1,∞
V (RN ) is

continuously differentiable on RN when the uniform Hörmander condition is satisfied.

To define the notion of a classical solution to (5), we will need to introduce the set of functions
that are continuously differentiable in the direction V0 = ∂t − V0. Again, we proceed via a closure
argument. For any r ≥ 1 and any time-space function ϕ ∈ C∞V ([1/r, r] × B(0, r)) with bounded
derivatives of any order, we set

‖ϕ‖V0,1[1/r,r]×B(0,r),∞ = ‖ϕ‖[1/r,r]×B(0,r),∞ + ‖V0ϕ‖[1/r,r]×B(0,r),∞.

We then define D1,∞
V0 ([1/r, r]×B(0, r)) as the closure of C([1/r, r]×B(0, r)) w.r.t. ‖ · ‖V0,1[1/r,r]×B(0,r),∞

and then define D1,∞
V0 ((0,+∞)×RN ) as the intersection of the spaces D1,∞

V0 ([1/r, r]× B(0, r)) over

r ≥ 1. We are now in position to define a classical solution to the PDE (5)

Definition 6.2. We call a function v = {v(t, x), (t, x) ∈ [0,+∞)× RN} a classical solution of the
PDE (5) if the following conditions are satisfied:

(1) v belongs to D1,∞
V0 ((0,+∞) × RN ) and, for any t > 0, v(t, ·) is in D2,∞

V (RN ) ; moreover,

for any α1, α2 ∈ A, the function (t, x) ∈ (0,+∞) × RN 7→
(
V[α1]v(t, x), V[α1]V[α2]v(t, x)

)
is

continuous.
(2) For any (t, x) ∈ (0,+∞)× RN , it holds

V0v(t, x) =

N∑
i=1

V 2
i v(t, x).

(3) The boundary condition lim(t,y)→(0,x) v(t, y) = f(x) holds as well for any x ∈ RN .

Note 6.3. Again, we emphasize that we do not assume that a classical solution of the PDE (5)
must be differentiable in the time direction or in the direction V0. However this is the case if vector
fields satisfy the uniform Hörmander condition. In this case the above definition coincides with the
standard definition of a classical solution.

The following proposition is a particular case of Proposition 2.8 in [5]:

Proposition 6.4. Under the UFG condition, if f is a continuous function of polynomial growth,
the function (t, x) 7→ (Ptf)(x) is a classical solution to the PDE (5) in the sense of Definition 6.2.
Moreover, any other classical solution v of the linear PDE (5) that has polynomial growth matches
the solution (t, x) 7→ (Ptf)(x).

Lemma 6.5. With the notation introduced so far, if (17) holds for any g0 ∈ C∞V then (19) holds

for any g0 ∈ D1,∞
V ∩ Pol.
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Proof. This is a standard density argument, so we just sketch it. Let gn0 be a sequence in C∞V , such

that gn0
‖·‖V,1∞−→ g0 ∈ D1,∞

V . Then gn0 and V[α]g
n
0 converge uniformly on compacts to g0 and V[α]g0,

respectively, for any α ∈ Am. Applying (17) to the sequence gn0 gives∣∣V[α]g
n
t (x)

∣∣2 ≤ e−λt(PtΓgn0 )(x) for all α ∈ Am, t ≥ 0 , (48)

where in the above gnt := Ptgn0 . From the integration by parts formulae in [18, Chapter 3] the
left hand side of the above converges uniformly on compacts to V[α]gt(x). As for the right hand
side, since V[α]g

n
0 converges uniformly on compacts to V[α]g0, then (Γgn0 )(x) converges uniformly on

compacts, and therefore pointwise, to (Γg0)(x). By definition of Pt, we have

|[Pt(Γgn0 − Γg0)] (x)| =
∫

[(Γgn0 )(y)− (Γg0)(y)] pt(x, dy),

where pt(x, dy) are the transition probabilities of the process Xt in (1). Because g0 ∈ Pol, we
can always choose the approximating sequence so that Γgn0 grows polynomially (with the degree of
the polynomial independent of n). Therefore, by the dominated convergence theorem, (PtΓgn0 )(x)
converges pointwise to (PtΓg0)(x) as n→∞. Taking the (pointwise) limit as n→∞ on both sides
of (48) gives then ∣∣V[α]gt(x)

∣∣2 ≤ e−λt(PtΓg0)(x)

= e−λt
∫

(Γg0)(y)pt(x, dy)

(15)

≤ |Am|κe−λt
∫

(1 + |y|q)pt(x, dy).

Now
∫

(1 + |y|q)pt(x, dy) = (Pth)(x), where h(x) = 1 + |x|q and therefore, by Proposition 6.4,
(Pth)(x) is polynomially bounded. Taking the supremum over compact sets on both sides of the
above gives the desired result.

�
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