
Diffusion Limit For The Random Walk Metropolis

Algorithm Out Of stationarity

Juan Kuntz, Michela Ottobre and Andrew M. Stuart∗

Juan Kuntz
Imperial College London,
SW7 2AZ, London, UK,

e-mail: juan.kuntz08@imperial.ac.uk

Michela Ottobre
Heriot Watt University, Mathematics Department,

Edinburgh, EH14 4AS, UK
e-mail: m.ottobre@hw.ac.uk

Andrew M. Stuart
Department of Computing and Mathematical Sciences,

California Institute of Technology, CA 91125, USA e-mail: astuart@caltech.edu

Abstract:
The Random Walk Metropolis (RWM) algorithm is a Metropolis-Hastings Markov Chain Monte

Carlo algorithm designed to sample from a given target distribution πN with Lebesgue density on
RN . Like any other Metropolis-Hastings algorithm, RWM constructs a Markov chain by randomly
proposing a new position (the “proposal move”), which is then accepted or rejected according to a
rule which makes the chain reversible with respect to πN . When the dimension N is large a key
question is to determine the optimal scaling with N of the proposal variance: if the proposal variance
is too large, the algorithm will reject the proposed moves too often; if it is too small, the algorithm
will explore the state space too slowly. Determining the optimal scaling of the proposal variance gives
a measure of the cost of the algorithm as well. One approach to tackle this issue, which we adopt here,
is to derive diffusion limits for the algorithm. Such an approach has been proposed in the seminal
papers [RGG97, RR98]; in particular in [RGG97] the authors derive a diffusion limit for the RWM
algorithm under the two following assumptions: i) the algorithm is started in stationarity; ii) the target
measure πN is in product form. The present paper considers the situation of practical interest in which
both assumptions i) and ii) are removed. That is a) we study the case (which occurs in practice) in
which the algorithm is started out of stationarity and b) we consider target measures which are in
non-product form. In particular, we work in the setting in which families of measures on spaces of
increasing dimension are found by approximating a measure, on an infinite dimensional Hilbert space,
which is defined by its density with respect to a Gaussian. The target measures that we consider arise
in Bayesian nonparametric statistics and in the study of conditioned diffusions. We prove that, out
of stationarity, the optimal scaling for the proposal variance is O(N−1), as it is in stationarity. In
this optimal scaling a diffusion limit is obtained and the cost of reaching and exploring the invariant
measure scales as O(N). Notice that the optimal scaling in and out of stationatity need not be the
same in general, and indeed they differ e.g. in the case of the MALA algorithm [KOS16].

MSC 2010 subject classifications: Primary 60J22; secondary 60J20, 60H10.
Keywords and phrases: Markov Chain Monte Carlo, Random Walk Metropolis algorithm, diffusion
limit, optimal scaling.

1. Introduction

1.1. Setting and Main Result

Metropolis-Hastings algorithms are popular MCMC methods used to sample from a given target measure,
πN , defined via its density with respect to Lebesgue measure on RN (with abuse of notation, we often
denote both the measure and the density with the same letter). The basic mechanism consists of employing
a proposal transition density q(x, y) in order to produce a reversible chain {xk}∞k=0 which has the target
measure as invariant distribution [Tie98]. At step k of the chain, a proposal move yk+1 is generated by using
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a proposal kernel q(x, y), i.e. yk+1 ∼ q(xk, ·). Then such a move is accepted with probability α(xk, yk+1),
where

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
.

If the move is accepted then the chain is updated to the state xk+1 := yk+1, otherwise xk+1 := xk. When the
proposal kernel q(x, y) is symmetric in its variables, the expression for the acceptance probability simplifies
to

α(x, y) = min

{
1,
π(y)

π(x)

}
.

Random Walk Metropolis (RWM) belongs to the family of Metropolis-Hastings algorithms with symmetric
proposal, as the proposal move is generated according to a random walk. A key question for Metropolis-
Hastings methods in general, and for RWM in particular, is to determine the cost of the algorithm as a
function of the dimension N . The present paper aims at studying the cost of the RWM algorithm by the use
of diffusion limits. Precisely, we identify scalings of the proposal variance with resepct to the dimension N
which lead to a diffiusion limit. Since the inverse proposal variance has the interpretation as a time-step in
a discretization of the limiting diffusion, this scaling determines the number of steps required to reach and
explore the desired target distribution. We study the situation of practical interest where the algorithm is
started out of stationarity and the target measure is in non-product form.

In what follows we first introduce the class of target measures that we will be considering and we then
specify the RWM algorithm for such a class of targets (more details on the algorithm and on the class of
target measures can be found in Section 2 and in Section 3, respectively). We then clarify the problem that
is the subject of the paper, we present our main result and, immediately after (see Remark 1.1), we explain
the practical implications of such a result in terms of cost of the algorithm (in this context we will specify
what we mean by “cost of the algorithm”).

The class of target measures that we consider are determined by approximations of a measure on an infinite
dimensional Hilbert space. In particular, let π be a probability measure defined on an infinite dimensional
separable Hilbert space (H, 〈·, ·〉, ‖ ·‖) and absolutely continuous with respect to a Gaussian measure π0 with
mean zero and covariance operator C:

dπ

dπ0
∝ exp(−Ψ), π0

D∼ N (0, C), (1.1)

where Ψ : H̃ → R is some real valued functional with domain H̃ ⊆ H and π0(H̃) = 1. In Section 3 we will
detail our assumptions on Ψ and give the precise definition of the space H̃ and identify it with an appropriate
Sobolev-like subspace of H (denoted by Hs in Section 3). The covariance operator C is a positive, self-adjoint,
trace class operator on H, with eigenbasis {λ2

j , φj}j∈N:

Cφj = λ2
jφj , ∀j ∈ N, (1.2)

where {φj}j∈N is an orthonormal basis of H. We will analyse the RWM algorithm designed to sample from
the finite dimensional projections πN of the measure (1.1) on the space

H ⊃ XN := span{φj}Nj=1 (1.3)

spanned by the first N eigenvectors of the covariance operator. Notice that the space XN is isomorphic
to RN . To clarify this further, we need to introduce some notation. Given a point x ∈ H, xN := PN (x)
is the projection of x onto the space XN ; xi,N will be the i-th component of the vector xN ∈ RN , i.e.
xi,N = 〈φi, xN 〉. 1 Similar notation is also used for y, ξ and other vectors; we do not give details. We will
also denote ΨN (x) := Ψ(PN (x)) and CN will be, effectively, an N × N diagonal matrix with i-th diagonal
component equal to λ2

i . More formally,

ΨN := Ψ ◦ PN and CN := PN ◦ C ◦ PN . (1.4)

1Notice that if xN = PN (x) and 1 ≤ i ≤ N then xi,N = 〈φi, xN 〉 = 〈φi, x〉.
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With this notation in place, our target measure is the measure πN (on XN ∼= RN ) defined as

dπN

dπN0
(x) = MΨN e

−ΨN (x), πN0 ∼ N (0, CN ), (1.5)

where MΨN is a normalization constant. Notice that the sequence of measures {πN}N∈N approximates the
measure π (in particular, the sequence {πN}N∈N convereges to π in the Hellinger metric [Stu10]).

Letting ` > 0 denote a positive parameter, consider the RWM algorithm with proposal

y = x+

√
2`2

N
C1/2
N ξN , ξN =

N∑
j=1

ξj,Nφj , ξj,N
D∼ N (0, 1) i.i.d.. (1.6)

The current position x and the proposal y belong to H; however, because the noise is finite dimensional,
effectively only the first N components of x are modified when a proposal is accepted, namely the components
belonging to XN .

Using the proposal (1.6) we construct the RWM - Markov chain {xk}k ⊂ H, through the “accept-reject”
mechanism described earlier. In computational practice one uses the projected chain xNk = PN (xk), which
samples from the measure πN , i.e. for any fixed N ∈ N, the chain {xNk }k∈N ⊂ XN can be used to sample
from the measure πN . However we often work in H rather than in XN (and therefore consider the chain
{xk}k∈N rather than the chain {xNk }k∈N) only because in H the analysis is cleaner.

To explain the problem at hand consider for a moment, instead of the proposal (1.6), the following
proposal:

y = x+

√
2`2

Nβ
C1/2
N ξN , (1.7)

where β > 0 is a positive parameter to be chosen. As is well known, if β is “too large” then the proposal
variance (that is, informally, the size of the jumps of the chain) is “too small”, therefore the algorithm will
move in state space very slowly. On the other hand, if β is “too small” then the proposal variance is too
large and the algorithm will tend to reject the proposed moves too frequently (and this is more and more
the case as the dimension N increases). We will show that the value of β that strikes the balance between
these two opposing scenarios is β = 1.

We are now in a position to present our main result: let x(N)(t) be the continuous interpolant of the chain
{xk}, namely

x(N)(t) = (Nt− k)xk+1 + (k + 1−Nt)xk, tk ≤ t < tk+1, where tk = k/N. (1.8)

The main result of this paper is the diffusion limit for the RWM algorithm started out of stationarity.
We informally state such a result below, with the functions D`,Γ` and A` defined immediately after the
statement. The rigorous statement of the result, with precise conditions, appears in Theorem 5.1 and Theorem
5.4. Below we denote by C([0, T ]; H̃) the space of H̃- valued continuous functions on [0, T ], endowed with
the uniform topology.

Main Result. Let {xk}k∈N be the Markov chain constructed using the RWM proposal (1.6) and starting
from the (deterministic) initial datum x0 ∈ H̃. Assume

S0 := lim
N→∞

1

N

N∑
j=1

∣∣∣xj,N0

∣∣∣2
λ2
j

<∞. (1.9)

Then the continuous interpolant of the chain xk, i.e. the sequence of processes x(N)(t) defined in (1.8),
converges weakly in C([0, T ]; H̃) (as N →∞) to the solution of the SDE

dx(t) = [−x(t)− C∇Ψ(x(t))]D`(S(t)) dt+
√

Γ`(S(t)) dW (t), x(0) = x0 , (1.10)

where S(t) : R+ → R+ := {s ∈ R : s ≥ 0} is a deterministic function which solves the ODE

dS(t) = A`(S(t)) dt, S(0) = S0 , (1.11)
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and W (t) is a H̃-valued C̃-Brownian motion. 2

If we denote by Φ(x) the cdf of a standard Gaussian, the functions D`,Γ`, A` : R+ → R that appear in
the above statement are defined as follows: for x > 0 and ` > 0 a positive parameter, we define

D`(x) := 2`2e`
2(x−1)Φ

(
`(1− 2x)√

2x

)
, (1.12)

Γ`(x) := D`(x) + 2`2Φ

(
− `√

2x

)
, (1.13)

A`(x) := (1− 2x)D`(x) + 2`2Φ

(
− `√

2x

)
= −2xD`(x) + Γ`(x) (1.14)

and for x = 0 and ` > 0 we set
D`(0) = Γ`(0) = A`(0) = 2`2e−`

2

. (1.15)

Remark 1.1. We make several remarks concerning the main result.

• The effective time-step implied by the interpolation (1.8) is N−1 so, in this sense, the main result
indicates that, started out of stationarity, the RWM algorithm will takeO(N) steps to reach and explore
target measures found by approximating π in RN . In this respect, we say that the computational cost
of the algorithm is of order N . To put it differently, our result proves that the proposal variance which
delivers a diffusion limit scales like N−1 with dimension and that, therefore, the cost of the algorithm
is of order N .

• Notice that equation (1.11) evolves independently of equation (1.10). Once the RWM chain {xk}k is
introduced (see (2.3) for a precise description of the chain) and an initial state x0 ∈ H̃ is given such
that S(0) is finite, the real valued (double) sequence SNk ,

SNk :=
1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

(1.16)

started at SN0 := 1
N

∑N
i=1
|xi,N0 |2
λ2
i

is well defined. We can then consider the continuous interpolant

S(N)(t) of the chain {SNk } ⊂ R+, namely

S(N)(t) = (Nt− k)SNk+1 + (k + 1−Nt)SNk , tk ≤ t < tk+1, where tk = k/N. (1.17)

In Theorem 5.1 we prove that S(N)(t) converges in probability in C([0, T ];R) to the solution of (1.11)
with initial condition S0 := limN→∞ SN0 . Once such a result is obtained, we can prove that x(N)(t)
converges to x(t). We want to stress that the convergence of S(N)(t) to S(t) can be obtained inde-
pendently of the convergence of x(N)(t) to x(t). Moreover, notice that SNk is not a Markov Chain in
general (unless e.g. Ψ = 0.)

• Let S(t) : R+ → R+ be the solution of the ODE (1.11). We will prove (see Theorem 4.1) that S(t)→ 1
as t → ∞. With this in mind, notice that D`(1) = 2`2Φ(−`/

√
2) =: h` and Γ`(1) = 2D`(1) = 2h`.

Heuristically one can then argue that the asymptotic behaviour of the law of x(t), solution of (1.10),
is described by the law of the following infinite dimensional SDE:

dz(t) = −h`(z + C∇Ψ(z)) +
√

2h`dW. (1.18)

It was proved in [HSVW05, HSV07] that (1.18) is ergodic with unique invariant measure given by our
target measure (1.1). Our deduction concerning computational cost is made on the assumption that
the law of (1.10) does indeed tend to the law of (1.18), although we will not prove this here as it would
take us away from the main goal of the paper which is to establish the diffusion limit of the RWM
algorithm.

�
2The operator that here we denote generically by C̃, to avoid getting in too much notation at this stage, will be more clearly

defined in Section 3 and there denoted by Cs. More precisely, as we will explain, W (t) is a Brownian motion with covariance
Cs, see Section 3.
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1.2. Relation to the Literature

As already explained, in this paper we consider target measures in non-product form, when the chain is
started out of stationarity. When the target measure is in product form, a diffusion limit for the resulting
Markov chain was studied in the seminal paper [RGG97], where it is assumed that

p(xN ) = ΠN
i=1e

−V (xi,N ), xN = (x1,N , . . . , xN,N ) ∈ RN , (1.19)

and the potential V is such that the measure p is normalized. That work assumed that the chain is started
in stationarity, leading to the conclusion that, in stationarity, O(N) steps are required to explore the target
distribution. In [CRR05] the same question was addressed in the case where p is the density of an isotropic
Gaussian, when the chain is started out of stationarity. Recently the papers [JLM15, JLM14] made the
significant extension of considering the product case (1.19) for quite general potentials V , again out of
stationarity. The work in [CRR05, JLM15] demonstrates that the same scaling of the proposal variance is
required both in and out of stationarity, in the product case, and that then O(N) steps are required to
explore the target distribution. Again recently, diffusion limits for RWM started in stationarity have also
been considered for measures in non-product form [MPS12], using families of target measures found by
approximating (1.1), as we consider in this paper; once again the conclusion is that O(N) steps are required
to explore the target distribution. In the present paper we combine the settings of [MPS12] and [JLM15]
and make a significant extension of the analysis to consider measures in non-product form, when the chain
is started out of stationarity, again showing that O(N) steps are required to explore the target distribution.

In [RGG97] the diffusion limit is for a single coordinate of the Markov chain and takes the form

dX(t) = −h`V ′(X(t))dt+
√

2h`dB(t), (1.20)

with Xt ∈ R and B(t) a one dimensional Brownian motion. Each coordinate of the Markov chain has the
same weak limit. In [JLM15, JLM14] a similar limit is obtained for each coordinate, but because the system
is out of stationarity the coordinates are coupled together, leading to a one dimensional nonlinear (in the
sense of McKean) diffusion process

dX(t) = −d`(t)V ′(X(t))dt+
√

2g`(t)dB(t), (1.21)

with Xt ∈ R and B(t) a one dimensional Brownian motion and

d`(t) = G`
(
E [V ′(X(t))]

2
,E [V ′′(X(t))]

)
, g`(t) =

1

2
Γ̃`

(
E [V ′(X(t))]

2
,E [V ′′(X(t))]

)
.

The definition of the functions G` and Γ̃` can be found in [JLM15, (1.7) and (1.6)], respectively. While we
don’t repeat the full definition here, we point out the two main facts which are relevant in the present context:
i) in stationarity d`(t) = h` and g`(t) = h` and so (1.21) is identical to (1.20), but out of stationarity the
variation of these quantities reflects what remains of the coupling between different coordinates in the limit
of large N ; ii) regarding the functions D`(x) and Γ`(x) (defined in (1.12) and (1.13), respectively), notice
that D`(x) = G`√2(x, 1), Γ`(x) = Γ̃`

√
2(x, 1).

In [MPS12], since the target measure is no longer of product form, the continuous interpolant of the RWM
chain xk defined in (2.3) has diffusion limit given by the solution of the infinite dimensional SDE (1.18),
when the chain is started in stationarity. In contrast, in this paper where we study the same target measure
as in [MPS12], but started out of stationarity, the limiting diffusion is (1.10), with S(t) solving (1.11). The
relationship between (1.20) and (1.21) is entirely analogous to the relationship between (1.18) and (1.10).
It is natural to ask, then, why we do not obtain an infinite dimensional nonlinear (in the McKean sense)
diffusion process as the limit in this paper? The reason for this is related to the fact that our underlying
reference measure is Gaussian. Indeed in the case of Gaussian product measure the limiting diffusion (1.21)
simplifies in the sense that the the equations for d`(t) and g`(t) depend only on the process X through the
quantity M(t) := E(Xt)

2 and it is explicitly noted in [JLM15] that M(t) solves precisely the ODE (1.11). It

is also relevant to observe at this point that the weak limit S(N) d−→ S (in C([0, T ],R+)) has already been

proven in [CRR05] in the Gaussian case where all the components xi,Nk are identically distributed.
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On a technical note, we observe that in [JLM15, JLM14] the symmetry of the target measure allows the
authors to employ propagation of chaos techniques so that these two papers have brought together two thus
far distant worlds: MCMC and probabilistic methods for nonlinear PDEs. In our case, due to the lack of
symmetry in the proposal, the propagation of chaos point of view cannot be used so we base our analysis on
the more “hands on” approach used in [MPS12]. As already mentioned, the latter paper is devoted to the
study of the diffusion limit for the same chain that we are analysing here and in the same infinite dimensional
context as well. The difference with our paper is that the chain in [MPS12] is started in stationarity. As a
consequence, the quantity that here we call S(t) is, in their case, equal to 1 for every t ≥ 0; to better phrase
it, if we start the chain in stationarity, then

SNk =
1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

N→∞−→ 1 , almost surely, for all k ≥ 0. (1.22)

Recalling that S(t) → 1 as t → ∞, this is coherent with our results. Although the approach we use here is
similar to the one developed in [MPS12], significant extensions of that work are required in order to handle
the technical complications introduced by the non stationarity of the chain. Throughout the paper we will
flag up the main steps where our analysis differs from that in [MPS12] (see in particular Section 5.2, the
comments at the end of Section 5.3 and Remark 8.7). Let us just say for the moment that if we start the
chain in stationarity then xNk ∼ πN for all k ≥ 0. Because πN is a change of measure from a Gaussian
measure, all the almost sure properties of the chain only need to be shown for x ∼ π0. In the non stationary
case we cannot reduce the analysis to the Gaussian case and therefore some of the estimates become more
involved. The above discussion motivates our interest in the problem studied in this paper: on the one hand
we want to extend the analysis of [JLM15] away from the non-practical i.i.d. product form for the target; on
the other hand we drop the assumption of stationarity in [MPS12].

We mention for completeness that the non stationary case has also been considered in [PST14, OPPS16],
for the pCN (preconditioned Crank-Nicolson) algorithm and for the SOL-HMC (Second Order Langevin -
Hamiltonian Monte Carlo) scheme, respectively. These algorithms are well-defined in the infinite dimensional
limit and hence do not require a scaling of the time-step which is inversely proportional to a power of the
dimension. On a related note, we remark that when we want to sample from measures of the form (1.1),
RWM is not the optimal choice. Indeed both pCN and the SOL-HMC exactly preserve the Gaussian measure
π0 and hence, in the case Ψ ≡ 0, such algorithms are exact; it is for this reason that they are well-defined
in the infinite dimensional limit, and do not require a scaling of the time-step with dimension. However it
is still of interest to study the behaviour of RWM on measures of the form (1.1) because they provide an
explicit class of non-product measures for which analysis is possible and for which the scaling of cost with
dimention is the same as in the product case, suggesting broader validity of the conclusions in the papers
[CRR05, JLM15, JLM14].

1.3. Outline of Paper

The paper is organized as follows. In the next Section 2 we present in more detail the RWM algorithm.
In Section 3 we introduce the notation that we will use in the rest of the paper and the assumptions we
make on the nonlinearity Ψ and on the covariance operator C. Section 4 contains the proof of existence and
uniqueness for the limiting equations (1.10) and (1.11). With these preliminaries in place, we give, in Section
5, the precise statement of the main results of this paper, Theorem 5.1 and Theorem 5.4. In Section 5 we also
provide heuristic arguments to explain how the main results are obtained. Such arguments are then made
rigorous in Section 7 and Section 8, which contain the proof of Theorem 5.1 and Theorem 5.4, respectively.
The continuous mapping argument on which these proofs rely is presented in Section 6.

2. The Algorithm

Once the current state x of the chain is given, the proposed move (1.6) depends only on the noise ξN . For
this reason, in defining the acceptance probability for our algorithm, we can use the notations α(xN , yN ) or
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α(xN , ξN ) exchangeably. With this in mind, let us define the acceptance probability

α(xN , ξN ) := 1 ∧ exp (Q(xN , ξN )) (2.1)

where

Q(xN , ξN ) :=
1

2
‖C−1/2xN‖2 − 1

2
‖C−1/2yN‖2 + Ψ(xN )−Ψ(yN ). (2.2)

Consider the Markov chain {xk}∞k=0 ⊂ H constructed as follows

xk+1 = xk + γk+1

√
2`2

N
C1/2
N ξNk+1 ,

3 (2.3)

where
γk+1

D∼ Bernoulli(αk+1) with αk+1 = α(xNk , ξ
N
k+1).

That is, given αk+1, the random variable γk+1 is independent of any other source of noise and has Bernoulli
law with mean α(xNk , ξ

N
k+1). Therefore, (2.3) can be spelled out as follows: if the chain is currently in xk, the

proposal

yk+1 = xk +

√
2`2

N
(CN )1/2ξNk+1

is accepted with probability αk+1 and rejected with probability 1− αk+1. We specify that in the above

ξNk+1 :=

N∑
i=1

ξi,Nk+1φi, where ξi,Nk+1
D∼ N (0, 1) i.i.d.,

and therefore for αk, Q and γk actually depend on N (we suppress the superscript N in the notation for
convenience). In a less compact notation, (2.3) and (2.2) can be rewritten as

xi,Nk+1 = xi,Nk + γk+1

√
2`2

N
λi ξ

i,N
k+1, for i = 1, . . . , N (2.4)

xk+1 = xk = x0 on H \XN

and

Qk := Q(xNk , ξ
N
k+1) =

1

2

N∑
i=1

|xi,Nk |2

λ2
i

− 1

2

N∑
i=1

|yi,Nk+1|2

λ2
i

+ Ψ(xNk )−Ψ(yNk+1), (2.5)

respectively. As we have already observed in the introduction, in computational practice the above algorithm
is implemented in RN . That is, for any N fixed, in order to sample from the measure πN (defined in (1.5)),
one considers the projected chain {xNk = PN (xk)}k∈N.

3. Preliminaries

In this section we detail the notation and the assumptions (Subsection 3.1 and Subsection 3.2 , respectively)
that we will use in the rest of the paper.

3.1. Notation

Let (H, 〈·, ·〉, ‖ · ‖) denote an infinite dimensional separable Hilbert space with the canonical norm derived
from the inner-product. Let C be a positive, trace class operator on H and {φj , λ2

j}j≥1 be the eigenfunctions
and eigenvalues of C respectively, so that (1.2) holds. We assume a normalization under which {φj}j≥1 forms
a complete orthonormal basis in H. Throughout the paper we will use the following notation:

3Notice that also the state of the chain {xk}k∈N ⊂ H depends on N , as only the first N components are updated. However this
is not reflected in the notation to avoid confusion between the finite-dimensional chain {xNk } ⊂ X

N and the infinite-dimensional
chain {xk} ⊂ H.
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• The letter N denotes exclusively the dimensionality of the space XN (defined in (1.3)) where the target
measure πN is supported.

• As already stressed in the introduction, if x ∈ H, then xN := PN (x) is the projection of x on the
space XN defined in (1.3). For every x ∈ H we have the representation x =

∑
j xjφj , where here

xj = 〈x, φj〉, i.e. xj is the j-th component of x. xj,N denotes the j-th component of xN , so that
xj = xj,N , for 1 ≤ j ≤ N . Similar notation holds for the proposal vector y and the noise vector ξ as
well.

• xNk denotes the k-th step of projected chain {PN (xk)} ⊂ XN , where xk has been defined in (2.3).

Accordingly, xi,Nk is the i-th component of the vector xNk ∈ XN .

Using this notation, we define Sobolev-like spaces Hr, r ∈ R, with the inner-products and norms defined by

〈x, y〉r =

∞∑
j=1

j2rxjyj and ‖x‖2r =

∞∑
j=1

j2r
∣∣xj∣∣2 .

(Hr, 〈·, ·〉r) is a Hilbert space. Notice that H0 = H. Furthermore Hr ⊂ H ⊂ H−r for any r > 0. The
Hilbert-Schmidt norm ‖ · ‖C is defined as

‖x‖2C = ‖C− 1
2x‖2 =

∞∑
j=1

λ−2
j

∣∣xj∣∣2 (3.1)

and it is the Cameron-Martin norm associated with the Gaussian N (0, C). For r ∈ R, let Lr : H → H denote
the operator which is diagonal in the basis {φj}j≥1 with diagonal entries j2r, i.e.,

Lr φj = j2rφj , j ∈ N,

so that L
1
2
r φj = jrφj . The operator Lr lets us alternate between the Hilbert space H and the interpolation

spaces Hr via the identities:

〈x, y〉r = 〈L
1
2
r x, L

1
2
r y〉 and ‖x‖2r = ‖L

1
2
r x‖2.

Since ‖L−1/2
r φk‖r = ‖φk‖ = 1, we deduce that {φ̂k := L

−1/2
r φk}k≥1 forms an orthonormal basis for Hr. If

y ∼ N(0, C), then y can be expressed as

y =

∞∑
j=1

λjρjφj with ρj
D∼ N(0, 1) i.i.d; (3.2)

if
∑
j λ

2
jj

2r <∞ then y can be equivalently written as

y =

∞∑
j=1

(λjj
r)ρj φ̂j with ρj

D∼ N(0, 1) i.i.d. (3.3)

For a positive, self-adjoint operator D : H 7→ H, its trace in H is defined as

TraceH(D) :=

∞∑
j=1

〈φj , Dφj〉.

We stress that in the above {φj}j∈N is an orthonormal basis for (H, 〈·, ·〉). Therefore, if D̃ : Hr → Hr, its
trace in Hr is

TraceHr (D̃) :=

∞∑
j=1

〈L−
1
2

r φj , D̃L
− 1

2
r φj〉r.
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Since TraceHr (D̃) does not depend on the orthonormal basis, the operator D̃ is said to be trace class in Hr
if TraceHr (D̃) <∞ for some, and hence any, orthonormal basis of Hr.

Because C is defined on H, the covariance operator

Cr = L1/2
r CL1/2

r

is defined on Hr. With this definition, for all the values of r such that TraceHr (Cr) =
∑
j λ

2
jj

2r < ∞, we
can think of y as a mean zero Gaussian random variable with covariance operator C in H and Cr in Hr (see
(3.2) and (3.3)). In the same way, if TraceHr (Cr) <∞ then

W (t) =

∞∑
j=1

λjwj(t)φj =

∞∑
j=1

λjj
rwj(t)φ̂j ,

with {wj(t)}j∈N a collection of i.i.d. standard Brownian motions on R, can be equivalently understood as an
H-valued C-Brownian motion or as an Hr-valued Cr-Brownian motion.
Throughout we use the following notation.

• Two sequences {αn}n≥0 and {βn}n≥0 satisfy αn . βn if there exists a constant K > 0 (independent
of n), such that αn ≤ Kβn for all n ≥ 0. The notations αn � βn means that αn . βn and βn . αn.

• Two sequences of real functions {fn}n≥0 and {gn}n≥0 defined on the same set Ω satisfy fn . gn if
there exists a constant K > 0 (independent of n) satisfying fn(ω) ≤ Kgn(ω) for all n ≥ 0 and all
ω ∈ Ω. The notations fn � gn means that fn . gn and gn . fn. Similarly, for two functions f(x) and
g(x), we write f(x) . g(x) if there exists a constant K > 0 (independent of x) such that f(x) ≤ Kg(x)
for all x where the two functions are defined.

• The notation Ex [f(x, ξ)] denotes expectation with variable x fixed, while the randomness present in ξ
is averaged out.

As customary, R+ := {s ∈ R : s ≥ 0} and for all b ∈ R+ we let [b] = n if n ≤ b < n+ 1 for some integer n.
Finally, for time dependent functions we will use both the notations S(t) and St interchangeably.

3.2. Assumptions

In this section we describe the assumptions on the covariance operator C of the Gaussian measure π0
D∼

N (0, C) and the functional Ψ. We fix a distinguished exponent s ≥ 0 and assume that Ψ : Hs → R and
TraceHs(Cs) <∞. In other words the space Hs is the one that we were denoting by H̃ in the introduction.
For each x ∈ Hs the derivative ∇Ψ(x) is an element of the dual (Hs)∗ ofHs, comprising the linear functionals
on Hs. However, we may identify (Hs)∗ = H−s and view ∇Ψ(x) as an element of H−s for each x ∈ Hs.
With this identification, the following identity holds

‖∇Ψ(x)‖L(Hs,R) = ‖∇Ψ(x)‖−s;

furthermore, the second derivative ∂2Ψ(x) can be identified with an element of L(Hs,H−s). To avoid tech-
nicalities we assume that Ψ(x) is quadratically bounded, with first derivative linearly bounded at infinity
and second derivative globally bounded.

Assumptions 3.1. The functional Ψ and covariance operator C satisfy the following assumptions.

1. Decay of Eigenvalues λ2
j of C: there exists a constant κ > 1

2 such that

λj � j−κ.

2. Domain of Ψ: there exists an exponent s ∈ [0, κ− 1/2) such that Ψ is defined everywhere on Hs.
3. Size of Ψ: the functional Ψ : Hs → R satisfies the growth conditions

0 ≤ Ψ(x) . 1 + ‖x‖2s
9



4. Derivatives of Ψ: The derivatives of Ψ satisfy

‖∇Ψ(x)‖−s . ‖x‖ςs ∨ ‖x‖s and ‖∂2Ψ(x)‖L(Hs;H−s) . 1, (3.4)

for some 1/2 ≤ ς < 1.

Remark 3.2. Regarding the first of Assumptions 3.1, the condition κ > 1
2 ensures that TraceHs(Cs) <∞

for any 0 ≤ s < κ− 1
2 ; this implies that π0(Hs) = 1 for any 0 ≤ s < κ− 1

2 . As for the first of the requirements
in (3.4), this is slightly less general than the corresponding condition imposed in [MPS12] (there it is required
that ‖∇Ψ(x)‖−s . 1 + ‖x‖s). This is to avoid excessive technicalities (particularly in the proof of (8.10),
which is the only place where this simplification is actually used, see Remark 8.12 and Remark 8.9 on this
point). �

Example 3.3. The functional Ψ(x) = 1
2‖x‖

2
s is defined on Hs and its derivative at x ∈ Hs is given by

∇Ψ(x) =
∑
j≥0 j

2sxjφj ∈ H−s with ‖∇Ψ(x)‖−s = ‖x‖s. The second derivative ∂2Ψ(x) ∈ L(Hs,H−s) is the

linear operator that maps u ∈ Hs to
∑
j≥0 j

2s〈u, φj〉φj ∈ H−s: its norm satisfies ‖∂2Ψ(x)‖L(Hs,H−s) = 1 for
any x ∈ Hs. �

The Assumptions 3.1 ensure that the functional Ψ behaves well in a sense made precise in the following
lemma. We set

F (z) = −z − C∇Ψ(z). (3.5)

Lemma 3.4. Let Assumptions 3.1 hold.

1. The function C∇Ψ(z) is globally Lipshitz on Hs and hence the same holds for the function F (z):

‖F (x)− F (y)‖s . ‖x− y‖s ∀x, y ∈ Hs.

2. The second order remainder term in the Taylor expansion of Ψ satisfies∣∣Ψ(y)−Ψ(x)− 〈∇Ψ(x), y − x〉
∣∣ . ‖y − x‖2s ∀x, y ∈ Hs. (3.6)

Proof. See [MPS12].

We would also like to recall that because of our assumptions on the covariance operator, for all p ≥ 0
there is a constant c = c(p) such that

E‖(CN )1/2ξN‖ps ≤ c, uniformly in N , (3.7)

if ξN is the Gaussian defined in (1.6). We will prove this inequality in Appendix A. For the moment we just
stress that c > 0 is a constant independent of N but that does depend on p.

4. Existence And Uniqueness For the Limiting SDE

The main statements of this section are Theorem 4.1, Theorem 4.3 and Theorem 4.6. In Theorem 4.1 and
Theorem 4.3 we prove existence and uniqueness for the solution to equation (1.11) and equation (1.10),
respectively. Theorem 4.6 is a “continuous mapping” result and it is crucial for the arguments of Section 6
(and, ultimately, it is the backbone of the proof of our main results).

Theorem 4.1. For any initial datum S(0) ∈ R+, there exists a unique solution S(t) to the ODE (1.11). Such
a solution is strictly positive for every t > 0. Furthermore, S(t) is bounded with continuous first derivative
for all t ≥ 0. In particular

lim
t→∞

S(t) = 1 (4.1)

and
0 ≤ min{S(0), 1} ≤ S(t) ≤ max{S(0), 1} , for t ≥ 0. (4.2)

Before proving the above theorem we state Lemma 4.2, which gathers all the properties of the real valued
functions D`,Γ` and A`, defined in (1.12)-(1.15).
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Lemma 4.2. The functions D`(x), Γ`(x) and
√

Γ`(x) are positive, globally Lipshitz continuous and bounded,
with bounded first derivative. A`(x) is bounded above but not below; it has continuous first derivative on the
whole of R+ and it is globally Lipshitz. Moreover, for any ` > 0, A`(x) is strictly positive for x ∈ [0, 1),
strictly negative for x > 1 and A`(1) = 0.

Proof of lemma 4.2. The proof of the above Lemma 4.2 follows from the same arguments used in [JLM15,
Proof of Lemma 2]. We sketch the proof in Appendix A for completeness. A plot of the function A`(x) for
various values of ` can be found in [CRR05, page 258]. Figure 1 contains a plot of A`(x) for ` = 1 and ` = 2.
Plots of the functions D`,Γ` and of the derivative of A` can be found in Appendix A.

Fig 1. Plots of the function A`(x) for ` = 1 and ` = 2 (dashed line).

Proof of Theorem 4.1. Existence and uniqueness for (1.11) is standard, since A` is globally Lipshitz. The
limit (4.1) and the bound (4.2) are a consequence of the last statement of Lemma 4.2. Indeed, if we start with
an initial datum S0 ∈ [0, 1) then S(t) will increase towards 1. If S(0) > 1 then S(t) will decrease towards 1.

We now come to existence and uniqueness for equation (1.10), which we rewrite as

dx(t) = F (x(t))D`(S(t))dt+
√

Γ`(S(t))dW (t),

where W (t) is an Hs valued Cs-Brownian Motion and the function F has been defined in (3.5). The above
is a short notation for the integral form

x(t) = x(0) +

∫ t

0

F (x(v))D`(S(v))dv +

∫ t

0

√
Γ`(S(v))dW (v) . (4.3)

In view of the next statement we emphasize that throughout the paper the spaces C([0, T ];Hs) and C([0, T ];R+)
are endowed with the uniform topology.

Theorem 4.3. Let Assumption 3.1 hold. Then, for any initial condition x(0) ∈ Hs, any T > 0 and every
Hs-valued Cs-Brownian motion W (t), there exists a unique solution of equation (1.10) (with S(t) given by
(1.11)) in the space C([0, T ];Hs).

Before proving the above theorem, let us make a remark on the statement.
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Remark 4.4. In the statement of Theorem 4.3 we refer to equation (1.10) or, equivalently, to equation
(4.3). With the notation introduced so far, the function S(t) appearing in (4.3) is the solution of the ODE
(1.11). However the proof of Theorem 4.3 is still valid if S(t) : R+ → R+ is any continuous and bounded
function with continuous first derivative. �

Proof of Theorem 4.3. Once we prove continuity of the map

J : Hs × C([0, T ];Hs) −→ C([0, T ];Hs)
(x(0),W (t)) −→ x(t)

where x(t) is defined by (4.3), existence and uniqueness for equation (4.3) for a small enough time interval
follow from a standard contraction mapping argument, see e.g. [MPS12]. To show the continuity of such a
map, let x](t) and x†(t) be the images through the map J of the pairs (x](0),W ](t)) and (x†(0),W †(t)),
respectively. For all 0 ≤ t ≤ T , we then have

‖x](t)− x†(t)‖s ≤
∫ t

0

‖F (x]v)D`(Sv)− F (x†v)D`(Sv)‖sdv

+ ‖x](0)− x†(0)‖s +
∥∥∥∫ t

0

√
Γ`(Sv)(dW

]
v − dW †v )

∥∥∥
s
.

Thanks to the Lipshitzianity of F , Lemma 3.4, and the boundedness of D`, Lemma 4.2, the drift coefficient
of (4.3), i.e.

Θ(x, S) := F (x)D`(S), (x, S) ∈ Hs × R+,

is globally Lipshitz, uniformly in time. Therefore, integrating by parts in the stochastic integral, we get

‖x](t)− x†(t)‖s .
∫ t

0

‖x](v)− x†(v)‖s + ‖x](0)− x†(0)‖s

+
∥∥∥Γ

1/2
` (St)(W

]
t −W

†
t )−

∫ t

0

d

dv

(
Γ

1/2
` (Sv)

)
(W ]

v −W †v )
∥∥∥
s
.

We now further work on the right hand side of the above as follows:∥∥∥∫ t

0

d

dv

(
Γ

1/2
` (Sv)

)
(W ]

v −W †v )
∥∥∥
s
≤ sup
v∈[0,t]

‖W ]
v −W †v ‖s

∫ t

0

∣∣∣∣ ddv (Γ
1/2
` (Sv)

)∣∣∣∣ .
Clearly, ∣∣∣∣ ddv (Γ

1/2
` (Sv)

)∣∣∣∣ =
1

2

∣∣∣∣∣ d
dxΓ`(x)

Γ
1/2
` (x)

∣∣∣∣∣
x=Sv

(A`(Sv))

∣∣∣∣∣ .
From the definition of Γ` (see (1.13) and (1.15)), for any x ≥ 0, Γ` is bounded below away from zero.
Moreover, Γ` has bounded derivative (see Lemma 4.2) and A`, being continuous, is bounded on compacts.
These facts, together with (4.2), imply the bound∫ t

0

∣∣∣∣ ddv (Γ
1/2
` (Sv)

)∣∣∣∣ . t, (4.4)

hence

‖x](t)− x†(t)‖s .
∫ T

0

sup
v∈[0,t]

‖x](v)− x†(v)‖s + ‖x](0)− x†(0)‖s + T sup
t∈[0,T ]

‖W ]
t −W

†
t ‖s. (4.5)

Taking the supremum over t ∈ [0, T ] on the left hand side of the above gives the desired contractivity, thanks
to the Gronwall Lemma, for a small enough time interval, say [0, T0] and hence a unique solution can be
constructed for t ∈ [0, T0]. Such a solution can then be extended to t ≥ 0, thanks to the specific form of (4.5),
which, we stress again, is a consequence of (4.2). Indeed, thanks to the fact that the drift of the equation is
Lipshitz uniformly in time and to (4.4), the time dependence of the RHS of (4.5) will stay the same when
we try and construct a solution starting from T0. We will therefore be able to construct a solution over the
interval [T0, 2T0]. Continuing inductively we can cover the whole real axis. This concludes the proof.
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Consider now the following equation

dz(t) = [−z(t)− C∇Ψ(z(t))]D`(S(t)) dt+ dη(t), (4.6)

where S(t) is the solution of (1.11) and η(t) is any time-continuous function taking values in Hs. Also, let
S(t) : R+ → R be the solution of

dS(t) = A`(S(t)) dt+ a dw(t), (4.7)

where w(t) is a real valued standard Brownian motion and a ∈ R+ is a constant.

Remarks 4.5. Before stating the next theorem we need to be more precise about equations (4.6) and (4.7).

• We consider equation (4.7), which is (1.11) perturbed by noise, in view of the contraction mapping
argument (explained in Section 6) that we will use to prove our main results. Observe that (4.7) still
admits a unique solution (by the Lipshitzianity of A`). Analogous observations hold for equation (4.6),
which has the same structure as equation (1.10).

• The solution to (4.7) might not stay positive if started from a positive initial datum (as opposed to
the solution to (1.11), which preserves positivity). However A` is only defined for positive arguments,
(see (1.14)). To make sense of the notation in (4.7), we extend A` to the negative semiaxis. In other
words, the function A` appearing in (4.7) is not the same A` defined in (1.14); we should use a different
notation for such a function but we refrain from doing so for simplicity. In conclusion, the function
A`(s) in (4.7) is intended to be a strictly positive function for any R 3 s < 1 and we fix it equal to 1
if s ≤ −1/2; it smoothly interpolates between -1/2 and A`(0) if −1/2 < s < 0 and it coincides with
A`(s) as defined in (1.14) if s ≥ 0. Therefore such an A` will still be globally Lipshitz.

• We emphasize that (4.6) and (4.7) are decoupled as the function S(t) appearing in (4.6) is the solution
of (1.11). This fact will be particularly relevant in the remainder of this section as well as in Section
6.1 and Section 6.2.

�

The statement of the following theorem is crucial to the proof of the main results of this paper, Theorem
5.1 and Theorem 5.4, stated in the next section.

Theorem 4.6. With the notation introduced so far (and in particular with the clarifications of Remarks
4.5) let z(t) and S(t) be solutions of (4.6) and (4.7), respectively. Then under Assumption 3.1 the maps

J1 : Hs × C([0, T ];Hs) −→ C([0, T ];Hs × R)

(z0, η(t)) −→ z(t)

and

J2 : R+ × C([0, T ];R) −→ C([0, T ];R)

(S0, w(t)) −→ S(t)

are continuous maps.

Proof. Continuity of the map J1 can be shown with a calculation in the same spirit of the one done for the
map J , so we only sketch the proof of the continuity of the map J2. To this end we will use (4.2) and the

Lipshitzianity of A`. Let S](t) and S†(t) be the images through the map J2 of the pairs (S]
0, w

](t)) and

(S†0, w
†(t)), respectively. Then∣∣∣S]

t −S†t

∣∣∣ ≤ ∣∣∣S]
0 −S†0

∣∣∣+

∫ t

0

∣∣A`(S]
v)−A`(S†v)

∣∣ dv + a
∣∣∣w]t − w†t ∣∣∣

.
∣∣∣S]

0 −S†0

∣∣∣+

∫ t

0

∣∣S]
v −S†v

∣∣ dv + a
∣∣∣w]t − w†t ∣∣∣ . (4.8)

Now we can conclude by Gronwall’s Lemma.
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5. Statement of Main Theorems and Heuristics of Proofs

In this section we give a precise statement of the main results of the paper, Theorem 5.1 and Theorem 5.4
below, and outline the heuristic arguments which are at the basis of the proof of such results. The rigorous
proofs of Theorem 5.1 and Theorem 5.4 are detailed in Section 7 and Section 8, respectively, and they consist
in quantifying the formal approximations presented in this section. The structure of such proofs relies on the
continuous mapping argument which is presented in Section 6.

While describing the main intuitive ideas of the proof, we will also try and emphasize the differences
with the analysis presented in [MPS12] in the stationary case. Here and throughout the paper we will use a
notation analogous to the one used in [MPS12].

5.1. Statement of Main Results

Let us define the set Hs∩ as follows:

Hs∩ :=

{
x ∈ Hs : lim

N→∞

1

N

N∑
i=1

∣∣xi∣∣2
λ2
i

<∞

}
. (5.1)

Theorem 5.1. Let Assumption 3.1 hold and let x0 ∈ Hs∩. Let {SNk } ⊂ R+ be the double sequence defined in

(1.16) and started at SN0 = 1
N

∑N
i=1

∣∣∣xi,N0

∣∣∣2 /λ2
i . Let S(N)(t), defined in (1.17), be the continuous interpolant

of SNk . Then, as N → ∞, S(N)(t) converges weakly in C([0, T ];R) to the solution S(t) of the ODE (1.11)
started at S0 := limN→∞ SN0 .

We will prove Theorem 5.1 in Section 7. For the time being, let us make the following observations.

Remark 5.2. Notice that the weak limit of the double sequence SNk is a deterministic function, therefore
the above theorem also implies convergence in probability in C([0, T ];R) of S(N)(t) to S(t). �

Let us now introduce the piecewise constant interpolant of the (double) sequence SNk , i.e. the (sequence
of) functions S̄(N)(t) defined as follows:

S̄(N)(t) = SNk , for tk ≤ t < tk+1, tk = k/N . (5.2)

Lemma 5.3. Under the assumptions of Theorem 5.1, for every fixed t > 0,

S(N)(t)→ S(t) almost surely

and
S̄(N)(t)→ S(N)(t) almost surely.

Therefore,
S̄(N)(t)→ S(t) almost surely.

Proof of Lemma 5.3. The proof of this lemma can be found in Appendix B.

Consider now the set Hs∩∩ defined as the set of x ∈ Hs∩ such that

• for all p ≥ 0,

lim
N→∞

N∑
i=1

i2sλ2
i

∣∣xi∣∣2p
λ2p
i

<∞, (5.3)

• there exists some ε > 0, such that

lim
N→∞

1

N

N∑
i=1

∣∣xi∣∣2
λ2
i

≥ ε > 0. (5.4)
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Theorem 5.4. Let Assumption 3.1 hold and x0 ∈ Hs∩∩. Then, as N →∞ the continuous interpolant x(N)(t)
of the chain {xk}k ⊂ Hs (defined in (1.8) and (2.4), respectively) and started at x0, converges weakly in
C([0, T ];Hs) to the solution x(t) of equation (1.10) started at x0. We recall that the time-dependent function

S(t) appearing in (1.10) is the solution of the ODE (1.11), started at S0 := limN→∞
1
N

∑N
i=1

∣∣xi0∣∣2 /λ2
i .

We will prove Theorem 5.4 in Section 8. Note that in the above statement we are picking a deterministic
initial condition. However it is worth noting that x0 ∈ Hs∩∩ almost surely if x0 is drawn at random from the
stationary measure (1.1) . We will make some remarks on condition (5.4) at the end of Subsection 5.2. As
for condition (5.3), strictly speaking this does not need to be satisfied for all p ≥ 0; a finite, sufficiently large
p would suffice. However we refrain from determining the optimal p, which would distract from the main
goals of the paper, and we state the result as it is, based on (5.3).

5.2. Formal Analysis of the Acceptance Probability

Gaining an intuition about the behaviour of the acceptance probability α(x, ξ), defined in (2.1), is at the
core of the proof of the main result of this paper, Theorem 5.4. We present here a formal calculation that
helps impart such intuition. We stress again that the calculations of this section are purely formal and will be
made rigorous from Section 7 on . In this spirit we will use the loose notation AN ' BN when, for N large,
AN is “approximately equal” to BN , and AN ≈ BN when, for N large, AN is “approximately distributed”
according to BN .

Let us recall the notation ΨN := Ψ ◦ PN (that is, ΨN (x) := Ψ(PN (x))) and set

ζNk := (CN )−1/2xNk + (CN )1/2∇ΨN (xk), where ∇ΨN (xk) = PN (∇Ψ(xNk )). (5.5)

With these definitions, we can further rewrite the expression (2.5) for Q(xNk , ξ
N
k+1):

Q(xk, ξk+1) = − `
2

N

N∑
i=1

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N

N∑
i=1

xi,Nk ξi,Nk+1

λi
+ Ψ(xNk )−Ψ(yNk+1)

= − `
2

N

N∑
i=1

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N
〈C−1/2xNk , ξ

N
k+1〉+ Ψ(xNk )−Ψ(yNk+1)

= − `
2

N
‖ξNk+1‖2 −

√
2`2

N
〈ζNk , ξNk+1〉+ Ψ(xNk )−Ψ(yNk+1) +

√
2`2

N
〈C1/2
N ∇ΨN (xNk ), ξNk+1〉.

Therefore setting

rN (xk, ξk+1) := Ψ(xNk )−Ψ(yNk+1) +

√
2`2

N
〈C1/2
N ∇ΨN (xNk ), ξNk+1〉

and

R(xNk , ξ
N
k+1) := − `

2

N

N∑
i=1

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N
〈ζNk , ξNk+1〉, (5.6)

we obtain
Q(xNk , ξ

N
k+1) = R(xNk , ξ

N
k+1) + rN (xk, ξk+1) . (5.7)

In [MPS12] it is shown that ∣∣rN (xk, ξ)
∣∣ . ‖C1/2ξ‖2s

N
; (5.8)

therefore

E
∣∣rN (xk, ξk+1)

∣∣ . 1

N
, (5.9)

see [MPS12, eqn. (2.32)]. The above (5.8)-(5.9) are true whether the chain is started in stationarity or not,
as they are only a consequence of the properties of Ψ (see (3.6)) and of the noise ξk+1, see (3.7). Using (5.9),

Q(xNk , ξ
N
k+1) ' R(xNk , ξ

N
k+1). (5.10)
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Looking at the definition of R, equation (5.6), and observing that by the Law of Large Numbers

1

N

N∑
j=1

∣∣∣ξj,Nk+1

∣∣∣2 −→ 1 , (5.11)

we deduce that R ' G (see Lemma 8.1), where

G := −`2 −
√

2`2

N

N∑
j=1

ζj,Nk ξj,Nk+1, so that, given xk, G ∼ N

−`2, 2`2

N

N∑
j=1

∣∣∣ζj,Nk ∣∣∣2
 . (5.12)

We will show

1

N

N∑
j=1

∣∣∣ζj,Nk ∣∣∣2 ' 1

N

N∑
j=1

∣∣∣xj,Nk ∣∣∣2
λ2
j

= SNk .

This can be intuitively understood by observing that in (5.5) the “dominating contribution” comes from the
first addend. The above approximation is formalized by (8.51) and (7.3) and it implies G ≈ Z`,k, where

Z`,k := −`2 −
√

2`2

N

N∑
j=1

xj,Nk
λj

ξj,Nk+1 so that, given xNk , Z`,k ∼ N (−`2, 2`2SNk ). (5.13)

In conclusion, the formal analysis presented so far suggests that we may use the approximations

Q(xNk , ξ
N
k+1) ' R ≈ N

(
−`2, 2`2 SNk

)
. (5.14)

In [MPS12] it is proved that if we start from stationarity then the sequence SNk converges (for fixed k, as
N → ∞) to 1 almost surely (see (1.22)). We will show that if we start the chain out of stationarity, i.e. x0

is any point in Hs, then

SNk =
1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

d−→ S(t), as N →∞, for tk ≤ t < tk+1, (5.15)

where tk = k/N and S(t) is the solution of the ODE (1.11). This is the main conceptual difference between
our work and [MPS12], all the other differences are technical consequences of this fact.

Looking at (5.14)-(5.15), we can explain why we are assuming (5.4): roughly speaking, if the initial datum
S0 is strictly positive then the limit S(t) is strictly positive for every t ≥ 0, so the Gaussian variable on
the RHS of (5.14) always has a strictly positive variance. If instead S0 = 0, then at zero one would have

Q0 = Q(x0, ξ1) ' −`2 and therefore the acceptance probability at the first step simply tends to e−`
2

; however
this would only be true at zero as, even if S0 = 0, the solution of the ODE (1.11) becomes immediately
strictly positive for t > 0 (see Theorem 4.1). To avoid having to take into account also this further possibility
(which does not add anything to the overall understanding of the algorithm), and to streamline the analysis,
we make the simplifying assumption (5.4).

The approximation (5.14) dictates the behaviour of the acceptance probability. With the present algorithm
the average acceptance probability does not tend to one (as N → ∞, for tk ≤ t < tk+1). This is one of the
disadvantages of using the method analysed in this paper, in comparison to using algorithms which are well
defined in infinite dimensions.

5.3. Formal Derivation of the Drift Coefficient of Equation (1.10)

Let us first clarify the use of the notation that we will make in the following. The definition of xk+1 (2.3)
contains two sources of randomness: the Gaussian noise ξk+1 and the Bernoulli random variable γk+1. With
this in mind, when we write Ek(·) we will mean expectation with respect to ξk+1 and γk+1, given xk. In some

16



cases, when we want to emphasize the fact that the expectation is taken with respect to ξk+1 and γk+1, we
will write explicitly Eξ,γk . In the same way, if we want to stress that expectation is being taken with respect

to ξk+1, we write Eξk. According to (2.4), the i-th component of the approximate drift is given by

NEk(xi,Nk+1 − x
i,N
k ) = NEk

(
γk+1

√
2`2

N
λi ξ

i,N
k+1

)
=
√

2N`2λi Eξ,γk (γk+1 ξ
i,N
k+1)

=
√

2N`2λi Eξk(αk+1 ξ
i,N
k+1) =

√
2N`2λi Eξk

[(
1 ∧ eQ(xNk ,ξ

N
k+1)

)
ξi,Nk+1

]
. (5.16)

(We briefly explain at the end of Appendix A how the first equality in (5.16) is obtained.) For a reason that
will be clear in a few lines we further split the RHS of (5.6) as follows 4

R(xNk , ξ
N
k+1) = − `

2

N

N∑
j 6=i

∣∣∣ξj,Nk+1

∣∣∣2 −√2`2

N

∑
j 6=i

ζj,Nk ξj,Nk+1 −
`2

N

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N
ζi,Nk ξi,Nk+1

=: Ri(xNk , ξ
N
k+1)− `2

N

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N
ζi,Nk ξi,Nk+1 , (5.17)

hence

Q(xNk , ξ
N
k+1) ' Ri(xNk , ξNk+1)−

√
2`2

N
ζi,Nk ξi,Nk+1 . (5.18)

Using (5.18) we then have

Eξk
[(

1 ∧ eQ(xNk ,ξ
N
k+1)

)
ξi,Nk+1

]
' Eξk

[(
1 ∧ eR

i(xNk ,ξ
N
k+1)−

√
2`2

N ζi,Nk ξik+1

)
ξi,Nk+1

]
. (5.19)

We now use [MPS12, eqn. (2.36)], which we recast here for the reader’s convenience.

Lemma 5.5. Let X be a real valued r.v., X ∼ N (0, 1). Then for any a, b ∈ R,

E
[
X
(
1 ∧ eaX+b

)]
= ae

a2

2 +b Φ

(
− b

|a|
− |a|

)
. (5.20)

Proof. See [MPS12, Lemma 2.4].

Now notice that, given xk, Ri is independent of ξik+1 as it only contains the random variables ξjk+1 for

i 6= j. Therefore the expected value Eξk can be calculated by first evaluating Eξ
i

k and then Eξ
i
−
k , where the

latter denotes expectation with respect to ξ\ξi. With this observation we can use the above Lemma 5.5 with

4This splitting is standard in the analysis of high dimensional MCMC, see [MPS12].
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a = −
√

2`2

N ζi,Nk and b = Ri to further evaluate the RHS of (5.19); we get

Eξk
[(

1 ∧ eQ(xNk ,ξ
N
k+1)

)
ξi,Nk+1

]
' Eξk

[(
1 ∧ eR

i(xNk ,ξ
N
k+1)−

√
2`2

N ζi,Nk ξik+1

)
ξi,Nk+1

]
(5.20)

= −
√

2`2

N
ζi,Nk e

`2

N |ζi,Nk |2Eξ
i
−
k eR

i

Φ

− Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣ −
√

2`2

N

∣∣∣ζi,Nk ∣∣∣
 (5.21)

' −
√

2`2

N
ζi,Nk Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣


= −
√

2`2

N
ζi,Nk Eξke

RiΦ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣


' −
√

2`2

N
ζi,Nk Eξke

Ri1{Ri<0} (5.22)

' −
√

2`2

N
ζi,Nk Eξke

R1{R<0} .

Therefore, using the approximation (5.14) (and the notation (5.13)),

Eξk
[(

1 ∧ eQ(xNk ,ξ
N
k+1)

)
ξik+1

]
' −

√
2`2

N
ζi,Nk Eξke

Z`,k1{Z`,k<0} . (5.23)

Now a straightforward calculation shows that if X ∼ N (µ, σ2) then

E
(
eX1X<0

)
= eµ+σ2/2 Φ

(
−µ
σ
− σ

)
.

In particular this means that if X ∼ N (−`2, 2`2a), for some a > 0, then

E
(
eX1X<0

)
= e`

2(a−1)Φ

(
`(1− 2a)√

2a

)
=

1

2`2
D`(a). (5.24)

From (5.24), (5.23) and (5.13), we then get

Eξk
[(

1 ∧ eQ(xNk ,ξ
N
k+1)

)
ξi,Nk+1

]
' −

√
2`2

N
ζi,Nk

1

2`2
D`(S

N
k ) = − 1√

2`2N
ζi,Nk D`(S

N
k ) .

Combining the above with (5.16) gives

NEξk(xi,Nk+1 − x
i,N
k ) ' −λiζi,Nk D`(S

N
k ),

which is the desired drift, after observing that λiζ
i,N
k is the i-th component of C1/2

N ζNk and

C1/2
N ζNk = xNk + CN ∇ΨN (xk).

As already mentioned in the introduction, as a consequence of (1.22), if we started the chain in stationarity
then the approximate drift would not be time dependent and we would have

NEξk(xi,Nk+1 − x
i,N
k ) ' −λiζi,Nk D`(1),

which is the approximate drift of (1.18).
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5.4. Formal Derivation of the Diffusion Coefficient of Equation (1.10)

NEk(xi,Nk+1 − x
i,N
k )(xj,Nk+1 − x

j,N
k ) = NEξ,γk

(
γk+1

√
2`2

N
λiξ

i,N
k+1

)(
γk+1

√
2`2

N
λjξ

j,N
k+1

)
= 2`2λi λjEξk

(
ξik+1 ξ

j
k+1

(
1 ∧ eQ(xk,ξk+1)

))
, (5.25)

where the last equality follows analogously to (5.16). We consider (5.6) as before, but this time we split

R(xNk , ξ
N
k+1) = Rij(xNk , ξ

N
k+1)− `2

N

(∣∣∣ξi,Nk+1

∣∣∣2 +
∣∣∣ξj,Nk+1

∣∣∣2)−√2`2

N

(
ζi,Nk ξi,Nk+1 + ζj,Nk ξj,Nk+1

)
,

where

Rij(xNk , ξ
N
k+1) = − `

2

N

N∑
h6=i,j

∣∣∣ξh,Nk+1

∣∣∣2 −√2`2

N

∑
h6=i,j

ζh,Nk ξh,Nk+1 .

As before, Q(xNk , ξ
N
k+1) ' Rij(xNk , ξNk+1), so that

Eξk
(
ξi,Nk+1 ξ

j,N
k+1

(
1 ∧ eQ(xNk ,ξ

N
k+1)

))
' Eξk

(
ξi,Nk+1 ξ

j,N
k+1

(
1 ∧ eR

ij(xNk ,ξ
N
k+1)

))
= δijE

ξij−
k

(
1 ∧ eR

ij(xNk ,ξ
N
k+1)

)
(5.26)

= δijEξk
(

1 ∧ eR
ij(xNk ,ξ

N
k+1)

)
.

With the same reasoning as in (5.14), we have

Q(xNk , ξ
N
k+1) ' Rij ≈ N

(
−`2, 2`2 SNk

)
.

(Again, if we were to consider the stationary regime, then we would have Q(xNk , ξ
N
k+1) ≈ N

(
−`2, 2`2

)
.) Now

a simple calculation shows that if X ∼ N (µ, σ2) then

E
(
1 ∧ eX

)
= eµ+σ2/2 Φ

(
−µ
σ
− σ

)
+ Φ

(µ
σ

)
(5.27)

and in particular if X ∼ N (−`2, 2`2a) for some a > 0,

E(1 ∧ eX) =
1

2`2
Γ`(a). (5.28)

Hence

Eξk
(

1 ∧ eR
ij(xNk ,ξ

N
k+1)

)
' 1

2`2
Γ`(S

N
k ) . (5.29)

Putting together (5.25), (5.26) and (5.29) we get

NEk(xi,Nk+1 − x
i,N
k )(xj,Nk+1 − x

j,N
k ) = λiλj δijΓ`(S

N
k ) .

5.5. Formal Derivation of Equation (1.11)

We now want to describe the heuristic derivation of the limit (5.15). Let us start with the drift:

NEk(SNk+1 − SNk ) = Ek
N∑
i=1


∣∣∣xi,Nk+1

∣∣∣2
λ2
i

−

∣∣∣xi,Nk ∣∣∣2
λ2
i


= Ek

[
γk+1

(
2`2

N

N∑
i=1

∣∣∣ξi,Nk+1

∣∣∣2 + 2

√
2`2

N

N∑
i=1

xi,Nk ξi,Nk+1

λi

)]
(5.30)

= Ek
[(

1 ∧ eQ(xk,ξk+1)
)

(−2R(xk, ξk+1))
]

+ Ekr̂N (5.31)
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where

r̂N := −2

√
2`2

N

[
γk+1〈(CN )1/2∇ΨN (xNk ), ξNk+1〉

]
. (5.32)

We will show (as a consequence of (7.13) and (7.3)) that r̂N is negligible for large N . So, by (5.10) and
(5.31),

NEk(SNk+1 − SNk ) ' Ek
[(

1 ∧ eR(xNk ,ξ
N
k+1)

) (
−2R(xNk , ξ

N
k+1)

)]
. (5.33)

Now observe that if X ∼ N (µ, σ2) then,

E
[
−2X

(
1 ∧ eX

)] (5.20),(5.27)
= eµ+σ2/2Φ

(
−µ
σ
− σ

)
(−2µ− 2σ2)− 2µΦ

(µ
σ

)
,

so that, if X ∼ N (−`2, 2`2a) for some a > 0, we have

E(−2X(1 ∧ eX)) = A`(a). (5.34)

Therefore, by (5.14), (5.33) and the above, we conclude

NEk(SNk+1 − SNk ) ' A`(SNk ).

Showing that the diffusion coefficient for SNk vanishes is a consequence of the calculation that we have just
done, indeed

NEk(SNk+1 − SNk )2 =
1

N
Ek

 N∑
i=1

∣∣∣xi,Nk+1

∣∣∣2
λ2
i

−

∣∣∣xi,Nk ∣∣∣2
λ2
i


2

' 1

N
Ek
[
(1 ∧ eR(xNk ,ξ

N
k+1))2R2(xNk , ξ

N
k+1)

]
≤ 1

N
Ek
[
R2(xNk , ξ

N
k+1)

]
' 1

N
Ek |Z`,k|2 '

2`2 SNk
N

.

We will prove that SNk ’s are uniformly bounded in N and k (in the sense of Lemma 7.4), hence (2`2 SNk )/N →
0.

5.6. Suboptimal Scalings for the Proposal Variance

Consider the Random Walk algorithm with proposal (1.7), for β 6= 1. In this case the acceptance probability
becomes

αβ(x, ξ) := 1 ∧ expQβ(x, ξ),

where, with the same reasoning leading to (5.14),

Qβ(xk, ξk+1) =: Qβk ' R
β
k ∼ N (−`2N1−β , 2`2N1−βSNk ). (5.35)

Assuming that S0 is finite, one can show that SNk remains bounded (uniformly in k and N). Therefore, if
we look at the average acceptance probability, we have

E(1 ∧ eQ
β(xk,ξk+1))

(5.27)
= Φ

−`2N (1−β)/2√
2`2SNk


+e`

2N1−β(SNk −1)Φ

`2N (1−β)/2(1− 2SNk )√
2`2SNk

 .

Therefore, if β > 1 the acceptance probability tends to one as N →∞, if 0 ≤ β < 1 it tends to zero.
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6. Continuous Mapping Argument

In this section we explain the continuous mapping arguments that the proofs of Theorem 5.1 and Theorem 5.4
rely on. The continuous mapping argument that we use here is analogous to the one used in [MPS12, PST12].
The only difference is that the drift and diffusion coefficient of (1.10) are time dependent.

Section 6.1 and Section 6.2 contain the outline of the mapping argument that we will use in the proof of
Theorem 5.1 and Theorem 5.4, respectively.

6.1. Continuous Mapping Argument for (1.11) (used in the Proof of Theorem 5.1)

Consider the chain SNk , defined in (1.16) and let S(N)(t) and S̄(N)(t) be the continuous and piecewise constant
interpolants of such a chain, respectively; we recall that S(N)(t) and S̄(N)(t) have been defined in (1.17) and
(5.2), respectively. Decompose the chain SNk into its drift and martingale part:

SNk+1 = SNk +
1

N
AN` (xNk ) +

1√
N
M2,N
k ,

where
AN` (xNk ) := NEk

[
SNk+1 − SNk

]
(6.1)

and

M2,N
k :=

√
N

[
SNk+1 − SNk −

1

N
AN` (SNk )

]
. (6.2)

We will show in Lemma 7.2 and Lemma 7.3 that AN` (xNk ) converges to A`(S(t)). 5 Now a straightforward
calculation (completely analogous to the one in [OPPS16, Appendix A]) shows that

S(N)(t) = SNk +

∫ t

tk

AN` (x̄(N)(v))dv +
√
N(t− tk)M2,N

k , when tk ≤ t < tk+1 ,

where x̄(N), the piecewise constant interpolant of the chain {xk}k, is defined in (6.6) below. Therefore

S(N)(t) = SN0 +

∫ t

0

AN` (x̄(N)(v))dv +
1√
N

k−1∑
j=0

M2,N
j +

√
N(t− tk)M2,N

k , for any t ∈ [0, T ].

Setting

wN (t) :=
1√
N

k−1∑
j=0

M2,N
j +

√
N(t− tk)M2,N

k , (6.3)

we can rewrite the above as

S(N)(t) = SN0 +

∫ t

0

AN` (x̄(N)(v))dv + wN (t)

= SN0 +

∫ t

0

A`(S
(N)(v))dv + ŵN (t) , (6.4)

where, for all t ∈ [0, T ],

ŵN (t) :=

∫ t

0

[
AN` (x̄(N)(v))−A`(S(N)(v))

]
dv + wN (t)

=

∫ t

0

[
AN` (x̄(N)(v))−A`(S̄(N)(v))

]
dv +

∫ t

0

[
A`(S̄

(N)(v))−A`(S(N)(v))
]
dv + wN (t). (6.5)

5While the approximate drift AN
` (xNk ) of the chain SN

k depends only on xNk , the limiting drift A` depends only on S(t).

This is coherent with the fact that SN
k depends only on xNk : in the limit, the dependence of the drift on SN

k appears explicitly.
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Equation (6.4) shows that S(N)(t) = J2(SN0 , ŵ
N ), where J2 is the map defined in Theorem 4.6. By the

continuity of the map J2, if we show that ŵN converges weakly to zero in C([0, T ];R), then S(N)(t) converges
weakly to the solution of the ODE (1.11). The weak convergence of ŵN to zero will be proved in Section 7.

Now we outline the continuous mapping argument for the chain xNk and in doing so we shall fix some
more notation.

6.2. Continuous Mapping Argument for (1.10) (used in the Proof of Theorem 5.4)

We now consider the chain that we are actually interested in, i.e. the chain {xk}k ⊂ Hs, defined in (2.4).
We act analogously to what we have done for the chain SNk . So we start by recalling the definition of the
continuous interpolant x(N)(t), equation (1.8), and we define the piecewise constant interpolant of the chain
to be

x̄(N)(t) = xNk for tk ≤ t < tk+1. (6.6)

We also recall the notation Θ(x, S) for the drift of equation (1.10), i.e.

Θ(x, S) = F (x)D`(S). (x, S) ∈ Hs × R+. (6.7)

The drift-martingale decomposition of the chain xNk is as follows:

xNk+1 = xNk +
1

N
ΘN (xNk ) +

1√
N
M1,N
k . (6.8)

where ΘN (x) is
ΘN (xNk ) := NEk

[
xNk+1 − xNk

]
(6.9)

and

M1,N
k :=

√
N

[
xNk+1 − xNk −

1

N
ΘN (xNk )

]
. (6.10)

Notice that ΘN (x) is just a function of x; we will show (see Lemma 8.3 and (6.13)) that the approximate
drift ΘN (x) converges to Θ(x, S), the drift of the SDE (1.10); that is, in the limit the dependence on S
becomes explicit (this should not surprie since, as already remarked, SNk depends only on xNk ). Using again
[OPPS16, Appendix A] we obtain

x(N)(t) = xNk +

∫ t

tk

ΘN (x̄(N)(v))dv +
√
N(t− tk)M1,N

k , when tk ≤ t < tk+1

and therefore, for all t ∈ [0, T ],

x(N)(t) = xN0 +

∫ t

0

ΘN (x̄(N)(v))dv +
1√
N

k−1∑
j=1

M1,N
j +

√
N(t− tk)M1,N

k .

Setting

ηN (t) :=
1√
N

k−1∑
j=0

M1,N
j +

√
N(t− tk)M1,N

k , when tk ≤ t < tk+1, (6.11)

we can rewrite the above as

x(N)(t) = xN0 +

∫ t

0

ΘN (x̄(N)(v))dv + ηN (t)

= xN0 +

∫ t

0

Θ(x(N)(v), S(v))dv + η̂N (t) , (6.12)
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where, for all t ∈ [0, T ],

η̂N (t) :=

∫ t

0

[
ΘN (x̄(N)(v))−Θ(x(N)(v), S(v))

]
dv + ηN (t)

=

∫ t

0

[
ΘN (x̄(N)(v))−Θ(x̄(N)(v), S̄(N)(v))

]
dv

+

∫ t

0

[
Θ(x̄(N)(v), S̄(N)(v))−Θ(x(N)(v), S(N)(v))

]
dv

+

∫ t

0

[
Θ(x(N)(v), S(N)(v))−Θ(x(N)(v), S(v))

]
dv + ηN (t). (6.13)

If we can prove that η̂N (t) converges weakly in C([0, T ];Hs) to

η(t) :=

∫ t

0

Γ
1/2
` (Sv)dWv, (6.14)

where Wv is a Hs-valued Cs-Brownian motion, then (6.12) and the continuity of the map J1 allow to conclude
that x(N)(t) converges weakly in C([0, T ];Hs) to x(t), solution of (4.3). Such an argument is the backbone
of the proof of Theorem 5.4. The proof of Theorem 5.4 can be found in Section 8.

7. Proof of Theorem 5.1

Proof of Theorem 5.1. Recall the definition of the map J2 given in Theorem 4.6 and observe that thanks to
(6.4),

S(N)(t) = J2(SN0 , ŵ
N (t)).

Therefore proving the statement of Theorem 5.1 amounts to proving that ŵN (t) converges weakly to zero
in C([0, T ];R). This is a consequence of the decomposition (6.5) together with Lemma 7.1, Lemma 7.2 and
Lemma 7.3 below.

In the following Ex0 denotes the expected value given x0 ∈ Hs∩, the initial value of the chain. We recall
once again that the initial value of the chain xNk determines the initial value of the chain SNk .

Lemma 7.1. Under the assumptions of Theorem 5.1, the martingale difference array wN (t) defined in (6.3)
converges weakly to zero in C([0, T ];R).

Lemma 7.2. Under the assumptions of Theorem 5.1,

Ex0

∫ T

0

∣∣∣AN` (x̄(N)(v))−A`(S̄(N)(v))
∣∣∣2 dv −→ 0 as N →∞. (7.1)

Lemma 7.3. Under the assumptions of Theorem 5.1, for every fixed T > 0,

Ex0

∫ T

0

∣∣∣A`(S̄(N)(v))−A`(S(N)(v))
∣∣∣2 dv −→ 0 as N →∞. (7.2)

Before proving the above lemmata, we state Lemma 7.4, which we will repeatedly use throughout this
section and the next. The proof of Lemma 7.1 can be found in Section 7.2, the proof of Lemma 7.2 and
Lemma 7.3 is the content of Section 7.1.

Lemma 7.4. Let the assumptions of Theorem 5.1 hold. Then for every m ≥ 0 there exists a constant
c̄ = c̄(m) such that

Ex0
‖xNk ‖ms < c̄ , (7.3)

Ex0(SNk )m < c̄ (7.4)
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and
Ex0e

c
N ‖ζ

N
k ‖

2

< c̄ for all c > 0. (7.5)

We recall that ζNk has been defined in (5.5). The constant c̄ = c̄(m) in the above bounds is independent of
N ∈ N and of 0 ≤ k ≤ [TN ] + 1 (but it depends on m).

Proof. See Appendix B.

It is not trivial to prove Lemma 7.4 in the non-stationary regime that we are interested in. We make some
more detailed remarks on this point in Remark 8.7.

Lemma 7.5. Under the assumptions of Theorem 5.1,

S̄(N)(t)→ S(t) in Lp(Ω), for every fixed t > 0 and any p > 0.

Moreover,

Ex0

∫ T

0

∣∣∣S̄(N)(t)− S(t)
∣∣∣p dt −→ 0 as N →∞, for all p > 0

and

Ex0

∫ T

0

∣∣∣S(N)(t)− S(t)
∣∣∣p dt −→ 0 as N →∞, for all p > 0 .

Proof. Using Vitali’s convergence theorem, the first statement is a corollary of (7.4) and Lemma 5.3 (indeed
S̄(N)(t) ≤ SNk + SNk+1 and the right hand side has bounded moments of any order, so the sequence S̄(N)(t)
is uniformly integrable). As for the second statement, it can be obtained from the first by using again the
bounded convergence theorem applied to the (deterministic) sequence Ex0

∣∣S̄(N)(t)− S(t)
∣∣p. Indeed such a

sequence tends to zero and is bounded by a multiple of the function Ex0

[∣∣S̄(N)(t) |p+|S(t)
∣∣p], which is

bounded again thanks to (7.4). The last statement is obtained similarly and we don’t detail the argument.
This concludes the proof of the lemma.

7.1. Analysis of the Drift

Before starting the proof of Lemma 7.2 we observe that because
∑N
j=1(ξj,Nk+1)2 has a Chi-squared distribution

with N degrees of freedom, the following bound holds:

E

 N∑
j=1

(ξj,Nk+1)2

m = 2m
Γ(m+N/2)

Γ(N/2)
. Nm, (7.6)

by Stirling’s formula for the Gamma function Γ.

Proof of Lemma 7.2. Set

ENk := AN` (xNk )−A`(SNk ) . (7.7)

Then, recalling that for any b ∈ R+ we set [b] = n if n ≤ b < n+ 1 for some integer n,

Ex0

∫ T

0

∣∣∣AN` (x̄(N)(v))−A`(S̄(N)(v))
∣∣∣2 dv = Ex0

1

N

[TN ]∑
k=0

∣∣ENk ∣∣2 (7.8)

+

(
T − [TN ]

N

)
Ex0

∣∣∣EN[TN ]

∣∣∣2 . (7.9)

From the above equality and observing that
∣∣∣T − [TN ]

N

∣∣∣ < 1/N , it is clear that in order to show the limit

(7.1) it is sufficient to prove that

Ex0

∣∣ENk ∣∣2 N→∞−→ 0 , uniformly over 0 ≤ k ≤ [NT ].
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To this end, we write A`(S
N
k ) = Ek[(1∧ eZ`,k)(−2Z`,k)] (which follows from (5.34)) and use (5.31) and (6.1),

obtaining

ENk = Ek
[
(1 ∧ eQ)(−2R)

]
−A`(SNk ) + Ekr̂N = EN1,k + EN2,k + Ekr̂N , (7.10)

where

EN1,k := Ek
[
((1 ∧ eQ)− (1 ∧ eR))(−2R)

]
,

EN2,k := Ek
[
(1 ∧ eR)(−2R)− (1 ∧ eZ`,k)(−2Z`,k)

]
,

and r̂N is defined in (5.32). Observe that from (5.6) and (7.6) we have

Ek |R|2p . 1 +
‖ζNk ‖2p

Np
, p ≥ 1, (7.11)

as, given xk, the sum
∑N
i=1 ζ

i,N
k ξi,Nk is Gaussian with mean zero and variance ‖ζNk ‖2. From the definition of

ζNk , equation (5.5), we have

‖ζNk ‖2

N
.

1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

+
1

N
‖C1/2∇ΨN (xNk )‖2 = SNk +

1

N
‖C1/2∇ΨN (xNk )‖2.

By acting as in [MPS12, page 915] we obtain

‖C1/2∇ΨN (x)‖ . ‖x‖s ∨ ‖x‖ςs (7.12)

. (1 + ‖x‖s), (7.13)

hence
‖ζNk ‖2p

Np
. (SNk )p +

1

Np
(1 + ‖xNk ‖2ps ), p ≥ 1. (7.14)

Combining (7.11) and (7.14) then gives

Ek |R|2p . 1 + (SNk )p +
1

Np
(1 + ‖xNk ‖2ps ), p ≥ 1. (7.15)

Therefore, using (7.15) (with p = 1), (7.3) and (7.4), we obtain

Ex0 |R|
2

= Ex0Ek |R|
2 . 1 +

Ex0
‖ζNk ‖2

N
. 1 + Ex0S

N
k +

Ex0
‖xNk ‖2s
N

<∞. (7.16)

Using the Lipshitzianity of the function 1 ∧ ex and (5.7), we have

∣∣EN1,k∣∣ . Ek
∣∣rNR∣∣ ≤ (Ek ∣∣rN ∣∣2)1/2 (

Ek(R)2
)1/2

. (7.17)

By (7.16) and (5.9) we then conclude

Ex0

∣∣EN1,k∣∣2 ≤ 1

N2
Ex0

(
SNk +

‖xNk ‖2s
N

)
−→ 0, (7.18)

thanks to Lemma 7.4. As for the term EN2,k, we use the lipshitzianity of the function (1∧ex)(−2x) to conclude

Ex0

∣∣EN2,k∣∣2 . Ex0
Ek |R− Z`,k|2

(8.72)

.
1 + Ex0

‖xk‖2s
N

−→ 0. (7.19)
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Finally, to estimate r̂N (defined in (5.32)), we use the independence, given xk, of Ψ(xk) from ξk+1:∣∣Ekr̂N ∣∣p ≤ (Ek ∣∣r̂N ∣∣2)p/2
≤ 1

Np/2

Ek

∣∣∣∣∣∣
N∑
j=1

[
C1/2
N ∇Ψ

]j
ξj,Nk+1

∣∣∣∣∣∣
2

p/2

=
1

Np/2

 N∑
j=1

Ek
∣∣∣∣[C1/2

N ∇Ψ
]j∣∣∣∣2 ∣∣∣ξj,Nk+1

∣∣∣2
p/2

=
1

Np/2
‖C1/2∇Ψ‖p, (7.20)

where in the above
[
C1/2
N ∇Ψ

]j
denotes the j-th component of C1/2

N ∇Ψ. Using (7.13) we have

∣∣Ekr̂N ∣∣p ≤ (Ek ∣∣r̂N ∣∣2)p/2 ≤ 1 + ‖xNk ‖ps
Np/2

for all p ≥ 1. (7.21)

Hence, (7.3) gives

Ex0

∣∣Ekr̂N ∣∣p ≤ Ex0

(
Ek
∣∣r̂N ∣∣2)p/2 ≤ 1

Np/2
for all p ≥ 1. (7.22)

This concludes the proof.

Proof of Lemma 7.3. By the Lipshitzianity of A`,∣∣∣A`(S̄(N)(v))−A`(S(N)(v))
∣∣∣2 . ∣∣∣S̄(N)(v)− S(N)(v)

∣∣∣2 .
The statement is now a consequence of (8.67).

7.2. Analysis of the Noise

Proof of Lemma 7.1. By the martingale central limit theorem, all we need to prove is that

1

N

[TN ]∑
j=1

Ex0

∣∣∣M2,N
j

∣∣∣2 → 0 as N →∞.

From the definition of M2,N
j , equation (6.2),

Ex0

∣∣∣M2,N
j

∣∣∣2
N

= Ex0

∣∣SNk+1 − SNk − Ek[SNk+1 − SNk ]
∣∣2

. Ex0

∣∣SNk+1 − SNk
∣∣2 .

With the same calculation as in (5.31),

SNk+1 − SNk =
γk+1(−2R)

N
+

1

N
r̂N . (7.23)

Therefore, using (7.16), (7.22) and γk+1 ≤ 1,

Ex0

∣∣SNk+1 − SNk
∣∣2 . 1

N2
Ex0Ek |R|

2
+

1

N3
.

1

N2
. (7.24)
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The above implies the bound

Ex0

∣∣∣M2,N
j

∣∣∣2
N

.
1

N2
.

We can therefore conclude

1

N

[TN ]∑
j=1

Ex0

∣∣∣M2,N
j

∣∣∣2 . T

N
−→ 0.

8. Proof of Theorem 5.4

Before starting the proof of Theorem 5.4, we state Lemma 8.1 below. We recall the definition of Wasserstain
distance between two random variables X and Y :

Wass(X,Y ) := sup
f∈Lip1

E(f(X)− f(Y )) , (8.1)

where Lip1 denotes the class of Lipshitz functions with Lipshitz constant equal to one. Notice that from the
definition,

Wass(X,Y ) ≤ E |X − Y | . (8.2)

In the next Lemma (8.1) we refer to the Wasserstein distance relative to the marginal Ek.

Lemma 8.1. Let the assumptions of Theorem 5.1 hold. Recalling the definitions of R, Ri, G and Z`,k, (5.6),
(5.17), (5.12) and (5.13) respectively, we have

Wass(R,Ri) ≤ Ek
∣∣R−Ri∣∣ . 1 +

∣∣∣ζi,Nk ∣∣∣
√
N

, (8.3)

Wass(R,G) ≤ Ek |R−G| .
1√
N

(8.4)

and

Wass(G,Z`,k) ≤ Ek |G− Z`,k| .
1 + ‖xk‖s√

N
. (8.5)

Therefore,

Wass(R,Z`,k) ≤ Ek |R− Z`,k| .
1 + ‖xk‖s√

N
. (8.6)

Proof. See Appendix B.

Proof of Theorem 5.4. If J1 is the map defined in Theorem 4.6, then (6.12) means that

x(N)(t) = J1(xN0 , η̂
N (t)).

From the continuity of J1, in order to prove that x(N)(t)
d−→ x(t), we just need to prove that η̂N (t)

d−→ η(t),

where η(t) is the stochastic integral defined in (6.14). The weak convergence η̂N (t)
d−→ η(t) follows from

Lemma 8.2, Lemma 8.3, Lemma 8.4, Lemma 8.5 and the decomposition (6.13).

Lemma 8.2. Let the assumptions of Theorem 5.4 hold. Then the interpolated martingale difference array
ηN (t) defined in (6.11) converges weakly in C([0, T ];Hs) to the stochastic integral η(t), equation (6.14).

Lemma 8.3. Let the assumptions of Theorem 5.4 hold. Then for every fixed T > 0,

Ex0

∫ T

0

‖ΘN (x̄(N)(v))−Θ(x̄(N)(v), S̄(N)(v))‖2s dv −→ 0 as N →∞. (8.7)
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Lemma 8.4. Let the assumptions of Theorem 5.4 hold. Then for any fixed T > 0

Ex0

∫ T

0

‖Θ(x̄(N)(v), S̄(N)(v))−Θ(x(N)(v), S(N)(v))‖2s dv −→ 0 as N →∞. (8.8)

Lemma 8.5. Let the assumptions of Theorem 5.4 hold. Then for any fixed T > 0

Ex0

∫ T

0

‖Θ(x(N)(v), S(N)(v))−Θ(x(N)(v), S(v))‖2sdv −→ 0 as N →∞.

We will prove Lemma 8.2 in Section 8.2 and Lemma 8.3, Lemma 8.4, Lemma 8.5 in Section 8.1.

8.1. Analysis of the Drift

In what follows we will need some preliminary estimates, which we list in Lemma 8.6 below.

Lemma 8.6. Under the assumptions of Theorem 5.4, the following holds:

i) Let Y be a positive random variable such that Ex0
|Y |q < ∞ for all q ≥ 1 (should Y depend on k and

N , all the moments are assumed to be bounded independently of k and N). Then, uniformly over
0 ≤ k ≤ [TN ] + 1,

lim sup
N→∞

Ex0

[
Y

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p] <∞, for all p ≥ 0. (8.9)

ii) Moreover,

1

N

[TN ]∑
k=0

Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p
(NSNk )α

N→∞−→ 0, for all p ≥ 2α

ς
> 0, (8.10)

where we recall that the constant 1/2 ≤ ς < 1 is the one appearing in Assumption 3.1.
iii) Finally,

Ek
1

(1 + |R|
√
N)2

.
(
1 + ‖xNk ‖2s

) 1

(NSNk )1/4
+

1√
NSNk

. (8.11)

Proof. See Appendix B.

Remark 8.7 (On Lemma 8.6 and Lemma 7.4). The proofs of Lemma 8.6 and Lemma 7.4 bring up some
of the main differences between the stationary and the non-stationary case, so it is worth making some
comments.

• If we start the chain in stationarity, i.e. xN0 ∼ πN , where πN has been defined in (1.5), then xNk ∼ πN
for every k ≥ 0. As already observed in the introduction, πN is absolutely continuous with respect to a
Gaussian measure; because all the almost sure properties are preserved under this change of measure,
in the stationary regime most of the estimates of interest need to be shown only for x ∼ π0. If x ∼ π0

then xN =
∑N
i=1 λiρ

iφi, where ρi are i.i.d. N (0, 1). Therefore, recalling (5.5) (see also (8.51)), one
gets ∣∣ζi,N ∣∣p . ∣∣ρi∣∣p + ‖x‖ps . (8.12)

With this observation it is then clear that in stationarity the bounds (7.3) and (7.4) are trivially true,
and (8.9) follows easily from (8.12) and (7.3). For the same reason, in the stationary case the estimate
(7.5) is a consequence of Fernique’s Theorem, see [MPS12, page 916]. With a similar reasoning and by
(1.22) one can see that also (8.10) holds in stationarity.

• In our case, i.e. out of stationarity, proving the bounds of Lemma 8.6 and Lemma 7.4 requires a
bit of an argument. In particular, the reason why the limit (8.10) holds can be understood at least
heuristically observing that SNk converges to S(t) (i.e. to a finite number, which is strictly positive
under our assumptions and it converges to 1 if we work in stationarity, see (1.22)). Combining this
observation with (8.9) gives, heuristically, (8.10).
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• On a minor note, we point out that the limit (8.10) might not hold for k = 0 if we were to allow
S0 = 0. Indeed, suppose again for simplicity that Ψ = 0. If S0 = 0 and the sequence of partial sums∑N
j=1
|xj,N0 |2
λ2
j

is convergent then the quantity on the LHS of (8.10) is in general only bounded. (However

if we were to extend the proof to the case S0 = 0 we would not need (8.10) to hold at k = 0).

�

Proof of Lemma 8.3. Set

eNk := ΘN (xNk )−Θ(xNk , S
N
k ) = NEk[xNk+1 − xNk ]−Θ(xNk , S

N
k ) (8.13)

Then

Ex0

∫ T

0

‖ΘN (x̄(N)(v))−Θ(x̄(N)(v), S̄(N)(v))‖2s dv = Ex0

1

N

[TN ]∑
k=0

‖eNk ‖2s (8.14)

+

(
T − [TN ]

N

)
Ex0
‖eN[TN ]‖

2
s. (8.15)

If ei,Nk is the i−th component of eNk , the sum on the RHS of (8.14) may be rewritten as

Ex0

1

N

[TN ]∑
k=0

N∑
i=1

i2s
∣∣∣ei,Nk ∣∣∣2 .

The statement now follows from Lemma 8.8 below.

Proof of Lemma 8.4. From (6.7) we have

‖Θ(x̄(N)(v), S̄(N)(v))−Θ(x(N)(v), S(N)(v))‖2s .
∣∣∣D`(S̄

(N)(v))
∣∣∣2 ‖F (x̄(N)(v))− F (x(N)(v))‖2s

+ ‖F (x(N)(v))‖2s
∣∣∣D`(S̄

(N))−D`(S
(N))

∣∣∣2
. ‖x̄(N)(v)− x(N)(v)‖2s

+ (1 + ‖x(N)(v)‖2s)
∣∣∣S̄(N)(v)− S(N)(v)

∣∣∣2 , (8.16)

having used the boundedness and Lipshitzianity of D`, the Lipshitzianity of F (Lemma 3.4 and Lemma 4.2,
respectively) and the bound

‖F (z)‖2s . 1 + ‖z‖2s. (8.17)

The above bound is a consequence of Assumption 3.1 and

‖C∇Ψ(z)‖2s =

∞∑
i=1

i2sλ2
i

∣∣(∇Ψ(z))i
∣∣2 ≤ ‖∇Ψ(z)‖2−s.

Moreover, if tk ≤ v ≤ tk+1 then from the definition (1.8), we have

Ex0
‖x̄(N)(v)− x(N)(v)‖2s = Ex0

‖(Nv − k)(xk+1 − xk)‖2s
(2.4)

.
1

N
E‖C1/2

N ξNk+1‖2s
(3.7)

.
1

N
. (8.18)

The statement of the lemma is a consequence of (8.16), (8.18), (7.3), (8.66) and (8.53).

Proof of Lemma 8.5. Analogous to the proof of Lemma 8.4, so we only sketch it.

Ex0
‖Θ(x(N)(t), S(N)(t))−Θ(x(N)(t), S(t))‖2s . Ex0

‖F (x(N)(t))‖2s
∣∣∣D`(S

(N)(t))−D`(S(t))
∣∣∣2 .

Now the RHS goes to zero thanks to the Lipshitzianity of D`,(8.17), Lemma 7.4 and Lemma 7.5.
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Lemma 8.8. Let the assumptions of Theorem 5.4 hold and recall that ei,Nk is the i-th component of eNk ,
defined in (8.13). Then,

Ex0

1

N

[TN ]∑
k=0

‖eNk ‖2s = Ex0

1

N

[TN ]∑
k=0

N∑
i=1

i2s
∣∣∣ei,Nk ∣∣∣2 −→ 0 as N →∞.

Proof of Lemma 8.8. This proof is partly analogous to the proofs of [MPS12, Lemma 5.5-Lemma 5.11]. The
main difference is that here we deal with time dependent coefficients. The proof will only be detailed when
it differs from [MPS12]; where it does not we will provide fewer details.

From the definition of Θ, equation (6.7), the i-th component of Θ calculated at (xNk , S
N
k ) is

Θi(xNk , S
N
k ) = −λiζi,Nk D`(S

N
k ) = −2`2λiζ

i,N
k EeZ`,k1{Z`,k<0} . (8.19)

where the second equality is a consequence of (5.24) and (5.13) . Therefore the i-th component of eNk is

ei,Nk =
√

2N`2 λiEξk
[(

1 ∧ eQk
)
ξi,Nk+1

]
−Θi(xNk , S

N
k )

=
√

2N`2 λiEξk
[(

1 ∧ eQk
)
ξi,Nk+1

]
+ λiζ

i,N
k D`(S

N
k ) .

Following the reasoning of Section 5.3, we decompose ei,Nk as follows:

ei,Nk =
√

2N`2 λiEξk

[(
1 ∧ eR

i−
√

2`2

N ζi,Nk ξi,Nk+1

)
ξi,Nk+1

]
−Θi(xNk , S

N
k ) + ei,N1,k + ei,N2,k , where

ei,N1,k :=
√

2N`2 λiEξk
[((

1 ∧ eQk
)
−
(
1 ∧ eR

))
ξi,Nk+1

]
(8.20)

ei,N2,k :=
√

2N`2 λiEξk

[((
1 ∧ eR

)
−
(

1 ∧ eR
i−

√
2`2

N ζi,Nk ξi,Nk+1

))
ξi,Nk+1

]
. (8.21)

We now use equality (5.21), leading to:

ei,Nk = −2`2λiζ
i,N
k Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣
−Θi(xNk , S

N
k ) + ei,N1,k + ei,N2,k + ei,N3,k ,

where

ei,N3,k := −2`2λiζ
i,N
k

(
e
`2

N |ζi,Nk |2 − 1
)
Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣ −
√

2`2

N

∣∣∣ζi,Nk ∣∣∣


− 2`2λiζ
i,N
k Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣ −
√

2`2

N

∣∣∣ζi,Nk ∣∣∣
− Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣

 . (8.22)

Finally, by setting

ei,N4,k := −2`2λiζ
i,N
k Eξk

eRiΦ
 −Ri√

2`2

N

∣∣∣ζi,Nk ∣∣∣
− eRi1{Ri<0}

 , (8.23)

ei,N5,k := −2`2λiζ
i,N
k Eξk

[
eR

i

1{Ri<0} − eZ`,k1{Z`,k<0}

]
, (8.24)
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and using (8.19), we obtain

ei,Nk =

5∑
h=1

ei,Nh,k . (8.25)

Now that we have the above decomposition, we need to find bounds on each of the ei,Nh,k ’s, h = 1, . . . , 5, which
is what we shall do next.

• ei,N1,k and ei,N2,k : The bounds on ei,N1,k and ei,N2,k are straightforward:∣∣∣ei,N1,k

∣∣∣ . λi√
N

and
∣∣∣ei,N2,k

∣∣∣ . λi√
N
, (8.26)

The first estimate is a consequence of (5.6), (5.7), (5.9) and the Lipshitzianity of the function f(x) =
1 ∧ ex; for the second we used definition (5.17).

• ei,N3,k : To study ei,N3,k , we set

ei,N3,k := ēi,N3,k + ẽi,N3,k , (8.27)

with

ēi,N3,k := −2`2λiζ
i,N
k

(
e
`2

N |ζi,Nk |2 − 1
)
Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣ −
√

2`2

N

∣∣∣ζi,Nk ∣∣∣


ẽi,N3,k :=− 2`2λiζ
i,N
k Eξ

i
−
k eR

i

Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣ −
√

2`2

N

∣∣∣ζi,Nk ∣∣∣
− Φ

 −Ri√
2`2

N

∣∣∣ζi,Nk ∣∣∣

 .

To estimate ẽi,N3,k , we use the boundedness and Lipshitzianity of Φ together with

Eξke
Ri . e

`2

N ‖ζ
N
k ‖

2

, (8.28)

see [MPS12, (5.20)]. We therefore obtain

∣∣∣ẽi,N3,k

∣∣∣ . λi
∣∣∣ζi,Nk ∣∣∣2
√
N

e
`2

N ‖ζ
N
k ‖

2

. (8.29)

The term ēi,N3,k will be studied separately later.

• ei,N4,k : We act as in the proof of [MPS12, Lemma 5.7-Lemma 5.9] and obtain∣∣∣ei,N4,k

∣∣∣ . λi ∣∣∣ζi,Nk ∣∣∣ e‖ζNk ‖2/N (1 +
∣∣∣ζi,Nk ∣∣∣)(Ek 1

(1 + |R|
√
N)2

)1/4

. (8.30)

• ei,N5,k : Let g(x) := ex1{x<0}; using the same argument as in [MPS12, page 923], if X and Y are two random
variables such that one of them has a density with respect to the Lebesgue measure and such a density
is bounded by M , then

|Eg(X)− Eg(Y )| .
√
MWass(X,Y ). (8.31)

Such a result is applicable to Ri and Z`,k as Z`,k is (conditionally) Gaussian with variance SNk . Therefore

using (8.3), (8.6) and (8.31) with M = 1/
√

2π SNk , we have∣∣∣EξkeRi1{Ri<0} − EeZ`,k1{Z`,k<0}

∣∣∣ . 1(
SNk
)1/4√Wass(Ri, Z`,k)

.
1

N1/4

1(
SNk
)1/4

[(
1 + ‖xNk ‖s

)1/2
+

√
1 +

∣∣∣ζi,Nk ∣∣∣]
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The above, together with (8.24), implies

∣∣∣ei,N5,k

∣∣∣ . λi

∣∣∣ζi,Nk ∣∣∣(
SNk
)1/4 1

N1/4

[(
1 + ‖xNk ‖s

)1/2
+

√
1 +

∣∣∣ζi,Nk ∣∣∣] (8.32)

From the bounds (8.26), (8.29), (8.30) and (8.32), we get

Ex0

5∑
h=1,h6=3

N∑
i=1

i2s
∣∣∣ei,Nh,k ∣∣∣2 +

N∑
i=1

i2s
∣∣∣ẽi,N3,k

∣∣∣2 . Ex0

N∑
i=1

i2sλ2
i

N

+ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4
N

e
2`2

N ‖ζ
N
k ‖

2

+ Ex0e
2
N ‖ζ

N
k ‖

2

(
Ek

1

(1 + |R|
√
N)2

)1/2 N∑
i=1

i2sλ2
i

(∣∣∣ζi,Nk ∣∣∣2 +
∣∣∣ζi,Nk ∣∣∣4)

+ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣2 +
∣∣∣ζi,Nk ∣∣∣3

√
N

1√
SNk

+ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣2 (1 + ‖xk‖s)√
N

1√
SNk

.

After simple manipulations and using Lemma 7.4 and Lemma 8.6, we have

Ex0

1

N

[TN ]∑
k=0

 5∑
h=1,h6=3

N∑
i=1

i2s
∣∣∣ei,Nh,k ∣∣∣2 +

N∑
i=1

i2s
∣∣∣ẽi,N3,k

∣∣∣2
 −→ 0,

as N →∞.

Remark 8.9. When we apply (8.10) of Lemma 8.6 to the above, we need to enforce the condition p ≥ 2α/ς,
under which (8.10) holds. Rewriting such a condition as ς ≥ 2α/p and observing that this condition is always
applied in the above with p ≥ 2 and α ≤ 1, we get the constraint ς ≥ 1/2 appearing in Assumptions 3.1.

Returning to the proof, if we prove the limit,

Ex0

1

N

[TN ]∑
k=0

N∑
i=1

i2s
∣∣∣ēi,N3,k

∣∣∣2 → 0,

we are done. To study ēi,N3,k , we use again (8.28) and the bound Φ ≤ 1, obtaining∣∣∣ēi,N3,k

∣∣∣ . λi ∣∣∣ζi,Nk ∣∣∣ (e `2N |ζi,Nk |2 − 1
)
e
`2

N ‖ζ
N
k ‖

2

.

Therefore, by the weighted Jentzen inequality and (7.5),

Ex0

N∑
i=1

i2s
∣∣∣ēi,N3,k

∣∣∣2 . Ex0

[
e

2`2

N ‖ζ
N
k ‖

2
N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣2 (e `2N |ζi,Nk |2 − 1
)2
]

.

(
Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4 (e `2N |ζi,Nk |2 − 1
)4
)1/2

.
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Using the local Lipshitz property of the function ex, we have

Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4 (e `2N |ζi,Nk |2 − 1
)4

= Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4 (e `2N |ζi,Nk |2 − 1
)4

1{ `2N |ζi,Nk |2<log
√
N}

+ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4 (e `2N |ζi,Nk |2 − 1
)4

1{ `2N |ζi,Nk |2≥log
√
N}

. elog
√
NEx0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣6
N

+ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4(e `2‖ζNk ‖2N − 1

)4

1{ `2N ‖ζNk ‖2≥log
√
N}.

We now use Markov Inequality, (8.9) and (7.5) to estimate the second addend, obtaining

Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣4 (e `2N |ζi,Nk |2 − 1
)4

≤ Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣6
√
N

+

(
P
{
`2

N
‖ζNk ‖2 ≥ log

√
N

})1/2

.
1√
N

+
(
Ex0

e
`2

N ‖ζ
N
k ‖

2

e− log
√
N
)1/2 (7.5)−→ 0.

This concludes the proof.

8.2. Analysis of the Noise

The proof of Lemma 8.2 is based on Lemma 8.10 below. In order to state such a lemma let us introduce the
following notation and definitions. Let kN : [0, T ] → Z+ be a sequence of nondecreasing, right continuous
functions indexed by N , with kN (0) = 0 and kN (T ) ≥ 1. LetH be any Hilbert space and {XN

k ,FNk }0≤k≤kN (T )

be a H-valued martingale difference array (MDA), i.e. a double sequence of random variables such that
E[XN

k |FNk−1] = 0, E[‖XN
k ‖2|FNk−1] < ∞ almost surely and Fk−1,N ⊂ FNk . Consider the process XN (t)

defined by

XN (t) :=

kN (t)∑
k=1

XN
k ,

if kN (t) ≥ 1 and kN (t) > limv→0+ kN (t− v) and by linear interpolation otherwise. With this set up we state
the following result.

Lemma 8.10. Let T : H → H be a self-adjoint positive definite trace class operator on a separable Hilbert
space (H, ‖ · ‖). Suppose

i) there exists a continuous and positive function f(t) defined on [0, T ] such that

lim
N→∞

kN (T )∑
k=1

E(‖XN
k ‖2|FNk−1) = Trace(T)

∫ T

0

f(t)dt in probability;

ii) if {φj} is an orthonormal basis of H then

lim
N→∞

kN (T )∑
k=1

E(〈XN
k , φj〉〈XN

k , φi〉|FNk−1) = 0 for all i 6= j ;
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iii) for every fixed ε > 0,

lim
N→∞

kN (T )∑
k=1

E(‖XN
k ‖2)1{‖XNk ‖2≥ε}|F

N
k−1) = 0, in probability.

Then the sequence XN converges weakly in C([0, T ];Hs) to the stochastic integral
∫ T

0

√
f(t)dWt, where Wt

is a H-valued T-Brownian motion.

Proof. This lemma is in the same spirit as [MPS12, Proposition 4.1 and Remark 4.2]. As observed in [Ber86,
Proof of Theorem 5.1], the statement just needs to be proved for a finite dimensional Hilbert space, i.e. in
finite dimensions. The first two conditions are needed to ensure the weak convergence of the finite dimensional
distributions of XN , the last condition guarantees tightness of the sequence, see [Hel82, Theorem 3.2] and
[MPS12, Remark 4.2]. One may also consult the more compact [OPPS16, Section 5.5].

Proof of Lemma 8.2. We apply Lemma 8.10 with kN (t) = [tN ], XN
k = M1,N

k /
√
N and FNk the sigma-algebra

generated by {γNh+1, ξ
N
h+1, 0 ≤ h ≤ k} to study the sequence ηN (t), defined in (6.11), in the Hilbert space

Hs. We now check that the three conditions of Lemma 8.10 hold in the present case.

i) We need to show that

1

N
Ex0

[TN ]∑
k=0

Ek‖M1,N
k ‖2s −→ Trace(Cs)

∫ T

0

Γ`(S(u))du . (8.33)

From the definition of M1,N
k , equation (6.10), we have

1

N
‖M1,N

k ‖2s = ‖xNk+1 − xNk − Ek(xNk+1 − xNk )‖2s, (8.34)

hence

1

N
Ek‖M1,N

k ‖2s = Ek‖xNk+1 − xNk ‖2s − ‖Ek(xNk+1 − xNk )‖2s

=
2`2

N
Ek‖γk+1C1/2ξNk+1‖2s − ‖Ek(xNk+1 − xNk )‖2s, (8.35)

where the above equality holds thanks to (2.3). We will show that

Ex0

[TN ]∑
k=1

‖Ek(xNk+1 − xNk )‖2s −→ 0 as N →∞. (8.36)

Assuming the above for the moment, let us focus on the first addend in (8.35):

2`2

N
Ek‖γk+1C1/2

N ξNk+1‖2s =
2`2

N

N∑
j=1

λ2
jj

2sEk
∣∣∣γk+1ξ

j,N
k+1

∣∣∣2
=

2`2

N

N∑
j=1

λ2
jj

2sEk
[
(1 ∧ eQ)

∣∣∣ξj,Nk+1

∣∣∣2]

=
2`2

N

N∑
j=1

λ2
jj

2sEξk

[
(1 ∧ eRj )

∣∣∣ξj,Nk+1

∣∣∣2]+
aN1,k
N

,

where

aN1,k := 2`2
N∑
j=1

λ2
jj

2sEk
[(

(1 ∧ eQ)− (1 ∧ eRj )
) ∣∣∣ξj,Nk+1

∣∣∣2] . (8.37)
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We now use the same technique that we used for the drift coefficient (that is, we first take expectation
with respect to ξi and then with respect to ξ \ ξi), obtaining

2`2

N
Ek‖γk+1C1/2ξNk+1‖2s =

2`2

N

N∑
j=1

λ2
jj

2sEξ
−
j

k (1 ∧ eRj ) +
aN1,k
N

=
2`2

N

N∑
j=1

λ2
jj

2sEξk(1 ∧ eZ`,k) +
aN1,k
N

+
aN2,k
N

=
1

N

N∑
j=1

λ2
jj

2sΓ(SNk ) +
aN1,k
N

+
aN2,k
N

, (8.38)

having used (5.13) and (5.28) and having set

aN2,k := 2`2
N∑
j=1

λ2
jj

2sEξk
(
(1 ∧ eRj )− (1 ∧ eZ`,k)

)
. (8.39)

Therefore

2`2

N

[TN ]∑
k=0

Ek‖γk+1C1/2ξNk+1‖2s =
1

N

[TN ]∑
k=0

N∑
j=1

λ2
jj

2sΓ(SNk ) +

[TN ]∑
k=0

(
aN1,k
N

+
aN2,k
N

)
. (8.40)

If we prove that

1

N
Ex0

[TN ]∑
k=0

∣∣aN1,k∣∣→ 0 and
1

N
Ex0

[TN ]∑
k=0

∣∣aN2,k∣∣→ 0, (8.41)

then (8.33) follows from (8.35), (8.36), (8.40) and the above two limits. We therefore move on to proving
the limits in (8.41). Let us start from the latter:

Ex0

∣∣aN1,k∣∣ . Ex0

N∑
j=1

λ2
jj

2s
(
Ek
∣∣(1 ∧ eQ)− (1 ∧ eRj )

∣∣2)1/2

. Ex0

N∑
j=1

λ2
jj

2s
(
Ek |Q−Rj |2

)1/2

. Ex0

N∑
j=1

λ2
jj

2s
(
Ek |Q−R|2

)1/2

(8.42)

+ Ex0

N∑
j=1

λ2
jj

2s
(
Ek |R−Ri|2

)1/2

. (8.43)

The addend (8.42) tends to zero as N → ∞ by using (5.9) and (5.7). For (8.43) instead we have, by
(5.17),

(8.43) .
N∑
j=1

λ2
jj

2sEx0

(
Ek |R−Ri|2

)

.
N∑
j=1

λ2
jj

2sEx0

 1

N
+

∣∣∣ζj,Nk ∣∣∣2
N

 .

The first limit in (8.41) now follows from (8.9). The second limit in (8.41) can be shown analogously,
using this time the bounds (8.3) and (8.6).
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Finally, to show (8.36), observe that from (8.13),

‖Ek(xNk+1 − xNk )‖2s .
‖Θ(xNk , S

N
k )‖2s

N2
+
‖eNk ‖2s
N2

.

The desired result now follows from Lemma 8.8, (7.3) and the bound

‖Θ(x, S)‖s . 1 + ‖x‖s,

(which is a consequence of the definition (6.7) and (8.17)).
ii) Condition ii) of Lemma 8.10 can be shown to hold with similar calculations, so we will not show the

details.
iii) It will suffice to show that

lim
N→∞

1

N
Ex0

[TN ]∑
k=0

Ek(‖M1,N
k ‖2s1{‖M1,N

k ‖2s>εN}
) = 0 .

Using the Markov inequality,

Ek(‖M1,N
k ‖2s1{‖M1,N

k ‖2s>εN}
) ≤

(
Ek‖M1,N

k ‖4s
)1/2 (

P {‖M1,N
k ‖2s > εN}

)1/2

≤ 1

Nε
Ek‖M1,N

k ‖4s .

By (8.34), (2.3) and (3.7),

1

N
Ek‖M1,N

k ‖4s . Ek‖(xNk+1 − xNk )‖4s .
1

N2
Ek‖γk+1C1/2ξNk+1‖4s .

1

N2
.

Therefore

1

N
Ex0

[TN ]∑
k=0

Ek(‖M1,N
k ‖2s1{‖M1,N

k ‖2s>εN}
) .

1

N2ε
Ex0

[TN ]∑
k=0

Ek(‖M1,N
k ‖4s) .

1

N2
. (8.44)

Appendix A

Proof of (3.7). We just need to prove it for p even. So let q ≥ 1; then, by the weighted Jensen’s inequality

E‖C1/2ξN‖2qs ≤ E

( ∞∑
i=1

i2sλ2
i

∣∣ξi,N ∣∣2)q ≤ (Trace(Cs))q−1
∞∑
i=1

i2sλ2
iE
∣∣ξi,N ∣∣2q <∞.

Alternatively, one can observe that (3.7) is a consequence of Fernique’s theorem.

Before proving Lemma 4.2, we recall the following fact, which has already been pointed out in Section
1.2.

Remark 8.11. We recall that for X ∈ R+ and b ∈ R, D`(X) = G`√2(X, 1), where G`(X, b) is the drift
function defined in [JLM15, (1.7)]. Analogously, our Γ`(X) is Γ`

√
2(X, 1), where Γ`(X, b) is defined in [JLM15,

(1.6)]. �

Proof of Lemma 4.2. The boundedness of D` and Γ` follows from Remark 8.11 and [JLM15, Lemma 2].
Lipshitzianity follows simply observing that both functions have bounded derivative, indeed

d

dx
D`(x) = `2D`(x)− `3√

π

(
1√
x

+
1

2x3/2

)
e−

`2

4x

d

dx
Γ`(x) = `2D`(x)− `3√

πx
e−

`2

4x . (8.45)
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Global Lipshitzianity of
√

Γ` then follows after observing that Γ` is bounded below away from zero (see
(1.13)).

We now want to show that the derivative of A`(x) is bounded. From the definition of A` (equation (1.14))
we have

∂xA`(x) = −2D`(x)− 2x ∂xD`(x) + ∂xΓ`(x) . (8.46)

We will prove that
lim

x→+∞
∂xA`(x) = 0 . (8.47)

Because ∂xA` is a continuous function on [0,+∞), (8.47) implies the boundedness of ∂xA`(x). In order to
prove (8.47) we will prove that all the addends on the RHS of (8.46) tend to zero (see also Figure 2 below).

Fig 2. Plots of the function ∂xA`(x) for ` = 1 and ` = 2 (dashed line).

• First of all, let us prove
lim

x→+∞
D`(x) = 0. (8.48)

The above limit follows from the definition of D` (1.12) by simply applying de l’Hopital’s rule:

lim
x→+∞

Φ
(
`(1−2x)√

2x

)
e−`2(x−1)

= lim
x→+∞

e−`
2(1−2x)2/4x

√
2π `2e−`2(x−1)

(
`

2
√

2x3/2
+

`√
2x

)
(8.49)

= lim
x→+∞

e−`
2/4x 1

`
√
π

(
1

4x3/2
+

1

2
√
x

)
= 0.

• From (8.45) and (8.48), also ∂xΓ`(x)→ 0 as x→ +∞.
• Now the second addend:

lim
x→+∞

−2x ∂xD`(x) = 0.

Indeed,

−2x∂xD` = −2x`2D`(x) + 2
`3√
π

(√
x+

1

2
√
x

)
e−`

2/4x ,
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therefore

lim
x→+∞

−2x∂xD` = lim
x→+∞

−4`4
xΦ

(
`(1−2x)√

2x

)
e−`2(x−1)

+ 2
`3√
π

√
xe−`

2/4x

= lim
x→+∞

−4`4

Φ
(
`(1−2x)√

2x

)
− e−`2(1−2x)2/4x

(
`

4
√
πx

+ `
√
x

2
√
π

)
−`2e−`2(x−1)


+ lim
x→+∞

2
`3√
π

√
xe−`

2/4x

(8.49)
= lim

x→+∞
−2

`3√
π

√
xe−`

2/4x + 2
`3√
π

√
xe−`

2/4x = 0

Finally, the sign of A`(x) is studied in [CRR05, page 258].

We include here plots of the functions D`(x) and Γ`(x), Figure 3 and Figure 4 below.

Fig 3. Plots of the function D`(x) for ` = 1 and ` = 2 (dashed line).

Proof of first equality in (5.16). We want to prove

Eξ,γk (γk+1 ξ
i,N
k+1) = Eξk(αk+1 ξ

i,N
k+1).

Let fγk+1,ξk+1
(γ, ξ) be the joint distribution (given xk) of γk+1 and ξk+1. Then

Eξ,γk (γk+1 ξ
i,N
k+1) =

∫∫
γ ξi fγk+1,ξk+1

(γ, ξ) =

∫
ξi
∫
γfξk+1

(ξ)fγk+1|ξk+1
(γ|ξ)

=

∫
ξifξk+1

(ξ)αk+1(ξ) = Eξk(αk+1 ξ
i,N
k+1).

Appendix B

Before starting the proofs of the various lemmata, we derive equation (8.51) below, which will be repeatedly
used throughout this appendix.
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Fig 4. Plots of the function Γ`(x) for ` = 1 and ` = 2 (dashed line).

From (5.5) and recalling that
[
∇ΨN (xk)

]i
denotes the i-th component of ∇ΨN (xk),

ζi,Nk =
xi,Nk
λi

+ λi
[
∇ΨN (xk)

]i
. (8.50)

Using the bound (7.12) we have∣∣∣λi [∇ΨN (xk)
]i∣∣∣2 ≤ ∞∑

i=1

∣∣∣λi [∇ΨN (xk)
]i∣∣∣2 . ‖x‖2ςs + ‖x‖2s,

hence ∣∣∣λi [∇ΨN (xk)
]i∣∣∣p . ‖x‖ςps + ‖x‖ps .

Therefore for every p ≥ 0 ∣∣∣ζi,Nk ∣∣∣p .
∣∣∣xi,Nk ∣∣∣p
λpi

+ (‖xk‖ςps + ‖xk‖ps), (8.51)

Proof of Lemma 7.4. We will prove, in order, the bounds (7.4), (7.3) and (7.5).
• Proof of (7.4). We can act as in [PST14, Proof of Lemma 9] (in comparing our proof with [PST14,

Proof of Lemma 9] set δ = N−1 in [PST14]). Looking at [PST14, Proof of Lemma 9], all we need to show is

Ex0
(SNk+1)2m − Ex0

(SNk )2m .
1

N
(1 + Ex0

(SNk )2m).

A close inspection of the method of proof used in [PST14] reveals that showing the above boils down to
proving the following two bounds:∣∣Ek [SNk+1 − SNk

]∣∣ . 1

N

(
1 + SNk

)
, p ≥ 1. (8.52)

and (
Ek
∣∣SNk+1 − SNk

∣∣p)1/p

.
1√
N

(1 + SNk ) . (8.53)

Let us start with proving (8.52). To this end let us observe that by (7.7) and (6.1), one has

Ek
[
SNk+1 − SNk

]
=
ENk
N

+
A`(S

N
k )

N
. (8.54)
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Now notice that

‖xNk ‖2s
N

=
1

N

N∑
i=1

i2s
∣∣∣xi,Nk ∣∣∣2 =

1

N

N∑
i=1

i2sλ2
i

∣∣∣xi,Nk ∣∣∣2
λ2
i

.
1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

= SNk , (8.55)

where in the last inequality we have used the fact that
∑
i λ

2
i i

2s is convergent and therefore λ2
i i

2s is bounded.
To bound the RHS of (8.54), we recall that from the proof of Lemma 7.2 one has ENk = EN1,k +EN2,k +Ekr̂N
(see (7.10)). Acting like we did to obtain (7.17), one has

∣∣EN1,k∣∣ . 1√
N

(
SNk +

‖xNk ‖2s
N

)1/2 (8.55)

.
1√
N

(SNk + 1). (8.56)

With steps analogous to those used to obtain (7.19), one also has∣∣EN2,k∣∣ . 1√
N

(
1 + ‖xNk ‖2s

)1/2
. (1 + SNk ). (8.57)

Now (8.52) follows from (7.10), (8.54), (8.56), (8.57), (8.55), (7.21) and

A`(a) . (1 + a), a ≥ 0 .

To prove (8.53) one can instead just use (7.23), (7.15) (together with γk+1 ≤ 1) and calculations analogous
to those leading to (7.21). This concludes the proof of (7.4).
• Proof of (7.3). For this bound we will use the same strategy of proof that we used to show (7.4). So

we only need to prove

‖Ek(xNk+1 − xNk )‖s .
1

N
(1 + ‖xNk ‖s) (8.58)

and (
Ek‖xNk+1 − xNk ‖ps

)1/p
.

1√
N

(1 + ‖xNk ‖s) . (8.59)

Let us start with (8.58):

‖Ek(xNk+1 − xNk )‖s =

√
2`2

N
‖Ek(γk+1C1/2ξNk+1)‖s

=

√
2`2

N

(
N∑
i=1

i2s
∣∣∣Ek(γk+1λiξ

i,N
k+1)

∣∣∣2)1/2

We therefore need to estimate
∣∣∣Ek(γk+1λiξ

i,N
k+1)

∣∣∣2. In order to do so, we make the following preliminary

observation: from (5.7) and (5.17) we have

Q(xk, ξk+1) = Ri(xk, ξk+1)− `2

N

∣∣∣ξi,Nk+1

∣∣∣2 −√2`2

N
ζi,Nk ξi,Nk+1 + rN (xk, ξk+1).

As we have already said, Ri contains only terms that do not depend on the noise ξi,Nk+1, therefore we can
write ∣∣∣Ek(γk+1λiξ

i,N
k+1)

∣∣∣2 =
∣∣∣Ek [(1 ∧ eQ)λiξi,Nk+1

]∣∣∣2
=
∣∣∣Ek [((1 ∧ eQ)− (1 ∧ eR

i
))

λiξ
i,N
k+1

]∣∣∣2
≤ λ2

i

∣∣∣Ek (∣∣Q−Ri∣∣ ∣∣∣ξi,Nk+1

∣∣∣)∣∣∣2
. λ2

i

∣∣∣∣∣∣∣Ek
∣∣∣ξi,Nk+1

∣∣∣3
N

+ Ek

∣∣∣ζi,Nk ∣∣∣ ∣∣∣ξi,Nk+1

∣∣∣2
√
N

+ Ek
∣∣∣ξi,Nk+1r

N
∣∣∣
∣∣∣∣∣∣∣
2

.
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Using (5.8) and the fact that ζk depends only on xk, we have

∣∣∣Ek(γk+1λiξ
i,N
k+1)

∣∣∣2 . λ2
i

 1

N2
+

∣∣∣ζi,Nk ∣∣∣2
N


(8.51)

. λ2
i

 1

N2
+

∣∣∣xi,Nk ∣∣∣2
λ2
iN

+
‖xk‖2s + 1

N

 . (8.60)

(8.58) is now a simple consequence of the above bound. For (8.59), instead, we just use γk+1 ≤ 1 and

(
Ek‖xNk+1 − xNk ‖ps

)1/p
.

(
1

Np/2
Ek‖C1/2ξk+1‖ps

)1/p (3.7)

.
1√
N
.

• Proof of (7.5). By acting as we do to obtain (8.51) (with p = 2), it is clear that we only need to show

Ex0
ecS

N
k <∞ and Ex0

e
c
N ‖x

N
k ‖

2
s <∞, uniformly over 0 ≤ k ≤ [TN ] + 1, (8.61)

for all c > 0. However, by (8.55), proving the second of the above bounds boils down to proving the first,
which is therefore the only one we need to concentrate on. Such a bound is a simple consequence of (7.3).
Indeed, on inspection of the proof of (7.3), one finds that the constants c̄ appearing on the RHS of (7.3)
grows at most like dm, where d > 0 is some positive constant independent of m,N and k. Therefore

Ex0
e
c
N ‖x

N
k ‖

2
s =

∞∑
m=0

cmEx0

‖xNk ‖2ms
Nmm!

= ec d
2/N . 1.

This concludes the proof of the lemma.

Proof of Lemma 5.3. This proof is in 2 steps. The first step proves the first part of the statement, the second
step proves the second part.

• Step 1. For every fixed t > 0 and for every ε > 0,

∞∑
N=1

P
(∣∣ŵN (t)

∣∣ > ε
)
<

1

ε4

∞∑
N=1

Ex0

(
ŵN (t)

)4
<∞, (8.62)

where ŵN has been defined in (6.5). Assuming for the moment that (8.62) holds, by the Borel-Cantelli
Lemma (8.62) implies that ŵN (t) converges to zero almost surely. Because almost sure convergence is
preserved under continuous transformations, this means that S(N)(t) converges almost surely to S(t).
We only sketch the proof of (8.62), as the calculations are completely analogous to those contained in
the proof Theorem 5.1. From (6.5), we have

Ex0

(
ŵN (t)

)4
.
∫ t

0

Ex0

[
AN` (x̄(N)(v))−A`(S̄(N)(v))

]4
dv

+

∫ t

0

Ex0

[
A`(S̄

(N)(v))−A`(S(N)(v))
]4
dv + Ex0

∣∣wN (t)
∣∣4 . (8.63)

The estimate of the first and third addend on the right hand side of the above is done by proceeding
analogously to what we have done for the proof of Lemma 7.2 and Lemma 7.1, respectively. The second
addend can be studied with similar calculations (indeed, with calculations analogous to those in Step 2
of this proof). Therefore we only show how to estimate the first addend, the others can be done with a
similar procedure, and we leave it to the reader. With the notation introduced in the proof of Lemma
7.2, we have

Ex0

∫ t

0

[
AN` (x̄(N)(v))−A`(S̄(N)(v))

]4
dv = Ex0

1

N

[TN ]∑
k=0

∣∣ENk ∣∣4
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and
∣∣ENk ∣∣4 . ∣∣∣EN1,k∣∣∣4 +

∣∣∣EN2,k∣∣∣4 +
∣∣Ekr̂N ∣∣4 (see (7.10)). Acting as we did to obtain (7.18) and (7.19), we

find

Ex0

∣∣EN1,k∣∣4 . 1

N2
and Ex0

∣∣EN2,k∣∣4 . 1

N2
. (8.64)

Using (7.21), one finds that, overall,

Ex0

∫ t

0

[
AN` (x̄(N)(v))−A`(S̄(N)(v))

]4
dv .

1

N2
,

and the sequence aN = N−2 is summable. Similar estimates can be obtained for the addends in (8.63).
This concludes the proof of the almost sure convergence of ŵN to zero.

• Step 2. For every ε > 0,

∞∑
N=1

P
(∣∣∣S̄(N)(t)− S(N)(t)

∣∣∣ > ε
)
<

1

ε2

∞∑
N=1

Ex0

∣∣∣S̄(N)(t)− S(N)(t)
∣∣∣2 <∞ . (8.65)

Again, if we prove the above, by the B-C Lemma we have almost sure convergence of S̄(N)(t) to
S(N)(t) and, by Step 1, to S(t). From the definitions of S̄(N)(t) and S(N)(t), equation (1.17) and (5.2),
respectively, for (k/N) ≤ t < (k + 1)/N , we have

S̄(N)(t)− S(N)(t) = (Nt− k)(SNk+1 − SNk ), (8.66)

so that

Ex0

∣∣∣S̄(N)(t)− S(N)(t)
∣∣∣2 = Ex0

∣∣(Nt− k)(SNk+1 − SNk )
∣∣2 ≤ Ex0

∣∣SNk+1 − SNk
∣∣2 (7.24)

.
1

N2
. (8.67)

This concludes the proof.

Proof of Lemma 8.1 . Using (8.2), the bound (8.4) is a simple consequence of the definitions of R and G,
indeed

|R−G| .

∣∣∣∣∣ 1

N

N∑
i=1

∣∣ξi∣∣2 − 1

∣∣∣∣∣ ,
hence

Ek |R−G| ≤
(
Ek |R−G|2

)1/2

.

E

∣∣∣∣∣ 1

N

N∑
i=1

∣∣ξi∣∣2 − 1

∣∣∣∣∣
2
1/2

=

(
V ar

(
1

N

N∑
i=1

∣∣ξi∣∣2))1/2

≤ 1√
N
. (8.68)

We observe now (although we will use this only later) that a similar explicit calculation also shows

Ek |R−G|4 .
1

N2
. (8.69)

Going back to the proof of the lemma, the bound (8.3) is a direct consequence of the definitions of R and
Ri. The inequality (8.5) follows from (5.12), (5.13), (5.5) and the bound (7.13). Indeed,

G− Z`,k =

√
2`2

N

N∑
j=1

ζj,Nk ξj,Nk+1 −
√

2`2

N

N∑
j=1

xj,Nk
λi

ξj,Nk+1.
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Therefore, by (5.5), given xk we have

G− Z`,k ∼ N
(

0,
2`2

N
‖C1/2
N ∇ΨN (xNk )‖2

)
. (8.70)

Using (7.13) one then has

Ek |G− Z`,k|p .
1 + ‖xNk ‖ps
Np/2

, (8.71)

hence (8.5) follows. Notice that from the above calculations we have

Ek |R− Z`,k|p .
1 + ‖xNk ‖ps
Np/2

, p ∈ {2, 4}. (8.72)

Proof of Lemma 8.6. We prove the three statements in the order in which they are presented.
• Proof of the bound (8.9). From (8.51),

Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p Y . Ex0

N∑
i=1

i2sλ2
i

∣∣∣xi,Nk ∣∣∣p
λpi

Y +

N∑
i=1

i2sλ2
iEx0

[(1 + ‖xk‖ps)Y ] . (8.73)

The second addend is bounded thanks to the assumption on Y and (7.3). As for the first addend, (by the
weighted Jensen’s inequality) this is bounded (for any p ≥ 0) as soon as we can prove that

vNk (p) :=

N∑
i=1

i2sλ2
i

∣∣∣xi,Nk ∣∣∣2p
λ2p
i

has bounded first moment (for every p), i.e. we want to prove Ex0v
N
k (p) < c where c > 0 is a constant

independent of N and k ∈ {0, 1, . . . , [TN ]} (but possibly dependent on p). Observe that if p = 1 then
vNk (1) = ‖xNk ‖2s, so the statement is a consequence of (7.3). So we can restrict to p ≥ 2. Denoting by d a
generic constant (that does not depend on N), the value of which will change from line to line, we write

Ex0v
N
k+1(p) = Ex0

N∑
i=1

i2s
λ2
i

λ2p
i

(
xi,Nk +

√
2`2

N
λiγk+1ξ

i,N
k+1

)2p

≤ Ex0v
N
k (p) + Ex0d

N∑
i=1

i2s
λ2
i

λ2p
i

2p−1∑
m=0

(xi,Nk )mEk

(√
2`2

N
λiγk+1ξ

i,N
k+1

)2p−m

.

If, in the above summation, the index m is smaller than 2p− 2, i.e. 0 ≤ m ≤ 2p− 2, then p−m/2 ≥ 1 and
we have the estimate

Ex0
i2s

λ2
i

λ2p
i

(xi,Nk )mEk

(√
2`2

N
λiγk+1ξ

i,N
k+1

)2p−m

. Ex0
i2s
λ2
i

N

∣∣∣xi,Nk ∣∣∣m
λmi

Ek
∣∣∣γk+1ξ

i,N
k+1

∣∣∣2p−m

. Ex0i
2sλ

2
i

N

∣∣∣xi,Nk ∣∣∣m
λmi

(8.74)

.
1

N
i2sλ2

iEx0


∣∣∣xi,Nk ∣∣∣2p
λ2p
i

+ 1

 . (8.75)
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If m = 2p− 1 we instead use (8.60) and obtain

Ex0i
2s λ

2
i

λ2p
i

1√
N

∣∣∣xi,Nk ∣∣∣2p−1 ∣∣∣Ek(λiγkξ
i,N
k+1)

∣∣∣ . Ex0i
2sλ2

i

∣∣∣xi,Nk ∣∣∣2p−1

λ2p−1
i

1√
N

‖xNk ‖s√
N

+

∣∣∣xi,Nk ∣∣∣
λi

1√
N


. Ex0

i2sλ2
i

N


∣∣∣xi,Nk ∣∣∣2p
λ2p
i

+ ‖x‖2ps

 . (8.76)

To obtain the last inequality we used Young’s inequality with exponents 2p/(2p− 1) and 2p, as follows:∣∣∣xi,Nk ∣∣∣2p−1

λ2p−1
i

· ‖xNk ‖s ≤

∣∣∣xi,Nk ∣∣∣2p
λ2p
i

+ ‖xNk ‖2ps .

From (8.75) and (8.76) (and using (7.3)) we then have

Ex0
vNk+1(p) ≤

(
1 +

d

N

)
Ex0

vNk (p) +
d

N
.

Iterating the above [TN ] times we get

Ex0v
N
k+1(p) ≤

(
1 +

d

N

)[TN ]

v0(p) + d <∞,

having denoted v0(p) :=
∑∞
i=1 i

2sλ2
i
|xi0|2p
λ2p
i

. Notice that if x0 ∈ Hs∩∩ then the series v0(p) is convergent for

every p ≥ 0.
• Proof of the bound (8.10). Set

ζ̃i,Nk :=

∣∣∣xi,Nk ∣∣∣
λi

, (8.77)

so that

SNk =
1

N

N∑
i=1

∣∣∣xi,Nk ∣∣∣2
λ2
i

=
1

N

N∑
i=1

∣∣∣ζ̃i,Nk ∣∣∣2 .
From (8.51) we then have

JNk :=

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p
(NSNk )α

.
N∑
i=1

i2sλ2
i

∣∣∣ζ̃i,Nk ∣∣∣p
(NSNk )α

+

N∑
i=1

i2sλ2
i

‖xNk ‖pςs + ‖xNk ‖ps
(NSNk )α

. (8.78)

For the first addend in (8.78) we have

Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζ̃i,Nk ∣∣∣p
(NSNk )α

= Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζ̃i,Nk ∣∣∣p−2α


∣∣∣ζ̃i,Nk ∣∣∣2∑N
i=1

∣∣∣ζ̃i,Nk ∣∣∣2

α

. Ex0
vNk ((p− 2α)/2),
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thanks to the obvious estimate

(∣∣∣ζ̃i,Nk ∣∣∣2 /∑N
i=1

∣∣∣ζ̃i,Nk ∣∣∣2) ≤ 1. Using (8.55), one can easily see that also the

expected value of the second addend is bounded if ςp ≥ 2α, as

Ex0

‖xNk ‖pςs
(NSNk )α

= Ex0

‖xNk ‖2αs
(NSNk )α

‖xNk ‖ςp−2α
s . Ex0

‖xNk ‖ςp−2α
s <∞.

Therefore, Ex0
JNk <∞, uniformly over k and N . From the weighted Jensen inequality one can also see that

Ex0

∣∣JNk ∣∣q <∞ for all q ≥ 1. To conclude, for tk ≤ t < tk+1 we write

Ex0
JNk = Ex0

JNk 1{SNk ≥(S(t)/2)} + Ex0
JNk 1{SNk <(S(t)/2)}.

Now the first addend:

Ex0
JNk 1{SNk ≥(S(t)/2)} = Ex0

1

Nα

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p
(SNk )α

1{SNk ≥(S(t)/2)}

.
1

(S(t))αNα
Ex0

N∑
i=1

i2sλ2
i

∣∣∣ζi,Nk ∣∣∣p (8.9)−→ 0.

The above limit follows from the assumption S0 ≥ ε and (4.2) (which, combined, guarantee min{ε, 1} ≤ S(t)).
The second addend:

Ex0
JNk 1{SNk <(S(t)/2)} ≤ (Ex0

∣∣JNk ∣∣2)1/2

(
P
(

(SNk − S(t)) < −S(t)

2

))1/2

.

(
P
(∣∣SNk − S(t)

∣∣ > S(t)

2

))1/2

.
1

S(t)

(
Ex0

∣∣SNk − S(t)
∣∣2)1/2

.

The statement now follows from Lemma 7.5, (5.2), the assumption S0 ≥ ε and (4.2).
• Finally, we turn to the proof of (8.11).

1

1 + |R|
√
N

= η +
1

1 + |Z`,k|
√
N
, (8.79)

where

|η| =

∣∣∣∣∣ 1

1 + |R|
√
N
− 1

1 + |Z`,k|
√
N

∣∣∣∣∣
≤
√
N ||R| − |Z`,k||
1 + |Z`,k|

√
N
≤
√
N |R− Z`,k|

1 + |Z`,k|
√
N
,

having used ||a| − |b|| ≤ |a− b|. Consequently,

Ek |η|2 ≤ N
(
Ek |R− Z`,k|4

)1/2
(
Ek

1

(1 + |Z`,k|
√
N)4

)1/2

(8.80)

(8.72)

. (1 + ‖xNk ‖2s)

(
Ek

1

(1 + |Z`,k|
√
N)4

)1/2

. (8.81)

Also, from (8.79),

Ek
1

(1 + |R|
√
N)2

. Ekη2 + Ek
1

(1 + |Z`,k|
√
N)2

. (8.82)
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Now notice that, given xk, Z`,k is Gaussian with variance 2`2SNk and mean −`2. Therefore, for every p > 1,

Ek
1

(1 + |Z`,k|
√
N)p

=

∫
R

1

(1 + |x|
√
N)p

1√
4π`2SNk

e−(x+`2)2/(2`2SNk )dx

.
∫
R

1

(1 + |x|
√
N)p

1√
SNk

dx

=
1√
N

∫
R

1

(1 + |y|)p
1√
SNk

dy .
1√
NSNk

.

The proof can now be concluded by combining (8.82), (8.81) and the above.

Remark 8.12. Notice that the proof of (8.10) is the only place in which we actually use (3.4) instead of
the slightly more general assumption ‖C1/2∇Ψ‖ ≤ ‖∇Ψ‖−s . 1 + ‖x‖s. This is to avoid technicalities and
streamline the proof. �
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