Bayesian inference and mathematical imaging.

Part IV: mixture, random fields, and hierarchical models.

Dr. Marcelo Pereyra
http://www.macs.hw.ac.uk/~mp71/

Maxwell Institute for Mathematical Sciences, Heriot-Watt University

January 2019, CIRM, Marseille.

HERIOT
GIWAT'T

UNIVERSITY

M. Pereyra (Ml — HWU) Bayesian mathematical imaging



Skin

@ Skin cancer is the most common form of cancer
@ Skin melanoma kills 14000 in Europe every year

@ Diagnosis and treatment are main public health issues
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Ultrasound imaging

Ultrasound imaging
e US: diagnostics, routine tests, therapy and surgery
@ US imaging of skin: new high frequency 3D ultrasound probes
@ Study skin diseases & improve diagnosis
@ Assess lesion boundaries prior to surgery (measure depth)

Dermis view with skin lesion outlined by the red rectangle
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Ultrasound imaging

Limitations:
@ Manual annotation of 3D images is time-consuming
@ Strong speckle noise (SNR < 5.9dB), poor contrast & edges
@ Segmentation is extremely operator-dependant

Objective:
Automatic and reliable segmentation of skin layers & lesions in 3D.
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@ Statistical model for US signals (Pereyra and Batatia, 2012)
© Supervised Bayesian US image segmentation (Pereyra et al., 2012b)
© Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

@ Conclusion
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@ Statistical model for US signals (Pereyra and Batatia, 2012)
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Physical Signal Model

Point scattering framework (Morse and Ingard, 1987)

M
Xn 2 x(ty) = ;aip(fn—ﬂ') (1)

rh=r(ty) =

M
> ailo(tn - ) +Jr-(t—m]‘ @

M: total number of point scatterers
a;: cross-section of jth scatterer

7;: time of arrival of jth backscattered wave

p(t) +7p(t): analytic extension of the interrogating pulse p(t)

Medical ultrasound Imaging: M, a and 7 are unknown quantities
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Statistical Signal Model

Important questions
@ What are the possible statistical distributions of x, and r, 7

e What information about M, a and 7 in f(x,) and f(r,) ?

Conventional analytical answer: central limit theorem (M is very large)
(Wagner et al., 1983)

M
Xn = Zaip(tn _Ti) NN(O,O’%)
i=1

M
rn=1|> ai[p(tn—7;) + 1B(ta — 7i)]| ~ Rayleigh(c,)
i-1

02 o< M(a?) is the power backscattered by the nth resolution cell

M. Pereyra (Ml — HWU) Bayesian mathematical imaging



Statistical Signal Model

For many biol. tissues x, ~ N'(0,02) and r, ~ Rayleigh(c) are poor
models, the empirical tails are not well modeled (Shankar et al., 1993;
Shankar, 2000, 2003; Raju and Srinivasan, 2002)

Envelope Log PDF: Forearm Dermis
T T

+ Empirical Histogram
~emee Webull
Nakagami

—— Gen Gamma AN

Figure : Comparison of the empirical envelope pdf obtained from forearm dermis,
and the corresponding estimations using the generalized gamma, Weibull and
Nakagami distributions
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Statistical Signal Model

How are these non-Gaussian statistics explained ?
@ M is not large enough to enforce the CLT
@ M is large and a; has very high variance
o o2 fluctuates strongly within homogenous regions
°

The signal formation model is inaccurate

What is an appropriate non-Gaussian distribution for x, and r, ?

— to answer these questions we study the limit distributions of x, and ry,.
Limit distribution: domain of attraction (equilibrium point) in the space of
probability density functions

The Gaussian distribution (CLT) - is only a particular case (finite
variance). There are infinitely other equilibrium points.
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Main results

Main results:
If f(x,) converges as M — oo to a non-Gaussian distribution then

© x, has a symmetric a-stable limiting distribution
Xp ~ SaS(a,7) with a € (0,2) and v e R*

@ The distribution of the scattering cross-section a; is heavy-tailed with
the same characteristic exponent «
—(a+1
fa(a;) o< a; (a+1)

© r, is the envelope of a complex SaS random variable
rn ~ aRayleigh(ca, )
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Result 1: SaS statistical model

If x, converges in distribution as M — oo, then it converges to a
SaS(a,~) distribution with a € (0,2) and v € R*

Q x, is a sequence of random summands a;p(t - 7;)
Its limit distribution must be invariant to addition

@ The characteristic function must be closed under exponentiation, only
the a-stable family has this property

@ a;p(t—7;) is statistically symmetric, fx(x,) converges to a symmetric
a-stable distribution with parameters « € (0,2] and v € R*

@ The case o =2 corresponds to the Gaussian distribution and x, is
known to be not-Gaussian, we conclude that « € (0,2)
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Result 2: Power-law scattering cross-section distribution

Given that a; e R* and p(t - ;) € [-P, P] is bounded, if x, ~ SaS(«,~)
with a < 2, then a; follows a heavy-tailed distribution with exponent «
—(a+1)

fa(aj) o< a;
Key idea:

use necessary conditions for convergence to infer the class of fa(a;).

Xp is in the domain of attraction of a SaS distribution with o <2 only if
Fz(zj = aip(tn, — 7i)) verifies the Doebling & Gnedenko conditions
(Samorodnitsky and Taqqu, 2000)

C1 Fo(2) c
lim —2\74) =+ 4
Zignoo 1- Fz(Z,') C
C2
1—Fz(Z,')+Fz(—Z,') B

I =%, ¥I>0
i 1 Fr(lz) + Fz(—lz)

Cl & C2 |mp|y that Fz(Z,') o< |Z,'|7a +0 (|Z,'|7a).
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Result 2: Power-law scattering cross-section distribution

Also, z; is a product of random variables z; = a;u; (Rohatgi, 1976)

F7(z) _{ f_opr(Ui)[l—FA(Zi/U,')]dU,- if z;<0
o FZ(Oi)+f0PfU(Ui)FA(Zi/Ui) du;j ifz >0

with u; = p(t, = 7;). Then, for z; >0

P
[0 fu(ui)Fa(zi/uj) duj ~ cz; @
This condition is verified by all power-law distributions
fa(ai) = L(aj)a; ™V

where L(a;) is a slow varying function (i.e., lims_ o0 LL((/;s)) =1)
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Result 3: aRayleigh envelope distribution

The envelope r, is the amplitude of the analytic extension of x,
rncos(Pn) = Xn +¥n,  n = |Xn + 3yl
Assuming that the position of scatterers is purely random
Xp ~ SaS(a,y) = yn~ SaS(a,7y), Yol X
By deriving f(rn, ¢n) from f(xn,yn) and marginalizing w.r.t. ¢,

rn ~ aRayleigh(rp|c, )
where

2

aRayleigh(ra|a, ) = fo Rayleigh(r,,|a)5% (02|fycos(¥)a ,1,0)do

- foooan exp[—(YA)*]Jo(ra)) dX
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Interpretation of a and ~y

For modeling and physical interpretation purposes the scattering
cross-sections can be assumed to follow a Pareto distribution

—(a+1)

i

fa(a;) 2 aap,a
am is given by a, = a!'i_r)noo alFa(ai)
Moreover, v is a scale or spread parameter

v = D*(a) V' Map,

where D* () = ¢ % M is the number of scatters and (pf*) is

the a-th fractional moment of p(t - 7;)
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Experimental validation

Envelope PDF: Forearm Dermis
T

+ Empirical Histogram
==heavy-tailed Rayleigh (ks = 0.005)
-===Weibull (ks = 0.059)

Nakagami (ks = 0.1)
——Gen Gamma (ks = 0.032)

Figure : Comparison of the empirical envelope pdf obtained from forearm dermis,
and the corresponding estimations using the heavy-tailed Rayleigh, generalized
gamma, Weibull and Nakagami distribution
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Experimental validation

Envelope Log PDF: Forearm Dermis

+ Empirical Histogram
- heavy-tailed Rayleigh
rrrrr Weibull

- Nakagami

Gen Gamma

Comparison of distributions tails by means of a logarithmic pdfs
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9 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)
@ Bayesian model
@ Bayesian algorithm
@ Experimental results
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@ Statistical model for US signals (Pereyra and Batatia, 2012)

9 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)
@ Bayesian model

e Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

@ Conclusion
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Segmentation Problem

or=(ri,....rn...,rny) " €RNis a 2D or 3D B-mode image

@ r is made up by K regions (biological tissues) C1,...,Cx

@ z={z,...,2zy} is a label vector that maps observations ry,..., ry to
tissues or classes Cq,..., Ck

Zn=k < neCy
@ Each region is characterized by its own a-Rayleigh statistics
Zn=k = rh~ par (rn’(lkafyk)

We consider the maximum a posteriori (MAP) segmentation problem

z = argmax f(z|r) =argmax f[f(z,a,‘ﬂr)dad’y

@ K: the number of classes (considered known),
o a={a,...,ax}and v ={y1,...,7} (unknown)
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Bayesian Model

We define a Bayesian model (likelihood and priors) associated to the
unknown parameter vector (z”,a’,y")"

Likelihood 7 (r|z,a,~)
We use an a-Rayleigh observation model

f(rn|zn = kaak7’7k) = paR(rn|ak77k)
Assuming observations r, are independent
K
f(rlz,a,v) =TT TI Par(ralaw,vi)
k=1 {n|z,=k}
which is closely related to an a-Rayleigh mixture model

f(rle,vy) = szkfaR(fn|Oék,’7k) Zf(r|z a,v)

n k=1
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Label vector z

We consider 2D and 3D Potts Markov fields as prior distributions for z
(Wu, 1982)

n=1n’eV(n)

1 N
P(Z):C(ﬁ) explz > ﬁé(z,,—z,,/)]

where (3 is the granularity coefficient, d(-) is the Kronecker function and
V(n) is the field's neighborhood structure

131\ .

-1 (98-12 d) f=14

Figure : Synthetic images of a 3D Potts-Markov model generated using different
granularity coefficients (1 slice)
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Label vector z

The proposed segmentation method uses 2D MRFs for single-slice 2D
ultrasound images and 3D MRFs for multiple-slice 3D images

Figure : ultrasound image (left) and neighborhood structure V(n) (right) in 3D
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a-Rayleigh parameters

characteristic index oy

Non-informative prior on oy (k=1,...,K)
ag ~U(0,2)

this interval (0,2) covers all possible values of ay

spread i

Inverse gamma prior on ~y, with hyperparameters ag and by
'yk~Ig(ao,b0), k=1,...,K

where ag =1 and by = 1 to obtain a vague prior

M. Pereyra (Ml — HWU) Bayesian mathematical imaging 24 / 55



Prior on unknown parameter vector (6, 2)

Assuming a priori independence between the parameters ay, v, and the
labels z the joint prior is

K
f(z,a,7) =P (2) p(a)p(v) =P (2) [[1 F(eu) f ()

Figure : Directed acyclic graph (DAG) for the a-Rayleigh mixture model (the
fixed nonrandom hyperparameters appear in dashed boxes)
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Posterior density

Using Bayes theorem, the posterior distribution of (z, a,7) is

f(z,c,7Ir) o< f(rz, @, 7)P(2)f () ()

We are interested in the marginal

f(zlr) = [ f f(z,a,7|r) dady
MCMC Method

@ We use a Hybrid Gibbs sampler to generate samples asymptotically
distributed according to f (z, o, ~|r)

@ We marginalize implicitly by discarding samples a.(t), ~(t)

© The samples 2" are then used to approximate the voxel-wise MAP
estimators 2, = argmax, f(z,|r) for n=1,... N.
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@ Statistical model for US signals (Pereyra and Batatia, 2012)

9 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)

@ Bayesian algorithm

e Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

@ Conclusion
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Hybrid Metropolis-within-Gibbs sampler

Generate samples asymptotically distributed according to f (z, «,y|r) by
iteratively sampling P(z|at, 7, 1), f(alz,~v,r) and f(v|z, o, r)

fort=1,2,..to T do
— Update the label vector z —
for n=1,2,.. to N do
1. Draw z,(7 ) from P(z, = k|z§t3 1Z ﬁilll)v,r,,,a,(f),y,gt))
end for
— Update the a-Rayleigh parameters —
for k=1,2,.. to K do
2. Sample ai) from f(ax v, z,r)
3. Sample fy( ) from f(kla®), 2, r)
end for
end for
Output samples z(t)
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Conditional probability mass function P(z|c,~,r)

Generation of samples according to P[z|a,~,r]
Sample z coordinate-by-coordinate using Gibbs moves

P(Zn = k|Z_n, rmOlk/Yk) o< f(l’n|Zn = k7a77)P(2n|z—n)

where k=1,...,K and z_,, is the vector z whose nth element has been
removed.

The resulting Markov random field has the following conditionals

P(Zn:k|z—n7rna01k7’7k) OceXp|: Z /Bé(k_zn’)]

n’eV(n)
x r,,fooo)\exp [= (3 A) %] Jo(rn) dA.

This step has been parallelized to reduce computing time.
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Hybrid Metropolis-within-Gibbs sampler

Update o« and ~

The conventional Gibbs sampler requires sampling from f(al|vy,z,r) and
f(vk|e,z,r). However, sampling from these distributions is not easy.

Generation using Metropolis-Hastings

Instead, we generate samples asymptotically distributed according to
f(akly,z,r) and (x|, z,r) using Metropolis-Hasting moves. This
results in a Metropolis-within-Gibbs sampler which also converges to the
desired posterior density.

Metroplis-Hastings move
1. Generate a sample according to an appropriate proposal distribution
2. Accept or reject that sample with a given probability
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Conditional probability density function p(al|v,z,r)

Generation of samples according to f(a|vy,z,r)
We sample a coordinate-by-coordinate using Metropolis-Hastings moves

Posterior density

N
flaklv,z,r) o< J]  Par(ralek, vk)p(ck)
{nlzn=k}

Random walk proposal
* -1
Qg ”N(o,z)(ait )70§,k)

Resulting acceptance probability

(t=1); + 2 «
-/\/'(0,2)(05[( |ak70a,k) y N Pa??,(rn|ak7'7k)

Nozy(aglaf™,02 ) (oizmk) par (rala ™, 7)
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Conditional probability density function p(~|a, z,r)

Generation of samples according to f(v|a,z,r)
We sample ~ coordinate-by-coordinate using Metropolis-Hastings moves

Posterior density

N
f(ykle,z,r) o< [T par(ralog, i) P(k)
{n|zn=k}

Random walk proposal
* -1
i N (10,02,

Resulting acceptance probability

(t-1) .+ 2 " "
NR*(W |Vk’o'mk) N par (ralou, v ) f (4|0, bo)

1lv
Ner (5,02, ) tnlzamky Par (ralai 1) (1 a0, bo)
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Approximation of the Likelihood

Evaluating the likelihood is very time-consuming and is required at
every step of the sampler and for every observation

par(rala: 1) = 1o [ Aexp[=(%0) T Jo(ra) d

An efficient alternative is to approximate the likelihood using the
following asymptotic expansions (Sun and Han, 2008)

P
Par (ralovk, 1) = X ap (e, 1) raP ™+ 0 (i P V) ry 0
p=0
and
P 1 —ak(P+1)-1
Par (Fnlcve, vk) = Y, bp(au, i) ry P~ + O(fn , ) Ip = 00
p=1

This function has been parallelized to reduce computing time.
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@ Statistical model for US signals (Pereyra and Batatia, 2012)

9 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)

@ Experimental results
e Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

@ Conclusion
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Experimental Results - Synthetic Data

Synthetic Data

@ Generate a spatially coherent 3-component a-Rayleigh mixture with
a=[1.99;1.99;1.8] and v =[1,5;10]

e Estimate the posterior density f(z, a,|r) using the proposed Gibbs
sampler in 2D (4-pixel neighborhood, 25,000 iterations)

e Compute MAP estimate of z|r and MMSE estimate of a,~|r

Figure : True labels, observations r (only input to the algorithm), and MAP
estimates for a 3-class mixture
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Experimental Results - Synthetic Data

Table : Parameter estimation

true value | MMSE estimates | standard deviation
o1 1.99 1.99 0.002
o 1.99 1.99 0.003
a3 1.80 1.79 0.006
Y 1.00 1.00 0.003
Y2 5.00 5.01 0.025
Y3 10.00 9.96 0.036
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Experimental Results - in vivo data

Application to real data

Segmentation of an in-vivo skin lesion in a 3D high frequency ultrasound
@ Image acquired at 100MHz with a focalized 25MHz 3D probe
@ The number of classes K was identified visually by the clinician
@ The granularity coefficient was fixed heuristically to 5 =1

@ Algorithm convergence was measured using the “between-within
variance criterion” (Gelman and Rubin, 1992)

@ Results were computed using 1.000 iterations of the proposed method
(900 burn-in period)
@ Algorithm implemented in MATLAB with C-MEX and OpenMP
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Experimental Results - in vivo data

(b) ROI (slice 7) (c) 2D Segmentation contour

Figure : Log-compressed US images of skin tumor and the estimated
segmentation contours. Yellow: expert annotation, green: proposed, red:
(Sarti,2005)
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Segmentation results in 3D

(c) Slice 5

(e) Slice 9

(g) Slice 13 (h) Slice 15
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Lesion reconstructed in 3D

Figure : 3D reconstruction of the melanoma tumor
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e Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)
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Which § value should be used?

MAP z (8 = 1.0) MAP z (8 = 1.25) MAP z (3 = 1.5)

M. Pereyra (Ml — HWU)
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Granularity coefficient

@ Previous experiments used S =1, but 8 > 1 could improve results
@ Estimate 3 jointly with z, &, ~ from the data
@ Inference on hierarchical Bayesian models f (z, a,~, f|r)

e Marginalize w.rt. 8: f(z|r)= [ [ [ f(z,e,7, (]r) dad~d}3

M. Pereyra (Ml — HWU) Bayesian mathematical imaging



Granularity coefficient

Conditional density (3|60, z,r)

F(B16,2,r) o< £(r|6,2,5)f (0)f(2|5)f ()
o< f(2|B)f ()

e f(z|B): Potts Markov field
e f(B): prior on 3
B ~U(0, Bmax)

Sampling 3 using MH moves requires computing the ratio
ratio = min {1,&} (3)

with e f@B) (B a(BI8"D)
f(z|8(D) F(B(ED) q(BED|3%)

B* ~ q(B8*|3V)) is an appropriate proposal distribution
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Granularity coefficient

Replacing f(z|3) = %exp [®5(z)] in ¢

_C(BEY) exp[Ps(2)]  F(BY) q(BBY)

é‘ =
C(H) exp[®0 ()] F(BED) q(BED]57)
However the ratio % is intractable

Possible solutions:
@ Pseudo-likelihood estimators (Besag, 1975)

@ Approximation of C(3) (Gelman and Meng, 1998; Descombes et al.,
1999; Risser et al., 2009)

@ Auxiliary variables and perfect sampling (Moller et al., 2006; Murray
et al., 2006; Del Moral et al., 2006; Andrieu et al., 2010)

o Likelihood-free (ABC) methods (Marjoram et al., 2003; Marin
et al., 2011)
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Likelihood-free (ABC) Sampling

Idea: Replace f(z|3) (intractable) by a tractable sufficient statistic 7(z)
f(Blz) = £ (Bln(2))

© Generate an auxiliary variable w ~ Pz(w/|f3)
@ Accept w if n(w) =7(z)
Indeed, n(w) =n(z) occurs with probability Pz(z|3)
The Gibbs potential of a Markov random fields is a sufficient statistic, i.e.,
N
n(z) = Z Z 6(zn— zw)

n=1n'eV(n)

which is a scalar

M. Pereyra (Ml — HWU) Bayesian mathematical imaging



Proposed Likelihood-free Metropolis Hastings Move

1: Input: {81 2(0) 1y, sé} number of moves M.
2: Generate * ~ N(q g) (B(t_l),s[%)
3. Generate w ~ Pz(w|3*) through M Gibbs moves with initial state z(*)
a: if [n(zY)) = n(w)| < ¢ then
. " (t-1)| g*
5. Set ratio = f(fﬁ((ﬁtfl))) ZEE*WJE);
6: Draw u ~ u(O,l)
7. if (u<ratio) then
8: Set (1) = B*
9: else
10: Set (1) = p(t-1)
11:  end if
12: else
13:  Set g0 = g(t-1)
14: end if
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Experimental Results - in vivo data
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Outline

@ Conclusion
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Conclusion

@ The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

@ In Part | we discussed how the Bayesian framework can support this
paradigm shift, provided we significantly accelerate computations.

@ In Part |l we considered efficiency improvements by integrating
modern stochastic and variational computation approaches.

@ In Part lll we explored methods based on convex optimisation and
probability, and developed theory for MAP estimation.
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In this talk we studied, though an example, Bayesian models and
computation algorithms for models that are more sophisticated than the
ones previously considered, and where deterministic approaches fail.

Thank you!
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