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Skin

Skin cancer is the most common form of cancer

Skin melanoma kills 14 000 in Europe every year

Diagnosis and treatment are main public health issues

Human Skin Layers (MacNeil, 2007)
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Ultrasound imaging

Ultrasound imaging

US: diagnostics, routine tests, therapy and surgery

US imaging of skin: new high frequency 3D ultrasound probes

Study skin diseases & improve diagnosis

Assess lesion boundaries prior to surgery (measure depth)

Dermis view with skin lesion outlined by the red rectangle
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Ultrasound imaging

Limitations:

Manual annotation of 3D images is time-consuming

Strong speckle noise (SNR < 5.9dB), poor contrast & edges

Segmentation is extremely operator-dependant

Objective:
Automatic and reliable segmentation of skin layers & lesions in 3D.
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Outline

1 Statistical model for US signals (Pereyra and Batatia, 2012)

2 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)

3 Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

4 Conclusion
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Physical Signal Model

Point scattering framework (Morse and Ingard, 1987)

xn ≜ x(tn) =
M

∑
i=1

aip(tn − τi) (1)

rn ≜ r(tn) = ∣
M

∑
i=1

ai [p(tn − τi) + p̃(t − τi)]∣ (2)

M: total number of point scatterers

ai : cross-section of ith scatterer

τi : time of arrival of ith backscattered wave

p(t) + p̃(t): analytic extension of the interrogating pulse p(t)

Medical ultrasound Imaging: M, a and τ are unknown quantities
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Statistical Signal Model

Important questions

What are the possible statistical distributions of xn and rn ?

What information about M, a and τ in f (xn) and f (rn) ?

hola
Conventional analytical answer: central limit theorem (M is very large)
(Wagner et al., 1983)

xn =
M

∑
i=1

aip(tn − τi) ∼ N (0, σ2
n)

rn = ∣
M

∑
i=1

ai [p(tn − τi) + p̃(tn − τi)]∣ ∼Rayleigh(σn)

σ2
n ∝ M⟨a2

i ⟩ is the power backscattered by the nth resolution cell
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Statistical Signal Model

For many biol. tissues xn ∼ N (0, σ2) and rn ∼Rayleigh(σ) are poor
models, the empirical tails are not well modeled (Shankar et al., 1993;
Shankar, 2000, 2003; Raju and Srinivasan, 2002)

Figure : Comparison of the empirical envelope pdf obtained from forearm dermis,
and the corresponding estimations using the generalized gamma, Weibull and
Nakagami distributions
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Statistical Signal Model

How are these non-Gaussian statistics explained ?

M is not large enough to enforce the CLT

M is large and ai has very high variance

σ2
n fluctuates strongly within homogenous regions

The signal formation model is inaccurate

hola
What is an appropriate non-Gaussian distribution for xn and rn ?
→ to answer these questions we study the limit distributions of xn and rn.
Limit distribution: domain of attraction (equilibrium point) in the space of
probability density functions
hola
The Gaussian distribution (CLT) - is only a particular case (finite
variance). There are infinitely other equilibrium points.
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Main results

Main results:
If f (xn) converges as M →∞ to a non-Gaussian distribution then

1 xn has a symmetric α-stable limiting distribution
xn ∼ SαS(α, γ) with α ∈ (0,2) and γ ∈ R+

2 The distribution of the scattering cross-section ai is heavy-tailed with
the same characteristic exponent α

fA(ai)∝ a
−(α+1)
i

3 rn is the envelope of a complex SαS random variable
rn ∼ αRayleigh(α, γ)
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Result 1: SαS statistical model

If xn converges in distribution as M →∞, then it converges to a
SαS(α, γ) distribution with α ∈ (0,2) and γ ∈ R+

hola

1 xn is a sequence of random summands aip(t − τi)
Its limit distribution must be invariant to addition

2 The characteristic function must be closed under exponentiation, only
the α-stable family has this property

3 aip(t − τi) is statistically symmetric, fX (xn) converges to a symmetric
α-stable distribution with parameters α ∈ (0,2] and γ ∈ R+

4 The case α = 2 corresponds to the Gaussian distribution and xn is
known to be not-Gaussian, we conclude that α ∈ (0,2)
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Result 2: Power-law scattering cross-section distribution

Given that ai ∈ R+ and p(t − τi) ∈ [−P,P] is bounded, if xn ∼ SαS(α, γ)
with α < 2, then ai follows a heavy-tailed distribution with exponent α

fA(ai)∝ a
−(α+1)
i

Key idea:
use necessary conditions for convergence to infer the class of fA(ai).
xn is in the domain of attraction of a SαS distribution with α < 2 only if
FZ(zi = aip(tn − τi)) verifies the Doebling & Gnedenko conditions
(Samorodnitsky and Taqqu, 2000)

C1

lim
zi→∞

FZ(−zi)

1 − FZ(zi)
=

C+
C−

= 1

C2

lim
zi→∞

1 − FZ(zi) + FZ(−zi)

1 − FZ(lzi) + FZ(−lzi)
= lα, ∀l > 0

C1 & C2 imply that FZ(zi)∝ ∣zi ∣
−α + o (∣zi ∣

−α).
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Result 2: Power-law scattering cross-section distribution

Also, zi is a product of random variables zi = aiui (Rohatgi, 1976)

FZ(zi) = { ∫
0
−P fU(ui)[1 − FA(zi/ui)]dui if zi < 0

FZ(0−) + ∫
P

0 fU(ui)FA(zi/ui)dui if zi ≥ 0

with ui = p(tn − τi). Then, for zi ≫ 0

∫

P

0
fU(ui)FA(zi/ui)dui ≈ cz−αi

This condition is verified by all power-law distributions

fA(ai) = L(ai)a
−(α+1)
i

where L(ai) is a slow varying function (i.e., lims→∞
L(ks)
L(s) = 1)
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Result 3: αRayleigh envelope distribution

The envelope rn is the amplitude of the analytic extension of xn

rn cos(ϕn) = xn + yn, rn = ∣xn + yn∣

Assuming that the position of scatterers is purely random

xn ∼ SαS(α, γ)⇒ yn ∼ SαS(α, γ), yn ⊥ xn

By deriving f (rn, ϕn) from f (xn, yn) and marginalizing w.r.t. ϕn

rn ∼ αRayleigh(rn∣α, γ)

where

αRayleigh(rn∣α, γ) ≜ ∫
∞

0
Rayleigh(rn∣σ)Sα

2
(σ2

∣γ cos(
πα

4
)

2
α

,1,0)dσ

= ∫

∞

0
rnλ exp[−(γλ)α]J0(rnλ)dλ
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Interpretation of α and γ

For modeling and physical interpretation purposes the scattering
cross-sections can be assumed to follow a Pareto distribution

fA(ai) ≅ αaαma
−(α+1)
i

am is given by am = lim
ai→∞

aαi FA(ai)

hola
Moreover, γ is a scale or spread parameter

γ = D∗
(α)

α
√

Mam

where D∗(α) = α

√
2π⟨pαi ⟩

Γ(α) sin(πα
2
) , M is the number of scatters and ⟨pαi ⟩ is

the α-th fractional moment of p(t − τi)
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Experimental validation

Figure : Comparison of the empirical envelope pdf obtained from forearm dermis,
and the corresponding estimations using the heavy-tailed Rayleigh, generalized
gamma, Weibull and Nakagami distribution
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Experimental validation

Comparison of distributions tails by means of a logarithmic pdfs
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Segmentation Problem

r = (r1, . . . , rn, . . . , rN)T ∈ RN is a 2D or 3D B-mode image

r is made up by K regions (biological tissues) C1, . . . ,CK
z = {z1, . . . , zN} is a label vector that maps observations r1, . . . , rN to
tissues or classes C1, . . . ,CK

zn = k ⇔ n ∈ Ck

Each region is characterized by its own α-Rayleigh statistics

zn = k ⇒ rn ∼ pαR (rn∣αk , γk)

We consider the maximum a posteriori (MAP) segmentation problem

ẑ = argmax
z

f (z∣r) = argmax
z

∫ ∫ f (z,α,γ∣r)dαdγ

K : the number of classes (considered known),

α = {α1, . . . , αK} and γ = {γ1, . . . , γK} (unknown)
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Bayesian Model

We define a Bayesian model (likelihood and priors) associated to the
unknown parameter vector (zT ,αT ,γT )T

Likelihood f (r∣z,α,γ)
We use an α-Rayleigh observation model

f (rn∣zn = k , αk , γk) = pαR(rn∣αk , γk)

Assuming observations rn are independent

f (r∣z,α,γ) =
K

∏
k=1

∏
{n∣zn=k}

pαR(rn∣αk , γk)

which is closely related to an α-Rayleigh mixture model

f (r∣α,γ) =∏
n

K

∑
k=1

ωk fαR(rn∣αk , γk) ≈∑
z

f (r∣z,α,γ)
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Label vector z

We consider 2D and 3D Potts Markov fields as prior distributions for z
(Wu, 1982)

P(z) =
1

C(β)
exp

⎡
⎢
⎢
⎢
⎢
⎣

N

∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

⎤
⎥
⎥
⎥
⎥
⎦

where β is the granularity coefficient, δ(⋅) is the Kronecker function and
V(n) is the field’s neighborhood structure

(a) β = 0.6 (b) β = 1 (c) β = 1.2 (d) β = 1.4

Figure : Synthetic images of a 3D Potts-Markov model generated using different
granularity coefficients (1 slice)
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Label vector z

The proposed segmentation method uses 2D MRFs for single-slice 2D
ultrasound images and 3D MRFs for multiple-slice 3D images

Figure : ultrasound image (left) and neighborhood structure V(n) (right) in 2D

Figure : ultrasound image (left) and neighborhood structure V(n) (right) in 3D
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α-Rayleigh parameters

characteristic index αk

Non-informative prior on αk (k = 1, . . . ,K )

αk ∼ U(0,2)

this interval (0,2) covers all possible values of αk

spread γk
Inverse gamma prior on γk with hyperparameters a0 and b0

γk ∼ IG(a0,b0), k = 1, . . . ,K

where a0 = 1 and b0 = 1 to obtain a vague prior
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Prior on unknown parameter vector (θ, z)
Assuming a priori independence between the parameters αk , γk and the
labels z the joint prior is

f (z,α,γ) = P (z)p(α)p(γ) = P (z)
K

∏
k=1

f (αk)f (γk)

a0

��

b0

��

β

��

K

wwα

&&

γ

��

z

ssr

Figure : Directed acyclic graph (DAG) for the α-Rayleigh mixture model (the
fixed nonrandom hyperparameters appear in dashed boxes)
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Posterior density

Using Bayes theorem, the posterior distribution of (z,α,γ) is

f (z,α,γ∣r)∝ f (r∣z,α,γ)P(z)f (α)f (γ)

We are interested in the marginal

f (z∣r) = ∫ ∫ f (z,α,γ∣r)dαdγ

MCMC Method

1 We use a Hybrid Gibbs sampler to generate samples asymptotically
distributed according to f (z,α,γ∣r)

2 We marginalize implicitly by discarding samples α(t),γ(t)

3 The samples z(t) are then used to approximate the voxel-wise MAP
estimators ẑn = argmaxzn f (zn∣r) for n = 1, . . . ,N.
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Hybrid Metropolis-within-Gibbs sampler

Generate samples asymptotically distributed according to f (z,α,γ∣r) by
iteratively sampling P(z∣α,γ, r), f (α∣z,γ, r) and f (γ∣z,α, r)

for t = 1,2, .. to T do
— Update the label vector z —
for n = 1,2, .. to N do

1. Draw z
(t)
n from P(zn = k ∣z

(t)
1∶n−1, z

(t−1)
n+1∶N , rn, α

(t)
k , γ

(t)
k )

end for
— Update the α-Rayleigh parameters —
for k = 1,2, .. to K do

2. Sample α
(t)
k from f (αk ∣γ

(t−1), z, r)

3. Sample γ
(t)
k from f (γk ∣α

(t), z, r)
end for

end for
Output samples z(t)
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Conditional probability mass function P(z∣α,γ, r)
Generation of samples according to P[z∣α,γ, r]
Sample z coordinate-by-coordinate using Gibbs moves

P(zn = k ∣z−n, rn, αk , γk)∝ f (rn∣zn = k,α,γ)P(zn∣z−n)

where k = 1, . . . ,K and z−n is the vector z whose nth element has been
removed.

The resulting Markov random field has the following conditionals

P(zn = k ∣z−n, rn, αk , γk)∝ exp

⎡
⎢
⎢
⎢
⎢
⎣

∑
n′∈V(n)

βδ(k − zn′)

⎤
⎥
⎥
⎥
⎥
⎦

× rn ∫
∞

0
λ exp [−(γkλ)

αk ] J0(rnλ)dλ.

This step has been parallelized to reduce computing time.
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Hybrid Metropolis-within-Gibbs sampler

Update α and γ

The conventional Gibbs sampler requires sampling from f (αk ∣γ, z, r) and
f (γk ∣α, z, r). However, sampling from these distributions is not easy.

Generation using Metropolis-Hastings

Instead, we generate samples asymptotically distributed according to
f (αk ∣γ, z, r) and f (γk ∣α, z, r) using Metropolis-Hasting moves. This
results in a Metropolis-within-Gibbs sampler which also converges to the
desired posterior density.

Metroplis-Hastings move
1. Generate a sample according to an appropriate proposal distribution
2. Accept or reject that sample with a given probability
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Conditional probability density function p(α∣γ, z, r)
Generation of samples according to f (α∣γ, z, r)
We sample α coordinate-by-coordinate using Metropolis-Hastings moves

Posterior density

f (αk ∣γ, z, r)∝
N

∏
{n∣zn=k}

pαR(rn∣α
∗
k , γk)p(αk)

Random walk proposal

α∗k ∼ N(0,2)(α
(t−1)
k , σ2

α,k)

Resulting acceptance probability

1 ∨

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N(0,2)(α
(t−1)
k ∣α∗k , σ

2
α,k)

N(0,2)(α
∗
k ∣α
(t−1)
k , σ2

α,k)
×

N

∏
{n∣zn=k}

pαR(rn∣α
∗
k , γk)

pαR(rn∣α
(t−1)
k , γk)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭
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Conditional probability density function p(γ∣α, z, r)
Generation of samples according to f (γ∣α, z, r)
We sample γ coordinate-by-coordinate using Metropolis-Hastings moves

Posterior density

f (γk ∣α, z, r)∝
N

∏
{n∣zn=k}

pαR(rn∣α
∗
k , γk)p(γk)

Random walk proposal

γ∗k ∼ NR+ (γ
(t−1)
k , σ2

γ,k)

Resulting acceptance probability

1 ∨

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

NR+ (γ
(t−1)
k ∣γ∗k , σ

2
γ,k)

NR+ (γ
∗
k ∣γ
(t−1)
k , σ2

γ,k)
×

N

∏
{n∣zn=k}

pαR(rn∣αk , γ
∗
k )f (γ∗k ∣a0,b0)

pαR(rn∣αk , γ
(t−1)
k )f (γ

(t−1)
k ∣a0,b0)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭
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Approximation of the Likelihood

Evaluating the likelihood is very time-consuming and is required at
every step of the sampler and for every observation

pαR(rn∣αk , γk) = rn ∫
∞

0
λ exp [−(γkλ)

αk ] J0(rnλ)dλ

An efficient alternative is to approximate the likelihood using the
following asymptotic expansions (Sun and Han, 2008)

pαR(rn∣αk , γk) =
P

∑
p=0

ap(αk , γk)r 2p+1
n + o (r

2(P+1)+1
n ) rn → 0

and

pαR(rn∣αk , γk) =
P

∑
p=1

bp(αk , γk)r−αkp−1
n + o (r

−αk(P+1)−1
n ) rn →∞

This function has been parallelized to reduce computing time.
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Experimental Results - Synthetic Data

Synthetic Data

Generate a spatially coherent 3-component α-Rayleigh mixture with
α = [1.99; 1.99; 1.8] and γ = [1; 5; 10]

Estimate the posterior density f (z,α,γ∣r) using the proposed Gibbs
sampler in 2D (4-pixel neighborhood, 25,000 iterations)

Compute MAP estimate of z∣r and MMSE estimate of α,γ∣r

Figure : True labels, observations r (only input to the algorithm), and MAP
estimates for a 3-class mixture

M. Pereyra (MI — HWU) Bayesian mathematical imaging 35 / 55



Experimental Results - Synthetic Data

Table : Parameter estimation

true value MMSE estimates standard deviation

α1 1.99 1.99 0.002

α2 1.99 1.99 0.003

α3 1.80 1.79 0.006

γ1 1.00 1.00 0.003

γ2 5.00 5.01 0.025

γ3 10.00 9.96 0.036
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Experimental Results - in vivo data

Application to real data
Segmentation of an in-vivo skin lesion in a 3D high frequency ultrasound

Image acquired at 100MHz with a focalized 25MHz 3D probe

The number of classes K was identified visually by the clinician

The granularity coefficient was fixed heuristically to β = 1

Algorithm convergence was measured using the “between-within
variance criterion” (Gelman and Rubin, 1992)

Results were computed using 1.000 iterations of the proposed method
(900 burn-in period)

Algorithm implemented in MATLAB with C-MEX and OpenMP
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Experimental Results - in vivo data

(a) Dermis view with skin lesion (ROI = 450 × 200 × 16)

(b) ROI (slice 7) (c) 2D Segmentation contour

Figure : Log-compressed US images of skin tumor and the estimated
segmentation contours. Yellow: expert annotation, green: proposed, red:
(Sarti,2005)
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Segmentation results in 3D

(a) Slice 1 (b) Slice 3 (c) Slice 5

(d) Slice 7 (e) Slice 9 (f) Slice 11

(g) Slice 13 (h) Slice 15

Figure : 3D segmentation of an 8-slice image
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Lesion reconstructed in 3D

Figure : 3D reconstruction of the melanoma tumor
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Which β value should be used?

B-mode US ROI) MAP z (β = 0.5) MAP z (β = 0.75)

MAP z (β = 1.0) MAP z (β = 1.25) MAP z (β = 1.5)
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Granularity coefficient β

Previous experiments used β = 1, but β > 1 could improve results
Estimate β jointly with z,α,γ from the data
Inference on hierarchical Bayesian models f (z,α,γ, β∣r)
Marginalize w.r.t. β: f (z∣r) = ∫ ∫ ∫ f (z,α,γ, β∣r)dαdγdβ

βMAX
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Granularity coefficient β

Conditional density f (β∣θ, z, r)

f (β∣θ, z, r)∝ f (r∣θ, z, β)f (θ)f (z∣β)f (β)

∝ f (z∣β)f (β)

f (z∣β): Potts Markov field

f (β): prior on β

β ∼ U(0, βMAX )

Sampling β using MH moves requires computing the ratio

ratio = min{1, ξ} (3)

with ξ =
f (z∣β∗)

f (z∣β(t−1))

f (β∗)

f (β(t−1))

q(β∗∣β(t−1))

q(β(t−1)∣β∗)

β∗ ∼ q(β∗∣β(t−1)) is an appropriate proposal distribution
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Granularity coefficient β

Replacing f (z∣β) = 1
C(β) exp [Φβ(z)] in ξ

ξ =
C(β(t−1))

C(β∗)

exp [Φβ∗(z)]

exp [Φβ(t−1)(z)]

f (β∗)

f (β(t−1))

q(β∗∣β(t−1))

q(β(t−1)∣β∗)

However the ratio C(β(t−1))
C(β∗) is intractable

hola
Possible solutions:

Pseudo-likelihood estimators (Besag, 1975)

Approximation of C(β) (Gelman and Meng, 1998; Descombes et al.,
1999; Risser et al., 2009)

Auxiliary variables and perfect sampling (Moller et al., 2006; Murray
et al., 2006; Del Moral et al., 2006; Andrieu et al., 2010)

Likelihood-free (ABC) methods (Marjoram et al., 2003; Marin
et al., 2011)
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Likelihood-free (ABC) Sampling

Idea: Replace f (z∣β) (intractable) by a tractable sufficient statistic η(z)

f (β∣z) = f (β∣η(z))

1 Generate an auxiliary variable w ∼ PZ(w∣β)

2 Accept w if η(w) = η(z)

Indeed, η(w) = η(z) occurs with probability PZ(z∣β)
hola
The Gibbs potential of a Markov random fields is a sufficient statistic, i.e.,

η(z) =
N

∑
n=1

∑
n′∈V(n)

δ(zn − zn′)

which is a scalar
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Proposed Likelihood-free Metropolis Hastings Move

1: Input: {β(t−1), z(t), ν, s2
β}, number of moves M.

2: Generate β∗ ∼ N(0,B) (β
(t−1), s2

β)

3: Generate w ∼ PZ(w∣β∗) through M Gibbs moves with initial state z(t)

4: if ∣η(z(t)) − η(w)∣ < ε then

5: Set ratio =
f (β∗)

f (β(t−1))
q(β(t−1)∣β∗)
q(β∗∣β(t−1))

6: Draw u ∼ U(0,1)
7: if (u < ratio) then
8: Set β(t) = β∗

9: else
10: Set β(t) = β(t−1)

11: end if
12: else
13: Set β(t) = β(t−1)

14: end if
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Experimental Results - in vivo data

Margin. β (β̂MMSE = 1.02) β = 0.5 β = 0.75

β = 1.0 β = 1.25 β = 1.5
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Outline

1 Statistical model for US signals (Pereyra and Batatia, 2012)

2 Supervised Bayesian US image segmentation (Pereyra et al., 2012b)
Bayesian model
Bayesian algorithm
Experimental results

3 Unsupervised Bayesian US image segmentation (Pereyra et al., 2012a)

4 Conclusion
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Conclusion

The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

In Part I we discussed how the Bayesian framework can support this
paradigm shift, provided we significantly accelerate computations.

In Part II we considered efficiency improvements by integrating
modern stochastic and variational computation approaches.

In Part III we explored methods based on convex optimisation and
probability, and developed theory for MAP estimation.
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In this talk we studied, though an example, Bayesian models and
computation algorithms for models that are more sophisticated than the
ones previously considered, and where deterministic approaches fail.

Thank you!

CAMM4D project

Funding
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