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Side Information

Medical imaging

MRI PET

Consumer electronics Robotics

multi-modal

prior information

heterogeneous

Signal processing tasks

Denoising

Reconstruction

Demixing (source separation)

Compression

Inpainting, super-resolution, …

Recommender systems 

How to represent multi-modal or heterogeneous data ?

How to process it ?
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Outline

 Compressed Sensing with Prior Information

 Application: Video Background Subtraction

 X-ray Image Separation

 Conclusions

N Deligiannis
VUB-Belgium

M Rodrigues
UCL
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Compressed Sensing (CS)

How do we integrate       in the problem?

Reconstruction guarantees?

Compressed Sensing
Sucess rate  (50 trials)

number of measurements

What if we know                  ?          prior information

medical images,  video, …

CS boundOur bound

CS performanceCS + PI

sparse

iid Gaussian

Basis pursuit
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Intuition

measurements

Tangent cone of      at          

solutions of

Our approach

prior information (PI)

model for PI small

random orientation
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Good components

Bad components



7/23

parameter-freeTheorem  (L1-L1 minimization)    [M, Deligiannis, Rodrigues,  2017]

i.i.d.

L1-L1 minimization

Theorem  (BP)    [Chandrasekaran, Recht, Parrilo, Willsky,  2012]

sparse

support overestimation
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Experimental Results

Sucess rate  (50 trials)

number of measurements

L1-L1 L1-L2

BP BP bound

Mod-CS
Mod-CS

[Vaswani and Lu, 2010]

Gaussian
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 Prior Information can help, but can also hinder

 L1-L1 works better than L1-L2    (theory and practice)

 (Computable) bounds are tight for L1-L1, but not for L1-L2 

 Theory predicts optimal      ;  indicates how to improve 

 Limitations: Gaussian matrices;  bounds depend on unknown parameters

Summarizing
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Outline

 Compressed Sensing with Prior Information

 Application:  Video Background Subtraction

 X-ray Image Separation

 Conclusions
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observed

Compressive Background Subtraction

How to recover           from           online ?

How many measurements          from frame         ?

linear operation

CS camera
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Our Approach

Estimate          from past frames:

Integrate          into  BP

Assumption: background is static & known fg measurements

Basis Pursuit

sparse

foregroundCompressive sensing for background subtraction 
[Cevher, Sankaranarayanan, Duarte, et al, 2008]

Problems

Prior frames are ignored

fixed;  depends on foreground area

background

via             minimization
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Problem Statement

sparse arbitrary function sparse
time

measurements

Model

Problem

Compute a minimal # of measurements

Reconstruct            perfectly
online algorithm w/ adaptive rate
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Algorithm
: computed at iteration 

Gaussian

parameters of

L1-L1 minimization

oversampling factor

and repeat ...

# measurements of

Set Estimate  

Acquire                                  with
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Estimating a Frame

estimation extrapolation

linear motion

overlap: take average;   gaps: fill w/ average of neighbors

state-of-the-art in video coding
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Experimental Results
280 frames

Number of measurements

Frame

CS oracle prior state-of-the-art  
[Warnell et al, 2014]

L1-L1 oracle

Ours
reduction of 67%

modified CS  (nonadaptive)
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Experimental Results
280 frames

Relative error

Frame

reconstruction

estimation

determined by solver

modified CS  (nonadaptive)
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Outline
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 X-ray Image Separation
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Motivation: X-Ray of Ghent Altarpiece

Mixed X-Ray

Can we use the visual images to separate the x-rays?
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Approach: Coupled Dictionary Learning
Training step VisibleX-Ray

coupling

Demixing step

w/ sparse columns

learn dictionaries by  alternating minimization

mixed x-ray visual front visual back
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Results

mixed x-ray

visuals in grayscale

Ours

multiscale MCA w/KSVD

MCA  [Bobin et al, 07’]

reconstructed x-rays
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Summary / Conclusions
data

Low-rank modelobservations

multi-modal features

dictionaries sparse columns

sparse sparse

prior information

measurements

Better models?

Guarantees?  

Scalable algorithms? 

X-ray separation

Reconstruction w/ PI

Applications

medical imaging  (MRI + PET + ECG)                SAR + microwave imaging

super-resolution  (depth + visual)                    robotics  (laser + sonar)       
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