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Imaging inverse problems

We are interested in an unknown x ∈ Rd .

We measure y , related to x by a statistical model p(y ∣x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x .

For example, in many imaging problems

y = Ax +w ,

for some operator A that is rank-deficient, and additive noise w .
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior p(x), the posterior distribution of x given y

p(x ∣y) = p(y ∣x)p(x)/p(y)

models our knowledge about x after observing y .

In this talk we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−φ(x)}/Z ,

where φ(x) is a convex function and Z = ∫ exp{−φ(x)}dx .
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Inverse problems in mathematical imaging

More precisely, we consider models of the form

p(x ∣y) ∝ exp{−f (x) − g(x)} (1)

where f (x) and g(x) are lower semicontinuous convex functions from
Rd → (−∞,+∞] and f is Lf -Lipschitz differentiable. For example,

f (x) = 1
2σ2 ∥y −Ax∥22

for some observation y ∈ Rp and linear operator A ∈ Rp×n, and

g(x) = α∥Bx∥† + 1S(x)

for some norm ∥ ⋅ ∥†, dictionary B ∈ Rn×n, and convex set S. Often, g ∉ C1.
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

f (x) + g(x),
(2)

that can be computed efficiently by “proximal” convex optimisation.

For example, the proximal gradient algorithm

xm+1 = proxL
−1

g {xm + L−1∇f (xm)},

with proxλg(x) = argmaxu∈RN g(u) − 1
2λ ∣∣u − x ∣∣2 converges at rate O(1/m).

However, x̂MAP provides very little about p(x ∣y).
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Illustrative example: image resolution enhancement

Recover x ∈ Rd from low resolution and noisy measurements

y = Hx +w ,

where H is a circulant blurring matrix. We use the Bayesian model

p(x ∣y) ∝ exp (−∥y −Hx∥2/2σ2 − β∥x∥1). (3)

y x̂MAP Uncertainty estimates?

Figure : Resolution enhancement of the Molecules image of size 256×256 pixels.
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Illustrative example: tomographic image reconstruction

Recover x ∈ Rd from partially observed and noisy Fourier measurements

y = ΦFx +w ,

where Φ is a mask and F is the 2D Fourier operator. We use the model

p(x ∣y) ∝ exp (−∥y −ΦFx∥2/2σ2 − β∥∇dx∥1−2), (4)

where ∇d is the 2d discrete gradient operator and ∥ ⋅ ∥1−2 the `1 − `2 norm.

y x̂MAP Possible solution?

Figure : Tomographic reconstruction of the Shepp-Logan phantom image.
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Modern Bayesian computation

Recent surveys on Bayesian computation...

25th anniversary special issue on Bayesian computation
P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, ”Bayesian computation: a perspective on
the current state, and sampling backwards and forwards”, Statistics and Computing, vol. 25,
no. 4, pp 835-862, Jul. 2015.

Special issue on “Stochastic simulation and optimisation
in signal processing”
M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S.
McLaughlin, “A Survey of Stochastic Simulation and Optimization Methods in Signal Pro-
cessing” IEEE Sel. Topics in Signal Processing, in press.
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples X1, . . . ,XM distributed according to p(x ∣y), we
approximate posterior expectations and probabilities

1

M

M

∑
m=1

h(Xm) → E{h(x)∣y}, as M →∞

Guarantees from CLTs, e.g., 1√
M
∑M

m=1 h(Xm) ∼ N[E{h(x)∣y},Σ].

Markov chain Monte Carlo:
Construct a Markov kernel Xm+1∣Xm ∼ K(⋅∣Xm) such that the Markov
chain X1, . . . ,XM has p(x ∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose for now that p(x ∣y) ∈ C1. Then, we can generate samples by
mimicking a Langevin diffusion process that converges to p(x ∣y) as t →∞,

X ∶ dXt =
1

2
∇ log p (Xt ∣y)dt + dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the n-dimensional Brownian motion.

Because solving Xt exactly is generally not possible, we use an Euler
Maruyama approximation and obtain the “unadjusted Langevin algorithm”

ULA ∶ Xm+1 = Xm + δ∇ log p(Xm∣y) +
√

2δZm+1, Zm+1 ∼ N(0, In)

ULA is remarkably efficient when p(x ∣y) is sufficiently regular.
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Unadjusted Langevin algorithm

However, our interest is in high-dimensional models of the form

p(x ∣y) ∝ exp{−f (x) − g(x)}

with f ,g l.s.c. convex, ∇f Lf -Lipschitz continuous, and g ∉ C1.

Unfortunately, such models are beyond the scope of ULA, which may
perform poorly if p(x ∣y) is not Lipchitz differentiable.

Idea: Regularise p(x ∣y) to enable efficiently Langevin sampling.

M. Pereyra (MI — HWU) LMS 17 12 / 25



Approximation of p(x ∣y)

Moreau-Yoshida approximation of p(x ∣y) (Pereyra, 2015):

Let λ > 0. We propose to approximate p(x ∣y) with the density

pλ(x ∣y) = exp[−f (x) − gλ(x)]
∫Rd exp[−f (x) − gλ(x)]dx

,

where gλ is the Moreau-Yoshida envelope of g given by

gλ(x) = inf
u∈Rd

{g(u) − (2λ)−1∥u − x∥22},

and where λ controls the approximation error involved.
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Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2017):

1 ∀λ > 0, pλ defines a proper density of a probability measure on Rd .

2 Convexity and differentiability:
pλ is log-concave on Rd .

pλ ∈ C1 even if p not differentiable, with

∇ log pλ(x ∣y) = −∇f (x) + {proxλg (x) − x}/λ,

and proxλg (x) = argmaxu∈RN g(u) − 1
2λ

∣∣u − x ∣∣2.

∇ log pλ is Lipchitz continuous with constant L ≤ Lf + λ−1.

3 Approximation error between pλ(x ∣y) and p(x ∣y):

limλ→0 ∥pλ − p∥TV = 0.

If g is Lg -Lipchitz, then ∥pλ − p∥TV ≤ λL2
g .
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Illustration

Examples of Moreau-Yoshida approximations:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure : True densities (solid blue) and approximations (dashed red).
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Proximal ULA

We approximate X with the “regularised” auxiliary Langevin diffusion

Xλ ∶ dXλ
t =

1

2
∇ log pλ (Xλ

t ∣y)dt + dWt , 0 ≤ t ≤ T , Xλ(0) = x0,

which targets pλ(x ∣y). Remark: we can make Xλ arbitrarily close to X.

Finally, an Euler Maruyama discretisation of Xλ leads to the
(Moreau-Yoshida regularised) proximal ULA

MYULA ∶ Xm+1 = (1 − δ
λ)Xm − δ∇f {Xm} + δ

λ proxλg{Xm} +
√

2δZm+1,

where we used that ∇gλ(x) = {x − proxλg(x)}/λ.
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Convergence results

Non-asymptotic estimation error bound

Theorem 2.1 (Durmus et al. (2017))

Let δmax
λ = (L1 + 1/λ)−1. Assume that g is Lipchitz continuous. Then,

there exist δε ∈ (0, δmax
λ ] and Mε ∈ N such that ∀δ < δε and ∀M ≥ Mε

∥δx0QM
δ − p∥TV < ε + λL2

g ,

where QM
δ is the kernel assoc. with M iterations of MYULA with step δ.

Note: δε and Mε are explicit and tractable. If f + g is strongly convex
outside some ball, then Mε scales with order O(d log(d)) (otherwise at
worse O(d5)). See Durmus et al. (2017) for other convergence results.
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Sparse image deblurring

Bayesian credible region C∗
α = {x ∶ p(x ∣y) ≥ γα} with

P [x ∈ Cα∣y] = 1 − α, and p(x ∣y) ∝ exp (−∥y −Hx∥2/2σ2 − β∥x∥1)

y x̂MAP uncertainty estimates

Figure : Live-cell microscopy data (Zhu et al., 2012). Uncertainty analysis
(±78nm × ±125nm) in close agreement with the experimental precision ±80nm.

Computing time 4 minutes. M = 105 iterations. Estimation error 0.2%..
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Sparse image deblurring

Estimation of reg. param. β by marginal maximum likelihood

β̂ = argmax
β∈R+

p(y ∣β), with p(y ∣β) ∝ ∫ exp (−∥y −Hx∥2/2σ2 − β∥x∥1)dx

y x̂MAP Reg. param β

Figure : Maximum marginal likelihood estimation of regularisation parameter β.

Computing time 0.75 secs..
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Bayesian model selection

p(Mk ∣y) = p(Mk)∫ p(x , y ∣Mk)dx/p(y) with

p(x , y ∣M1) ∝ exp [−(∥y −H1x∥2/2σ2) − βTV (x)],

p(x , y ∣M2) ∝ exp [−(∥y −H2x∥2/2σ2) − βTV (x)].

Boat image deblurring experiment (comp. time 30 minutes p/model):

observation y
(5 × 5 uniform blur, BSNR 40dB)

x̂M1 (PSNR 34dB)
p(M1∣y) = 0.96

x̂M2 (PSNR 33dB)
p(M2∣y) = 0.04
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Uncertainty quantification of MRI tomographic image

Bayesian credible region C∗
α = {x ∶ p(x ∣y) ≥ γα} with

P [x ∈ Cα∣y] = 1 − α, and p(x ∣y) ∝ exp (−∥y −ΦFx∥2/2σ2 − β∥∇dx∥1−2),

x̂MAP (tumour intensity 0.30) min. tumour intensity 0.27 max. tumour intensity 0.33

Figure : Shepp-Logan experiment: uncertainty in tumour intensity 10%.

Computing time 1 minute. M = 105 iterations. Estimation error 3%. .
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Conclusion

The challenges facing modern image processing require a paradigm
shift, and a new wave of analysis and computation methodologies.

Great potential for synergy between Bayesian and variational
approaches at algorithmic, methodological, and theoretical levels.

MYULA delivers reliable and computationally efficient approximate
inferences, with good control of accuracy vs. computing-time.
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Thank you!
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