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Abstract. Water flow in plant tissues takes place in two different physical domains separated
by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and
cell walls are termed symplast and apoplast, respectively. Water transport is pressure driven in
both, where osmosis plays an essential role in membrane crossing. In this paper, a microscopic
model of water flow and transport of an osmotically active solute in a plant tissue is considered.
The model is posed on the scale of a single cell and the tissue is assumed to be composed of
periodically distributed cells. The flow in the symplast can be regarded as a viscous Stokes
flow, while Darcy’s law applies in the porous apoplast. Transmission conditions at the interface
(semipermeable membrane) are obtained by balancing the mass fluxes through the interface and
by describing the protein mediated transport as a surface reaction. Applying homogenization
techniques, macroscopic equations for water and solute transport in a plant tissue are derived.
The macroscopic problem is given by a Darcy law with a force term proportional to the difference
in concentrations of the osmotically active solute in the symplast and apoplast; i.e. the flow is
also driven by the local concentration difference and its direction can be different than the one
prescribed by the pressure gradient.
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1. Introduction

Plant tissues are in general composed of two domains separated by selective membranes: apoplast and
symplast. The apoplast is composed of cell walls and intercellular spaces, while the symplast is constituted
by all protoplasts which can be connected by plasmodesmata. Therefore, the path of water and solutes is
threefold: apoplastic, symplastic and transcellular, [35,36]. A first quantitative model of water transport
in plants was proposed by van den Honert, [18,41]. The idea was to describe water flow in analogy to the
flow of electric current through a resistor network. This phenomenological approach is still contemporary,
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FI1GURE 1. Scheme of water flux into and out of a single cell. The flux is proportional
to the jump in chemical potential [u], which depends on internal pressure p and solute
concentration c.

[31], and is also used in engineering to describe water supply networks. Pressure assumes the role of the
electric potential and, hence, pressure gradients produce a flux proportional to the hydraulic conductivity.
This pressure driven flux was extended to include osmotically driven fluxes (diffusional fluxes) and the
concept of water potential was introduced, [31]. The general concept adapted from nonequilibrium
thermodynamics is that, differences in water potential produce equilibrating forces which drive the water
fluxes, [40]. This relation will be presented below in more detail. Plant biologists have used this concept
to describe water uptake of single cells (Fig. 1), e.g. during cell expansion [31].

Besides van den Honert’s approach, less has been undertaken to extend and apply the concept for
whole tissues. An interesting question is how the concepts should be used in continuum models of tissues.
As will become clear later, the central problem is to find suitable transmission conditions, which describe
the fluxes through the plasma membranes, and thus, between the apoplast and symplast. Another
interesting task is to obtain simplified models for situations where the cell scale is small compared to
the tissue or organ considered. Take for example functional structural plant models, in which often
macroscopic sections of organs are combined and simulated, [43]. Whilst less complexity is the principle
of a simplified model, sufficient information on the microstructure should still be part of it. Fortunatelly,
plant tissues tend to be sufficiently periodic and periodic homogenization lends to treat the problem, [9].

A model of water and solute fluxes in plant tissues needs a precise description of transport processes
between the cell inside (symplast) and the cell wall (apoplast) (Fig. 2). This transition takes place
through semipermeable membranes and represents the connection between two different physical
domains. These domains are the porous cell wall described best by a Darcy law and the cell cytoplasm in
which a viscous flow applies. One of the main mathematical problems is that, in contrast to [4,21], the
free fluid and porous media domains do not interact directly, as the membrane separates the domains and
controls actively and passively the fluxes of water and solutes. Thus the continuity of normal forces and
the Beavers-Joseph-Saffman transmission condition between free fluid and porous medium do not apply.
A similar situation to the one here is found in models of early atherosclerotic lesions [5] or low-density
lipoproteins transfer through arterial walls, [32,37]. Kedem-Katchalsky transmission conditions are used
by those authors to couple the Navier-Stokes equations for blood flow in the arterial lumen with a Darcy
law in the arterial wall. However, the dependence of fluid flow across the membrane on the oncotic
pressure difference — proportional to the jump in lipoproteins concentration — was neglected by those
authors to simplify the analysis of the model equations. Besides, transport of the solute in plant cells
is mediated by proteins and can take place opposite to the gradient in chemical potential by usage of
energy (e.g. ATPase pumps) and has to be based on a surface reaction mechanism.

Coupled free fluid and porous media problems have received an increasing attention during the last
years from the mathematical and the numerical point of view. Well-posedness analysis and numerical
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algorithms for coupled Stokes-Darcy and Navier-Stokes-Darcy problems with Beavers-Joseph-Saffman
transmission condition between free fluid and porous medium were addressed in [15,25,34] and references
therein. Along many results on the homogenization of Stokes and Navier-Stokes problems and derivation
of Darcy law, [3,19,21, 26, 38], the multiscale analysis for a Stokes-Darcy system modeling water flow
in a vuggy porous media with Beavers-Joseph-Saffman transmission condition was considered in [4].
The macroscopic equations were derived using formal asymptotic expansion and two-scale convergence
method. A formal asymptotic expansion was also applied successfully to define the transport velocity of
auxin in a plant tissue, [7].

New transmission conditions at the cell-membrane-cell wall interface and the coupling between the
flow velocity and solute concentrations via transmission conditions reflecting the osmotic nature of the
water flow through a semipermeable membrane distinguish our model from the problem studied in [4].
Additional technical difficulties are introduced due to the distinction between symplastic and apoplastic
velocities and the presence of plasmodesmata populated cell wall pieces. To show the existence of a
unique solution of the microscopic model we apply the abstract theory of mixed problems (saddle-point
problems), [17,25], where the coercivity in the divergence-free space and the inf-sup condition ensure
the existence of a unique solution of the coupled Stokes-Darcy model. The methods of the two-scale
convergence and unfolding operator are used to derive macroscopic equations for the fluid flow and
for the transport of osmotic active solutes. A generalized Darcy law with a force term given by the
difference of solute concentrations in apoplast and symplast defines the macroscopic water velocity.
Two initial-boundary-value problems for the concentration of solutes in symplast and in apoplast,
respectively, coupled via ordinary differential equations for the transporter concentrations, describe the
dynamics of solute concentrations in a plant tissue.

The paper is organized as follows. A thorough introduction to non-advective water fluxes is given.
These concepts are then used to derive a biophysical model for transport of water and osmotically
active solutes through a cell membrane, and to obtain transmission conditions between the symplast and
apoplast (Section 2). Based on this biophysical model, a microscopic model for transport in a plant tissue
is formulated (Section 3). Well-posedness and a priori estimates for solutions of the microscopic model
are shown (Section 4), followed by derivation of averaged macroscopic equations for water and solute
transport defined on the scale of a plant tissue (Section 5). At last, some results on two-scale convergence
and periodic unfolding method are formulated (Appendix).

Stokes

| Darcy 1

1 Stokes /o

FIGURE 2. Scheme of a typical periodic plant tissue, for example lamellae of the moss
Plagiomnium affine.
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1.1. Water fluxes and chemical potential

As noted above, water fluxes in cells are known to be driven by gradients in chemical potential, [31].
Biologist use the concept of water potential ¥, which is the chemical potential of water per unit specific
volume — i.e. expressed in pressure units instead of energy per particle. The chemical potential u; of
a species 7 is a measure of how much the internal energy of a thermodynamical system changes when
the number of particles of species i is varied, [23]. In equilibrium, the entropy of the system is maximal
and consequently the temperature T, pressure p and the chemical potentials p; are constant in abscence
of external fields. Consider now a situation in which the system is not in equilibrium. In this case p;
will not be constant and diffusion fluxes arise, which drive the system into equilibrium. If the system is
near to equilibrium, the diffusion fluxes can be assumed to be proportional to the gradients in chemical
potentials Vi, [24]. Irreversible thermodynamics proposes that for small gradients, the diffusion mass
flux density j, of a species ¢ is given by a weighted sum of the gradients of all chemical potentials.
Diffusion is a spontaneous molecular equilibration process which does not produce bulk flows in closed
systems. The so called mass constraint applies when the system is not divided by a membrane, [16]

j:Zjizo, (L.1)

which states that diffusion cannot produce a macroscopic movement of the mixture. Condition (1.1) is
not valid when the domain is separated by a semipermeable membrane, as such membranes allow the
movement of the solvent but not of all solutes. A consequence is that in such a case the system tends
to a local equilibrium: entropy reaches a local maximum and removing the membrane would allow a
further increase. To account for semipermeable membranes, the concepts were extended to include a so
called reflection coefficient, [31]. This coefficient is a measure of how much solutes are reflected by the
membrane. A value of one means that all solutes are retained, while all solutes cross freely for a value of
zero. The reflection coefficient lies in general between 0 and 1 for a real membrane, [31].

For the sake of simplicity, we will consider here and in the sequel the case of a binary mixture of a
solvent (i = 1) and a solute (i = 2). Following the notation of [24], we introduce the mass fraction of the
solute as a concentration

¢i=pa/p, (1.2)

where p;, for i = 1,2 is the mass density of species i and p = p; + p2 the mass density of the mixture.
Consequently the “concentration” of the solvent is 1 — ¢. This duality of the concentrations allows to
introduce one chemical potential

p=t2 (1.3)

m2 my

instead of two, [24], where m; is the mass of one particle of species i, for ¢ = 1,2. Note that m; and
mso are needed to obtain a chemical potential density in units energy per mixture mass. The flux density
of the solute is then j, = —aVu for o > 0. Using the mass constraint (1.1), delivers for that case the
flux density j; = aVu of the solvent. The combined chemical potential cannot be used in the case of
a semipermeable membrane and the approach needs to be extended by a reflection coefficient. For this
purpose, we introduce two diffusion driving potentials

i ::&—(l—g)& and fig :=(1—¢) (W_M) )

mi mo mo mq (14)
= (- Qut e and = (1- g,
m1
where 0 < ¢ <1 is a reflection coefficient. Setting ¢ = 0 renders jio = —fi; = u, which is consistent with

[24], while setting ¢ = 1 gives iy = u1/m; and fia = 0. The corresponding mass flux densities are simply
Ji=—aVi;, fori=1,2,

. - - 1.5
Jj=—aV(ji+fiz) = —asVu , (1-5)
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where a > 0 is a coefficient related to the permeability towards the solvent. The expression for 3 shows
that reflection (¢ # 0) is a must to produce bulk fluxes, and is actually the mechanism exploited by
plant cells, [31]. Figure 1 presents a scheme of water fluxes through a membrane of a single cell with a
semipermeable membrane (¢ = 1, fio = 0 and j, = 0).

Often in mathematical models, diffusion is assumed to be driven only by concentration gradients, which
is equivalent to setting fia = fia(c). For this case, Egs. (1.5) deliver Fick’s law with reflection, [24]

Ja~—p(l—¢)DVec, (1.6)

where D > 0 is the usual diffusion coefficient [see Eq. (1.8)]. This approach ignores that the chemical
potential depends also on pressure p and temperature T, which implies that gradients in p and T produce
also fluxes. This dependency is normally assumed to be small, although the pressure term is known
to be important in sedimentation processes, [42], and in cases where the pressure is nonharmonic and
concentration gradients are small, [6]. Fick’s law (1.6) is a fairly good approximation in a homogeneous
domain, but is inapplicable for obtaining transmission conditions at semipermeable interfaces. Large
pressure differences can arise across a membrane and the contributions of pressure and concentration
driven diffusion are of comparable magnitude.

To account for pressure driven diffusion, the potentials ji; are set to depend on concentration and
pressure. For simplicity, the dependence on temperature is neglected, as large temperature gradients are
not usual in plant tissues. Egs. (1.5) render

Jo=—-p(1=<)(DVe+GVp),

3 =ps(DVec—GVp) and (1.7)
jlz_j2+j7
where
aou adp o Oy a0y
D=—— = —— D=———7— =—— . 1.
p8c>0’ G Do p8c>0’ g p8p>0 (1.8)

The diffusion coefficients D and D are positive, while the barodiffusion coefficient G has no definite sign,
[24]. Assuming incompressibility of the solvent has as a consequence that G is positive, [31]. These signs
concord with what is known from biology: diffusion fluxes across the mebrane follow the concentration
gradient and are oriented against the pressure gradient (see Fig. 1).

2. Biophysical model

2.1. Mass conservation

The total flux density of a species and the mixture is given by the combination of the contributions of
advection p; v, diffusion j; and membrane transport via transporting proteins a;

Jz:p1v+31+aza i:1727

. (2.1)
J=pv+j+a,
where j := ). j; and @ := ), a;. Consequently, conservation of the species and total mass are given by

Op;i +div(p;v+3;, +a;) =0, i=1,2, (2.2a)
Op+divipv+j+a)=0. (2.2b)
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FIGURE 3. Scheme of the method used to obtain the transmission conditions. Small
domains (25 and {2, enclosing the interface symplast-membrane and membrane-apoplast,
respectively, are reduced to the surfaces I's and I',. The membrane is represented by the
domain (2,,.

First, consider the laws in a compartment without an interface. Transport via proteins takes place
only on membranes. Therefore, a; are zero inside a domain {2 that does not contain a membrane, and
the mass constraint (1.1) applies. Conservation of solute and mass in {2 follows thus

opi +div (piv+34;) =0 in 2% (0,00), i=1,2, 2.3a)
Op + div(pv) =0 in £2 x (0,00) . (2.3b)

Consider now the case where a membrane is present. Shall {25 be a domain enclosing an arbitrary piece
T’ of the interface between the symplast and the membrane (Fig. 3). Shall the membrane be represented
by the domain 2,,. Note that the derivation of the conditions for the interface between membrane and
apoplast is conducted in the same manner and will not be given here explicitly. Because of the membrane,
¢ # 0 and a; # 0 for i = 1,2. Integration of (2.2a) over {25 and application of Gau}’ law gives

8t/ pidx—i—/ (piv+j,+a;) ndy=0.
2, o902,

The Igembrane can be assumed to not allow advective fluxes, so that on 942, N £2,,, we have v = 0. On
082\ 12, there is no protein mediated transport so that a = 0 there. The thickness of (2, is reduced to
zero such that the interface is kept inside (25 — I's). The first integral tends to zero, while the second
tends to an integral over I

/ (—piv+3j;—d;+ai) ndy=0,

where j, is the diffusion flux in £2,,. Note that m points from the symplast to the apoplast. Because 2,
and Iy were chosen arbitrarily, the integrand has to be zero. A similar approach can be applied to the
mass flux of the mixture, where 7 = 0 in {2 is used. We obtain the conditions

(piv+3;) - n=(a;+3;,) n on (I, UT,) x (0,00)

= (2.4)
pv-n=(a+j)n on (I'sUI},) % (0,00),

where j = 7, 4+ J,. The fluxes in 2 were written on the left hand side, while the fluxes in f2,, are on
right hand side. The diffusion fluxes 7, are normally assumed to be constant in the membrane (constant
gradients), [31]. Protein mediated transport can be considered to be a chemical reaction allowing buffering
of species, and hence, the fluxes a;, and a; i through I's and I7,, respectively, have not necessarily to be
equal. Expressions for a;; and a; will be developed in Section 2.2.
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FIGURE 4. Depiction of the mechanism assumed for protein mediated transport, where
a transport direction from symplast to apoplast is shown exemplarily.

The membrane (2, is very thin compared to the rest and is usually reduced to an interface denoted
here as I,,. An expression for the membrane’s buffering effect is obtained by integration of (2.2a) over
.., application of Gaufy’ law and reduction of 2, to I},,. This process is equivalent to subtraction of
the transmission conditions on Iy from those on I',. Finally, the transmission conditions on the reduced
membrane interface I, are in total

(piv+3;) - n=(ai+3;) - n onl,x(0,0), i=1,2, (2.5a)
pv-n=(a+j)n on Iy, x (0,00) , (2.5b)
piv+3;]-n=la] -n on I, x (0,00) , i=1,2, (2.5¢)
[pv] m=][a]-n on I, x (0,00) , (2.5d)

where the assumptions j; = const, and j = const in the membrane were used, and [] is defined as the
jump across the membrane (i.e. [a;] = a; 1 — a;).

2.2. Protein mediated transport

Most solute fluxes through membranes are mediated by transporting proteins, [31]. Transport can be
either passive or active with usage of energy (e.g. ATPase pumps). We model this processes as surface
reactions, in which the solute on one side (.5)) reacts with the transporter, builds a complex (S—T'), which
decays by transporting the solute to the other side (S))

k1 ks
SS+T = S5-T —= S,+T.
ko k4

The concentrations of the solute on either sides (S and 9)) are denoted by ¢ and ¢y, respectively. The
concentrations of free and bound transporters are denoted with ¥ and 1, respectively. In general, the
density of the mixture can differ between sides and we denote these here with p; and p;. The above
simple reaction mechanism produces fluxes on each side

a|:(k1p|C|'L9f—k2'L91,)’n, (26)
ay = (k3 —kapnendy)mn, .

where m is the normal of the membrane pointing out of the cell. These expressions correspond to the
rate law of the above reaction mechanism. See Fig. 4 for a depiction of this mechanism.
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The concentration of free and bound transporters are obtained by pointwise reactions. The rate of
change of free transporters due to binding of solute and decay of the complex is given by

[a] -n = (a” — a|) ‘n = —(kl pra+ kapi C||)19f + (kQ + /Cg) Jy . (2.7)

The net transport direction varies in time and depends on the solute concentrations and coefficients kq
to k4. By focusing on a quasistationary situation in which a; = a; := a, the following net flux and
concentration of free transporters are obtained

a=(kikspicy—kakypuen)/(k2+ks) Iym,

2.8
Uy = (ko +k3)/(ka + ks +kipray + kapuen) Jo (2:8)

where Jg(t,x) = Uf(t,x) + Ip(t, x) is the total amount of transporters. We will focus here on the special
case where either k; = 0 or k4 = 0, i.e. on the case of a perfect uni-directional transporter. Using the
assumption of quasistationarity, the mechanism is found to follow Michaelis-Menten kinetics. Exemplary
for an efflux transporter (k4 = 0)

a:p|c|k1k3/(k2+k3+k1p|c|)n. (29)

The applicability of the assumption of quasistationarity is limited. Transporters are in general sub-
jected to regulation, which reduces or increases the amount of transporters depending on the status of
the system. The total amount of transporters varies as follows

8t190 = R(t,x,ﬁo) 5 (210)

where R(t,x,9p) is a function describing the rate of regulation. R is in general composed of a positive
production term and a negative degradation term. Negative degradation is often assumed to be propor-
tional to ¥y to prevent negative concentrations. The production term will depend on the local or global
solute concentration and regulation is used to control that concentration. A general analysis of robust
homeostatic control of a species based on concentrations is presented in [30], and an example for zinc
homeostasis in yeast and plant cells is found in [11-13]. We will not consider details of regulation here.

Assume that only free transporters are regulated and by using Eq. (2.7), the following system describing
the pointwise dynamics of the free and bound transporters is obtained

00y = R(t,z,0¢) — (ki prar + kapucn) Oy + (ko + k3) Oy
8,5195 = (kl prc + k4 Pl C||) ﬂf — (kg + kg) 2 R (211)
Yo(t, ) = 0p(t,x) + Op(t, ) .

In a general situation several influx and efflux transporters might exist. The fluxes generalize then into

ai| = Z(kia Pi,l 193’,04 - k%,a ?),a) n, and Qi = Z(ké,a ?),a - kfl,a Pi ﬂif,a) n, (212)

where p; = pc¢;, with i = 1,2, and all 193}7a and ﬁé’a fulfill an equation system equivalent to Eq. (2.11).

2.3. Model

Inserting the diffusion fluxes of Eq. (1.7) into Egs. (2.3a) and (2.3b), and using p2 = pc delivers a system
describing species and mass conservation in a compartment {2 with ¢ =0

d(pc)+div (pcv—pDVe—pGVp) =0 in 2 x (0,00) ,

2.13
Op + div(pv) =0 in 2 x (0,00) . (2.13)
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The gradients in the membrane can be assumed to be constant and can be expressed by a jump across
the membrane. Therefore, the diffusion fluxes in the membrane j, and j are functions of the jumps in
concentration and pressure

B2 o) = =£ (DI + Gl n. and (e, [p) = £<(Dle] = Glp) . (2.14)

where the gradients in Egs. (1.7) were approximated by a jump across the membrane of thickness h. The
expressions in Eq. (2.14) are related to the Kedem-Katchalsky equations, [5].

Using Egs. (1.7) in (2.5a) and (2.5¢), the transmission conditions on the interface I, for the solute
are obtained

(pcv—pDVe—pGVp) -n=(ay+ 35, [p]) - n on Iy x (0,00) , (2.15a)
[pcv—pDVe+pGVp| -n=la] n on I, x (0,00) , (2.15b)

where as and j, are given by Eqgs. (2.12) and (2.14), respectivelly.

Water is almost incompressible (p; & const) and compressibility arises here due to the solute influencing
the mixture’s density p = p1 + p2 = (1 — ¢) p + ¢p. Using the assumption of a small concentration ¢, in
a first approximation p =~ p; = const. Also, barodiffusion in {2 can be assumed to be small compared to
the concentration driven flux, i.e. it is assumed to play only a role in transport through the membrane.
Viscosity can be assumed to dominate the flow due to the small characteristic scale of a few microns, and
the flow in the symplast (cell inside) is assumed to be a Stokes flow. The apoplast (cell wall) is porous
suggesting a Darcy flow. The equations describing flow, mass and species conservation are hence

v — I Aw + in =0 in symplast , (2.16a)
P1 P1

v+ KVp=0 in apoplast , (2.16Db)

dive =0 in symplast and apoplast , (2.16¢)

Oc+div(ve—DVe) =0 in symplast and apoplast , (2.16d)

where 1 > 0 is the dynamic viscosity and K > 0 is the permeability of the apoplast.

Diffusive permeation of the solute can be assumed to be small compared against protein mediated
transport. We will also assume that only the solute is subjected to transport via proteins. Assuming
that the structure in the membrane is oriented normally, the velocity at the interface can be assumed to
be perpendicular to it (v X m = 0). Together with incompressibility, this condition has as a consequence
that the normal viscous stress (o'n) - n is zero on a flat boundary, i.e. the boundary experiences only
shear stress. The viscous stress tensor of an incompressible viscous fluid is defined as

o' =27 Sv, (2.17)

with Sv the symmetric velocity gradient
1
Sv =3 (Vo+ Vo), (2.18)

and is related to the full stress tensor 0 = —p I+’ = —p I +21Sv. Assuming that the effect of corners is
small, it is possible to set (¢/n)-n = 0 on I, X (0, 00). Water fluxes mediated by active water transporters
are probably small compared to the fluxes via passive transporters (aquaporins): ||la| < ||7||. Moreover,
by adding (¢’'n) - n = 0 only on the Stokes flow side, Eq. (2.5b) becomes

k((e'n) -n+[p]) =0 —v-n  on I, x(0,00), (2.19)

where k :=¢G/h, 0 := ¢D/h. Note that the normal and the jump [-] are oriented from the Stokes to the
Darcy side. The physical meaning of this condition becomes clear by setting k = § = 0

v-n=0 fork=§=0 on Iy, x (0,00) ,
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i.e. the net mass flux is zero for zero permeability (o« = 0) or for a nonreflecting membrane (¢ = 0).
Also, a higher concentration in the cell, [¢] < 0, means that water is driven into the cell, v -n < 0 for
[p] = 0, while a higher pressure in the cell, [p] < 0, results in water flowing out of the cell, v -n > 0 for
[¢] = 0. Compare Fig. 1.

Finally, the following conditions are good approximations on the interface I5,

p1(avy—DsVe) -n=asz -n on Iy, x (0,00) , (2.20a)
p1lcv — Dy Ve -n~as]-n on Iy, x (0,00) , (2.20b)
£(2n(Svn)-n+[p)) =d[d—v -n on Iy, x (0,00) , (2.20¢)
[v] na~0 on I, x (0,00) , (2.20d)

vxn=0 on Iy, x (0,00) (2.20€)

3. Mathematical formulation of microscopic model

Let {2 be a cube in R? representing a plant tissue, and € > 0 be a parameter denoting the ratio between
the size of a single cell and the size of the considered plant tissue 2. The microscopic structure of a
plant tissue is reflected in the difference between the cell wall 25 C (2 and the symplast inside the cells
25 C (2. In the cell wall domain we shall distinguish between the cell wall apoplast (25, and parts of
the cell wall 25, occupied by both plasmodesmata, that belong to cell symplast, and cell wall apoplast.
This partition is a strong simplification of the true geometry of a plant tissue, however, it accounts for
the basic structures. See Ref. [14] for more anatomical details of plant cells and tissues.

We define a unit cell Y = Y, UY,, where Y, is an open domain with a smooth boundary, representing
the part occupied by symplast inside a cell, and Y, is the cell wall, with Y, = Yau, U Y4 and Y,
is a domain comprising both plasmodesmata and cell wall apoplast. We define also Y, = Y, U Y.
The corresponding boundaries are denoted by I, = Y4, NIY,, Taw = 0Yy N 0Y,s, I, = 0Y, \ Y,
Iy =0Y,\0Y, [4s =0Y0s NOY,, I,y =1, U, =03Y,, see Fig. 5.

L #J(&{JLﬁ{{/”Lﬁ{JLES
S
Yaw EQ > a7 Yas Yow EE;{ - k{ - ﬁi § ﬁi }(’EQ
kﬁV v EIS/ 1—/ N - - - . o
z T P
Y, r ] as Y Y, v a{# b{ k# ﬁ{ }Z
e .
A, Lw L F{S\ . . . :
= h Yo Yo er%—? [ ﬁ{ T ﬁ# T kﬁ 1T ﬁ

FIGURE 5. Left: unit cell Y. Center: 2D cross-section of a unit cell Y. Right: 2D
cross-section of a plant tissue (2.

Then considering translations of the unit cell given by ij =Y, +kfor j =a,zsaw or as, and
Fik =T;+kfori =z aw,as or zs, with k € Z3, we can define the domains comprising the microstructure
of a plant tissue (25 = U{ank ceYRC 2,k €7, j=a,z s awor as. The microscopic boundaries are
given by I'f = U{el} : eY* C 2,k € Z3}, i = z,aw, as, or zs. We notice that £2¢ and (2% are connected
Lipschitz domains. The domain (2 represent porous medium of cell walls, whereas (2, is introduced
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to depict parts of cell walls, modelled also as a porous medium, comprising both cell wall apoplast and
many thin channels of plasmodesmata, Fig. 5.

In order to simplify the formulation of the microscopic model we shall consider in the following the
doubled notation for 27, i.e. £25, = 20, and 27, := (20,

For the velocity of water we shall consider the stationary version of Stokes equation (2.16a) inside the
cells and Darcy equation (2.16b) in the cell walls apoplast and parts of cell walls comprising plasmodes-
mata, and incompressibility (2.16¢) of all flows

—e?nAvE +Vps =0 in 2
divev =0 in (2

vi + K; . Vp; =0 in (2
divv; =0 in (2

)

0,7
0,T
0,T

7

) i:Sp7aw7a’p7

x (0,T)
>< 7

) (3.1)
x (0,7T)
x (0,T)
where 1 > 0 is the viscosity constant, and the permeability tensors are given by Y-periodic functions K,
ie. K, (x) = K;(z/e) for x € 2, with ¢ = sp, aw, ap.

The concentration of an osmotically active solute in different partitions of a plant cell is assumed to
follow the conservation Eq. (2.16d) with a production/degradation term

) Z.:Sp7aw7a‘p7

Ohcs + div(Has (v5)cf — DE(t,2)Ve§) = Fi(twoef)  in 25 x (0,T), i=zspawap,  (32)

where
Hy(§); = {Msgn(fj) for ‘§j| > M, Jj=123,

for some M > 0, and & € R3. The velocities v need to be cut-off for technical reasons for the rigorous
analysis of the macroscopic model. Assuming bounded velocities in tissues is biologically and physically

sensible. The diffusion coefficients D5 and the production/degradation terms FF, with i = z, sp, aw, ap,

are determined by Y-periodic functions D;(t,y) and Fi(t,y,§), i.e. Di(t,x) = D;(t, %) and F;(t,z,§) =
Fi(t,2,€) for £ € R and (t,z) € (0,T) x §2{. The symplast and apoplast are coupled by diffusion
fluxes and via protein mediated transport of solute through the cell membrane described by the following
boundary conditions based on Egs. (2.20a) and (2.20b)

(DIVe; — Hy(vi)er) - no= (D5, Ve, — Hy(vg,)c5,) - n
+eBa(t,v)0,,  —eag(t,m)cs ‘;'}S onI: x(0,7),
(DIVe; — Hpy(v)cs) - )z on 7 x(0,T), (3.3)
(DawVeaw = Hu(Vaw)Cauw) - on I; x (0,7),
(D3, Vea, — Hu(vg,)eg,) n= eag ,x)c 195 —efs(t, )05 onI: x(0,7),

ap

where n denotes the outer normal vector to 025 and the protein mediated flux as was expressed by
relation (2.12) with o and §f, for [ = a, s, are related to the reaction rate coefficients k;, for ¢ = 1,2, 3.
We define the apoplastic and symplastic concentrations ¢ and c, respectively, as follows

- &Lt ) in 26, x(0,7), - | &) in £2¢ x (0,7),
calt,w) = { ) m Qi x @), M SGD=C0) wme <o), G4

The dynamics of the transporter concentrations are modelled by following ordinary differential equations

005, = Ry (t,z,9% ;) — of (t,2)cj 0%, + By (t, 2)0,; — 75, (t,2)9%, on I, x(0,T),

3.5
o095, = af ()0 — BE ()05 — st )y on I x (0,T), )

with [ = a, s, and Y510 for j = f,b are rates of decay of corresponding transporter concentration and
R} are production/degradation terms representing the genetic regulation of the transporters. The
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main difference to Eq. (2.11) is the inclusion of the decay terms, which model a possible instability
of the transporting proteins. The coefficients and R} are given by Y-periodic functions R;, oy, 5 and
Y1, defined on I,y x (0,T), i.e. Rj(t,z,&§) = Ri(t,%,6) and of(t,z) = wu(t, 2), Bi(t,x) = Bi(t, 2),
Vit x) = (L £), for £ € R and (z,t) € I';; x (0,T), with [ = a, s and j = f,b.

In contiguous apoplast and symplast in plasmodesmata populated regions, we pose continuity and
zero-flux boundary conditions — based on Eqs. (2.20a) and (2.20b) taking into consideration that no
transporters are present (a2 = 0 and [az] = 0) — and set the concentration to be continuous

(DawVeaw — Hu(v5,,)Con) * Maw = (DZpVCZp - HM(’UZP)CZP) “Ngy on I, x(0,T),

(Dichip — HM(vip)cip) “Ngw =0 onI:, x(0,T), (3.6)
Cow = Cap on 5, x (0,T), ’
L =c on Iy, x (0,T),

where ng,, is the outer normal vector to 9¢2;,,. Initial conditions for solute and transporter concentrations
are posed as follows

c(0,7) = () in (2],

95,(0,2) =057 (@) onI%,,

(3.7)

where j = f,b and | = a, s. The initial conditions for transporter concentrations are defined as 19?10(:5) =
09 ,(x,z/e) for x € IS, where 99, (z,y) = 99, (x)09; ,(y) for (z,y) € 2 x I, and 99, are Y-periodic,
with j = f,band | = a, s.

Following conditions, based on (2.20c), (2.20d) and (2.20e), are considered for the velocity of water on
internal boundaries

k1 — 262 (SvEn) - n+ ps — p5,,) = €01(cS — ¢5,,) + V5, 1 }

on I'; x (0,T)
€, — £ . SX 70 z ) bl
vV, M=V, N, v, XN =

—2e%n (Svin) - n+ps =ps,

ko —2en (Svin) - n+pS —pf,) = eba(cf — ¢,) +evl, - n on I, x (0,T), (3:8)
v M=, n+vg, N, vixn=0
Pow =Dips  Vaw Maw = Vop  Maw , Vs, Naw =0 on I'5, x (0,T).
On the external boundary 0f2 we assume zero-flux boundary conditions for concentrations
(Hpr(v5,,)0, — DV ,) M =0 on (002\ 0925,) x (0,T) , (3.9)
(Hp(v5)e; — DEVEE) e, =0 on (02N0N2%,) x(0,T),

where 7 = ap, sp and n., is the outer normal vector to 0f2. We further prescribe symplastic and apoplastic
normal velocities

VU, Mew = UD on (942,N00N) x(0,T),

Vg, Mez = UD on (0025, N0N) x (0,T), (3.10)
V5, Mex =0 on (0025, N0N) x (0,7) .

To simplify notations, we define similar to (3.4) apoplastic and symplastic flow variables

- ~ Jvg, () in 25, x (0,T), - _ fvi(t,x) in 025 % (0,T),
wen = Lo ma wen =560 REAGD
- 5.t x) in 025, x(0,T), . _ pi(t,x) in 22 x (0,T),
pa(t,x) = {pzp(t’x) in 25, % (0,7T) , and Pt @) = pep(tz) in 025, x(0,T) .
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The corresponding diffusion coefficients and permeability tensors are given by

aw(t,y) in Yy, 5 D, (t, inY, 0,7),
Da(t,y) = {D ((t,y)) in Y, ;(( )) and Dy(t,y) = {Dss(t?y)) in Yasxx(( 71)“) ,

ww in Y., 0, )
Ka(y) = {K ((y)) n Yas ;(((07 ))

The production/degradation terms are defined by

E: (txc )mQE x (0,T) Fs(tmc) in £2¢ x (0,T)
£ (= _ Y Yaw aw ) ) 1> £\ __ z ) )
Folt,z,c.) = {F (t,x,c5,)) in 25 % (0,T), and - Fy(t, 2, c5) = Fg,(t, @, c5,) in 25, x(0,T) .

s “ap ’Tsp

We assume that d; # 0 and k; # 0, for i = 1,2, and define k%(z) = k(x/e), 6°(x) = 0(x/e) for x € TS,

where &, § are Y-periodic functions given by x(y) = ;" on I, k(y) = ky ' on I, and 6(y) = d1k; " on
I, 6(y) = 6oy " on I,y

Assumption 1. — Tensors K, € L>(Y,)3*3, K, € L>(Y,;)*3 are symmetric and uniformly elliptic,
ie. (Ki(y)€,€) > kif¢]? for ky > 0, £ € R3, a.a. y € Y], where | = a, sp and Y, := Y.

— Diffusion coefficients D;,0;D; € L>((0,T) x Y;)>*3 are symmetric and uniformly elliptic, i.e.
(Dy(t,y)&, &) > di|€|? for d; > 0, £ € R3, a.a. (t,y) € (0,T) x Y}, where | = a, s.

— Production/degradation Fj : (0,7) x ¥; x R — R is differentiable in ¢, measurable in y, F; and 0. F;
are sublinear in ¢, F is Lipschitz continuous in & uniformly in (¢,y), and Fj(t,y,£_)é- < C|¢_|2 for
(t,y) € (0,T) x Y}, where £_ = min{£,0} and [ = a, s.

— Functions Ry(-,-,&) € C([0,T]; L>®(Is)) for all £ € R are uniformly Lipschitz continuous in &, and
nonnegative for nonnegative ¢ and (m, t) €TI.s x[0,T), withl =a,s.

— Coefficients oy, 81, vj; € C([0,T]; L*°(I;s)) are nonnegative and dycy, 05 € L*((0,T) % I5), where
j=f,bandl =a,s.

— Initial conditions ¢} € H*(2) and 0, , € L>(£2), ¥, € L>(I;5) are nonnegative, | = a,s, j = f,b.

— Boundary condition vp € H1/2(a(z) is given by vp = Vp - me, on 082, where Vp € H'(§2) and
divVp =0 in 2.

By Lemma 4 in [38], there exists a restriction operator Ry, € L(H'(Y), H}. (Y,)) with the properties

Ry ¢ =1 in a neighborhood of 9Y ,
Yp=0onl,s = Ry =1, (3.11)
divyy =0 = divRy,v =0.

Here Hp, (Yo) = {¢ € H'(Y,) : ¢ = 0 on I..}. For ¢ € H'(R2) we define ¢5(y) = (ey) for y €
Y7 = (Y + Kk9), with j = 1,...,J, where J € N such that 2 = U}’:Ist, and k7 € Z3. Then the
operator defined as R (z) = (Ry,¥5)(x/¢e) for x € Y], with j = 1,...,J, has the properties that
Ro: € L(H(2), H}. (£25)) and

Y =0onI%, — RS =1),
divey =0 — divRy.¢ =0, (3.12)
HR?z;LWh?(Qg) < (||1/JHL2(Q) + €|V 220 ) ; '

5||VR?33¢||L2(93) < C(Wllr2o) +ellVYlLz))

where Hi. (25) = {¢p € HY(25): ¥ =0 on I'S}.
We define Vj = RQEVD and, using the assumptions on Vp, obtain that divVj = 0 in (2] and
IVEllz2(2:) < CllVblla (o)
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For a o > 0, a Lipschitz domain X, and for 9, ¢ € L%((0,0) x X)) we shall denote

Wz = [ vpds  and <w,¢>z,o=/;/2wdxdt.

For a bounded Lipschitz domain X we shall use the notion of the space
H(div, X)) = {v € L*(¥) such that dive € L*(X)},
provided with the norm
anz(div,x) = ||UH%2(2) + | diVU||2L2(2) :
We introduce also
Ve, ={ve H(div,02,): v-n=0 on 02, N (002, U2},

VE={ve H(div,2): v-necL*I%),v-n=0 ondN},
VEi={ve H'(£2): vxn=0 onT:}.

For ¢ € V&, since ¢ € H(div,$25,) we have ¢ - m € H~/2(092,) and together with ¢ -n = 0 on
005, \ IS, obtain ¢ -m € H™Y/2(I'%,), [15]. Considering the geometrical structure of 25, and the fact
that ¢ -m = 0 on I, we can extend ¢ by zero from 25, to 2¢ with div¢ € L?(£2%) and shall use the

aw?

same notation for the extension as for the original function.

We denote the spaces

Ve = {(v1,v2,v3) € VS x Vi x Vi i ((v1 —v2) - n,¢)re =0 for ¢ € L*(re),
((v1 —v2 —v3) ) g—1/2(pe ) mr/2pe,) =0 for ¢ € HY*(I%)},
Pe = {(p15p25p3) € Lz(‘Qz) X LQ(QZ) X Lz(‘Qgs) : <p15 1>~Q§ + <p2a 1>Qé =+ <p37 1>Qgs = O} )

with the norms

[vllve = lv1llaaiv,ee) + el VoLl z2coe) + lvallaivies) + 721 v2 - nllczrey + [lvsl miv,o:,) -

Ipllpe = llprllzecas) + Ip2llLzcog) + Ipslic2og,) -

Notice that for ) € V¢ due to the assumptions on the normal components at the boundaries we have
divp € L?(02), where ¢ = 91 in 25, ¢ = 19 in 25, and ¢ = by + b3 in 25.. We shall consider also
L?(0,T;V¢) and L?(0,T;P¢) with the norms

||”HL2(O,T;VE) = ||7)1||L2(0,T;H(div,9§)) + 5||VUI||L2((0,T)XQ;) + ||'U2HL2(O,T;H(div,.Qg))
+ &2 lvz - ml| 20,1y xre,) + l03ll 20,7 m(aiv, 02,)) 5

2l 20,7375y = IP1llz2(0,1)x 22) + [IP2ll22((0,7)x 22) + IP3ll L2 ((0,7)x 22.) -
The corresponding divergence-free space is denoted by

V5 = {(v1,v2,v3) € V°: divoy =0 in 2 , divuy =0 in 2 , divey =0 in 2.} .

4. Well-posedness and a priori estimates

We start with a weak formulation of the microscopic model (3.1)-(3.10).
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Definition 4.1. Weak solution of (3.1)-(3.10) are velocity field (v, v — V5, v5,) € L*(0,T;V¢), and
pressure p° = (pS,p,pS,) € L*(0,T;PF), satisfying equations (3.1) with boundary conditions (3.8) and
(3.10) in the variational formulation

e2(2n S, SY1) s v — P5, div ) os 7 + <K;;($)UZ>1/J2>937T — (pg, divepe) e 7
KL ()05, s o 1 — (95, diveps) oz 1 + (5 ()0 -+ 6°(2) (¢ — ¢) b2 -n)pe 7 =0, (4.1)
(divos, q1) s 7 + (divvg, ¢2) s 7 + (divvg,, g3)o: 7 =0,

for ¢ = (¢1,v2,v3) € L*(0,T;V¢) and ¢ = (q1, g2, g3) € L?(0,T;P¢), and functions ¢ € L>((0,T) x £27),
¢ € L2(0,T; HY(25))NH (0, T L2(£2)), for I = a, s, satisfying equations (3.2) with boundary conditions
(3.3), (3.6), and (3.9) in the weak form

(Orcg, p1) e + (D (t, 2)Ve, — Huy(vg)eg, Vi) ge = e(B5 (1, 2)05 s — ag(t,2)cg 0% 4, p1) e, 1
c ‘\ (4.2)
+<F‘a‘ (t7 xZ, Ca)a S01>-Q§,T )

and

(Orc5s p2) e r + (DS(t, ) Ve, — Hy(v9)el, Vo) oe = (B3 (8, )05, — al(t, 2)cCdF o p2) e,
(4.3)
+<Fs (Lx,cs), @2>Q§,T )

for all o1 € L2(0,T; H'(£29)), w2 € L*(0,T; H'(£29)), with ¢f(0,2) = ¢ (x) a.e. in £2§, and transporter
concentrations U5, € Whoo(0,T; L=(I%,)), with j = f,b and | = a, s, satisfying ordinary differential
equations (3.5) a.e. on IS, x (0,T) together with initial conditions (3.7) a.e. on I'S,.

In following we shall use the notation V5 = (0,V5,0) and (v¢ — V§) = (v5,v§ — V5, v5,).
4.1. Existence and estimates for (v, pS) and (v, pt)
First we shall prove Korn’s type inequality satisfied by functions from the space
Ve = {(v1,v2,v3) € H'(25) x VE x VE, : ((v1 — v2) -, d) e = 0 for ¢ € L*(I%)
((v1 —v2 —v3)  m, V) g-1/2(pe ), m1/2(re,) = 0 for ¢ € HY2(I5)}

Lemma 4.2. For 1 € V¢ we have the following Korn’s type inequality

11| L2(s) + €l V1 22 (ae) < C(ell Sy llnacas) + 2 lhy x nllra(re,) + 192l 22 (0

. . . (4.4)
sl 200y + el divepy | 200y + el divaps || L2 (0:) + el divaps | L2 oz ) -

Proof. The proof follows the same lines as in [4]. First we show the estimate for @ € V(Y), where

V() ={h) € H'(Y), %3 € Va(Y), %3 € Vus (V). (81 —2p3) -n, é1)r. = 0 for ¢1 € L*(I%), and ((¢p; —
Py — P3) M, P2) o1z gz = 0 for o € HY2(Iy,)}, with Vo (Y) = {v € H(div,Y,),v-n € L*(I,)} and
Vas(Y) = {v € H(le Yas),v-m = 0on I4,}. Then scaling argument will imply inequality (4.4) for
@ € VE. Suppose it is not true that there exists a constant C' such that for ¢ € V()

||’[ﬂ1HL2(Yz) + ||V{P1||L2(Yz) < é(” S"Z"lHLQ(YZ) + |9y x nl2r,,) + ”"LZHL"‘(Ya) + ||1L3||L2(Yas)
1 div |z + | div ol 2cvs) + [l div sl )
Then there exists a sequence {ﬁim} C V(Y) such that

by zzevy + V91 20y =1 (4.6)
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and
1891 2y + 197 x nlzacr.,) + 193 e + 195 22vin) ;
HIdiv ey 2y + | diveby (2 + [ diveps 2. < % : 0
The last inequality implies that
¥y — 0 in H(div,Y,) and Py — 0 in H(div,Y,,) ,
whereas, due to (4.6), there exists ¢, € H'(Y.) such that
P, =, weakly in H'(Y,).

We shall denote by @ the extension of {pl by zero into Y. Since '(ZJm = {brlnxyz + '[b;nxya + &;"Xyas is
bounded in H(div,Y’), it converges weakly and we conclude that

" =  weakly in H(div,Y) . (4.8)
Using the estimate for the norm in the space H~'/2(I,), i.e.
~m ~m
Yy - nllg-12r,y < Clits |H(aiv,y.) = 0, (4.9)

and the boundary condition {Z)T n = 127? -m a.e. on I,, we obtain 1,Ab1 n = 1212 -m =0 a.e. on [}.
Additionally we have that

||’ZZJT Xn| 2,y —0 as m— o0, and therefore , xn =0 ae on I, .

Now the classical Korn inequality in Y, with 1})1 =0on I, C 3Y, can be applied and we obtain

1]l 20vey + IV |22 vy < ClISy ¥1ll 2y - (4.10)

Considering (4.6) and (4.7), we obtain that the left-hand side in (4.10) is equal to one, whereas the
right-hand side is zero. This yields the contradiction to the assumption that there no such constant C
for which (4.5) hold true.

Due to the geometrical assumption on {2 we can wrlte = U _,e(Y +k7) with some J € Nand k7 € Z3.

We consider now v € V¢ and for y € Y define (y) = Y(ey + €k?), and obtain '(/J e V(Y). Applying
(4.5) for each Y; = (Y + k7) we obtain estimate for P’

||1/J1HL2(YJ + ||V¢1||L2(y] <] S’l/leLz(yJ + 141 % |7+ H%IILQ viy T H¢3||L2 vi,)
+||d1V¢1||L2 viy T HdW%IILg viy T HdW%IILz viy) -
Summation over j = 1,...,J and change of variables x = ¢(y + k’) for y € Y in (4.11) yield (4.4). O

For the proof of existence and uniqueness of v¢ € L?(0,T;V¢) and p € L?(0,T;P¢) we shall define
two bilinear forms a®(-,-) : L?(0, T V¢) x L*(0,T;V¢) — R and b(-,-) : L?(0,T;V¢) x L*(0,T;P°) — R:

a® (0, 9) = €220 S 1, St1) a1 + (K, Lo, ¥2) oz v + (Ko, e 03, ¥s) oz 0 + €(K° g2 - m, b2 - m) e 1,
b(¥,q) = (divepr, q1) oz 7 + (divebe, g2) oe 7 + (div s, g3)0: 1 ,

for ¢, 1 € L?(0,T;V¢) and q € L?(0,T;P?).
For £, ¢ € L?((0,T) x I'8,) we define a linear form f°(-) : L?(0,T;V°) — R
W) =e(6°(cs — ), 2 -m)pe v for ¢ € L2(0,T;V7) .
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Theorem 4.3. For ¢, ¢S € L*((0,T) x I'S,) and K,, K,, vp satisfying Assumption 1 and for any e > 0

there exists a unique solution (v¢ — V§) € L%*(0,T;V?), p° € L*(0,T;P¢) of (3.1) with transmission
conditions (3.8) and boundary conditions (3.10) satisfying
1
elIVUlllrz(o,myx02) + 1Sl L2 0,m)x 20) + [|vallL2(0,m)x 02) + €2[|vg - nllL2(0,m)x 2, (4.12)

1
P 20,7y x 22) + IPal 2 (0.m)x 22) < Ce2 (|G llzo,myxre,) + s L2(0,7)xrz,)) + ClIVD 1 (02) 5

and there exist extensions PS of pS from §25 into 2 and P; of p5, from (25 into (2, satisfying

S

E & 1 £ £
1P L20,msL2(2)/m) + | BallL2 0.2 () /m) < Ce2 (G20, < e, + 1Sl 20y xre,)) + ClVD a1 (2)

(4.13)
where a universal constant C' is independent of ¢ and 2r = 2 x (0,T).
Additionally for ¢ ;,c5; € L*((0,T) x I'S,), with i = 1,2, holds
051 — V5 allz2(0,1)x 22) + [[vG.1 — v 2llz(0,1)x 22) (4.14)
< Cle2 ey — Gallizomyxre) + €21 — Eallrzomxre,)) - '
Proof. We can reformulate Stokes-Darcy problem (4.1) as
aE(,UE_V[E)’w)_Fb(d),pE) :_QE(V57¢)_f€(¢) fOI‘Q/)GLQ(O,T;Vs) ) (4 15)
b(ve,q) =0 for ¢ € L?(0,T;P?) , '

and apply the abstract theory of mixed problems, [17], to show the existence of a unique solution of (4.15).
Considering 1 € L(0,T;V5) , using ¢1 x n =0 on (0,T) x I';, and applying inequality (4.4), we obtain
a*(,9) > C(2I Sl T2 (0.1 x02) + 1¥2ll72 0.y % 20) + 19311720y w20y + €02 - 27207y %1, ))

> Cllel 220,750 »
and conclude that a°(-,-) is L?(0, T; V5)-elliptic.
The bilinear forms a®(-,-) and b(-,-) are continuous with constants independent of ¢, i.e. for ¢, ¢ €
L?(0,T;V¢) and q € L%(0,T;P?), applying Holder’s inequality, we have
|a® (1, )| < C (]I SYrllrz(o.myx 22y S @1l 2 0,m)x 22) + [1¥2ll L2 (0,7 x 26) 102l L2 (0,7 x 26
@2 nL2(0,1)xre,y) (4.16)

+ 1¥sllLz(o,m)x 2z |03l L2(0.m)x 22,) +€lldz - nll2o,m)x e,

< Ol 20,09 e

L2(0,T;V¢) »
and

1b(¥, @) < (1div el z2¢0,myx 02) + 1 div bzl 20,1y x 22y + | div s L2 0,7y x 2z.)) X
X (lgll 2o,y x22) + l@2llz2(0,m)x 22) + llasllL2 (0. myx02)) < 9]

r20.1:vo)llall L2 0,17 -
Now we shall prove that b(-,-) satisfies the inf-sup condition. For any q € L?(0,T;P¢) \ {0} we shall
construct 1 € L2(0,7T;V#) \ {0} such that
b(v,q) > CllYll20,7:v) |l 2 0,759 -
For given ¢ = (q1,q2,q3) € L*(0,T;P¢) we define ¢; € L2((0,T) x £2) and ¢ € L?((0,T) x £2) as
- . - 1 .
g1 = Qg2 1M (OvT) X QZ , 1= q1 + W<q371>925 m (OaT) X Qi )

(jg = qs3 n (0,T> X QZS s 62 = <Q3, 1>Qgs in (O,T) X Qi .

1
€22
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Then, due to (1, 1)o = 0 and (G2, 1)oe = 0, there exist ¢; € L2(0,T; H(£2)) and ¢ € L2(0,T; H(£25)),
see [17, Corollary 2.4, Lemma 2.2] or [39, Lemma 2.4], such that
divipy =@ in 2x(0,T), 1 =0 on 82 x (0,T),
diveyy = G in 25 x (0,7T), o -m =0 on 98¢ x (0,T) ,
Yo Xm=—11 xmn on I, x(0,7),

and satisfy estimates

P12 0,11 (2)) < Clldallzzo.m)x2) < Clllawllpaqo,ryx 20y + lla2llzo,ryx 20) + lasll 2o,y x2e.)) -
1¥2llL2(0, 151 (20)) < C(E)l@2llL2(0,7)x22) < C(E)llasllL2(0,1)x 0z, -

Notice that ¢, € L2(0,T; HL(£2)) ensures 11 x n € L2(0,T; H'/2(I',)) and, therefore, also the existence
of 1y with ¥ X n = —t)1 X m on I’; x (0,T), whereas t € (0, T) plays the role of a parameter. 3

We define ¢ = (¢1,102,93) by Y1 = (Y1 +2)|0s, Y2 = Y1|os, Y3 = U220 . The definitions of 1y
and v, imply that 1 - n = 0 on 92 x (0,T) and ¢35 - = 0 on (02 N 912) x (0,T). The properties
Yy € L2(0,T; H(2)) and 15 - n = 0 on 82 x (0,T) and ¢y x n = —1)1 x m on IS, x (0,T) ensure
Pr-m=1g-nonlsx(0,T)and ; xn=0onIlZ, x(0,T),aswellas;-n=(Y2+1¢3)-nonl:, x(0,T)
and 13 -m = 0 on 15, x (0,T). The regularity of ¥, and t, implies also that ¢, € L2(0,T; H'(£2%)),
b € L2(0,T; H(div, 22)) and 5 € L2(0, T; H(div, £25,)). Thus 9 = (1,02, 4) € W 0 L2(0, T; V*)
with W& = L2(0,T; HY(£22)) x L2(0, T; H*(£25))x L*(0, T; H (£2¢,)) and WeNL2(0, T; V*?) is continuously
embedded in L?(0,T;V¢) and for ¢p € W¢ N L?(0,T; V¢) we have

1l 220,75 < Cllvllwe < Ce)(allz2(o.myx2) + [1@2llz2 (0,1 x29)) < CE)llgllL2(0,7:p¢) -

Here we used that ¢1 = (G1 + G2)| 0=, ¢2 = q1le: and g3 = Ga|:_ . Thus, the definition of b(-,-) yields

b(¥,q) = (@1 + Go, div(shy + 1)) e + (G1, div ) g 7 + (Go, divape)o: 1

= qu”%?((O,T)ij) + HqQH%Z((O,T)ng) + ||q3||%2((07T)><Q§S) Z Cl(f)(wlHL2(0,T;H1(Q))

—|-||1;2||L2((0,T)x9§) + | diVQEQHLQ((O,T)ng) + 5||V7;2||L2((O,T)XQ§))(||Q1HLQ((O,T)xﬂg)

+llazllr2 0.1y x 22) + llasllL2 (0,1 2z.)) = C2(E) ¥l 20,704 llall L2 0,7:P¢)

and b(-, -) satisfies the inf-sup condition

b(¥, q)

inf sup
q€L?(0,T5P¢),q70 e L2 (0,T; V<) 1h5£0 ||7/1||L2(0,T;VE)||Q||L2(0,T;7>s)

>C>0. (4.17)

The regularity of ¢, ¢ and Holder’s inequality imply the boundedness in L?(0,T;V¢) of f(-)

87 a

|75 ()| < CelllczliLzo,myxre,) + IcllL2o,myx re,) )2l 20, < e, )
< Ce" (|Gl r2o,myxre,) + NIk 2oy x e )l 2o, mive) -

The uniform boundedness of V5 in L?(£2¢) and estimate (4.16) ensure the boundedness of the linear form
a?(V5,+). Combining all estimates and applying Corollary 1.4.1 in [17] imply the existence of a unique
solution (uf,p®) € L?(0,T;V*) x L2(0,T;P?) of (4.1) for given c2,c5 € L*((0,T) x I'%,).

For the proof of a priori estimates (4.12) we start with the estimates for v$, v; and vg,. We consider
Y1 =% in 25 x (0,7) and 99 = v — V5 in 2 x (0,7, and ¢3 = v5, in 25, x (0,T) as test functions
in (4.1) and, using the divergence-free property, obtain

ol SU§||2Lz((o,T)xn;) + ||v§p||%2((0,T)><Qgs) + vat”zL?((O,T)ng) +¢ellvg, 'n||%2((O,T)><F§S)

- ‘ (4.18)
< Ce(lleslz2o,myxre,) + llca

|%2((0,T)><1"ZES)) + CHVBH%Z(Q;) .
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This together with ||V ||L2(0:) < C||Vb|l a1 (), inequality (4.4) and v x n =0 on IS, x (0,T) imply the
estimates for v5, with ¢ = z, a, or sp, stated in (4.12).

For ¢; ; and cf ; and corresponding v§ with i = 1,2, the linearity of the problem, the coercivity of a*(-, ")
and the boundedness of f¢(-) give

[v§ — USH%?(O,T;V;) < 05(||CZ,1 — Caz2 |%2((O,T)><F§S) + ||C§,1 - C§,2| 2LZ(((),T)xr;S)) . (4.19)

This will ensure the uniqueness of a weak solution of the coupled problem (3.1)-(3.10).
By Lemma 4 in [38] there exists a restriction operator R%,. : H}(§2) — H}(£2¢)

¥ € Hy(£2) = Ro-v =1,

divy =0 — divRH-y =0,

[R%: ¥l L2(02) < C(W 2o + el Vil e)
e[[VRG Yl r20z) < Cl¥llr2(e) + el VL) -

(4.20)

Asin [3, Theorem 2.3], to define Rf,. : HY(02) — V($22), with V(2¢) = {v € H}(£2%) :vxmn =0on I},
such that
b e V() — Rb=0,
dive) = 0 — divR, =0,
RG22 < Oz ) +ellVYlla o) ,
gHVREQg'L/)”LQ(_Qg) < Oz ) +ellVYlla o) ,

(4.21)

we consider for u € H(Y), as in [3, Lemma 3.4], a linear operator @ : H'(Y) — H'(Y), such that
Qu =0 in Y,, and a modified problem

(w,q) € H'(Y;) x L*(Y;)/R,,

—nAw+ Vg = Au inY,UY,,,

divw = divu + ﬁ fYaw div u dy inY;,,

wxn=0, [w-n]=0, [-2n(Swn) - n+q=0 onl,,, (4.22)

w = Qu + {ﬁ Joy,(u—Qu) - eidy} ei on 9Y,,; NAY ,

w =70 on 9Y; \ 9Y
where 9Y;, with i = —3,—2,—1,1,2,3, are the six faces of the cube Y, such that 9Yy, 9Y_; are
orthogonal to the unit vector ey, with k& = 1,2,3. Here ¢; € C>®(Y), with i = —3,-2,-1,1,2,3,
satisfy ¢; > 0, ¢; # 0 on 9Y;, (; = 0 in Y, and on 90Y; for j # ¢, and (iloy, = (—xloy_, for
k = 1,2,3. The existence of such (; is ensured by the geometrical structure of Y;. Notice that

the construction of the boundary conditions on 9Y; ensures that [, divwdy = [, w-ndy. The
existence of a unique solution of (4.22) can be shown by applying the abstract theory of mixed
problems, similar as for (4.15). Then Ry., given by Ry.u = w, belongs to L(H'(Y); H'(Y;)) and in
each cell eY* C 2, with k € Z3, we define Rgeu = (Ry,u(ey)) (/) for y € Y* and z € Yk, respectively.

Equations (3.1) imply that Vps € L*(0,T; H=1(£2¢)) and Vp, € L?(0,T; H='(£2%)). We define the
extensions of VpS and Vpg into (2 using the duality argument and consider F¢ € L?(0,T; H~1(§2)) and
Fe e L0, T; H1(02)) given by

(F& ) a— m = (VD5 R ) 20,011 (00)), 20,1513 (2)) Tor ¥ € L(0,T; Hg(2))
(Far) -1 = (Vg Roe ) 20,051 (02)), L2 0,13 12 (2z))  for i € L*(0,T; Hy(£2)) ,
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where (-, ) -1 g1 := () L2 0,150 -1(2)),L2(0,1;12 (2))- APplying the estimates for R, (1) and R (¢) in
(4.20) and (4.21), we obtain from (3.1) for 1 € L2(0,T; H3(£2)) that
(F o m—.m = (£2nV05, V(RG0)) e 7 + (K3 05, ROt 0: r

(4.23)
< C (el VVillrzo.ry< 00y + V520, my < 2z)) (1¥112(2r) + el VYl L2(2r))

where 27 = (0,T) x 2, and
(For)g— g = (K, 05, Roe ) a: v < Cllvg |20,y < 20) (101220 + ellVYllL2(0r)) - (4.24)

Thus for each ¢ > 0 we have that ¢ and F¢ are bounded functionals on L?(0,T; H (£2)).
For ¢ € L?(0,T; H (£2¢)) with ¢y x n =0 on 'S, x (0,T), where [ = a, s, the properties of R imply
?zlg (¥) = ¢ and Ff|o: = Vpj. We have also div R lg(?/)) =0, for I = a,s, provided divy = 0, and

the orthogonality property ensures that F; and F: are the gradients with respect to = of functions in

L2((0,T) x £2). It means that ¢ and F¢ are continuations of VpS and Vpg to §2, respectively, and

Fe=VP:, F.:=VPF; with  PS, PS¢ L*((0,T) x 2)/R .
We have also an explicit formula for the extension Pf, with [ = s or a, see [3,19], for ¢t € (0,T)

i (t, x) in £2¢,
Pi(t,z) = 1 . k % 3 k
e foyr Pi(Lw)dnin eVE\ eV for k € Z° such that eYF 12 £ 0.
1 1

Applying now estimates (4.23), (4.24) together with (4.18) and (4.4), and using the estimate of L2-norm
by H~!-norm, see [17,39)], give
[1Ps]|L2(0,7:02(2)/R) < C1llPs|lp2(0,mm-1(2)) < Ca2(ellVULllz20,myx00) + 11v5, 20,1y x 22))
< C3e" (|l 2o,y xrey + Gl 2o,myxre.y) + Call VBl L2cas)
I[Py llz2c0,7:02(2)/R) < C1llP ||L2(0,m5m-1(2)) < C2llvE 220,17y 20)

< C3e' (|l 2oy xrey + G 2o,y xre,)) + CallVE | L2(as) -

The last estimates together with ||V z2(0:) < C|[Vpllai (o) and the definition of P and P; ensure
(4.13) and L2-estimates for p¢ and pS in (4.12). O

4.2. Existence and estimates for cg, c;, 19?@’ 19;a, 19’3},8 and 19278

Using classical results [1,8] we can extend the domain of definition of solute concentrations ¢} from a
connected domain {2; to {2, where [ = a, s.

Lemma 4.4. 1. For ¢; € WYP(Y)), with 1 < p < oo, there exists an extension & to Y such that

lellLeyy < Ellallzeyyy and [[Vélloryy < ElVallLey) -

2. There exists an extension & of ¢§ from WYP(025) into WP (82) such that
I zr) < Ellcilzeesy  and [V o) < Vel lloras) »

where the constant = depends on'Y and Y; only.

Due to the geometric assumptions on (25, holes in the domain do not touch each other, have smooth
boundary and do not touch the boundary 82, i.e. I'S, N 2 = (. Therefore, classical extension results
[1,8] apply to ¢5. Due to the structural assumptions, 25 is a connected domain in R® with Lipschitz-
continous boundary 0f2¢. The geometrical assumptions on {25 ensure also that it is sufficient to extend
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¢ by reflection in tangential directions near the boundary 0625 N 9(2. Therefore the extension results
apply also for ¢£, see [1,33], and the extension operator is defined globally in f2.

For ¢ € HY(0,T; H*(£2)) we define é(-,t) := ¢f(-,¢) a.e. in time. Since the extension operator is
linear and bounded and (2§ does not depend on ¢, we obtain & € H'(0,T; H'(£2)) and

10:6i |2 (2r) < EN0cciI2(0.myx 08y, N0V E L2 (0r) < EN0:VEG L2 0.1y % 28 »
where [ = a, s. In the sequel, we shall identify ¢ with its extension ¢;.

Theorem 4.5. Under Assumption 1 there exists a mnonnegative wunique weak  solution
(ca: €5, 0% 0,050,505 5) of (3.2) and (3.5) with boundary conditions (3.3), (3.6), and (3.9) and
initial conditions (3.7) such that ¢ € H'(0,T; H'(£2)) N L>((0,T) x $25), U5, € Wheo(0,T; L®(I%,)),

with | = a,s, j = f,b, and satisfies the estimates

1
il 0,228y + IVl L2 0.y x 25y + €2 il L2 (o.myxre,) < C (4.25)

i Nl oo 0,1y 52y < C 195, o= 0,7y xrz,) < C
and

1 1
[0cci (| Lo (0,7;22(28)) T 19:V ] | L2(0,7)x2) + €210 (| L2((0,7)xr2,) + €2 (10095 | L2((0,7)x12,) < C' (4.26)

(> (> £ 1 £
10:ve 20,7y x 22) + 1005 |2 0,1y x 22y + €l0: VUL || L2 0,1y x 22) + €205, - n| 20, 1yxrs) < O
with j = f,b and | = a, s, and the constant C depends on M and is independent of €.

Proof. The existence of a solution will be proven by showing the existence of a fix point of the operator B
defined on (C([0, T]; H*(£25))NL>((0,T) x £25)) x (C([0, T]; HS(£25))NL>®((0,T) x £25)), with 1/2 < ¢ < 1,

by (cg™,e5™) = B, 5" !) given as solutions of (4.2) and (4.3) with (9%}, 9;)") solving

e,n £,n— £, e,n £, 4'27
8t19b:l = aj (t,x)e) 119f’71 — Bi(t,x)0,) — 'y,f,l(t,x)ﬁb:l on I':, x (0,T), ( )

)

{&19?’7 = Rj(t,z,97)) — af(t,x)cf’"_lﬂ;:? + B (t,2)0yy — 5t )97 on IE % (0,T),

where | = a,s. For a given nonnegative ¢ " € C([0,T]; HS(£27)) N L=((0,T) x 2f), with | = a, s,
due to the Lipschitz-continuity of the right-hand side of system (4.27), there exists a unique solution
VNS CH([0,T); L3(I's,)) of (4.27), with j = f,b and [ = a, s. Using that initial values are nonnegative,
function Rj(t,z,§) is nonnegative for nonnegative &, and cf’"il(hx) >0a.e. on[0,T] x I¢

z8)

19;’18(75,36) >0a.eon [0,7] x I, for j = f,band | = a,s. Adding equations in (4.27) yields

we obtain

O (03 +0,1) = Ri(t,x,9%)) — v5,(t, 2)0%) — 5, (t,2)9y)", for t € 0,T] and a.a x € Iy, (4.28)

where [ = a,s. Considering the Lipschitz continuity of Rj, the nonnegativity of ﬂj’l", the boundedness of
initial conditions and applying Gronwall’s inequality, we obtain the boundedness of 19?1" a.e.on [0, T]x ¢

with j = f,b and [ = a,s. The boundedness of ;""" and 05" implies also the boundedness of 9,977
a.e. on [0,7T] x IS, whereas j = f,band | = a, s.

Using Galerkin’s method and a priori estimates similar to those shown below, we obtain the existence
of a weak nonnegative solution ¢;"" € H(0,T; H'(£25)) N L>=((0,T) x £2), for I = s,a, see [22]. The
embedding H'(0,T; H'(£25)) c C([0,T); HS(£2)), for 1/2 < ¢ < 1, is compact and, by virtue of the
Schauder theorem, there exists a fix point of B, a solution (cj,5,) of the microscopic problem, where
j=f,band ! = qa,s. In addition, we obtain boundedness of ¢f(¢,z) a.e. in [0,T] x £2f and on [0,T] x I'S,,
and ¢j (t,x) > 0 a.e. in [0, T]x £2f and on [0, T x I';, together with 95, (¢,z) > 0 a.e. on [0, T]x I';;, where
j = f,band [l = a,s. This ensures also the boundedness of 8,519;71 a.e. on [0,T] x I's,, as well as by ap-

plying (4.28) the uniform in € boundedness of J% ; a.e. on [0, 7] x I, and thus the last estimate in (4.25).

z8?
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Now we shall prove the non-negativity of ¢;”", and thus of ¢f, and the a priori estimates for ¢;", and
therefore for cj, uniformly in ¢, where | = a,s. To show the non-negativity of ¢;"", with | = a,s we
take ¢j = min{0,¢;""} as test functions in (4 2) and (4.3), respectively. Considering the assumptions
on the coefficients and functions Fj, and the nonnegativity of 19]1 , with [ = a,s and j = f,b, terms
on the right-hand side in (4.2) and (4.3) can be estimated by Ci[|cf _||r2((0,r)xz) for 7 € (0,7]. Using
Gagliardo-Nirenberg-inequality, i.e. for ¢ € W9(£2)

A)
18]y < Ca (82 IVl + 9]l (4.20)

where 1 <r < pand 1< g <p, with A € [0, 1] satisfies the relation 1/p = A(1/r —1/n) + (1 — A)1/q and
p€lg,qn/(n—q)] for ¢ <n, p € [q,00) for ¢ =n, p € [g, 0] for ¢ > n, and considering extension of ¢} _,
defined in Lemma 4.4, we can estimate the advective term by

1 1
|(Hr (vf)ef -, Ve _)az 7| < 7||HM(171€)||2Loo(o,T;L4(Qf))||Cl€,—H%2(o,T;L4(Q;)) + Z”VCZE,—H%Q((O,T)XQLE)

d;
< C (I ) 0.0y + I O om0 ) IeF = Wz 0.y + 1V IR 0.ryx )

for 7 € (0,7]. Considering uniform boundedness of |[Has (v])| Lo~ 0,7;14(2)) < CuvM, the nonegativity of
initial condition C? and applying Gronwall’s inequality we obtain

e, —loo,7:22(022)) + llcs — L (0,7522(2:)) <0,

which implies the nonnegativity of ¢;™ a.e. in (0,7 x £27, where | = a,s. For ¢;" € H'(0,T; H'(§25)) we
obtain also that ¢ > 0 a.e. on [0,T]x I'5,. Considering weak convergence of {c;""} in H'(0,T; H*(£2)),
as n — 0o, we conclude that ¢ (¢,z) > 0 a.e. in [0,T] x 2§ and a.e. on [0,T] x I'%,.

Taking 1 = ¢ and @2 = ¢ as test functions in (4.2) and (4.3), using the nonnegativity of 95, and of
coeflicients o, with [ = a, s, assumptions on Fj, the first estimate in

ellef e, < Ol 2o + <1 VeE I ar) (430)
lief ez, < Cllef o) +elVe o) -

see [27], considering that ¢|I'S,| < C independently of ¢, and applying Holder’s inequality, we obtain

1
||Cz€(7)||i2(rz;) + (di — 452)||V016||2L2((O,T)Q;) < EZ||HM(UZ€)H%°°(O,T;L4(QZE))||cl5||%2(0,7—;L4(.Ql5))
+ Cl||ClE||2L2((o,T)xQ;) + ||C?H%2(.Qf) + C2H19167,l—1H%w((O,T)XFZES)
for 7 € (0,7, with [ = a, s, whereas a — 1 := s and s — 1 := a. Using the extension of ¢ from (2§ into
12, given by Lemma 4.4, and applying inequality (4.29) in the first term on the right-hand side imply
HCzE(T)HQL?(Q) + (/4 - CEQ)HVC?H%Q((O,T)XQ) < ||C?||2L2(Q;) + 01”19167,1—1||2L°°((O,T)><F§b,)

. (4.31)
+Cs (| Has (v] )||L<x>(0,T;L4(Q;

(Uzg)||%oc(o,T;L4(n;)) +1) ”CIEH%Z((O,T)XQI?) :

Then, for all ¢ < gy, with some g > 0, and ¢ such that d;/4 — (e > dy > 0, considering the regularity
assumption on initial data, the boundedness of ¥, where [ = a,s, applying Gronwall’s Lemma in
inequality (4.31), and using the first inequality in (4.30), we obtain the first estimate in (4.25).

To show L>-estimates for the extension of ¢} into {2, given by Lemma 4.4, we shall apply Theorem II.6.1
from [22] stating that inequality [|(cf — S)+ |z (0,7;22(2)) + V(] = 8)+llr2(20) < CSI2sELa0.1):
for appropriate 7, G, a positive constant ¢ and 2, 5(t) = {z € £2: ¢{(t,x) > S} for a.a. t € (0,T), ensures
the corresponding estimate for the L°°-norm of ¢j.
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We take (& — S)4+ and (cg — S), as test functions in (4.2) and (4.3). Considering the nonnegativity
of aj(t,x), cf(t,z) and 9% (¢, x) for (¢,x) € (0,T) x I';,, and inequalities (4.30), the boundary integrals
can be estimated by

e(Bi1(t, )0 -1 — af (8, 2) 0%, (] = S)+)re, < sup(Bi_1 (8, 2)0p,1)ell (] = S)+llerre,)

zs

< 1/2 (16 = 9)+ agap) + AV = 8)4l3agap) + CHTI + e/ d)| 2 5(1)]) + (4.32)

where | = a,s, witha —1 =35, s =1 =a, 4(t) = {z € & : ¢j(t,x) > S} for aa. t € (0,7) and
T = sup(o,ryxre, (Bi_1 (¢, )95, _1). The Lipschitz continuity of F, with [ = a, s, ensures

(FF(t,z,cf), (cf = S)4)ep < 3CR/2I(c] = S)4llio(az) + (S*/Cr + CR)I (] . (4.33)
As next we shall estimate |(Hps(v])cf, V(cf — S)4) e 7| with [ = a,s. Using Holder’s inequality yields

£ £ £ dl £
[(Har(v)ef, V(e = S)4)asr| < ZHV(Q - S)+||2L2((0,T)><.Qf)

4
5

).

2 T 5
B ) 10 0,750y (16 = S)4l3s72(0 2100y + 57 / 127 5(0) B dt

Choosing ¢ = 1/30 we can estimate

4 _<
5 ¢+1

T
5
(e = S 1Bsr20.ms0y S Ief = S)i 2 s0s0m0 s pactror gy / 25 s(0)3ar)

Using imbedding result, see [22, Chapter 1I, Eq. (3.4)], and extension of ¢f into {2, we obtain

lI(cf = S)+||2LS<1+<)/2(07T;L4<1+<>(le)) < e} - S)+||2Ls(1+<>/2(o,T;L4(1+<)(Q))
<Cgq (||(C‘zE - S)+||2L°°(0,T;L2(.Q)) + IV(ef — S)+||2L2(0,T;L2(Q))) :

Considering HHM(UIE)||%10(0,T;L4((z;)) < T%||HM(”ZE)||%°°(O,T;L4(QZE)) < T5C,M? we conclude
€\ £ e dy < 2 2, 1 2
{Ha(vi)ep, V(e = S)+)azrl < LIV = S)+lL2omyxep + 7 T5CaCuM” x (4.34)

dy
[52(/0T953|2dt) + (/OT|Q;S|2dt)é

‘We shall define

S

s+1
(F = 9413 = 0,22 + I9(F = )+ Ba(any )|

4
5

§ = masmac(L | = . Z (I8l cxca) + TLI2] + Cr|2) T Cr T,
where = = Z(Y,Y}) is the constant from Lemma 4.4. The choice of S ensures that |(2f 4(t)| < 1 and
[£2; s(t)] < 1. Choosing
T = min min{[d}/(165CC, M2|Q| 75 ) 5531 | [d,/(82CoC, M?| Q|55 )] 551 [4T1412C5 ], 2] F}

l=a,s

combining estimates (4.32)-(4.34) and using the fact that [} g(¢)] <1 yield

H(C? - S)-‘!-Hioo((),'f;LZ(Q)) + ||V(cl6 - S)+H§12((O,T)><Q)
4
5

T
< S28Z /min{1, d;} (2T%CUCQM2/dl +1/C, +1+c§(1+n52/dl)/2) (/ |Q;S(t)|§dt>
0
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Choosing ¢ = 4(1 + <) together with r = 5(1 +¢)/2 and using [£2] 5(¢)| < |2,5(t)| < 1, we obtain

I 2(145)

T

T
165 = 9)tllpm o 7iz2(ay) + IV = Sillza oy < 56 / 2stlid)

where © = 8Z/min{l,d;} (2T%CUOQM2 Jdi+1/Cy + 1+ CZ (1 + Tie2/dy) /2). Applying Theo-
rem I1.6.1 in [22] yields

2¢+1

1,941 o1
16§ | Loe 0.7y w2y < 28[1 427 (CO) =T <|0|1]. (4.35)

. . - &> s = c2 2 24 .
Considering T. = min min{T, CoPTemTEE |27 30 [7m?f{‘1?;il} 2+ C%Tl + 1+ 1 5))2++7] 1Y implies

l=a,s
llcill o 0,7y x2) < 4S5 for all 7 < Te.

The iteration over time-intervals will then ensure the boundedness of ¢} in (0,7") x {2, and thus also the
boundedness of ¢ in (0,7") x §2f, for | = a, s, and the second estimate in (4.25).

Using the estimates for ¢j and 95, with j = f,b and I = a, s, and considering 8,519;71 as test functions
in (3.5), we conclude

2010095 | L2 (o, x re,) + €2 10095 1l L2 0,y xre,) < C1(1+Y2(|¢ | L2 (o,7)xre,)) < Ca . (4.36)

Differentiating equations (3.1) and boundary conditions (3.8), (3.10) with respect to ¢, considering
(Orvs, Opv5, 0;v5,) as a test function, and applying Korn inequality (4.4) we obtain for 7 € (0, T']
*IVorl|7 + owill; +l0wg |17 +e 0w -l
€ tY2 I L2((0,7)x 022) tYsIL2((0,7)x £2¢) tYallL2((0,7)x £2¢) €1|0tY, L2((0,7)xIt,)

. . (4.37)
< O€(||atcs||%2((0,7')><[‘§s) + ||3t0a||2L2((o,T)xF;s)) :

Now we differentiate with respect to ¢ equations (3.2) and use 9;c; and 0icS as test functions. Estimates
(4.25) together with inequalities (4.29) and (4.30), estimates in Lemma 4.4, and Assumption 1 give

Hatcls(T)HQL?(Qf) +/o HatVCzEHZw(Q;)dt < C||Cls||2Loo((o,T)xQ;)/O Hatle”QL?(.Qf)dt + ||8tczs(0)||2L2(Qf)
+C(1+ ||HM(vl8)H%OO(O,T;L“(Qf)))/0 [\|8t0?||%2<n;> + [0, 5,171”%2(@5) + 5||8t79§f,lH%2(F;s) dt

where | = a,s with a — 1 := s and s — 1 := a. The regularity assumption on ¢ ensures that
0:cE (0] p2¢25y < C|?|| g2 (0¢y, with | = a,s. Combining the last inequality together with (4.36) and
1 (£27) 1 (20
4.37), using the boundedness of Hy;(v$) and inequality (4.30), choosing ¢ sufficient small, and applying
l
Gronwall’s inequality imply (4.26).

Uniqueness. Suppose there are two solutions of the problem. We denote ¢ = €1~ Co and 19?)[ =
V5,1 — V5,0, With j = f,band | = a, s, and choose ¢1 = ¢ in (4.2) and @g = € in (4.3)

e (s + 20 = ) [ 196 llaopydt < Colefalmqomyay [ o8 = vialEacon i
0 0

+Ce (14 [ Har (0 )3 oz 0cy) / 16 12202t + Cealef a2 oy / 10512 re

e / 105 2 e+ Go / N5 2 e
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for any 7 € (0,T], where a — 1 := s and s — 1 := a. For U5, with j = f,b and | = a, s, we obtain

0105 1122z, §C[(1+Hcls,lHLW)‘W?,Z”%?(F;S)Jr”ﬂ p2llZeellef e cre ) + 195 172 e, )} :

OuI95 22 < © s 3oe 1905 By + 195 003 N 2, Zers,)]

Combining those estimates, using (4.14) and (4.30), boundedness of ¢ and H,(v7), and applying Gron-
wall’s inequality yield

5|W§,z||ioo(o,T;L2(pgs)) + Hﬁ”%w(oy;m(n;)) + v, — UZE,QH%Q((O,T)XQZE) <0.

ts, with I = a,s and
j=1Ib O

Thus, ¢f; = ¢f,, vj; = Vi, a.e. in (0,7) x £, and 95, , = 95, , a.e. on [0, 7] x I';

5. Derivation of macroscopic equations

We denote by oF, for i = z,a, sp the extension by zero from (0,T) x {25 into £2p = (0,T) x 2, where

§25, := (25, and define v° = v7 + ¥, + ¥, in 7.

Lemma 5.1. Under Assumption 1 there exist v, € L*(Qp; H),(Y2)/R), va € L*(2p X Y,), v €

L?(27 X Yas) and pa,ps € L2027 x Y), with (pa(t,z,y), Doxy, + 0s(t,2,9), aoxy. = 0 for a.a.
€ (0,T), such that, up to a subsequence,

vV, DUy, Vg Vg, V5, Vg two-scale
VS = UV, + Vg two-scale in 27 X Yy ,
VS = V=0, + 0V, + Vg two-scale in 27 XY, (5.1)
eVvi = Vyv, two-scale in 27 XY, , ’
P — po, PS5 — ps two-scale in 21 XY ,
D5 = Dalrxy, two-scale in 2 x Yy, pS = pslorxy, two-scale in 7 x Yy,

and
P — IY\ fypa dy , PE \Yl Iy ps dy weakly in L*(Q2r) ,
v¢ v = IY\ sz v, dy + IY\ fYa v, dy + \Yl fYas vepdy  weakly in L*(027) , (5.2)
v, N = v,n two-scale on 21 x Iy, .

Proof. The convergences in (5.1) follows directly from estimates (4.12), (4.13) and (4.25) together with
Lemma 4.1 in [4] and the definition and compactness theorems for two-scale convergence, see [2,29] or
Definition 5.5 and Theorem 5.7 in Appendix. Since ¥, for i = z, a, sp, are zero in £2\ 25, also the two-scale
limits are equal to zero in Y'\Y;, respectively. Applymg two-scale limit in equality (p}, 1) s +(p5, 1)0: =0
from the definition of the space P* we obtain the stated relation for mean values of p, and ps. A priori
estimates (4.12), (4.13) and the relation between two-scale and weak limits, [2,4,29], ensure the first two
convergences in (5.2). The uniform in £ boundedness of £'/2||v¢ - n||L2((0,1)x =) implies that there exists
w € L2(27 x I',s) such that v -n — w two-scale, see [28] or Definition 5.8 and Theorem 5.9 in Appendix.
Then diveé = 0 in (0,7) x £25 and two-scale convergence of v¢ to v, in 2p X Y, ensure w = v, - n
a.e.on 27 x I,,. O

We consider the extension of ¢j from (2] into {2, for | = a, s, as in Lemma 4.4, and identify ¢ with its
extension. We denote by 77 : IS, — 2 I, the boundary unfolding operator, see [10] or Definition 5.10
in Appendix. Here we shall use a shorted notation 77 (¢) := T£_(¥).
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Lemma 5.2. Under Assumption 1 there exist functions ¢, € HY(0,T;H(£2)) N L>®(2r), ¢ €

Lz(QT;H}m(Yl)/R) and 9j; € L>®(27p x I'ys) N HY0,T; L*(2 x Iy)), with j = f,b and | = a,s,
such that, up to a subsequence,
¢ — ¢ weakly in H(0,T; H'(£2)) , weakly-* in L (027) ,
& — ¢ strongly in L2(0,T; H(22)), s <1, 2§ — allzzomyxrs) = 0,
& = a, 0§ = 0, V§ = Ve + Ve two-scale, (5.3)
V5, = 50, 005, — 0 two-scale ,
Trep = a, TEd5, = 5 strongly in L (27 x Is) .

Proof. The first two convergences are a direct consequence of the a priori estimates for ¢§ in (4.25)-(4.26)
and properties of the extension from (2] into {2, with | = a, s.
The compact embedding H'(0,7; H*(£2)) C L*(0,T; H*(£2)) for ¢ < 1 ensures the strong convergence
of ¢£ and c. Then, the strong convergence in L2(0,T; H*(£2)), with 1/2 < ¢ < 1, and the estimate
e'2)|c 2o,y xre,) < Clie z2orsms () » with [ = a,s ,
see [27] for the proof, give the fourth convergence in (5.3). A priori estimates (4.25), (4.26) and com-
pactness theorems for two-scale convergence, see [2,28,29] or Theorem 5.7 and 5.9 in Appendix, imply
two-scale convergences stated in (5.3). Theorem 5.9 in Appendix ensures also that 9,; € L™ (21 x I,s).
The assumed structure of the initial data 19?”;, ie. 7'12‘:(19215)(30, y) = ﬁgj’l(y)ﬁ(ﬁ?“(x)) and the strong
convergence in L?(2 x I',) of T£(¢) for v € L2(£2), see [10], yield 7'15(1935) — 19?71 strongly in L2(02xI'.,),
with j = f,b and [ = a, s. The properties of the unfolding operator, see [10], give

ITE(cF) = TE (@) L2 (erxry) < Ce2llef — allzzqorxre,) for I=a,s,

and T£(¢;) — ¢ strongly in L?(£27 x I',5). Then, together with the fourth convergence in (5.3) we obtain
that T5(cf) — ¢ strongly in L2(Q2r x I'.s), where | = a,s. Applying now the unfolding operator to the
equations in (3.5), using the convergence of ¢, £, and the equivalence between the two-scale convergence
of a sequence and the weak convergence of the corresponding unfolded sequence, see [27] or Lemma 5.11
in Appendix, we can show, in the same manner as in [27], that {77(95,)}, with j = f,b and | = a, s, are
Cauchy sequences in L?(27 x I',s) and conclude the last strong convergences stated in (5.3). O

Theorem 5.3. For the sequence of solutions (v, vg,v5,) and (pg, pg, ps,) of microscopic problem (3.1),

(3.8), (3.10), we have v° — v weakly in L*(0,T; H(div, £2)), with v¢ = ©; + 05, + 0, extensions PS — p

and P¢ — p weakly in L?(0,T;L*(2)/R) as € — 0, and (v,p) € L*(0,T; H(div, 2)) x L?(0,T; L3(£2)),
where LE(02) = {¢ € L*(2) : (¢,1) = 0}, is the unique solution of the Darcy problem

v+ KVp=M(cs —c,) n(0,T)x 2,
dive =0 in (0,T) x 2, (5.4)
v-n=0p on (0,T) x 012,

where the tensor K and vector M are defined in (5.13), and cs,c, are solutions of the macroscopic
equations (5.14)-(5.16).

Proof. The weak convergences of v° in L?({2r) and of Pf in L?(0,T;L?*(2)/R), with [ = a, s, follows
from Lemma 5.1. Using dive® € L?(§27) and dive® = 0 in 27, and applying the weak convergence of

v® we obtain for ¢ € C5°(£2r)

0= ii_r)r%)(div v, V)0 = Eli_r%(ve, Vi)or = {(v,V)or = (dive,Y)or . (5.5)
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For ¢ € C*({2r) we have

0= Eli_>f%<div v, V) or = lim ((v° - m,¥)o0r — (v, V) or) = (vp,¥)aor — (v, Vi)or, (5.6)
and, together with dive = 0 in 27, given by (5.5), conclude v - n = vp on (0,7) x Of2.

Considering vy, ¢e € C5°(£27; Cpe,.(Y)) with 41 (t,2,y) = 0 in Y \ Yy, such that ¢y x n = 0 on I,
and ¥o(t,z,y) = 0 in Y \ Yy, for (¢,x) € Qp, taking ¥° (¢, x) = e(Y1(t, x,x/e), ba(t, x, x /), Y1 (t, x, 2 /€))
as a test function in (4.1) and applying two-scale convergences of v5, with j = z,a, sp and of pj, with
l = a, s, stated in Lemma 5.1, yield

(ps,divy V1) oxy,, 7 + (Pa, divy ¥2) oxy, 7 = 0.

This implies that p; € L*(2r; H(Y;)) with Vyp, = 0 ae. in 27 X V), where [ = a,s. Thus p; is
independent of y in 27 x Y} and p; = pi(t,z) a.e. in Q7 x Y}, where | = a,s. Taking now ¢°(t,x) =
e(r(t,z,x/e), 1 (t, x,2/¢€),0) with ¢y € C5°(£27; Cpe,(Y)) and ¥y (¢, 2, y) = 0in Y4 and 11 x n =0 on

I, as a test function in (4.1) and letting ¢ — 0 give

<pa(t,1') 7p5(ta$),w1(t7xay) : n>9><FZ,T =0.

Thus pe(t,z) = ps(t,x) a.e. in 2 x I, and p,(t,x) = ps(t,z) = p(t,x) a.e. in 2r. From the relation
(Pa, Daxy, + (ps; 1) oxy, = 0 in Lemma 5.1 we obtain that (p(¢,x),1)p = 0 for a.a. t € (0,T).

Now we consider ¢°(t,z) = (Y1(t,z,2/e) + Yo(t, x,x/c), ¥1(t, x,2/€), a(t, x,2/€)), where ¥,y €
Ce(2r,C2.(Y)) with¢a-m=0o0n I,UIly, and g xn = —¢1 xnon I, and divy ¢y =0in 27 XY,

per
divy ¥ = 0 in 27 x Y; as a test function in (4.1). The two-scale convergences in (5.1) and (5.2), and the

convergence of ¢ and ¢ on (0,7 x I':, stated in (5.3) imply
<277 Syvza Sy(wl + ¢2)>szQT - <pa lem(¢1 + 1/}2)>YZXQT + <K¢:1(y)vaa¢1>YaxQT
—(p,dive 1)y, x2r + (Ko (0)Vsp, ¥2)va. x2r — (P, dive ¥2)y,. x0r (5.7)
+<5(y)(cs - Ca) + H(y)va : n,% : n>1”zs><QT =0 5

where S,v = 1/2(V,v + V,vT). Choosing 11 = 0, restricting ¥ to Yz, i.e. 12 € C§°(£27,C5°(Y2)), and
applying the integration by parts imply

<_277 divy(sy'vz) + pra ¢2>QT><YZ =0.
Since divy 93 (t, x,y) = 0 in 27 x Y, there exists p1 . € L*(2p, L2, (Y.)/R), see [17,19], such that
—2ndivy(Syv.) + Vap+Vyp1. =0 in O2p xY, . (5.8)

Similarly we obtain the existence of py o € L*(Q2r, L2, (Ys)/R), p1,sp € L*(27, L2, (Yas)/R) and

per per

K;lva + Vzp+ vpra =0 in 270 XY, ,

~1 . (5.9)
Ksp Vsp + V,@p + Vprsp =0 m QT X Yas .

Considering div v§ € L2((0,T) x 25) and dive§ =0 in (0,T) x 25, with j = z,a, sp and §25, := (27, we
obtain for ¢ € C§°((0,T) x £2;C5°(Y;)), where Yy, := Yo,
0 = lim (div vs, ¥ (t, v, x/€)) ge 7 = Hm (v5, Vb (t, 2, 2/e) + e 'V b(t, 2 /€)) 00 1 -
e—0 J ? e—0" 7 i’

J

J
divyv, =01in 27 x Y., divy vsp, = 0 in 27 X Yy, and divy v, = 0 in 27 x Y,. Similarly, using divv® €
L?(£27) and divv® = 0 in 27, the two-scale convergence of v° ensures div, 7 =0 in 27 x Y.

The two-scale convergence of vS ensures lin(1)<'v§(t,m),Vylp(t,m,x/s)m]sy = 0 and then implies that
e—
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Considering the two-scale convergence of v, v, v5,, and using the calculations similar to (5.5)-(5.6)
we can conclude v, - n = (Vg +vsp) - N on 27 x Is and v, - n=v,-non 2 x I,.

Inequality (4.30), applied to vg, with IS, and 2, and the estimates for |[vf|[L2(0,7)x0s) and
ellVVE |2 ((0,1)x0:) in (4.12) ensure the uniform in e boundedness of '/2|[vS||z2(0,r)xrz,). Then the
compactness theorem for the two-scale convergence on oscillating boundaries, see [28] or Theorem 5.9
in Appendix, together with the two-scale convergence of eVv% and divvi = 0, as well as div, v, = 0,
implies the two-scale convergence of v$ to v, on 27 x I',s and ensures v, x n =0 on 27 x I,;.

Applying in (5.7) integration by parts and accounting equations (5.8) and (5.9) yield

<277(Syvzn) ‘N — P12, Y n)orxr, + <277(Syvzn) M — P12, (1 +12) -n)opxr.,
+(P1,a +0(y)(cs — ca) + K(Y)Va - Y1 - ) @rxr., + (P1sps V2 - M) Qrxr,, =0

for 11,92 € C5° (27, Cpe, (Y)) with ¢y - = 0 on I, U Ty, and g x n = =11 X non I, div, ¢ =0 in
Qp xY, divy iy = 0 in 27 x Y. Thus, we conclude that v, € L*(2p; H}.,(Y.)/R), vsp € L? (27 x Ya5),
Vg S LQ(‘QT X Ya)7 and p S LQ(OaTa L?)(Q))7 pl,z S LQ(QT;L2 (Yz)/R)7 pl,sp S LQ(QT;Lger(Y(IS)/R)a

per
and py , € L?(Q7; L2, (Y,)/R), satisfy equations

per
—NAyw, +Vep+Vypr, =0 in 27 xY,,
K ' +Vup+Vypra =0 in 27 xY,, (5.10)
K 0+ Vap+ Vyprep =0 in 27 x Y, ,
divyv, =0 in 27 xY,, divyjv,=0 in 27 xY,, divyve, =0 in 27 x Y,
with boundary and transmission conditions
—2(Syv.n) - n+p1 —pra =0Yy)(cs — o) FR(Y)v, -m  on 2p x Iy,
_QU(Sy Uzn) "M+ P12 = Pi,sp on 27 X Iy y
V, M=V, N+Vsp N, v, XxNn=0 on 27 x I, , (5.11)
V, N=v, N, v, xn=0 on 20 x I, ,
Vep * Ngw = 0 on 27 X Iy, -

Considering the structure, linearity, and uniqueness of a solution of equations (5.10) and (5.11), the proof
of which follows the same lines as for microscopic model (4.1), we can express v; and p; ;, with | = z,a
or sp, in the form

3 . 3 . 3 )
V, = — Z 89c,3p w; + (Cs - Ca)"’z y Vg = — Z aac,-p Iwz + (Cs - Ca)ra ,  Vsp = — Z 6acip wi;p ’
=1 =1 =1 (512)
3 ) 3 . 3 )
Pl = — Z 83:,-,p 77; + (Cs - Ca)Cz y Pla = — Z 81117 77(11 + (Cs - Ca)(a y Plisp = — Z 8ﬂcqu Tr:ip s
=1 =1 =1

i i=

where w!, !, with [ = 2z, a and sp, are solutions of the unit cell problems

—nAyw, +V,ml =¢ inY,,
Kj'wi +V,mi=e¢; inY,,
10 i :

K, wg, +Vymg, =€ in Y,

divywi =0 inY,, divyw,=0 inY,, divywl, =0 inY,,,

with transmission conditions

—2n(Sywin) -n+7nl — 7 =k(y)w -n  on I,
—2n(Sywin) -n 4wl =7, on Iy,
wl-n=(w,+w ) n, wixn=0 onl,,
w! -n=w n, wé xn =0 onl,,
wip-naw:O on Iy,
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and 7, (;, with [ = z and a, solve the following problem

—nAyr, + V(=0 inY,,
K, 'rqg+Vy(, =0 inY,,
_277<Sy rzn) "n+ Cz - Ca = 6(9) + ’K;(y) Ta N on Fzs 3
Tqg M=T, "M, r,xn=0 onl,,,
divyr, =0 inY,, divyr, =0 inY,.

Averaging the expressions in (5.12) over Y., Y, and Y,s, respectively, using the definition of v and
defining the vector M and the permeability tensor K = (K;)1<i j<3 by

1 1 . . ‘
M = —(/ rzdy+/ rady) , K= —( wzzjdy—k/ wfljdy—k/ wgpjdy) , (5.13)
Y1\ Jy. Y\ Jy, * Y, Yo, ’

a

we obtain the equation for v stated in (5.4). O

For concentrations of a osmotically active solute and transporters on the cell membrane we obtain the
following macroscopic problem

Theorem 5.4. The sequence of solutions of the microscopic model (3.2)-(3.7), (3.9) converges to a unique
solution ¢, € H*(0,T; H'(2)) N L>(27), 9,1 € HY(0,T; L*(2 x I'.s)) N L>®(27 x Ig), with | = a, s,
j = f,b, of the initial boundary values problem in Qp = (0,T) x 2

Orcq — div(AgVe, — ﬁM(va) Cq) = \;al (Fo(t,y,ca), Dy, + I;a\ (Bs(t,y)Vp,s — Cata(t,y)V .0, 1) 1.,
(AaVeq — Hyp(vg) ¢a) -m =0 on (0,T) x 812, (5.14)
ca(0,2) = c§(x) in £2,

and

Oics — div(AsVes — Hpy(vs) cs) = \)}S| (Fs(t,y,cs), L)y, + |}}S| (Balt, y)ﬂb,a — csalt, y)ﬁfysv Dr..,
(AsVes — Hy(vg) es) -m =0 on (0,T) x 802 , (5.15)
e4(0,2) = (x) in 2,
where homogenized diffusion coefficients A,, As and velocity fields HM(va), I:IM(’US) are defined by
(5.20) with v, and vs given as solutions of (5.10), (5.11), and transporter concentrations satisfy ordinary
differential equations, forl = a, s,

001 = Ri(t,y,951) —ault,y)ads + Bi(t,y)0sy — vei(ty)0p1 on 270 X Iy,
0y, = ai(t,y)als — Bilt, y)01 — ya(t,y)9py  on Q7 x I, (5.16)
ﬂf,l(()?I?y) = ﬂ?‘,l(xay% ﬁb,l(07x7y) = ﬁg,l(x’y) on 2 x I .

Proof. To derive macroscopic equations we shall apply two-scale and strong convergences stated in
Lemmata 5.1 and 5.2. The Lipschitz continuity of F; and the strong L?-convergence of ¢f imply
Ff(t,z,¢f) = Fi(t,y,c) two-scale in 27 x Y}, with | = a,s. Taking p(t,x) = ¥1(t,x) + ea(t, x, x/¢)
with ¢ € L*(0,T; H'(£2)) and ¢ € C5°(2r;Ce,(Y)) as a test function in (4.2) and (4.3), applying
two-scale convergences and strong convergence in L?(£2r) of ¢f, together with two-scale convergences for
v} and 19§7l, where 7 = f,b and [ = a, s, and the linearity of Hj;, considering appropriate subsequences
and passing to the limit as € — 0, imply

Y1[(Orer, 1) r 4+ (Dil(t,y) (Ve + Vyer ) — Hyp(vi(t, @,y))er, Vibr + Viibe) or <y,

= (Bi—1(t, y)0p1—1 — ai(t,y)cr Vg0, 1) e xr., + (Fi(t y, ), V1) o xy; -
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where [ = a, s, with a — 1 := s and s — 1 := a. Choosing now ; = 0 in (5.17) we obtain
<Dl(t, y)(Vcl + Vycll) — HM(’UZ) cl, Vyw2>QT><YL =0, with [ = a,s,

for all ¥ € C§°(N27;C5,(Y)) and can conclude that ¢f depends linearly on Ve, and ¢;. Thus we can

per
consider an Ansatz

t ‘Tay )+Cl(t I)Zl(t x,y)

H'Mm

where [ = a, s, and wli and z; are solutions of the cell problems

— divy (Dy(t,y)Vyw)) = Zi:l Oy Diki(t,y)  in (0,7) x Y7,
—Dy(t,y)Vywi - =34_; Digi(t,y)ni in (0,T) x (9Y;\ 9Y) (5.18)
w! and Dy(t,y)Vyw! - nlavinoy are Y — periodic ,

and

div, (Dl(t,y)Vyzl — HM('vl)) =0 in&2rxY],
(Di(t,y)Vyzi — Hy(vy)) -m= 0 on 027 x (0Y;\ 9Y) , (5.19)
z and Dy(t,y)Vyz - nloy,ney  are Y — periodic .

Next, setting 12 = 0in (5.17) yields macroscopic equations (5.14)-(5.15) for ¢; and ¢,, where homogenized
diffusion matrices and macroscopic velocity fields are given by

Ayij(t) |Yl\ / Dy i;(t,y) +ZD1 ik (t, y)a’ykwl( ))dy forl =a,s,

=t (5.20)

- 1
B ()i(t,2) = g | Hua(oultz,))idy — =/ S Dialts )yt ) dy
l L k=1

whereas le and z; are solutions of the unit cell problems (5.18) and (5.19).

Applying the boundary unfolding operator T to (3.5) and testing with v € L2(Q2r x I',;) give

(O TEO% ), V) axr..r = (Ri(t,y, TE(93)), V) exr..r — (a(t,y) Tr(05.,) T (), ) axr...r
(Bt )T (50) — vt ) TE(O5)s Vyexr.,r s (5.21)
(O TE Oy )s V) axr., = {au(t, y)Tr(95,)Tr(cf) — (Bilt ,y) + Y0, (t, y)) Tr (95

Considering the strong convergence of 75 (95 ;) and T5(cf) stated in (5.3), the equivalence between
two-scale convergence and the weak convergence of the unfolded sequence, and Lipschitz continuity of R,
with | = a, s, we can pass in (5.21) to the limit as ¢ — 0 and obtain equations (5.16). The assumption on
the initial data, the similar arguments as in the proof of Lemma 5.2, the two-scale convergence of cj, 19;,1
and of their time derivatives ensure that the initial conditions for ¢; and 9, with [ = a,s and j = f,,
are satisfied in L?(§2) and in L?(£2 x I,,), respectively. The proof of the uniqueness follows along the
same lines as for the microscopic model and implies the convergence of the entire sequence of solutions
of the microscopic problems. O

s )axr.,.T -

)

Appendix
We recall here the definition of the two-scale convergence and unfolding operator.
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Definition 5.5. [2,29] A sequence {u®} C L*((0,T) x £2) is said to two-scale converge to a limit ug €
L2((0,T) x 2 x Y) iff for any ¢ € L*((0,T) x §2,Cpe(Y)) we have

T T

1
lim/ /us(t,xw(t,x,x/a)dxdt: —/ //uo(t,x,y)¢(t,x,y)dydxdt.
e=0Jo Jo YiJo Jaly

Theorem 5.6. [2,29] From each bounded sequence {u¢} in L*((0,T) x £2) we can extract a subsequence,
which two-scale converges to ug € L*((0,T) x 2 xY)

Theorem 5.7. [2,29] 1. Let {u} be a bounded sequence in L?(0,T; H(£2)), which converges weakly
touw € L*(0,T; H'(12)). Then, there exists uy € L*(27; Hp,,.(Y)/R) such that, up to a subsequence, u®
two-scale converges to u and Vu® two-scale converges to Vu + Vyu;.

2. Let {uf} and {eVus} be bounded sequences in L*(Q2r). Then, there exists ug € L*(2p, H),,.(Y)/R)
such that, up to a subsequence, u® and eVu® two-scale converge to ug and Vyug, respectively.

Definition 5.8. [28] A sequence {w®} C L2((0,T) x I'%,) is said to two-scale converge to a limit w €
L2((0,T) x 2 x Iy) iff for every v € L2((0,T) x £2; Cper(Iss)) we have

T T
lim 5/ / w®(t, ) (t, x, x/e)dy,dt = L/ / / w(t, z, Y)Y(t, z, y)dy,dzdt .
e~0" Jo Jre Yl Jo Jolr.

Theorem 5.9. 1./28] For each sequence {w®} C L*((0,T) x I'S,) with 2 1wl z2(0,1yx Iz,) bounded uni-
formly in e, there exists a subsequence and w € L?((0,T) x £2 x I',s) such that the subsequence two-scale
converges to w.

2.[27] If {w®} is bounded in L™>°((0,T) x I'S,), then the limit w € L>®((0,T) x 2 X I.g).

Definition 5.10. [10] 1. For any function ¢ Lebesgue-measurable on the perforated domain 27, the
unfolding operator Ty : (2] — 2 X Y}, | = a, s, is defined by

0 ae. for yeY, ze N\ Q2

wnt ?

= (6)(a,y) = {MZ]Y“Z’) ace. for y€Yi,w€ 2, .

where k := [Z] denotes the unique integer combination, such that x — [Z] belongs to Y;, and e =
Int(Upezs {eY*,eY* C 2}). We note that for w € H'(£2) it holds that Ty (w]os) = Ty (w)]axy;-
2. For any function ¢ Lebesgue-measurable on oscillating boundary Iy, | = zs,a,s, the boundary

unfolding operator T : I'T7 — §2 x I}, is defined by

p(e[2], +ey) ae for ye I, ze,,
€ — ely in
7, (@)(y) {0 ae. for ye I,z € 2\ 2%, .

Lemma 5.11. [27] If {¢°} C L2?((0,T) x I:,) converges two-scale to ¢ € L*((0,T) x 2 x I',s) and
{TE (W)} € L*((0,T) x 2 x I'.) converges weakly to o* in L*((0,T) x 2 x I'), then ¢ = ¢* a.e. in
(0,T) x 2% I',s.
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