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A. Chavarŕıa-Krauser1, M. Ptashnyk2,3 ∗

1 Center for Modelling and Simulation in the Biosciences & Interdisciplinary Center for Scientific
Computing, Universität Heidelberg, INF 368, 69120 Heidelberg, Germany

2 Department of Mathematics, University of Dundee, Old Hawkhill, Dundee DD1 4HN Scotland, UK
3 Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics

Naukova 3b, Lviv, Ukraine

Abstract. Water flow in plant tissues takes place in two different physical domains separated
by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and
cell walls are termed symplast and apoplast, respectively. Water transport is pressure driven in
both, where osmosis plays an essential role in membrane crossing. In this paper, a microscopic
model of water flow and transport of an osmotically active solute in a plant tissue is considered.
The model is posed on the scale of a single cell and the tissue is assumed to be composed of
periodically distributed cells. The flow in the symplast can be regarded as a viscous Stokes
flow, while Darcy’s law applies in the porous apoplast. Transmission conditions at the interface
(semipermeable membrane) are obtained by balancing the mass fluxes through the interface and
by describing the protein mediated transport as a surface reaction. Applying homogenization
techniques, macroscopic equations for water and solute transport in a plant tissue are derived.
The macroscopic problem is given by a Darcy law with a force term proportional to the difference
in concentrations of the osmotically active solute in the symplast and apoplast; i.e. the flow is
also driven by the local concentration difference and its direction can be different than the one
prescribed by the pressure gradient.

Keywords and phrases: plant tissues, osmotic pressure, water flow, homogenisation, two-
scale convergence, flows in porous media
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1. Introduction

Plant tissues are in general composed of two domains separated by selective membranes: apoplast and
symplast. The apoplast is composed of cell walls and intercellular spaces, while the symplast is constituted
by all protoplasts which can be connected by plasmodesmata. Therefore, the path of water and solutes is
threefold: apoplastic, symplastic and transcellular, [35,36]. A first quantitative model of water transport
in plants was proposed by van den Honert, [18,41]. The idea was to describe water flow in analogy to the
flow of electric current through a resistor network. This phenomenological approach is still contemporary,
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A. Chavarŕıa-Krauser, M. Ptashnyk Water transport in plant tissues

H O2H O2
H O2

j n = 0 j n > 0 j n < 0

p
p

[µ] = 0 , [µ] < 0 , [µ] > 0 , 

p

c c

c

Figure 1. Scheme of water flux into and out of a single cell. The flux is proportional
to the jump in chemical potential [µ], which depends on internal pressure p and solute
concentration c.

[31], and is also used in engineering to describe water supply networks. Pressure assumes the role of the
electric potential and, hence, pressure gradients produce a flux proportional to the hydraulic conductivity.
This pressure driven flux was extended to include osmotically driven fluxes (diffusional fluxes) and the
concept of water potential was introduced, [31]. The general concept adapted from nonequilibrium
thermodynamics is that, differences in water potential produce equilibrating forces which drive the water
fluxes, [40]. This relation will be presented below in more detail. Plant biologists have used this concept
to describe water uptake of single cells (Fig. 1), e.g. during cell expansion [31].

Besides van den Honert’s approach, less has been undertaken to extend and apply the concept for
whole tissues. An interesting question is how the concepts should be used in continuum models of tissues.
As will become clear later, the central problem is to find suitable transmission conditions, which describe
the fluxes through the plasma membranes, and thus, between the apoplast and symplast. Another
interesting task is to obtain simplified models for situations where the cell scale is small compared to
the tissue or organ considered. Take for example functional structural plant models, in which often
macroscopic sections of organs are combined and simulated, [43]. Whilst less complexity is the principle
of a simplified model, sufficient information on the microstructure should still be part of it. Fortunatelly,
plant tissues tend to be sufficiently periodic and periodic homogenization lends to treat the problem, [9].

A model of water and solute fluxes in plant tissues needs a precise description of transport processes
between the cell inside (symplast) and the cell wall (apoplast) (Fig. 2). This transition takes place
through semipermeable membranes and represents the connection between two different physical
domains. These domains are the porous cell wall described best by a Darcy law and the cell cytoplasm in
which a viscous flow applies. One of the main mathematical problems is that, in contrast to [4, 21], the
free fluid and porous media domains do not interact directly, as the membrane separates the domains and
controls actively and passively the fluxes of water and solutes. Thus the continuity of normal forces and
the Beavers-Joseph-Saffman transmission condition between free fluid and porous medium do not apply.
A similar situation to the one here is found in models of early atherosclerotic lesions [5] or low-density
lipoproteins transfer through arterial walls, [32,37]. Kedem-Katchalsky transmission conditions are used
by those authors to couple the Navier-Stokes equations for blood flow in the arterial lumen with a Darcy
law in the arterial wall. However, the dependence of fluid flow across the membrane on the oncotic
pressure difference – proportional to the jump in lipoproteins concentration – was neglected by those
authors to simplify the analysis of the model equations. Besides, transport of the solute in plant cells
is mediated by proteins and can take place opposite to the gradient in chemical potential by usage of
energy (e.g. ATPase pumps) and has to be based on a surface reaction mechanism.

Coupled free fluid and porous media problems have received an increasing attention during the last
years from the mathematical and the numerical point of view. Well-posedness analysis and numerical
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algorithms for coupled Stokes-Darcy and Navier-Stokes-Darcy problems with Beavers-Joseph-Saffman
transmission condition between free fluid and porous medium were addressed in [15,25,34] and references
therein. Along many results on the homogenization of Stokes and Navier-Stokes problems and derivation
of Darcy law, [3, 19, 21, 26, 38], the multiscale analysis for a Stokes-Darcy system modeling water flow
in a vuggy porous media with Beavers-Joseph-Saffman transmission condition was considered in [4].
The macroscopic equations were derived using formal asymptotic expansion and two-scale convergence
method. A formal asymptotic expansion was also applied successfully to define the transport velocity of
auxin in a plant tissue, [7].

New transmission conditions at the cell-membrane-cell wall interface and the coupling between the
flow velocity and solute concentrations via transmission conditions reflecting the osmotic nature of the
water flow through a semipermeable membrane distinguish our model from the problem studied in [4].
Additional technical difficulties are introduced due to the distinction between symplastic and apoplastic
velocities and the presence of plasmodesmata populated cell wall pieces. To show the existence of a
unique solution of the microscopic model we apply the abstract theory of mixed problems (saddle-point
problems), [17, 25], where the coercivity in the divergence-free space and the inf-sup condition ensure
the existence of a unique solution of the coupled Stokes-Darcy model. The methods of the two-scale
convergence and unfolding operator are used to derive macroscopic equations for the fluid flow and
for the transport of osmotic active solutes. A generalized Darcy law with a force term given by the
difference of solute concentrations in apoplast and symplast defines the macroscopic water velocity.
Two initial-boundary-value problems for the concentration of solutes in symplast and in apoplast,
respectively, coupled via ordinary differential equations for the transporter concentrations, describe the
dynamics of solute concentrations in a plant tissue.

The paper is organized as follows. A thorough introduction to non-advective water fluxes is given.
These concepts are then used to derive a biophysical model for transport of water and osmotically
active solutes through a cell membrane, and to obtain transmission conditions between the symplast and
apoplast (Section 2). Based on this biophysical model, a microscopic model for transport in a plant tissue
is formulated (Section 3). Well-posedness and a priori estimates for solutions of the microscopic model
are shown (Section 4), followed by derivation of averaged macroscopic equations for water and solute
transport defined on the scale of a plant tissue (Section 5). At last, some results on two-scale convergence
and periodic unfolding method are formulated (Appendix).

Stokes

Darcy

membrane
Stokes

Figure 2. Scheme of a typical periodic plant tissue, for example lamellae of the moss
Plagiomnium affine.
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A. Chavarŕıa-Krauser, M. Ptashnyk Water transport in plant tissues

1.1. Water fluxes and chemical potential

As noted above, water fluxes in cells are known to be driven by gradients in chemical potential, [31].
Biologist use the concept of water potential Ψ , which is the chemical potential of water per unit specific
volume – i.e. expressed in pressure units instead of energy per particle. The chemical potential µi of
a species i is a measure of how much the internal energy of a thermodynamical system changes when
the number of particles of species i is varied, [23]. In equilibrium, the entropy of the system is maximal
and consequently the temperature T , pressure p and the chemical potentials µi are constant in abscence
of external fields. Consider now a situation in which the system is not in equilibrium. In this case µi
will not be constant and diffusion fluxes arise, which drive the system into equilibrium. If the system is
near to equilibrium, the diffusion fluxes can be assumed to be proportional to the gradients in chemical
potentials ∇µi, [24]. Irreversible thermodynamics proposes that for small gradients, the diffusion mass
flux density ji of a species i is given by a weighted sum of the gradients of all chemical potentials.

Diffusion is a spontaneous molecular equilibration process which does not produce bulk flows in closed
systems. The so called mass constraint applies when the system is not divided by a membrane, [16]

j =
∑
i

ji = 0 , (1.1)

which states that diffusion cannot produce a macroscopic movement of the mixture. Condition (1.1) is
not valid when the domain is separated by a semipermeable membrane, as such membranes allow the
movement of the solvent but not of all solutes. A consequence is that in such a case the system tends
to a local equilibrium: entropy reaches a local maximum and removing the membrane would allow a
further increase. To account for semipermeable membranes, the concepts were extended to include a so
called reflection coefficient, [31]. This coefficient is a measure of how much solutes are reflected by the
membrane. A value of one means that all solutes are retained, while all solutes cross freely for a value of
zero. The reflection coefficient lies in general between 0 and 1 for a real membrane, [31].

For the sake of simplicity, we will consider here and in the sequel the case of a binary mixture of a
solvent (i = 1) and a solute (i = 2). Following the notation of [24], we introduce the mass fraction of the
solute as a concentration

c := ρ2/ρ , (1.2)

where ρi, for i = 1, 2 is the mass density of species i and ρ = ρ1 + ρ2 the mass density of the mixture.
Consequently the “concentration” of the solvent is 1 − c. This duality of the concentrations allows to
introduce one chemical potential

µ =
µ2

m2
− µ1

m1
, (1.3)

instead of two, [24], where mi is the mass of one particle of species i, for i = 1, 2. Note that m1 and
m2 are needed to obtain a chemical potential density in units energy per mixture mass. The flux density
of the solute is then j2 = −α∇µ for α > 0. Using the mass constraint (1.1), delivers for that case the
flux density j1 = α∇µ of the solvent. The combined chemical potential cannot be used in the case of
a semipermeable membrane and the approach needs to be extended by a reflection coefficient. For this
purpose, we introduce two diffusion driving potentials

µ̃1 :=
µ1

m1
− (1− ς) µ2

m2
and µ̃2 := (1− ς)

(
µ2

m2
− µ1

m1

)
,

µ̃1 = −(1− ς)µ+ ς
µ1

m1
and µ̃2 = (1− ς)µ ,

(1.4)

where 0 ≤ ς ≤ 1 is a reflection coefficient. Setting ς = 0 renders µ̃2 = −µ̃1 = µ, which is consistent with
[24], while setting ς = 1 gives µ̃1 = µ1/m1 and µ̃2 = 0. The corresponding mass flux densities are simply

ji = −α∇µ̃i , for i = 1, 2 ,

j = −α∇(µ̃1 + µ̃2) = −α ς∇µ1 ,
(1.5)
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where α > 0 is a coefficient related to the permeability towards the solvent. The expression for j shows
that reflection (ς 6= 0) is a must to produce bulk fluxes, and is actually the mechanism exploited by
plant cells, [31]. Figure 1 presents a scheme of water fluxes through a membrane of a single cell with a
semipermeable membrane (ς = 1, µ̃2 = 0 and j2 = 0).

Often in mathematical models, diffusion is assumed to be driven only by concentration gradients, which
is equivalent to setting µ̃2 = µ̃2(c). For this case, Eqs. (1.5) deliver Fick’s law with reflection, [24]

j2 ≈ −ρ(1− ς)D∇c , (1.6)

where D > 0 is the usual diffusion coefficient [see Eq. (1.8)]. This approach ignores that the chemical
potential depends also on pressure p and temperature T , which implies that gradients in p and T produce
also fluxes. This dependency is normally assumed to be small, although the pressure term is known
to be important in sedimentation processes, [42], and in cases where the pressure is nonharmonic and
concentration gradients are small, [6]. Fick’s law (1.6) is a fairly good approximation in a homogeneous
domain, but is inapplicable for obtaining transmission conditions at semipermeable interfaces. Large
pressure differences can arise across a membrane and the contributions of pressure and concentration
driven diffusion are of comparable magnitude.

To account for pressure driven diffusion, the potentials µ̃i are set to depend on concentration and
pressure. For simplicity, the dependence on temperature is neglected, as large temperature gradients are
not usual in plant tissues. Eqs. (1.5) render

j2 = −ρ (1− ς)
(
D∇c+G∇p

)
,

j = ρ ς
(
D∇c− G∇p

)
and

j1 = −j2 + j ,

(1.7)

where

D =
α

ρ

∂µ

∂c
> 0 , G =

α

ρ

∂µ

∂p
, D = −α

ρ

∂µ1

∂c
> 0 , G =

α

ρ

∂µ1

∂p
> 0 . (1.8)

The diffusion coefficients D and D are positive, while the barodiffusion coefficient G has no definite sign,
[24]. Assuming incompressibility of the solvent has as a consequence that G is positive, [31]. These signs
concord with what is known from biology: diffusion fluxes across the mebrane follow the concentration
gradient and are oriented against the pressure gradient (see Fig. 1).

2. Biophysical model

2.1. Mass conservation

The total flux density of a species and the mixture is given by the combination of the contributions of
advection ρi v, diffusion ji and membrane transport via transporting proteins ai

J i = ρi v + ji + ai , i = 1, 2 ,

J = ρv + j + a ,
(2.1)

where j :=
∑
i ji and a :=

∑
i ai. Consequently, conservation of the species and total mass are given by

∂tρi + div(ρi v + ji + ai) = 0 , i = 1, 2 , (2.2a)

∂tρ+ div(ρv + j + a) = 0 . (2.2b)
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Figure 3. Scheme of the method used to obtain the transmission conditions. Small
domains Ωs and Ωa enclosing the interface symplast-membrane and membrane-apoplast,
respectively, are reduced to the surfaces Γs and Γa. The membrane is represented by the
domain Ωm.

First, consider the laws in a compartment without an interface. Transport via proteins takes place
only on membranes. Therefore, ai are zero inside a domain Ω that does not contain a membrane, and
the mass constraint (1.1) applies. Conservation of solute and mass in Ω follows thus

∂tρi + div
(
ρi v + ji

)
= 0 in Ω × (0,∞) , i = 1, 2 , (2.3a)

∂tρ+ div(ρv) = 0 in Ω × (0,∞) . (2.3b)

Consider now the case where a membrane is present. Shall Ωs be a domain enclosing an arbitrary piece
Γs of the interface between the symplast and the membrane (Fig. 3). Shall the membrane be represented
by the domain Ωm. Note that the derivation of the conditions for the interface between membrane and
apoplast is conducted in the same manner and will not be given here explicitly. Because of the membrane,
ς 6= 0 and ai 6= 0 for i = 1, 2. Integration of (2.2a) over Ωs and application of Gauß’ law gives

∂t

∫
Ωs

ρi dx+

∫
∂Ωs

(ρi v + ji + ai) · n dγ = 0 .

The membrane can be assumed to not allow advective fluxes, so that on ∂Ωs ∩ Ωm we have v = 0. On
∂Ωs\Ωm there is no protein mediated transport so that a = 0 there. The thickness of Ωs is reduced to
zero such that the interface is kept inside (Ωs → Γs). The first integral tends to zero, while the second
tends to an integral over Γs ∫

Γs

(
− ρi v + ji − ji + ai

)
· n dγ = 0 ,

where ji is the diffusion flux in Ωm. Note that n points from the symplast to the apoplast. Because Ωs
and Γs were chosen arbitrarily, the integrand has to be zero. A similar approach can be applied to the
mass flux of the mixture, where j = 0 in Ω is used. We obtain the conditions

(ρi v + ji) · n = (ai + ji) · n on (Γs ∪ Γa)× (0,∞) ,

ρv · n = (a+ j) · n on (Γs ∪ Γa)× (0,∞) ,
(2.4)

where j = j1 + j2. The fluxes in Ω were written on the left hand side, while the fluxes in Ωm are on
right hand side. The diffusion fluxes ji are normally assumed to be constant in the membrane (constant
gradients), [31]. Protein mediated transport can be considered to be a chemical reaction allowing buffering
of species, and hence, the fluxes ai,I and ai,II through Γs and Γa, respectively, have not necessarily to be
equal. Expressions for ai,I and ai,II will be developed in Section 2.2.
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Figure 4. Depiction of the mechanism assumed for protein mediated transport, where
a transport direction from symplast to apoplast is shown exemplarily.

The membrane Ωm is very thin compared to the rest and is usually reduced to an interface denoted
here as Γm. An expression for the membrane’s buffering effect is obtained by integration of (2.2a) over
Ωm, application of Gauß’ law and reduction of Ωm to Γm. This process is equivalent to subtraction of
the transmission conditions on Γs from those on Γa. Finally, the transmission conditions on the reduced
membrane interface Γm are in total

(ρi v + ji) · n = (ai,I + ji) · n on Γm × (0,∞) , i = 1, 2 , (2.5a)

ρv · n = (aI + j) · n on Γm × (0,∞) , (2.5b)

[ρi v + ji] · n = [ai] · n on Γm × (0,∞) , i = 1, 2 , (2.5c)

[ρv] · n = [a] · n on Γm × (0,∞) , (2.5d)

where the assumptions ji = const, and j = const in the membrane were used, and [·] is defined as the
jump across the membrane (i.e. [ai] = ai,II − ai,I).

2.2. Protein mediated transport

Most solute fluxes through membranes are mediated by transporting proteins, [31]. Transport can be
either passive or active with usage of energy (e.g. ATPase pumps). We model this processes as surface
reactions, in which the solute on one side (SI) reacts with the transporter, builds a complex (S−T ), which
decays by transporting the solute to the other side (SII)

SI + T
k1−⇀↽−
k2

S−T
k3−⇀↽−
k4

SII + T .

The concentrations of the solute on either sides (SI and SII) are denoted by cI and cII, respectively. The
concentrations of free and bound transporters are denoted with ϑf and ϑb, respectively. In general, the
density of the mixture can differ between sides and we denote these here with ρI and ρII. The above
simple reaction mechanism produces fluxes on each side

aI = (k1 ρI cI ϑf − k2 ϑb)n ,
aII = (k3 ϑb − k4 ρII cII ϑf )n ,

(2.6)

where n is the normal of the membrane pointing out of the cell. These expressions correspond to the
rate law of the above reaction mechanism. See Fig. 4 for a depiction of this mechanism.
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The concentration of free and bound transporters are obtained by pointwise reactions. The rate of
change of free transporters due to binding of solute and decay of the complex is given by

[a] · n = (aII − aI) · n = −(k1 ρI cI + k4 ρII cII)ϑf + (k2 + k3)ϑb . (2.7)

The net transport direction varies in time and depends on the solute concentrations and coefficients k1
to k4. By focusing on a quasistationary situation in which aII = aI := a, the following net flux and
concentration of free transporters are obtained

a = (k1 k3 ρI cI − k2 k4 ρII cII)/(k2 + k3) ϑf n ,

ϑf = (k2 + k3)/(k2 + k3 + k1 ρI cI + k4 ρII cII) ϑ0 ,
(2.8)

where ϑ0(t, x) = ϑf (t, x) + ϑb(t, x) is the total amount of transporters. We will focus here on the special
case where either k1 = 0 or k4 = 0, i.e. on the case of a perfect uni-directional transporter. Using the
assumption of quasistationarity, the mechanism is found to follow Michaelis-Menten kinetics. Exemplary
for an efflux transporter (k4 = 0)

a = ρI cI k1 k3/(k2 + k3 + k1 ρI cI) n . (2.9)

The applicability of the assumption of quasistationarity is limited. Transporters are in general sub-
jected to regulation, which reduces or increases the amount of transporters depending on the status of
the system. The total amount of transporters varies as follows

∂tϑ0 = R(t, x, ϑ0) , (2.10)

where R(t, x, ϑ0) is a function describing the rate of regulation. R is in general composed of a positive
production term and a negative degradation term. Negative degradation is often assumed to be propor-
tional to ϑ0 to prevent negative concentrations. The production term will depend on the local or global
solute concentration and regulation is used to control that concentration. A general analysis of robust
homeostatic control of a species based on concentrations is presented in [30], and an example for zinc
homeostasis in yeast and plant cells is found in [11–13]. We will not consider details of regulation here.

Assume that only free transporters are regulated and by using Eq. (2.7), the following system describing
the pointwise dynamics of the free and bound transporters is obtained

∂tϑf = R(t, x, ϑf )− (k1 ρI cI + k4 ρII cII)ϑf + (k2 + k3)ϑb ,

∂tϑb = (k1 ρI cI + k4 ρII cII)ϑf − (k2 + k3)ϑb ,

ϑ0(t, x) = ϑf (t, x) + ϑb(t, x) .

(2.11)

In a general situation several influx and efflux transporters might exist. The fluxes generalize then into

ai,I =
∑
α

(ki1,α ρi,I ϑ
i
f,α − ki2,α ϑib,α)n , and ai,II =

∑
α

(ki3,α ϑ
i
b,α − ki4,α ρi,II ϑif,α)n , (2.12)

where ρi = ρ ci, with i = 1, 2, and all ϑif,α and ϑib,α fulfill an equation system equivalent to Eq. (2.11).

2.3. Model

Inserting the diffusion fluxes of Eq. (1.7) into Eqs. (2.3a) and (2.3b), and using ρ2 = ρc delivers a system
describing species and mass conservation in a compartment Ω with ς = 0

∂t(ρ c) + div
(
ρ cv − ρD∇c− ρG∇p

)
= 0 in Ω × (0,∞) ,

∂tρ+ div(ρv) = 0 in Ω × (0,∞) .
(2.13)
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The gradients in the membrane can be assumed to be constant and can be expressed by a jump across
the membrane. Therefore, the diffusion fluxes in the membrane j2 and j are functions of the jumps in
concentration and pressure

j2([c], [p]) = −ρ
h

(
D [c] +G [p]

)
n , and j([c], [p]) =

ρ

h
ς
(
D [c]− G [p]

)
n , (2.14)

where the gradients in Eqs. (1.7) were approximated by a jump across the membrane of thickness h. The
expressions in Eq. (2.14) are related to the Kedem-Katchalsky equations, [5].

Using Eqs. (1.7) in (2.5a) and (2.5c), the transmission conditions on the interface Γm for the solute
are obtained (

ρ cv − ρD∇c− ρG∇p
)
· n =

(
a2,I + j2([c], [p])

)
· n on Γm × (0,∞) , (2.15a)[

ρ cv − ρD∇c+ ρG∇p
]
· n = [a2] · n on Γm × (0,∞) , (2.15b)

where a2 and j2 are given by Eqs. (2.12) and (2.14), respectivelly.
Water is almost incompressible (ρ1 ≈ const) and compressibility arises here due to the solute influencing

the mixture’s density ρ = ρ1 + ρ2 = (1− c) ρ+ c ρ. Using the assumption of a small concentration c, in
a first approximation ρ ≈ ρ1 ≈ const. Also, barodiffusion in Ω can be assumed to be small compared to
the concentration driven flux, i.e. it is assumed to play only a role in transport through the membrane.
Viscosity can be assumed to dominate the flow due to the small characteristic scale of a few microns, and
the flow in the symplast (cell inside) is assumed to be a Stokes flow. The apoplast (cell wall) is porous
suggesting a Darcy flow. The equations describing flow, mass and species conservation are hence

∂tv −
η

ρ1
∆v +

1

ρ1
∇p = 0 in symplast , (2.16a)

v +K∇p = 0 in apoplast , (2.16b)

div v = 0 in symplast and apoplast , (2.16c)

∂tc+ div (v c−D∇c) = 0 in symplast and apoplast , (2.16d)

where η > 0 is the dynamic viscosity and K > 0 is the permeability of the apoplast.
Diffusive permeation of the solute can be assumed to be small compared against protein mediated

transport. We will also assume that only the solute is subjected to transport via proteins. Assuming
that the structure in the membrane is oriented normally, the velocity at the interface can be assumed to
be perpendicular to it (v ×n = 0). Together with incompressibility, this condition has as a consequence
that the normal viscous stress (σ′n) · n is zero on a flat boundary, i.e. the boundary experiences only
shear stress. The viscous stress tensor of an incompressible viscous fluid is defined as

σ′ = 2 η Sv , (2.17)

with Sv the symmetric velocity gradient

Sv =
1

2

(
∇v +∇vT

)
, (2.18)

and is related to the full stress tensor σ = −p I+σ′ = −p I+2η Sv. Assuming that the effect of corners is
small, it is possible to set (σ′n)·n = 0 on Γm×(0,∞). Water fluxes mediated by active water transporters
are probably small compared to the fluxes via passive transporters (aquaporins): ‖aI‖ � ‖j‖. Moreover,
by adding (σ′n) · n = 0 only on the Stokes flow side, Eq. (2.5b) becomes

κ
(
(σ′n) · n+ [p]

)
= δ[c]− v · n on Γm × (0,∞) , (2.19)

where κ := ςG/h, δ := ςD/h. Note that the normal and the jump [·] are oriented from the Stokes to the
Darcy side. The physical meaning of this condition becomes clear by setting κ = δ = 0

v · n = 0 for κ = δ = 0 on Γm × (0,∞) ,
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i.e. the net mass flux is zero for zero permeability (α = 0) or for a nonreflecting membrane (ς = 0).
Also, a higher concentration in the cell, [c] < 0, means that water is driven into the cell, v · n < 0 for
[p] = 0, while a higher pressure in the cell, [p] < 0, results in water flowing out of the cell, v · n > 0 for
[c] = 0. Compare Fig. 1.

Finally, the following conditions are good approximations on the interface Γm

ρ1 (cI vI −D2∇cI) · n ≈ a2,I · n on Γm × (0,∞) , (2.20a)

ρ1 [cv −D2∇c] · n ≈ [a2] · n on Γm × (0,∞) , (2.20b)

κ
(
2 η (Sv n) · n+ [p]

)
≈ δ[c]− vI · n on Γm × (0,∞) , (2.20c)

[v] · n ≈ 0 on Γm × (0,∞) , (2.20d)

v × n = 0 on Γm × (0,∞) . (2.20e)

3. Mathematical formulation of microscopic model

Let Ω be a cube in R3 representing a plant tissue, and ε > 0 be a parameter denoting the ratio between
the size of a single cell and the size of the considered plant tissue Ω. The microscopic structure of a
plant tissue is reflected in the difference between the cell wall Ωεa ⊂ Ω and the symplast inside the cells
Ωεz ⊂ Ω. In the cell wall domain we shall distinguish between the cell wall apoplast Ωεaw and parts of
the cell wall Ωεas occupied by both plasmodesmata, that belong to cell symplast, and cell wall apoplast.
This partition is a strong simplification of the true geometry of a plant tissue, however, it accounts for
the basic structures. See Ref. [14] for more anatomical details of plant cells and tissues.

We define a unit cell Y = Y z ∪Y a, where Yz is an open domain with a smooth boundary, representing
the part occupied by symplast inside a cell, and Ya is the cell wall, with Y a = Y aw ∪ Y as and Yas
is a domain comprising both plasmodesmata and cell wall apoplast. We define also Y s = Y z ∪ Y as.
The corresponding boundaries are denoted by Γz = ∂Yaw ∩ ∂Yz, Γaw = ∂Yaw ∩ ∂Yas, Γa = ∂Ya \ ∂Y ,
Γs = ∂Ys \ ∂Y , Γas = ∂Yas ∩ ∂Yz, Γzs = Γz ∪ Γas = ∂Yz, see Fig. 5.
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Figure 5. Left: unit cell Y . Center: 2D cross-section of a unit cell Y . Right: 2D
cross-section of a plant tissue Ω.

Then considering translations of the unit cell given by Y kj = Yj + k for j = a, z, s, aw or as, and

Γ ki = Γi+k for i = z, aw, as or zs, with k ∈ Z3, we can define the domains comprising the microstructure
of a plant tissue Ωεj = ∪{εY kj : εY k ⊂ Ω, k ∈ Z3}, j = a, z, s, aw or as. The microscopic boundaries are

given by Γ εi = ∪{εΓ ki : εY k ⊂ Ω, k ∈ Z3}, i = z, aw, as, or zs. We notice that Ωεs and Ωεa are connected
Lipschitz domains. The domain Ωεa represent porous medium of cell walls, whereas Ωεsp is introduced
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to depict parts of cell walls, modelled also as a porous medium, comprising both cell wall apoplast and
many thin channels of plasmodesmata, Fig. 5.

In order to simplify the formulation of the microscopic model we shall consider in the following the
doubled notation for Ωεas, i.e. Ωεap := Ωεas and Ωεsp := Ωεas.

For the velocity of water we shall consider the stationary version of Stokes equation (2.16a) inside the
cells and Darcy equation (2.16b) in the cell walls apoplast and parts of cell walls comprising plasmodes-
mata, and incompressibility (2.16c) of all flows

−ε2η∆vεz +∇pεz = 0 in Ωεz × (0, T ) ,

div vεz = 0 in Ωεz × (0, T ) ,

vεi +Ki,ε∇pεi = 0 in Ωεi × (0, T ), i = sp, aw, ap ,

div vεi = 0 in Ωεi × (0, T ), i = sp, aw, ap ,

(3.1)

where η > 0 is the viscosity constant, and the permeability tensors are given by Y -periodic functions Ki,
i.e. Ki,ε(x) = Ki(x/ε) for x ∈ Ωεi , with i = sp, aw, ap.

The concentration of an osmotically active solute in different partitions of a plant cell is assumed to
follow the conservation Eq. (2.16d) with a production/degradation term

∂tc
ε
i + div(HM (vεi )c

ε
i −Dε

i (t, x)∇cεi ) = F εi (t, x, cεi ) in Ωεi × (0, T ), i = z, sp, aw, ap , (3.2)

where

HM (ξ)j =

{
ξj for |ξj | ≤M,
Msgn(ξj) for |ξj | > M,

j = 1, 2, 3 ,

for some M > 0, and ξ ∈ R3. The velocities vεi need to be cut-off for technical reasons for the rigorous
analysis of the macroscopic model. Assuming bounded velocities in tissues is biologically and physically
sensible. The diffusion coefficients Dε

i and the production/degradation terms F εi , with i = z, sp, aw, ap,
are determined by Y -periodic functions Di(t, y) and Fi(t, y, ξ), i.e. Dε

i (t, x) = Di(t,
x
ε ) and F εi (t, x, ξ) =

Fi(t,
x
ε , ξ) for ξ ∈ R and (t, x) ∈ (0, T ) × Ωεi . The symplast and apoplast are coupled by diffusion

fluxes and via protein mediated transport of solute through the cell membrane described by the following
boundary conditions based on Eqs. (2.20a) and (2.20b)

(Dε
z∇cεz −HM (vεz)c

ε
z) · n = (Dε

sp∇cεsp −HM (vεsp)c
ε
sp) · n

+ εβεa(t, x)ϑεb,a − εαεs(t, x)cεzϑ
ε
f,s on Γ εas × (0, T ) ,

(Dε
z∇cεz −HM (vεz)c

ε
z) · n = εβεa(t, x)ϑεb,a − εαεs(t, x) cεz ϑ

ε
f,s on Γ εz × (0, T ) ,

(Dε
aw∇cεaw −HM (vεaw)cεaw) · n = εαεa(t, x)cεawϑ

ε
f,a − εβεs(t, x)ϑεb,s on Γ εz × (0, T ) ,

(Dε
ap∇cεap −HM (vεap)c

ε
ap) · n = εαεa(t, x)cεapϑ

ε
f,a − εβεs(t, x)ϑεb,s on Γ εas × (0, T ) ,

(3.3)

where n denotes the outer normal vector to ∂Ωεz and the protein mediated flux a2,I was expressed by
relation (2.12) with αεl and βεl , for l = a, s, are related to the reaction rate coefficients ki, for i = 1, 2, 3.
We define the apoplastic and symplastic concentrations cεa and cεs, respectively, as follows

cεa(t, x) =

{
cεaw(t, x) in Ωεaw × (0, T ) ,
cεap(t, x) in Ωεas × (0, T ) ,

and cεs(t, x) =

{
cεz(t, x) in Ωεz × (0, T ) ,
cεsp(t, x) in Ωεas × (0, T ) .

(3.4)

The dynamics of the transporter concentrations are modelled by following ordinary differential equations

∂tϑ
ε
f,l = Rεl (t, x, ϑ

ε
f,l)− αεl (t, x)cεlϑ

ε
f,l + βεl (t, x)ϑεb,l − γεf,l(t, x)ϑεf,l on Γ εzs × (0, T ) ,

∂tϑ
ε
b,l = αεl (t, x)cεlϑ

ε
f,l − βεl (t, x)ϑεb,l − γεb,l(t, x)ϑεb,l on Γ εzs × (0, T ) ,

(3.5)

with l = a, s, and γεj,l, for j = f, b are rates of decay of corresponding transporter concentration and
Rεl are production/degradation terms representing the genetic regulation of the transporters. The
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main difference to Eq. (2.11) is the inclusion of the decay terms, which model a possible instability
of the transporting proteins. The coefficients and Rεl are given by Y -periodic functions Rl, αl, βl and
γj,l, defined on Γzs × (0, T ), i.e. Rεl (t, x, ξ) = Rl(t,

x
ε , ξ) and αεl (t, x) = αl(t,

x
ε ), βεl (t, x) = βl(t,

x
ε ),

γεj,l(t, x) = γj,l(t,
x
ε ), for ξ ∈ R and (x, t) ∈ Γ εzs × (0, T ), with l = a, s and j = f, b.

In contiguous apoplast and symplast in plasmodesmata populated regions, we pose continuity and
zero-flux boundary conditions – based on Eqs. (2.20a) and (2.20b) taking into consideration that no
transporters are present (a2,I = 0 and [a2] = 0) – and set the concentration to be continuous

(Dε
aw∇cεaw −HM (vεaw)cεaw) · naw = (Dε

ap∇cεap −HM (vεap)c
ε
ap) · naw on Γ εaw × (0, T ) ,

(Dε
sp∇cεsp −HM (vεsp)c

ε
sp) · naw = 0 on Γ εaw × (0, T ) ,

cεaw = cεap on Γ εaw × (0, T ) ,

cεz = cεsp on Γ εas × (0, T ) ,

(3.6)

where naw is the outer normal vector to ∂Ωεaw. Initial conditions for solute and transporter concentrations
are posed as follows

cεl (0, x) = c0l (x) in Ωεl ,

ϑεj,l(0, x) = ϑε,0j,l (x) on Γ εzs ,
(3.7)

where j = f, b and l = a, s. The initial conditions for transporter concentrations are defined as ϑε,0j,l (x) =

ϑ0j,l(x, x/ε) for x ∈ Γ εzs, where ϑ0j,l(x, y) = ϑ01j,l(x)ϑ02j,l(y) for (x, y) ∈ Ω × Γzs, and ϑ02j,l are Y -periodic,
with j = f, b and l = a, s.

Following conditions, based on (2.20c), (2.20d) and (2.20e), are considered for the velocity of water on
internal boundaries

κ1
(
− 2ε2η (Svεzn) · n+ pεz − pεaw

)
= εδ1(cεz − cεaw) + εvεaw · n

vεz · n = vεaw · n , vεz × n = 0

}
on Γ εz × (0, T ) ,

−2ε2η (Svεzn) · n+ pεz = pεsp

κ2
(
− 2ε2η (Svεzn) · n+ pεz − pεap

)
= εδ2(cεz − cεap) + εvεap · n

vεz · n = vεsp · n+ vεap · n , vεz × n = 0

 on Γ εas × (0, T ) ,

pεaw = pεap , vεaw · naw = vεap · naw , vεsp · naw = 0 on Γ εaw × (0, T ) .

(3.8)

On the external boundary ∂Ω we assume zero-flux boundary conditions for concentrations

(HM (vεaw)cεaw −Dε
aw∇cεaw) · nex = 0 on (∂Ω \ ∂Ωεas)× (0, T ) ,

(HM (vεi )c
ε
i −Dε

i∇cεi ) · nex = 0 on (∂Ω ∩ ∂Ωεas)× (0, T ) ,
(3.9)

where i = ap, sp and nex is the outer normal vector to ∂Ω. We further prescribe symplastic and apoplastic
normal velocities

vεaw · nex = vD on (∂Ωεaw ∩ ∂Ω)× (0, T ) ,

vεap · nex = vD on (∂Ωεas ∩ ∂Ω)× (0, T ) ,

vεsp · nex = 0 on (∂Ωεas ∩ ∂Ω)× (0, T ) .

(3.10)

To simplify notations, we define similar to (3.4) apoplastic and symplastic flow variables

vεa(t, x) =

{
vεaw(t, x) in Ωεaw × (0, T ) ,
vεap(t, x) in Ωεas × (0, T ) ,

and vεs(t, x) =

{
vεz(t, x) in Ωεz × (0, T ) ,
vεsp(t, x) in Ωεas × (0, T ) ,

pεa(t, x) =

{
pεaw(t, x) in Ωεaw × (0, T ) ,
pεap(t, x) in Ωεas × (0, T ) ,

and pεs(t, x) =

{
pεz(t, x) in Ωεz × (0, T ) ,
pεsp(t, x) in Ωεas × (0, T ) .
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The corresponding diffusion coefficients and permeability tensors are given by

Da(t, y) =

{
Daw(t, y) in Yaw × (0, T ) ,
Dap(t, y) in Yas × (0, T ) ,

and Ds(t, y) =

{
Dz(t, y) in Yz × (0, T ) ,
Dsp(t, y) in Yas × (0, T ) ,

Ka(y) =

{
Kaw(y) in Yaw × (0, T ) ,
Kap(y) in Yas × (0, T ) .

The production/degradation terms are defined by

F εa (t, x, cεa) =

{
F εaw(t, x, cεaw) in Ωεaw × (0, T ) ,
F εap(t, x, c

ε
ap) in Ωεas × (0, T ) ,

and F εs (t, x, cεs) =

{
F εz (t, x, cεz) in Ωεz × (0, T ) ,
F εsp(t, x, c

ε
sp) in Ωεas × (0, T ) .

We assume that δi 6= 0 and κi 6= 0, for i = 1, 2, and define κε(x) = κ(x/ε), δε(x) = δ(x/ε) for x ∈ Γ εzs,
where κ, δ are Y -periodic functions given by κ(y) = κ−11 on Γz, κ(y) = κ−12 on Γas and δ(y) = δ1κ

−1
1 on

Γz, δ(y) = δ2κ
−1
2 on Γas.

Assumption 1. – Tensors Ka ∈ L∞(Ya)3×3, Ksp ∈ L∞(Yas)
3×3 are symmetric and uniformly elliptic,

i.e. (Kl(y)ξ, ξ) ≥ kl|ξ|2 for kl > 0, ξ ∈ R3, a.a. y ∈ Yl, where l = a, sp and Ysp := Yas.
– Diffusion coefficients Dl, ∂tDl ∈ L∞((0, T ) × Yl)

3×3 are symmetric and uniformly elliptic, i.e.
(Dl(t, y)ξ, ξ) ≥ dl|ξ|2 for dl > 0, ξ ∈ R3, a.a. (t, y) ∈ (0, T )× Yl, where l = a, s.

– Production/degradation Fl : (0, T ) × Yl × R → R is differentiable in t, measurable in y, Fl and ∂tFl
are sublinear in ξ, Fl is Lipschitz continuous in ξ uniformly in (t, y), and Fl(t, y, ξ−)ξ− ≤ C|ξ−|2 for
(t, y) ∈ (0, T )× Yl, where ξ− = min{ξ, 0} and l = a, s.

– Functions Rl(·, ·, ξ) ∈ C([0, T ];L∞(Γzs)) for all ξ ∈ R are uniformly Lipschitz continuous in ξ, and
nonnegative for nonnegative ξ and (x, t) ∈ Γzs × [0, T ], with l = a, s.

– Coefficients αl, βl, γj,l ∈ C([0, T ];L∞(Γzs)) are nonnegative and ∂tαl, ∂tβl ∈ L∞((0, T )× Γzs), where
j = f, b and l = a, s.

– Initial conditions c0l ∈ H2(Ω) and ϑ01j,l ∈ L∞(Ω), ϑ02j,l ∈ L∞(Γzs) are nonnegative, l = a, s, j = f, b.

– Boundary condition vD ∈ H1/2(∂Ω) is given by vD = VD · nex on ∂Ω, where VD ∈ H1(Ω) and
div VD = 0 in Ω.

By Lemma 4 in [38], there exists a restriction operator RYa ∈ L(H1(Y ), H1
Γzs

(Ya)) with the properties
RYaψ = ψ in a neighborhood of ∂Y ,

ψ = 0 on Γzs =⇒ RYaψ = ψ ,

divψ = 0 =⇒ divRYaψ = 0 .

(3.11)

Here H1
Γzs

(Ya) = {ψ ∈ H1(Ya) : ψ = 0 on Γzs}. For ψ ∈ H1(Ω) we define ψεj (y) = ψ(εy) for y ∈
Y j = (Y + kj), with j = 1, . . . , J , where J ∈ N such that Ω = ∪Jj=1εY

j , and kj ∈ Z3. Then the

operator defined as R̃εΩεaψ(x) = (RYaψ
ε
j )(x/ε) for x ∈ εY ja , with j = 1, . . . , J, has the properties that

R̃Ωεa ∈ L(H1(Ω), H1
Γ εzs

(Ωεa)) and
ψ = 0 on Γ εzs =⇒ R̃εΩεaψ = ψ ,

divψ = 0 =⇒ div R̃εΩεaψ = 0 ,

‖R̃εΩεaψ‖L2(Ωεa)
≤ C

(
‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)

)
,

ε‖∇R̃εΩεaψ‖L2(Ωεa)
≤ C

(
‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)

)
,

(3.12)

where H1
Γ εzs

(Ωεa) = {ψ ∈ H1(Ωεa) : ψ = 0 on Γ εzs}.
We define V εD = R̃ΩεaVD and, using the assumptions on VD, obtain that div V εD = 0 in Ωεa and

‖V εD‖L2(Ωεa)
≤ C‖VD‖H1(Ω).
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For a σ > 0, a Lipschitz domain Σ, and for ψ,ϕ ∈ L2((0, σ)×Σ) we shall denote

〈ψ,ϕ〉Σ =

∫
Σ

ψ ϕdx and 〈ψ,ϕ〉Σ,σ =

∫ σ

0

∫
Σ

ψ ϕdxdt .

For a bounded Lipschitz domain Σ we shall use the notion of the space

H(div, Σ) = {v ∈ L2(Σ) such that div v ∈ L2(Σ)} ,

provided with the norm

‖v‖2H(div,Σ) = ‖v‖2L2(Σ) + ‖div v‖2L2(Σ) .

We introduce also

V εas = {v ∈ H(div, Ωεas) : v · n = 0 on ∂Ωεas ∩ (∂Ωεaw ∪ ∂Ω)} ,
V εa = {v ∈ H(div, Ωεa) : v · n ∈ L2(Γ εzs), v · n = 0 on ∂Ω} ,
V εz = {v ∈ H1(Ωεz) : v × n = 0 on Γ εzs} .

For φ ∈ V εas, since φ ∈ H(div, Ωεas) we have φ · n ∈ H−1/2(∂Ωεas) and together with φ · n = 0 on
∂Ωεas \ Γ εas obtain φ · n ∈ H−1/2(Γ εas), [15]. Considering the geometrical structure of Ωεas and the fact
that φ · n = 0 on Γ εaw, we can extend φ by zero from Ωεas to Ωεa with div φ ∈ L2(Ωεa) and shall use the
same notation for the extension as for the original function.

We denote the spaces

Vε = {(v1, v2, v3) ∈ V εz × V εa × V εas : 〈(v1 − v2) · n, φ〉Γ εz = 0 for φ ∈ L2(Γ εz ) ,

〈(v1 − v2 − v3) · n, ψ〉H−1/2(Γ εas),H
1/2(Γ εas)

= 0 for ψ ∈ H1/2(Γ εas)} ,
Pε = {(p1, p2, p3) ∈ L2(Ωεz)× L2(Ωεa)× L2(Ωεas) : 〈p1, 1〉Ωεz + 〈p2, 1〉Ωεa + 〈p3, 1〉Ωεas = 0} ,

with the norms

‖v‖Vε = ‖v1‖H(div,Ωεz)
+ ε‖∇v1‖L2(Ωεz)

+ ‖v2‖H(div,Ωεa)
+ ε1/2‖v2 · n‖L2(Γ εzs)

+ ‖v3‖H(div,Ωεas)
,

‖p‖Pε = ‖p1‖L2(Ωεz)
+ ‖p2‖L2(Ωεa)

+ ‖p3‖L2(Ωεas)
.

Notice that for ψ ∈ Vε due to the assumptions on the normal components at the boundaries we have
divϕ ∈ L2(Ω), where ϕ = ψ1 in Ωεz , ϕ = ψ2 in Ωεaw and ϕ = ψ2 + ψ3 in Ωεas. We shall consider also
L2(0, T ;Vε) and L2(0, T ;Pε) with the norms

‖v‖L2(0,T ;Vε) = ‖v1‖L2(0,T ;H(div,Ωεz))
+ ε‖∇v1‖L2((0,T )×Ωεz) + ‖v2‖L2(0,T ;H(div,Ωεa))

+ ε1/2‖v2 · n‖L2((0,T )×Γ εzs) + ‖v3‖L2(0,T ;H(div,Ωεas))
,

‖p‖L2(0,T ;Pε) = ‖p1‖L2((0,T )×Ωεz) + ‖p2‖L2((0,T )×Ωεa) + ‖p3‖L2((0,T )×Ωεas) .

The corresponding divergence-free space is denoted by

Vεd = {(v1, v2, v3) ∈ Vε : div v1 = 0 in Ωεz , div v2 = 0 in Ωεa , div v3 = 0 in Ωεas} .

4. Well-posedness and a priori estimates

We start with a weak formulation of the microscopic model (3.1)-(3.10).
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Definition 4.1. Weak solution of (3.1)-(3.10) are velocity field (vεz,v
ε
a − V εD,vεsp) ∈ L2(0, T ;Vε), and

pressure pε = (pεz, p
ε
a, p

ε
sp) ∈ L2(0, T ;Pε), satisfying equations (3.1) with boundary conditions (3.8) and

(3.10) in the variational formulation

ε2〈2η Svεz,Sψ1〉Ωεz ,T − 〈p
ε
z,divψ1〉Ωεz ,T + 〈K−1a,ε(x)vεa, ψ2〉Ωεa,T − 〈p

ε
a,divψ2〉Ωεa,T

+〈K−1sp,ε(x)vεsp, ψ3〉Ωεas,T − 〈p
ε
sp,divψ3〉Ωεas,T + ε〈κε(x)vεa · n+ δε(x)(cεs − cεa), ψ2 · n〉Γ εzs,T = 0 ,

〈div vεz, q1〉Ωεz ,T + 〈div vεa, q2〉Ωεa,T + 〈div vεas, q3〉Ωεas,T = 0 ,

(4.1)

for ψ = (ψ1, ψ2, ψ3) ∈ L2(0, T ;Vε) and q = (q1, q2, q3) ∈ L2(0, T ;Pε), and functions cεl ∈ L∞((0, T )×Ωεl ),
cεl ∈ L2(0, T ;H1(Ωεl ))∩H1(0, T ;L2(Ωεl )), for l = a, s, satisfying equations (3.2) with boundary conditions
(3.3), (3.6), and (3.9) in the weak form

〈∂tcεa, ϕ1〉Ωεa,T + 〈Dε
a(t, x)∇cεa −HM (vεa)cεa,∇ϕ1〉Ωεa,T = ε〈βεs(t, x)ϑεb,s − αεa(t, x)cεaϑ

ε
f,a, ϕ1〉Γ εzs,T

+〈F εa (t, x, cεa), ϕ1〉Ωεa,T ,
(4.2)

and

〈∂tcεs, ϕ2〉Ωεs ,T + 〈Dε
s(t, x)∇cεs −HM (vεs)c

ε
s,∇ϕ2〉Ωεs ,T = ε〈βεa(t, x)ϑεb,a − αεs(t, x)cεsϑ

ε
f,s, ϕ2〉Γ εzs,T

+〈F εs (t, x, cεs), ϕ2〉Ωεs ,T ,
(4.3)

for all ϕ1 ∈ L2(0, T ;H1(Ωεa)), ϕ2 ∈ L2(0, T ;H1(Ωεs)), with cεl (0, x) = c0l (x) a.e. in Ωεl , and transporter
concentrations ϑεj,l ∈ W 1,∞(0, T ;L∞(Γ εzs)), with j = f, b and l = a, s, satisfying ordinary differential
equations (3.5) a.e. on Γ εzs × (0, T ) together with initial conditions (3.7) a.e. on Γ εzs.

In following we shall use the notation V̄ εD = (0, V εD, 0) and (vε − V̄ εD) = (vεz,v
ε
a − V εD,vεsp).

4.1. Existence and estimates for (vεs, p
ε
s) and (vεa, p

ε
a)

First we shall prove Korn’s type inequality satisfied by functions from the space

Ṽε = {(v1, v2, v3) ∈ H1(Ωεz)× V εa × V εas : 〈(v1 − v2) · n, φ〉Γ εz = 0 for φ ∈ L2(Γ εz ) ,

〈(v1 − v2 − v3) · n, ψ〉H−1/2(Γ εas),H
1/2(Γ εas)

= 0 for ψ ∈ H1/2(Γ εas)} .

Lemma 4.2. For ψ ∈ Ṽε we have the following Korn’s type inequality

‖ψ1‖L2(Ωεz)
+ ε‖∇ψ1‖L2(Ωεz)

≤ C
(
ε‖ Sψ1‖L2(Ωεz)

+ ε1/2||ψ1 × n||L2(Γ εzs)
+ ‖ψ2‖L2(Ωεa)

+‖ψ3‖L2(Ωεas)
+ ε‖divψ1‖L2(Ωεz)

+ ε‖divψ2‖L2(Ωεa)
+ ε‖ divψ3‖L2(Ωεas)

)
.

(4.4)

Proof. The proof follows the same lines as in [4]. First we show the estimate for ψ̂ ∈ V(Y ), where
V(Y ) = {ψ1 ∈ H1(Yz), ψ2 ∈ Va(Y ),ψ3 ∈ Vas(Y ), 〈(ψ1−ψ2) ·n, φ1〉Γz = 0 for φ1 ∈ L2(Γz), and 〈(ψ1−
ψ2 −ψ3) · n, φ2〉H−1/2,H1/2 = 0 for φ2 ∈ H1/2(Γas)}, with Va(Y ) = {v ∈ H(div, Ya), v · n ∈ L2(Γa)} and
Vas(Y ) = {v ∈ H(div, Yas), v · n = 0 on Γaw}. Then scaling argument will imply inequality (4.4) for
ψ ∈ Ṽε. Suppose it is not true that there exists a constant C̃ such that for ψ̂ ∈ V(Y )

‖ψ̂1‖L2(Yz) + ‖∇ψ̂1‖L2(Yz) ≤ C̃
(
‖ S ψ̂1‖L2(Yz) + ‖ψ̂1 × n‖L2(Γzs) + ‖ψ̂2‖L2(Ya) + ‖ψ̂3‖L2(Yas)

+‖ div ψ̂1‖L2(Yz) + ‖ div ψ̂2‖L2(Ya) + ‖div ψ̂3‖L2(Yas)

)
.

(4.5)

Then there exists a sequence {ψ̂
m
} ⊂ V(Y ) such that

‖ψ̂
m

1 ‖L2(Yz) + ‖∇ψ̂
m

1 ‖L2(Yz) = 1 (4.6)
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and

‖ S ψ̂
m

1 ‖L2(Yz) + ‖ψ̂
m

1 × n‖L2(Γzs) + ‖ψ̂
m

2 ‖L2(Ya) + ‖ψ̂
m

3 ‖L2(Yas)

+‖ div ψ̂
m

1 ‖L2(Yz) + ‖ div ψ̂
m

2 ‖L2(Ya) + ‖ div ψ̂
m

3 ‖L2(Yas) ≤
1

m
.

(4.7)

The last inequality implies that

ψ̂
m

2 → 0 in H(div, Ya) and ψ̂
m

3 → 0 in H(div, Yas) ,

whereas, due to (4.6), there exists ψ̂1 ∈ H1(Yz) such that

ψ̂
m

1 → ψ̂1 weakly in H1(Yz) .

We shall denote by ψ̂ the extension of ψ̂1 by zero into Y . Since ψ̂
m

= ψ̂
m

1 χYz + ψ̂
m

2 χYa + ψ̂
m

3 χYas is
bounded in H(div, Y ), it converges weakly and we conclude that

ψ̂
m
→ ψ̂ weakly in H(div, Y ) . (4.8)

Using the estimate for the norm in the space H−1/2(Γzs), i.e.

‖ψ̂
m

2 · n‖H−1/2(Γzs) ≤ C‖ψ̂
m

2 ‖H(div,Ya) → 0 , (4.9)

and the boundary condition ψ̂
m

1 · n = ψ̂
m

2 · n a.e. on Γz, we obtain ψ̂1 · n = ψ̂2 · n = 0 a.e. on Γz.
Additionally we have that

‖ψ̂
m

1 × n‖L2(Γzs) → 0 as m→∞, and therefore ψ̂1 × n = 0 a.e. on Γzs .

Now the classical Korn inequality in Yz with ψ̂1 = 0 on Γz ⊂ ∂Yz can be applied and we obtain

‖ψ̂1‖L2(Yz) + ‖∇ψ̂1‖L2(Yz) ≤ Ĉ‖ Sy ψ̂1‖L2(Yz) . (4.10)

Considering (4.6) and (4.7), we obtain that the left-hand side in (4.10) is equal to one, whereas the
right-hand side is zero. This yields the contradiction to the assumption that there no such constant C̃
for which (4.5) hold true.
Due to the geometrical assumption on Ω we can write Ω = ∪Jj=1 ε(Y +kj) with some J ∈ N and kj ∈ Z3.

We consider now ψ ∈ Vε and for y ∈ Y define ψ̂
j
(y) = ψ(εy + εkj), and obtain ψ̂

j
∈ V(Y ). Applying

(4.5) for each Yj = (Y + kj) we obtain estimate for ψ̂
j

‖ψ̂
j

1‖2L2(Y jz )
+ ‖∇ψ̂

j

1‖2L2(Y jz )
≤ C̃

(
‖ S ψ̂

j

1‖2L2(Y jz )
+ ‖ψ̂

j

1 × n‖2L2(Γ jzs)
+ ‖ψ̂

j

2‖2L2(Y ja )
+ ‖ψ̂

j

3‖2L2(Y jas)

+‖div ψ̂
j

1‖2L2(Y jz )
+ ‖ div ψ̂

j

2‖2L2(Y ja )
+ ‖div ψ̂

j

3‖2L2(Y jas)

)
.

(4.11)

Summation over j = 1, . . . , J and change of variables x = ε(y + kj) for y ∈ Y in (4.11) yield (4.4). �

For the proof of existence and uniqueness of vε ∈ L2(0, T ;Vε) and pε ∈ L2(0, T ;Pε) we shall define
two bilinear forms aε(·, ·) : L2(0, T ;Vε)× L2(0, T ;Vε)→ R and b(·, ·) : L2(0, T ;Vε)× L2(0, T ;Pε)→ R:

aε(ϕ,ψ) = ε2〈2η Sϕ1,Sψ1〉Ωεz ,T + 〈K−1a,εϕ2, ψ2〉Ωεa,T + 〈K−1sp,εϕ3, ψ3〉Ωεas,T + ε〈κε ϕ2 · n, ψ2 · n〉Γ εzs,T ,
b(ψ, q) = 〈divψ1, q1〉Ωεz ,T + 〈divψ2, q2〉Ωεa,T + 〈divψ3, q3〉Ωεas,T ,

for ϕ, ψ ∈ L2(0, T ;Vε) and q ∈ L2(0, T ;Pε).

For cεs, c
ε
a ∈ L2((0, T )× Γ εzs) we define a linear form fε(·) : L2(0, T ;Vε)→ R

fε(ψ) = ε〈δε(cεs − cεa), ψ2 · n〉Γ εzs,T for ψ ∈ L2(0, T ;Vε) .
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Theorem 4.3. For cεa, c
ε
s ∈ L2((0, T )×Γ εzs) and Ka, Ksp, vD satisfying Assumption 1 and for any ε > 0

there exists a unique solution (vε − V̄ εD) ∈ L2(0, T ;Vε), pε ∈ L2(0, T ;Pε) of (3.1) with transmission
conditions (3.8) and boundary conditions (3.10) satisfying

ε||∇vεz||L2((0,T )×Ωεz) + ||vεs||L2((0,T )×Ωεs) + ||vεa||L2((0,T )×Ωεa) + ε
1
2 ||vεa · n||L2((0,T )×Γ εzs) (4.12)

+||pεs||L2((0,T )×Ωεs) + ||pεa||L2((0,T )×Ωεa) ≤ Cε
1
2 (‖cεa‖L2((0,T )×Γ εzs) + ‖cεs‖L2((0,T )×Γ εzs)) + C‖VD‖H1(Ω) ,

and there exist extensions P εs of pεs from Ωεs into Ω and P εa of pεa from Ωεa into Ω, satisfying

||P εs ||L2(0,T ;L2(Ω)/R) + ||P εa ||L2(0,T ;L2(Ω)/R) ≤ Cε
1
2 (‖cεa‖L2((0,T )×Γ εzs) + ‖cεs‖L2((0,T )×Γ εzs)) + C‖VD‖H1(Ω) ,

(4.13)
where a universal constant C is independent of ε and ΩT = Ω × (0, T ).
Additionally for cεa,i, c

ε
s,i ∈ L2((0, T )× Γ εzs), with i = 1, 2, holds

||vεs,1 − vεs,2||L2((0,T )×Ωεs) + ||vεa,1 − vεa,2||L2((0,T )×Ωεa)

≤ C(ε
1
2 ‖cεa,1 − cεa,2‖L2((0,T )×Γ εzs) + ε

1
2 ‖cεs,1 − cεs,2‖L2((0,T )×Γ εzs)) .

(4.14)

Proof. We can reformulate Stokes-Darcy problem (4.1) as{
aε(vε − V̄ εD, ψ) + b(ψ, pε) = −aε(V̄ εD, ψ)− fε(ψ) for ψ ∈ L2(0, T ;Vε) ,
b(vε, q) = 0 for q ∈ L2(0, T ;Pε) ,

(4.15)

and apply the abstract theory of mixed problems, [17], to show the existence of a unique solution of (4.15).
Considering ψ ∈ L2(0, T ;Vεd) , using ψ1 ×n = 0 on (0, T )× Γ εzs and applying inequality (4.4), we obtain

aε(ψ,ψ) ≥ C
(
ε2‖ Sψ1‖2L2((0,T )×Ωεz) + ‖ψ2‖2L2((0,T )×Ωεa) + ‖ψ3‖2L2((0,T )×Ωεas) + ε‖ψ2 · n‖2L2((0,T )×Γ εzs)

)
≥ C‖ψ‖2L2(0,T ;Vε) ,

and conclude that aε(·, ·) is L2(0, T ;Vεd)-elliptic.
The bilinear forms aε(·, ·) and b(·, ·) are continuous with constants independent of ε, i.e. for ψ, ϕ ∈
L2(0, T ;Vε) and q ∈ L2(0, T ;Pε), applying Hölder’s inequality, we have

|aε(ψ,ϕ)| ≤ C
(
ε2‖ Sψ1‖L2((0,T )×Ωεz)‖ Sϕ1‖L2((0,T )×Ωεz) + ‖ψ2‖L2((0,T )×Ωεa)‖ϕ2‖L2((0,T )×Ωεa)

+ ‖ψ3‖L2((0,T )×Ωεas)‖ϕ3‖L2((0,T )×Ωεas) + ε‖ψ2 · n‖L2((0,T )×Γ εzs)‖ϕ2 · n‖L2((0,T )×Γ εzs)
)

≤ C‖ψ‖L2(0,T ;Vε)‖ϕ‖L2(0,T ;Vε) ,

(4.16)

and

|b(ψ, q)| ≤ (‖ divψ1‖L2((0,T )×Ωεz) + ‖divψ2‖L2((0,T )×Ωεa) + ‖ divψ3‖L2((0,T )×Ωεas))×
× (‖q1‖L2((0,T )×Ωεz) + ‖q2‖L2((0,T )×Ωεa) + ‖q3‖L2((0,T )×Ωεas)) ≤ ‖ψ‖L2(0,T ;Vε)‖q‖L2(0,T ;Pε) .

Now we shall prove that b(·, ·) satisfies the inf-sup condition. For any q ∈ L2(0, T ;Pε) \ {0} we shall
construct ψ ∈ L2(0, T ;Vε) \ {0} such that

b(ψ, q) ≥ C‖ψ‖L2(0,T ;Vε)‖q‖L2(0,T ;Pε) .

For given q = (q1, q2, q3) ∈ L2(0, T ;Pε) we define q̃1 ∈ L2
(
(0, T )×Ω

)
and q̃2 ∈ L2

(
(0, T )×Ωεs

)
as

q̃1 = q2 in (0, T )×Ωεa , q̃1 = q1 +
1

|Ωεz |
〈q3, 1〉Ωεas in (0, T )×Ωεz ,

q̃2 = q3 in (0, T )×Ωεas , q̃2 = − 1

|Ωεz |
〈q3, 1〉Ωεas in (0, T )×Ωεz .
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Then, due to 〈q̃1, 1〉Ω = 0 and 〈q̃2, 1〉Ωεs = 0, there exist ψ̃1 ∈ L2(0, T ;H1
0 (Ω)) and ψ̃2 ∈ L2(0, T ;H1(Ωεs)),

see [17, Corollary 2.4, Lemma 2.2] or [39, Lemma 2.4], such that

div ψ̃1 = q̃1 in Ω × (0, T ) , ψ̃1 = 0 on ∂Ω × (0, T ) ,

div ψ̃2 = q̃2 in Ωεs × (0, T ) , ψ̃2 · n = 0 on ∂Ωεs × (0, T ) ,

ψ̃2 × n = −ψ̃1 × n on Γ εzs × (0, T ) ,

and satisfy estimates

‖ψ̃1‖L2(0,T ;H1(Ω)) ≤ C‖q̃1‖L2((0,T )×Ω) ≤ C(‖q1‖L2((0,T )×Ωεz) + ‖q2‖L2((0,T )×Ωεa) + ‖q3‖L2((0,T )×Ωεas)) ,

‖ψ̃2‖L2(0,T ;H1(Ωεs))
≤ C(ε)‖q̃2‖L2((0,T )×Ωεs) ≤ C(ε)‖q3‖L2((0,T )×Ωεas) .

Notice that ψ̃1 ∈ L2(0, T ;H1
0 (Ω)) ensures ψ̃1×n ∈ L2(0, T ;H1/2(Γ εzs)) and, therefore, also the existence

of ψ̃2 with ψ̃2 × n = −ψ̃1 × n on Γ εzs × (0, T ), whereas t ∈ (0, T ) plays the role of a parameter.
We define ψ = (ψ1, ψ2, ψ3) by ψ1 = (ψ̃1 + ψ̃2)|Ωεz , ψ2 = ψ̃1|Ωεa , ψ3 = ψ̃2|Ωεas . The definitions of ψ̃1

and ψ̃2 imply that ψ2 · n = 0 on ∂Ω × (0, T ) and ψ3 · n = 0 on (∂Ωεs ∩ ∂Ω) × (0, T ). The properties
ψ̃1 ∈ L2(0, T ;H1(Ω)) and ψ̃2 · n = 0 on ∂Ωεs × (0, T ) and ψ̃2 × n = −ψ̃1 × n on Γ εzs × (0, T ) ensure
ψ1 ·n = ψ2 ·n on Γ εz ×(0, T ) and ψ1×n = 0 on Γ εzs×(0, T ), as well as ψ1 ·n = (ψ2+ψ3) ·n on Γ εas×(0, T )
and ψ3 · n = 0 on Γ εaw × (0, T ). The regularity of ψ̃1 and ψ̃2 implies also that ψ1 ∈ L2(0, T ;H1(Ωεz)),
ψ2 ∈ L2(0, T ;H(div, Ωεa)) and ψ3 ∈ L2(0, T ;H(div, Ωεas)). Thus ψ = (ψ1, ψ2, ψ2) ∈ W ε ∩ L2(0, T ;Vε)
with W ε = L2(0, T ;H1(Ωεz))×L2(0, T ;H1(Ωεa))×L2(0, T ;H1(Ωεas)) and W ε∩L2(0, T ;Vε) is continuously
embedded in L2(0, T ;Vε) and for ψ ∈W ε ∩ L2(0, T ;Vε) we have

‖ψ‖L2(0,T ;Vε) ≤ C‖ψ‖W ε ≤ C(ε)(‖q̃1‖L2((0,T )×Ω) + ‖q̃2‖L2((0,T )×Ωεs)) ≤ C(ε)‖q‖L2(0,T ;Pε) .

Here we used that q1 = (q̃1 + q̃2)|Ωεz , q2 = q̃1|Ωεa and q3 = q̃2|Ωεas . Thus, the definition of b(·, ·) yields

b(ψ, q) = 〈q̃1 + q̃2,div(ψ̃1 + ψ̃2)〉Ωεz ,T + 〈q̃1,div ψ̃1〉Ωεa,T + 〈q̃2,div ψ̃2〉Ωεas,T
= ‖q1‖2L2((0,T )×Ωεz) + ‖q2‖2L2((0,T )×Ωεa) + ‖q3‖2L2((0,T )×Ωεas) ≥ C1(ε)(‖ψ̃1‖L2(0,T ;H1(Ω))

+‖ψ̃2‖L2((0,T )×Ωεs) + ‖div ψ̃2‖L2((0,T )×Ωεs) + ε‖∇ψ̃2‖L2((0,T )×Ωεs))(‖q1‖L2((0,T )×Ωεz)

+‖q2‖L2((0,T )×Ωεa) + ‖q3‖L2((0,T )×Ωεas)) ≥ C2(ε)‖ψ‖L2(0,T ;Vε)‖q‖L2(0,T ;Pε) ,

and b(·, ·) satisfies the inf-sup condition

inf
q∈L2(0,T ;Pε),q 6=0

sup
ψ∈L2(0,T ;Vε),ψ 6=0

b(ψ, q)

‖ψ‖L2(0,T ;Vε)‖q‖L2(0,T ;Pε)
≥ C > 0 . (4.17)

The regularity of cεs, c
ε
a and Hölder’s inequality imply the boundedness in L2(0, T ;Vε) of fε(·)

|fε(ψ)| ≤ Cε(‖cεa‖L2((0,T )×Γ εzs) + ‖cεs‖L2((0,T )×Γ εzs))‖ψ2‖L2((0,T )×Γ εzs)

≤ Cε1/2(‖cεa‖L2((0,T )×Γ εzs) + ‖cεs‖L2((0,T )×Γ εzs))‖ψ‖L2(0,T ;Vε) .

The uniform boundedness of V εD in L2(Ωεa) and estimate (4.16) ensure the boundedness of the linear form
aε(V̄ εD, ·). Combining all estimates and applying Corollary I.4.1 in [17] imply the existence of a unique
solution (uε, pε) ∈ L2(0, T ;Vε)× L2(0, T ;Pε) of (4.1) for given cεa, c

ε
s ∈ L2((0, T )× Γ εzs).

For the proof of a priori estimates (4.12) we start with the estimates for vεz, v
ε
a and vεsp. We consider

ψ1 = vεz in Ωεz × (0, T ) and ψ2 = vεa − V εD in Ωεa × (0, T ), and ψ3 = vεsp in Ωεas × (0, T ) as test functions
in (4.1) and, using the divergence-free property, obtain

ε2‖ Svεz‖2L2((0,T )×Ωεz) + ‖vεsp‖2L2((0,T )×Ωεas) + ‖vεa‖2L2((0,T )×Ωεa) + ε‖vεa · n‖2L2((0,T )×Γ εzs)

≤ Cε(‖cεs‖2L2((0,T )×Γ εzs) + ‖cεa‖2L2((0,T )×Γ εzs)) + C‖V εD‖2L2(Ωεa)
.

(4.18)
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This together with ‖V εD‖L2(Ωεa)
≤ C‖VD‖H1(Ω), inequality (4.4) and vεz ×n = 0 on Γ εzs× (0, T ) imply the

estimates for vεi , with i = z, a, or sp, stated in (4.12).
For cεa,i and cεs,i and corresponding vεi with i = 1, 2, the linearity of the problem, the coercivity of aε(·, ·)
and the boundedness of fε(·) give

‖vε1 − vε2‖2L2(0,T ;Vεd)
≤ Cε(‖cεa,1 − cεa,2‖2L2((0,T )×Γ εzs) + ‖cεs,1 − cεs,2‖2L2((0,T )×Γ εzs)) . (4.19)

This will ensure the uniqueness of a weak solution of the coupled problem (3.1)-(3.10).

By Lemma 4 in [38] there exists a restriction operator RεΩεa : H1
0 (Ω)→ H1

0 (Ωεa)


ψ ∈ H1

0 (Ωεa) =⇒ RεΩεaψ = ψ ,

divψ = 0 =⇒ divRεΩεaψ = 0 ,

‖RεΩεaψ‖L2(Ωεa)
≤ C(‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)) ,

ε‖∇RεΩεaψ‖L2(Ωεa)
≤ C(‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)) .

(4.20)

As in [3, Theorem 2.3], to define RεΩεs : H1
0 (Ω)→ V (Ωεs), with V (Ωεs) = {v ∈ H1

0 (Ωεs) : v×n = 0 on Γ εas},
such that 

ψ ∈ V (Ωεs) =⇒ RεΩεsψ = ψ ,

divψ = 0 =⇒ divRεΩεsψ = 0 ,

‖RεΩεsψ‖L2(Ωεs)
≤ C(‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)) ,

ε‖∇RεΩεsψ‖L2(Ωεs)
≤ C(‖ψ‖L2(Ω) + ε‖∇ψ‖L2(Ω)) ,

(4.21)

we consider for u ∈ H1(Y ), as in [3, Lemma 3.4], a linear operator Q : H1(Y ) → H1(Y ), such that
Qu = 0 in Ya, and a modified problem

(w, q) ∈ H1(Ys)× L2(Ys)/R ,

−η ∆w +∇q = ∆u in Yz ∪ Yas ,
divw = div u+ 1

|Ys|
∫
Yaw

div u dy in Ys ,

w × n = 0 , [w · n] = 0 , [−2η (Swn) · n+ q] = 0 on Γas ,

w = Qu+
[

ζi
〈ζi,1〉∂Yi

∫
∂Yi

(u−Qu) · eidy
]
ei on ∂Ys,i ∩ ∂Y ,

w = 0 on ∂Ys \ ∂Y ,

(4.22)

where ∂Yi, with i = −3,−2,−1, 1, 2, 3, are the six faces of the cube Y , such that ∂Yk, ∂Y−k are
orthogonal to the unit vector ek, with k = 1, 2, 3. Here ζi ∈ C∞(Y ), with i = −3,−2,−1, 1, 2, 3,
satisfy ζi ≥ 0, ζi ≡/ 0 on ∂Yi, ζi ≡ 0 in Y a and on ∂Yj for j 6= i, and ζk|∂Yk ≡ ζ−k|∂Y−k for
k = 1, 2, 3. The existence of such ζi is ensured by the geometrical structure of Ys. Notice that
the construction of the boundary conditions on ∂Ys ensures that

∫
Ys

divw dy =
∫
∂Ys

w · n dy. The
existence of a unique solution of (4.22) can be shown by applying the abstract theory of mixed
problems, similar as for (4.15). Then RYs , given by RYsu = w, belongs to L(H1(Y );H1(Ys)) and in
each cell εY k ⊂ Ω, with k ∈ Z3, we define RεΩεsu = (RYsu(εy))(x/ε) for y ∈ Y k and x ∈ εY ks , respectively.

Equations (3.1) imply that ∇ps ∈ L2(0, T ;H−1(Ωεs)) and ∇pa ∈ L2(0, T ;H−1(Ωεa)). We define the
extensions of ∇pεs and ∇pεa into Ω using the duality argument and consider Fεs ∈ L2(0, T ;H−1(Ω)) and
Fεa ∈ L2(0, T ;H−1(Ω)) given by

〈Fεs , ψ〉H−1,H1 = 〈∇pεs, RεΩεsψ〉L2(0,T ;H−1(Ωεs)),L
2(0,T ;H1

0 (Ω
ε
s))

for ψ ∈ L2(0, T ;H1
0 (Ω)) ,

〈Fεa , ψ〉H−1,H1 = 〈∇pεa, RεΩεaψ〉L2(0,T ;H−1(Ωεa)),L
2(0,T ;H1

0 (Ω
ε
a))

for ψ ∈ L2(0, T ;H1
0 (Ω)) ,
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where 〈·, ·〉H−1,H1 := 〈·, ·〉L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω)). Applying the estimates for RεΩεs (ψ) and RεΩεa(ψ) in

(4.20) and (4.21), we obtain from (3.1) for ψ ∈ L2(0, T ;H1
0 (Ω)) that

〈Fεs , ψ〉H−1,H1 = 〈ε2η∇vεz,∇(RεΩεsψ)〉Ωεz ,T + 〈K−1sp vεsp, RεΩεsψ〉Ωεas,T
≤ C

(
ε‖∇vεz‖L2((0,T )×Ωεz) + ‖vεsp‖L2((0,T )×Ωεas)

) (
‖ψ‖L2(ΩT ) + ε‖∇ψ‖L2(ΩT )

)
,

(4.23)

where ΩT = (0, T )×Ω, and

〈Fεa , ψ〉H−1,H1 = 〈K−1a vεa, R
ε
Ωεa
ψ〉Ωεa,T ≤ C‖v

ε
a‖L2((0,T )×Ωεa)

(
‖ψ‖L2((ΩT ) + ε‖∇ψ‖L2(ΩT )

)
. (4.24)

Thus for each ε > 0 we have that Fεa and Fεs are bounded functionals on L2(0, T ;H1
0 (Ω)).

For ψ ∈ L2(0, T ;H1
0 (Ωεl )) with ψ ×n = 0 on Γ εas × (0, T ), where l = a, s, the properties of RεΩεl

imply

RεΩεl
(ψ) = ψ and Fεl |Ωεl = ∇pεl . We have also divRεΩεl

(ψ) = 0, for l = a, s, provided divψ = 0, and
the orthogonality property ensures that Fεs and Fεa are the gradients with respect to x of functions in
L2((0, T )×Ω). It means that Fεs and Fεa are continuations of ∇pεa and ∇pεs to Ω, respectively, and

Fεs = ∇P εs , Fεa = ∇P εa with P εs , P
ε
a ∈ L2((0, T )×Ω)/R .

We have also an explicit formula for the extension P εl , with l = s or a, see [3, 19], for t ∈ (0, T )

P εl (t, x) =

{
pεl (t, x) in Ωεl ,

1
|εY kl |

∫
εY kl

pεl (t, x)dx in εY k \ εY kl for k ∈ Z3 such that εY k ∩Ω 6= ∅ .

Applying now estimates (4.23), (4.24) together with (4.18) and (4.4), and using the estimate of L2-norm
by H−1-norm, see [17,39], give

||P εs ||L2(0,T ;L2(Ω)/R) ≤ C1||P εs ||L2(0,T ;H−1(Ω)) ≤ C2(ε‖∇vεz‖L2((0,T )×Ωεz) + ‖vεsp‖L2((0,T )×Ωεas))

≤ C3ε
1/2(‖cεs‖L2((0,T )×Γ εzs) + ‖cεa‖L2((0,T )×Γ εzs)) + C4‖V εD‖L2(Ωεa)

,

||P εa ||L2(0,T ;L2(Ω)/R) ≤ C1||P εa ||L2(0,T ;H−1(Ω)) ≤ C2‖vεa‖L2((0,T )×Ωεa)

≤ C3ε
1/2(‖cεs‖L2((0,T )×Γ εzs) + ‖cεa‖L2((0,T )×Γ εzs)) + C4‖V εD‖L2(Ωεa)

.

The last estimates together with ‖V εD‖L2(Ωεa)
≤ C‖VD‖H1(Ω) and the definition of P εs and P εa ensure

(4.13) and L2-estimates for pεs and pεa in (4.12). �

4.2. Existence and estimates for cεs, c
ε
a, ϑε

f,a, ϑε
b,a, ϑε

f,s and ϑε
b,s

Using classical results [1, 8] we can extend the domain of definition of solute concentrations cεl from a
connected domain Ωεl to Ω, where l = a, s.

Lemma 4.4. 1. For cl ∈W 1,p(Yl), with 1 < p <∞, there exists an extension c̃l to Y such that

‖c̃l‖Lp(Y ) ≤ Ξ‖cl‖Lp(Yl) and ‖∇c̃l‖Lp(Y ) ≤ Ξ‖∇cl‖Lp(Yl) .

2. There exists an extension c̃εl of cεl from W 1,p(Ωεl ) into W 1,p(Ω) such that

‖c̃εl ‖Lp(Ω) ≤ Ξ‖cεl ‖Lp(Ωεl ) and ‖∇c̃εl ‖Lp(Ω) ≤ Ξ‖∇cεl ‖Lp(Ωεl ) ,

where the constant Ξ depends on Y and Yl only.

Due to the geometric assumptions on Ωεa, holes in the domain do not touch each other, have smooth
boundary and do not touch the boundary ∂Ω, i.e. Γ εzs ∩ ∂Ω = ∅. Therefore, classical extension results
[1, 8] apply to cεa. Due to the structural assumptions, Ωεs is a connected domain in R3 with Lipschitz-
continous boundary ∂Ωεs . The geometrical assumptions on Ωεs ensure also that it is sufficient to extend
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cεs by reflection in tangential directions near the boundary ∂Ωεs ∩ ∂Ω. Therefore the extension results
apply also for cεs, see [1, 33], and the extension operator is defined globally in Ω.

For cεl ∈ H1(0, T ;H1(Ωεl )) we define ĉεl (·, t) := c̃εl (·, t) a.e. in time. Since the extension operator is
linear and bounded and Ωεl does not depend on t, we obtain ĉεl ∈ H1(0, T ;H1(Ω)) and

‖∂tĉεl ‖L2(ΩT ) ≤ Ξ‖∂tc
ε
l ‖L2((0,T )×Ωεl ), ‖∂t∇ĉεl ‖L2(ΩT ) ≤ Ξ‖∂t∇c

ε
l ‖L2((0,T )×Ωεl ) ,

where l = a, s. In the sequel, we shall identify cεl with its extension ĉεl .

Theorem 4.5. Under Assumption 1 there exists a nonnegative unique weak solution
(cεa, c

ε
s, ϑ

ε
f,a, ϑ

ε
b,a, ϑ

ε
f,s, ϑ

ε
b,s) of (3.2) and (3.5) with boundary conditions (3.3), (3.6), and (3.9) and

initial conditions (3.7) such that cεl ∈ H1(0, T ;H1(Ωεl )) ∩ L∞((0, T )×Ωεl ), ϑεj,l ∈ W 1,∞(0, T ;L∞(Γ εzs)),
with l = a, s, j = f, b, and satisfies the estimates

‖cεl ‖L∞(0,T ;L2(Ωεl ))
+ ‖∇cεl ‖L2((0,T )×Ωεl ) + ε

1
2 ‖cεl ‖L2((0,T )×Γ εzs) ≤ C ,

‖cεl ‖L∞((0,T )×Ω) ≤ C , ‖ϑεj,l‖L∞((0,T )×Γ εzs) ≤ C ,
(4.25)

and

‖∂tcεl ‖L∞(0,T ;L2(Ωεl ))
+ ‖∂t∇cεl ‖L2((0,T )×Ωεl ) + ε

1
2 ‖∂tcεl ‖L2((0,T )×Γ εzs) + ε

1
2 ‖∂tϑεj,l‖L2((0,T )×Γ εzs) ≤ C ,

‖∂tvεa‖L2((0,T )×Ωεa) + ‖∂tvεs‖L2((0,T )×Ωεs) + ε‖∂t∇vεz‖L2((0,T )×Ωεz) + ε
1
2 ‖∂tvεa · n‖L2((0,T )×Γ εzs) ≤ C ,

(4.26)

with j = f, b and l = a, s, and the constant C depends on M and is independent of ε.

Proof. The existence of a solution will be proven by showing the existence of a fix point of the operator B
defined on

(
C([0, T ];Hς(Ωεa))∩L∞((0, T )×Ωεa)

)
×
(
C([0, T ];Hς(Ωεs))∩L∞((0, T )×Ωεs)

)
, with 1/2 < ς < 1,

by (cε,na , cε,ns ) = B(cε,n−1a , cε,n−1s ) given as solutions of (4.2) and (4.3) with (ϑε,nf,l , ϑ
ε,n
b,l ) solving{

∂tϑ
ε,n
f,l = Rεl (t, x, ϑ

ε,n
f,l )− αεl (t, x)cε,n−1l ϑε,nf,l + βεl (t, x)ϑε,nb,l − γεf,l(t, x)ϑε,nf,l on Γ εzs × (0, T ) ,

∂tϑ
ε,n
b,l = αεl (t, x)cε,n−1l ϑε,nf,l − βεl (t, x)ϑε,nb,l − γεb,l(t, x)ϑε,nb,l on Γ εzs × (0, T ) ,

(4.27)

where l = a, s. For a given nonnegative cn−1,εl ∈ C([0, T ];Hς(Ωεl )) ∩ L∞((0, T ) × Ωεl ), with l = a, s,
due to the Lipschitz-continuity of the right-hand side of system (4.27), there exists a unique solution
ϑε,nj,l ∈ C1([0, T ];L2(Γ εzs)) of (4.27), with j = f, b and l = a, s. Using that initial values are nonnegative,

function Rεl (t, x, ξ) is nonnegative for nonnegative ξ, and cε,n−1l (t, x) ≥ 0 a.e. on [0, T ] × Γ εzs, we obtain
ϑn,εj,l (t, x) ≥ 0 a.e on [0, T ]× Γ εzs for j = f, b and l = a, s. Adding equations in (4.27) yields

∂t(ϑ
ε,n
f,l + ϑε,nb,l ) = Rεl (t, x, ϑ

ε,n
f,l )− γεf,l(t, x)ϑε,nf,l − γ

ε
b,l(t, x)ϑε,nb,l , for t ∈ [0, T ] and a.a x ∈ Γ εzs , (4.28)

where l = a, s. Considering the Lipschitz continuity of Rεl , the nonnegativity of ϑε,nj,l , the boundedness of

initial conditions and applying Gronwall’s inequality, we obtain the boundedness of ϑε,nj,l a.e. on [0, T ]×Γ εzs,
with j = f, b and l = a, s. The boundedness of cε,n−1l and ϑε,nj,l implies also the boundedness of ∂tϑ

ε,n
j,l

a.e. on [0, T ]× Γ εzs, whereas j = f, b and l = a, s.
Using Galerkin’s method and a priori estimates similar to those shown below, we obtain the existence

of a weak nonnegative solution cε,nl ∈ H1(0, T ;H1(Ωεl )) ∩ L∞((0, T ) × Ωεl ), for l = s, a, see [22]. The
embedding H1(0, T ;H1(Ωεl )) ⊂ C([0, T ];Hς(Ωεl )), for 1/2 < ς < 1, is compact and, by virtue of the
Schauder theorem, there exists a fix point of B, a solution (cεl , ϑ

ε
j,l) of the microscopic problem, where

j = f, b and l = a, s. In addition, we obtain boundedness of cεl (t, x) a.e. in [0, T ]×Ωεl and on [0, T ]×Γ εzs,
and cεl (t, x) ≥ 0 a.e. in [0, T ]×Ωεl and on [0, T ]×Γ εzs, together with ϑεj,l(t, x) ≥ 0 a.e. on [0, T ]×Γ εzs, where
j = f, b and l = a, s. This ensures also the boundedness of ∂tϑ

ε
j,l a.e. on [0, T ] × Γ εzs, as well as by ap-

plying (4.28) the uniform in ε boundedness of ϑεj,l a.e. on [0, T ]×Γ εzs, and thus the last estimate in (4.25).
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Now we shall prove the non-negativity of cε,nl , and thus of cεl , and the a priori estimates for cε,nl , and
therefore for cεl , uniformly in ε, where l = a, s. To show the non-negativity of cε,nl , with l = a, s we
take cεl,− = min{0, cε,nl } as test functions in (4.2) and (4.3), respectively. Considering the assumptions
on the coefficients and functions F εl , and the nonnegativity of ϑε,nj,l , with l = a, s and j = f, b, terms
on the right-hand side in (4.2) and (4.3) can be estimated by C1‖cεl,−‖L2((0,τ)×Ωεl ) for τ ∈ (0, T ]. Using

Gagliardo-Nirenberg-inequality, i.e. for φ ∈W 1,q(Ω)

‖φ‖Lp(Ω) ≤ CG
(
‖φ‖λLr(Ω)‖∇φ‖

(1−λ)
Lq(Ω) + ‖φ‖L1(Ω)

)
, (4.29)

where 1 ≤ r < p and 1 ≤ q ≤ p, with λ ∈ [0, 1] satisfies the relation 1/p = λ(1/r− 1/n) + (1− λ)1/q and
p ∈ [q, qn/(n− q)] for q < n, p ∈ [q,∞) for q = n, p ∈ [q,∞] for q > n, and considering extension of cεl,−,
defined in Lemma 4.4, we can estimate the advective term by

|〈HM (vεl )c
ε
l,−,∇cεl,−〉Ωεl ,τ | ≤

1

dl
‖HM (vεl )‖2L∞(0,τ ;L4(Ωεl ))

‖cεl,−‖2L2(0,τ ;L4(Ωεl ))
+
dl
4
‖∇cεl,−‖2L2((0,τ)×Ωεl )

≤ C
(
‖HM (vεl )‖8L∞(0,τ ;L4(Ωεl ))

+ ‖HM (vεl )‖2L∞(0,τ ;L4(Ωεl ))

)
‖cεl,−‖2L2((0,τ)×Ωεl )

+
dl
2
‖∇cεl,−‖2L2((0,τ)×Ωεl )

for τ ∈ (0, T ]. Considering uniform boundedness of ‖HM (vεl )‖L∞(0,T ;L4(Ωεl ))
≤ CvM , the nonegativity of

initial condition c0l and applying Gronwall’s inequality we obtain

‖cεa,−‖L∞(0,T ;L2(Ωεa))
+ ‖cεs,−‖L∞(0,T ;L2(Ωεs))

≤ 0 ,

which implies the nonnegativity of cε,nl a.e. in (0, T )×Ωεl , where l = a, s. For cε,nl ∈ H1(0, T ;H1(Ωεl )) we
obtain also that cε,nl ≥ 0 a.e. on [0, T ]×Γ εzs. Considering weak convergence of {cε,nl } in H1(0, T ;H1(Ωεl )),
as n→∞, we conclude that cεl (t, x) ≥ 0 a.e. in [0, T ]×Ωεl and a.e. on [0, T ]× Γ εzs.

Taking ϕ1 = cεa and ϕ2 = cεs as test functions in (4.2) and (4.3), using the nonnegativity of ϑεf,l and of
coefficients αεl , with l = a, s, assumptions on Fl, the first estimate in

ε‖cεl ‖2L2(Γ εzs)
≤ C

(
‖cεl ‖2L2(Ωεl )

+ ε2‖∇cεl ‖2L2(Ωεl )

)
,

ε‖cεl ‖L1(Γ εzs)
≤ C

(
‖cεl ‖L1(Ωεl )

+ ε‖∇cεl ‖L1(Ωεl )

)
,

(4.30)

see [27], considering that ε|Γ εzs| ≤ C independently of ε, and applying Hölder’s inequality, we obtain

‖cεl (τ)‖2L2(Ωεl )
+ (dl − ζε2)‖∇cεl ‖2L2((0,τ)Ωεl )

≤ 1

dl
‖HM (vεl )‖2L∞(0,τ ;L4(Ωεl ))

‖cεl ‖2L2(0,τ ;L4(Ωεl ))

+ C1‖cεl ‖2L2((0,τ)×Ωεl )
+ ‖c0l ‖2L2(Ωεl )

+ C2‖ϑεb,l−1‖2L∞((0,τ)×Γ εzs)

for τ ∈ (0, T ], with l = a, s, whereas a − 1 := s and s − 1 := a. Using the extension of cεl from Ωεl into
Ω, given by Lemma 4.4, and applying inequality (4.29) in the first term on the right-hand side imply

‖cεl (τ)‖2L2(Ω) + (dl/4− ζε2)‖∇cεl ‖2L2((0,τ)×Ω) ≤ ‖c
0
l ‖2L2(Ωεl )

+ C1‖ϑεb,l−1‖2L∞((0,T )×Γ εzs)

+C2

(
‖HM (vεl )‖8L∞(0,T ;L4(Ωεl ))

+ ‖HM (vεl )‖2L∞(0,T ;L4(Ωεl ))
+ 1
)
‖cεl ‖2L2((0,τ)×Ωεl )

.
(4.31)

Then, for all ε ≤ ε0, with some ε0 > 0, and ζ such that dl/4 − ζε20 ≥ d0 > 0, considering the regularity
assumption on initial data, the boundedness of ϑεb,l, where l = a, s, applying Gronwall’s Lemma in
inequality (4.31), and using the first inequality in (4.30), we obtain the first estimate in (4.25).

To show L∞-estimates for the extension of cεl intoΩ, given by Lemma 4.4, we shall apply Theorem II.6.1
from [22] stating that inequality ‖(cεl − S)+‖L∞(0,T ;L2(Ω)) + ‖∇(cεl − S)+‖L2(ΩT ) ≤ ζS‖Ωl,S(t)‖r̃Lq̃(0,T ),

for appropriate r̃, q̃, a positive constant ζ and Ωl,S(t) = {x ∈ Ω : cεl (t, x) > S} for a.a. t ∈ (0, T ), ensures
the corresponding estimate for the L∞-norm of cεl .
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We take (cεa − S)+ and (cεs − S)+ as test functions in (4.2) and (4.3). Considering the nonnegativity
of αεl (t, x), cεl (t, x) and ϑεf,l(t, x) for (t, x) ∈ (0, T )× Γ εzs, and inequalities (4.30), the boundary integrals
can be estimated by

ε〈βεl−1(t, x)ϑεb,l−1 − αεl (t, x)cεlϑ
ε
f,l, (c

ε
l − S)+〉Γ εzs ≤ sup

Γ εzs

(βεl−1(t, x)ϑεb,l−1)ε‖(cεl − S)+‖L1(Γ εzs)

≤ 1/2
(
Υl‖(cεl − S)+‖2L2(Ωεl )

+ dl‖∇(cεl − S)+‖2L2(Ωεl )
+ C2

Yl
Υl(1 + Υlε

2/dl)|Ωεl,S(t)|
)
, (4.32)

where l = a, s, with a − 1 = s, s − 1 = a, Ωεl,S(t) = {x ∈ Ωεl : cεl (t, x) > S} for a.a. t ∈ (0, T ) and
Υl = sup(0,T )×Γ εzs(β

ε
l−1(t, x)ϑεb,l−1). The Lipschitz continuity of Fl, with l = a, s, ensures

〈F εl (t, x, cεl ), (c
ε
l − S)+〉Ωεl ≤ 3CFl/2‖(cεl − S)+‖2L2(Ωεl )

+ (S2/CFl + CFl)|Ωεl,S(t)| . (4.33)

As next we shall estimate |〈HM (vεl )c
ε
l ,∇(cεl − S)+〉Ωεl ,T | with l = a, s. Using Hölder’s inequality yields

|〈HM (vεl )c
ε
l ,∇(cεl − S)+〉Ωεl ,T | ≤

dl
4
‖∇(cεl − S)+‖2L2((0,T )×Ωεl )

+
2

dl
‖HM (vεl )‖2L10(0,T ;L4(Ωεl ))

(
‖(cεl − S)+‖2L5/2(0,T ;L4(Ωεl ))

+ S2
(∫ T

0

|Ωεl,S(t)| 58 dt
) 4

5
)
.

Choosing ς = 1/30 we can estimate

‖(cεl − S)+‖2L5/2(0,T ;L4(Ωεl ))
≤ ‖(cεl − S)+‖2L5(1+ς)/2(0,T ;L4(1+ς)(Ωεl ))

(∫ T

0

|Ωεl,S(t)| 58 dt
) 4

5
ς
ς+1

.

Using imbedding result, see [22, Chapter II, Eq. (3.4)], and extension of cεl into Ω, we obtain

‖(cεl − S)+‖2L5(1+ς)/2(0,T ;L4(1+ς)(Ωεl ))
≤ ‖(cεl − S)+‖2L5(1+ς)/2(0,T ;L4(1+ς)(Ω))

≤ CΩ
(
‖(cεl − S)+‖2L∞(0,T ;L2(Ω)) + ‖∇(cεl − S)+‖2L2(0,T ;L2(Ω))

)
.

Considering ‖HM (vεl )‖2L10(0,T ;L4(Ωεl ))
≤ T 1

5 ‖HM (vεl )‖2L∞(0,T ;L4(Ωεl ))
≤ T 1

5CvM
2 we conclude

|〈HM (vεl )c
ε
l ,∇(cεl − S)+〉Ωεl ,T | ≤

dl
4
‖∇(cεl − S)+‖2L2((0,T )×Ωεl )

+
2

dl
T

1
5CΩCvM

2 × (4.34)[
S2
(∫ T

0

|Ωεl,S |
5
8 dt
) 4

5

+
(∫ T

0

|Ωεl,S |
5
8 dt
) 4

5
ς
ς+1
(
‖(cεl − S)+‖2L∞(0,T ;L2(Ω)) + ‖∇(cεl − S)+‖2L2(ΩT )

)]
.

We shall define

S = max
l=a,s

max{1, ‖c0l ‖L∞(Ω), Ξ
(
‖c0l ‖L1(Ω) + Υl|Γ ||Ω|+ CFl |Ω|

)
eCFlT , CFl , Υl},

where Ξ = Ξ(Y, Yl) is the constant from Lemma 4.4. The choice of S ensures that |Ωεl,S(t)| ≤ 1 and
|Ωl,S(t)| ≤ 1. Choosing

T̃ = min
l=a,s

min{[d2l /(16ΞCΩCvM
2|Ω|

ς
2ς+2 )]

5(ς+1)
5ς+1 , [dl/(8ΞCΩCvM

2|Ω|
ς

2ς+2 )]
5(ς+1)
5ς+1 , [4Υl+12CFl ]

−1, |Ω|− 5
8 } ,

combining estimates (4.32)-(4.34) and using the fact that |Ωεl,S(t)| ≤ 1 yield

‖(cεl − S)+‖2L∞(0,T̃ ;L2(Ω))
+ ‖∇(cεl − S)+‖2L2((0,T̃ )×Ω)

≤ S28Ξ/min{1, dl}
(

2T̃
1
5CvCΩM

2/dl + 1/CFl + 1 + C2
Yl

(1 + Υlε
2/dl)/2

)(∫ T̃

0

|Ωεl,S(t)| 58 dt
) 4

5

.
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Choosing q = 4(1 + ς) together with r = 5(1 + ς)/2 and using |Ωεl,S(t)| ≤ |Ωl,S(t)| ≤ 1, we obtain

‖(cεl − S)+‖L∞(0,T̃ ;L2(Ω)) + ‖∇(cεl − S)+‖L2((0,T̃ )×Ω) ≤ SΘ
(∫ T̃

0

|Ωl,S(t)|
r
q dt
) 2(1+ς)

r

,

where Θ = 8Ξ/min{1, dl}
(

2T̃
1
5CvCΩM

2/dl + 1/CFl + 1 + C2
Yl

(1 + Υlε
2/dl)/2

)
. Applying Theo-

rem II.6.1 in [22] yields

‖cεl ‖L∞((0,T̃ )×Ω) ≤ 2S[1 + 2
2ς+1

ς2 (CΩΘ)1+
1
ς T̃ 1+ 1

ς |Ω| 14 ]. (4.35)

Considering Tc = min
l=a,s

min{T̃ , d5l
(2CΩCvM2)5 , |Ω|

− ς
4(1+ς) [ 8CΩΞ

min{1,dl} [2 + 1
CFl

+
C2
Yl

2 (1 + Υl
ε2

dl
)]2

2+ς

ς+ς2 ]−1} implies

‖cεl ‖L∞((0,τ)×Ω) ≤ 4S for all τ ≤ Tc.

The iteration over time-intervals will then ensure the boundedness of cεl in (0, T )×Ω, and thus also the
boundedness of cεl in (0, T )×Ωεl , for l = a, s, and the second estimate in (4.25).

Using the estimates for cεl and ϑεj,l, with j = f, b and l = a, s, and considering ∂tϑ
ε
j,l as test functions

in (3.5), we conclude

ε1/2‖∂tϑεf,l‖L2((0,T )×Γ εzs) + ε1/2‖∂tϑεb,l‖L2((0,T )×Γ εzs) ≤ C1(1 + ε1/2‖cεl ‖L2((0,T )×Γ εzs)) ≤ C2 . (4.36)

Differentiating equations (3.1) and boundary conditions (3.8), (3.10) with respect to t, considering
(∂tv

ε
z, ∂tv

ε
a, ∂tv

ε
sp) as a test function, and applying Korn inequality (4.4) we obtain for τ ∈ (0, T ]

ε2‖∇∂tvεz‖2L2((0,τ)×Ωεz) + ‖∂tvεs‖2L2((0,τ)×Ωεs) + ‖∂tvεa‖2L2((0,τ)×Ωεa) + ε ‖∂tvεa · n‖2L2((0,τ)×Γ εzs)

≤ Cε
(
‖∂tcεs‖2L2((0,τ)×Γ εzs) + ‖∂tcεa‖2L2((0,τ)×Γ εzs)

)
.

(4.37)

Now we differentiate with respect to t equations (3.2) and use ∂tc
ε
a and ∂tc

ε
s as test functions. Estimates

(4.25) together with inequalities (4.29) and (4.30), estimates in Lemma 4.4, and Assumption 1 give

‖∂tcεl (τ)‖2L2(Ωεl )
+

∫ τ

0

‖∂t∇cεl ‖2L2(Ωεl )
dt ≤ C‖cεl ‖2L∞((0,T )×Ωεl )

∫ τ

0

‖∂tvεl ‖2L2(Ωεl )
dt+ ‖∂tcεl (0)‖2L2(Ωεl )

+C(1 + ‖HM (vεl )‖2L∞(0,τ ;L4(Ωεl ))
)

∫ τ

0

[
‖∂tcεl ‖2L2(Ωεl )

+ ε‖∂tϑεb,l−1‖2L2(Γ εzs)
+ ε‖∂tϑεf,l‖2L2(Γ εzs)

]
dt ,

where l = a, s with a − 1 := s and s − 1 := a. The regularity assumption on c0l ensures that
‖∂tcεl (0)‖L2(Ωεl )

≤ C‖c0l ‖H2(Ωεl )
, with l = a, s. Combining the last inequality together with (4.36) and

(4.37), using the boundedness of HM (vεl ) and inequality (4.30), choosing ε sufficient small, and applying
Gronwall’s inequality imply (4.26).

Uniqueness. Suppose there are two solutions of the problem. We denote cεl = cεl,1 − cεl,2 and ϑεj,l =
ϑεj,l,1 − ϑεj,l,2, with j = f, b and l = a, s, and choose ϕ1 = cεa in (4.2) and ϕ2 = cεs in (4.3)

‖cεl (τ)‖2L2(Ωεl )
+ 2(dl − ζ1)

∫ τ

0

‖∇cεl ‖L2(Ωεl )
dt ≤ Cζ1‖cεl,1‖2L∞((0,T )×Ωεl )

∫ τ

0

‖vεl,1 − vεl,2‖2L2(Ωεl )
dt

+Cζ1(1 + ‖HM (vεl,2)‖2L∞(0,τ ;L4(Ωεl ))
)

∫ τ

0

‖cεl ‖2L2(Ωεl )
dt+ Cζ2‖cεl,1‖2L∞((0,T )×Γ εzs)

∫ τ

0

ε‖ϑεf,l‖2L2(Γ εzs)
dt

+Cζ2

∫ τ

0

ε‖ϑεb,l−1‖2L2(Γ εzs)
dt+ ζ2

∫ τ

0

ε‖cεl ‖2L2(Γ εzs)
dt ,
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for any τ ∈ (0, T ], where a− 1 := s and s− 1 := a. For ϑεj,l, with j = f, b and l = a, s, we obtain

∂t‖ϑεf,l‖2L2(Γ εzs)
≤ C

[
(1 + ‖cεl,1‖L∞)‖ϑεf,l‖2L2(Γ εzs)

+ ‖ϑεf,l,2‖2L∞‖cεl ‖2L2(Γ εzs)
+ ‖ϑεb,l‖2L2(Γ εzs)

]
,

∂t‖ϑεb,l‖2L2(Γ εzs)
≤ C

[
‖cεl,1‖2L∞‖ϑεf,l‖2L2(Γ εzs)

+ ‖ϑεf,l,2‖2L∞‖cεl ‖2L2(Γ εzs)
+ ‖ϑεb,l‖2L2(Γ εzs)

]
.

Combining those estimates, using (4.14) and (4.30), boundedness of cεl and HM (vεl ), and applying Gron-
wall’s inequality yield

ε‖ϑεj,l‖2L∞(0,T ;L2(Γ εzs))
+ ‖cεl ‖2L∞(0,T ;L2(Ωεl ))

+ ‖vεl,1 − vεl,2‖2L2((0,T )×Ωεl )
≤ 0 .

Thus, cεl,1 = cεl,2, vεl,1 = vεl,2 a.e. in (0, T ) × Ωεl , and ϑεj,l,1 = ϑεj,l,2 a.e. on [0, T ] × Γ εzs, with l = a, s and
j = f, b. �

5. Derivation of macroscopic equations

We denote by ṽεi , for i = z, a, sp the extension by zero from (0, T ) × Ωεi into ΩT = (0, T ) × Ω, where
Ωεsp := Ωεas, and define vε = ṽεz + ṽεa + ṽεsp in ΩT .

Lemma 5.1. Under Assumption 1 there exist vz ∈ L2(ΩT ;H1
per(Yz)/R), va ∈ L2(ΩT × Ya), vsp ∈

L2(ΩT × Yas) and pa, ps ∈ L2(ΩT × Y ), with 〈pa(t, x, y), 1〉Ω×Ya + 〈ps(t, x, y), 1〉Ω×Ys = 0 for a.a.
t ∈ (0, T ), such that, up to a subsequence,

vεz → vz, vεa → va, vεsp → vsp two-scale ,

vεs → ṽz + ṽsp two-scale in ΩT × Ys ,
vε → v = ṽz + ṽa + ṽsp two-scale in ΩT × Y ,

ε∇vεz → ∇yvz two-scale in ΩT × Yz ,
P εa → pa , P

ε
s → ps two-scale in ΩT × Y ,

pεa → pa|ΩT×Ya two-scale in ΩT × Ya , pεs → ps|ΩT×Ys two-scale in ΩT × Ys ,

(5.1)

and 
P εa → 1

|Y |
∫
Y
pa dy , P εs → 1

|Y |
∫
Y
ps dy weakly in L2(ΩT ) ,

vε → v = 1
|Y |
∫
Yz
vz dy + 1

|Y |
∫
Ya
va dy + 1

|Y |
∫
Yas
vsp dy weakly in L2(ΩT ) ,

vεa · n→ va · n two-scale on ΩT × Γzs .
(5.2)

Proof. The convergences in (5.1) follows directly from estimates (4.12), (4.13) and (4.25) together with
Lemma 4.1 in [4] and the definition and compactness theorems for two-scale convergence, see [2, 29] or
Definition 5.5 and Theorem 5.7 in Appendix. Since ṽεi , for i = z, a, sp, are zero in Ω\Ωεi , also the two-scale
limits are equal to zero in Y \Yi, respectively. Applying two-scale limit in equality 〈pεa, 1〉Ωεa+〈pεs, 1〉Ωεs = 0
from the definition of the space Pε we obtain the stated relation for mean values of pa and ps. A priori
estimates (4.12), (4.13) and the relation between two-scale and weak limits, [2,4,29], ensure the first two
convergences in (5.2). The uniform in ε boundedness of ε1/2‖vεa ·n‖L2((0,T )×Γ εzs) implies that there exists
w ∈ L2(ΩT ×Γzs) such that vεa ·n→ w two-scale, see [28] or Definition 5.8 and Theorem 5.9 in Appendix.
Then div vεa = 0 in (0, T ) × Ωεa and two-scale convergence of vεa to va in ΩT × Ya ensure w = va · n
a.e. on ΩT × Γzs. �

We consider the extension of cεl from Ωεl into Ω, for l = a, s, as in Lemma 4.4, and identify cεl with its
extension. We denote by T εΓzs : Γ εzs → Ω×Γzs the boundary unfolding operator, see [10] or Definition 5.10
in Appendix. Here we shall use a shorted notation T εΓ (ψ) := T εΓzs(ψ).
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Lemma 5.2. Under Assumption 1 there exist functions cl ∈ H1(0, T ;H1(Ω)) ∩ L∞(ΩT ), c1l ∈
L2(ΩT ;H1

per(Yl)/R) and ϑj,l ∈ L∞(ΩT × Γzs) ∩ H1(0, T ;L2(Ω × Γzs)), with j = f, b and l = a, s,
such that, up to a subsequence,

cεl → cl weakly in H1(0, T ;H1(Ω)) , weakly- ∗ in L∞(ΩT ) ,

cεl → cl strongly in L2(0, T ;Hς(Ω)) , ς < 1 , ε1/2‖cεl − cl‖L2((0,T )×Γ εzs) → 0 ,

cεl → cl , ∂tc
ε
l → ∂tcl , ∇cεl → ∇cl +∇yc1l two-scale , (5.3)

ϑεj,l → ϑj,l , ∂tϑ
ε
j,l → ∂tϑj,l two-scale ,

T εΓ cεl → cl , T εΓ ϑεj,l → ϑj,l strongly in L2(ΩT × Γzs) .

Proof. The first two convergences are a direct consequence of the a priori estimates for cεl in (4.25)-(4.26)
and properties of the extension from Ωεl into Ω, with l = a, s.

The compact embedding H1(0, T ;H1(Ω)) ⊂ L2(0, T ;Hς(Ω)) for ς < 1 ensures the strong convergence
of cεa and cεs. Then, the strong convergence in L2(0, T ;Hς(Ω)), with 1/2 < ς < 1, and the estimate

ε1/2‖cεl ‖L2((0,T )×Γ εzs) ≤ C‖c
ε
l ‖L2(0,T ;Hς(Ωεl ))

, with l = a, s ,

see [27] for the proof, give the fourth convergence in (5.3). A priori estimates (4.25), (4.26) and com-
pactness theorems for two-scale convergence, see [2, 28, 29] or Theorem 5.7 and 5.9 in Appendix, imply
two-scale convergences stated in (5.3). Theorem 5.9 in Appendix ensures also that ϑj,l ∈ L∞(ΩT × Γzs).

The assumed structure of the initial data ϑ0,εj,l , i.e. T εΓ (ϑ0,εj,l )(x, y) = ϑ02j,l(y)T εΓ (ϑ01j,l(x)) and the strong

convergence in L2(Ω×Γzs) of T εΓ (ψ) for ψ ∈ L2(Ω), see [10], yield T εΓ (ϑ0,εj,l )→ ϑ0j,l strongly in L2(Ω×Γzs),
with j = f, b and l = a, s. The properties of the unfolding operator, see [10], give

‖T εΓ (cεl )− T εΓ (cl)‖L2(ΩT×Γzs) ≤ Cε
1/2‖cεl − cl‖L2((0,T )×Γ εzs) for l = a, s ,

and T εΓ (cl)→ cl strongly in L2(ΩT ×Γzs). Then, together with the fourth convergence in (5.3) we obtain
that T εΓ (cεl ) → cl strongly in L2(ΩT × Γzs), where l = a, s. Applying now the unfolding operator to the
equations in (3.5), using the convergence of cεa, cεs, and the equivalence between the two-scale convergence
of a sequence and the weak convergence of the corresponding unfolded sequence, see [27] or Lemma 5.11
in Appendix, we can show, in the same manner as in [27], that {T εΓ (ϑεj,l)}, with j = f, b and l = a, s, are

Cauchy sequences in L2(ΩT × Γzs) and conclude the last strong convergences stated in (5.3). �

Theorem 5.3. For the sequence of solutions (vεz,v
ε
a,v

ε
sp) and (pεz, p

ε
a, p

ε
sp) of microscopic problem (3.1),

(3.8), (3.10), we have vε → v weakly in L2(0, T ;H(div, Ω)), with vε = ṽεz + ṽεsp + ṽεa, extensions P εs → p
and P εa → p weakly in L2(0, T ;L2(Ω)/R) as ε → 0, and (v, p) ∈ L2(0, T ;H(div, Ω)) × L2(0, T ;L2

0(Ω)),
where L2

0(Ω) = {φ ∈ L2(Ω) : 〈φ, 1〉Ω = 0}, is the unique solution of the Darcy problem
v +K∇p = M(cs − ca) in (0, T )×Ω ,

div v = 0 in (0, T )×Ω ,

v · n = vD on (0, T )× ∂Ω ,

(5.4)

where the tensor K and vector M are defined in (5.13), and cs, ca are solutions of the macroscopic
equations (5.14)-(5.16).

Proof. The weak convergences of vε in L2(ΩT ) and of P εl in L2(0, T ;L2(Ω)/R), with l = a, s, follows
from Lemma 5.1. Using div vε ∈ L2(ΩT ) and div vε = 0 in ΩT , and applying the weak convergence of
vε we obtain for ψ ∈ C∞0 (ΩT )

0 = lim
ε→0
〈div vε, ψ〉Ω,T = lim

ε→0
〈vε,∇ψ〉Ω,T = 〈v,∇ψ〉Ω,T = 〈div v, ψ〉Ω,T . (5.5)
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For ψ ∈ C∞(ΩT ) we have

0 = lim
ε→0
〈div vε, ψ〉Ω,T = lim

ε→0

(
〈vε · n, ψ〉∂Ω,T − 〈vε,∇ψ〉Ω,T

)
= 〈vD, ψ〉∂Ω,T − 〈v,∇ψ〉Ω,T , (5.6)

and, together with div v = 0 in ΩT , given by (5.5), conclude v · n = vD on (0, T )× ∂Ω.
Considering ψ1, ψ2 ∈ C∞0 (ΩT ;C∞per(Y )) with ψ1(t, x, y) = 0 in Y \ Ys, such that ψ1 × n = 0 on Γas,

and ψ2(t, x, y) = 0 in Y \ Ya, for (t, x) ∈ ΩT , taking ψε(t, x) = ε(ψ1(t, x, x/ε), ψ2(t, x, x/ε), ψ1(t, x, x/ε))
as a test function in (4.1) and applying two-scale convergences of vεj , with j = z, a, sp and of pεl , with
l = a, s, stated in Lemma 5.1, yield

〈ps,divy ψ1〉Ω×Ys,T + 〈pa,divy ψ2〉Ω×Ya,T = 0 .

This implies that pl ∈ L2(ΩT ;H1(Yl)) with ∇ypl = 0 a.e. in ΩT × Yl, where l = a, s. Thus pl is
independent of y in ΩT × Yl and pl = pl(t, x) a.e. in ΩT × Yl, where l = a, s. Taking now ψε(t, x) =
ε(ψ1(t, x, x/ε), ψ1(t, x, x/ε), 0) with ψ1 ∈ C∞0 (ΩT ;C∞per(Y )) and ψ1(t, x, y) = 0 in Y as and ψ1×n = 0 on
Γz as a test function in (4.1) and letting ε→ 0 give

〈pa(t, x)− ps(t, x), ψ1(t, x, y) · n〉Ω×Γz,T = 0 .

Thus pa(t, x) = ps(t, x) a.e. in ΩT × Γz and pa(t, x) = ps(t, x) = p(t, x) a.e. in ΩT . From the relation
〈pa, 1〉Ω×Ya + 〈ps, 1〉Ω×Ys = 0 in Lemma 5.1 we obtain that 〈p(t, x), 1〉Ω = 0 for a.a. t ∈ (0, T ).

Now we consider ψε(t, x) = (ψ1(t, x, x/ε) + ψ2(t, x, x/ε), ψ1(t, x, x/ε), ψ2(t, x, x/ε)), where ψ1, ψ2 ∈
C∞0 (ΩT , C

∞
per(Y )) with ψ2 ·n = 0 on Γz ∪Γaw and ψ2×n = −ψ1×n on Γzs and divy ψ1 = 0 in ΩT ×Y ,

divy ψ2 = 0 in ΩT ×Ys as a test function in (4.1). The two-scale convergences in (5.1) and (5.2), and the
convergence of cεa and cεs on (0, T )× Γ εzs stated in (5.3) imply

〈2η Syvz,Sy(ψ1 + ψ2)〉Yz×ΩT − 〈p,divx(ψ1 + ψ2)〉Yz×ΩT + 〈K−1a (y)va, ψ1〉Ya×ΩT
−〈p, divx ψ1〉Ya×ΩT + 〈K−1sp (y)vsp, ψ2〉Yas×ΩT − 〈p,divx ψ2〉Yas×ΩT

+〈δ(y)(cs − ca) + κ(y)va · n, ψ1 · n〉Γzs×ΩT = 0 ,

(5.7)

where Syv = 1/2(∇yv +∇yvT ). Choosing ψ1 = 0, restricting ψ2 to Yz, i.e. ψ2 ∈ C∞0 (ΩT , C
∞
0 (Yz)), and

applying the integration by parts imply

〈−2η divy(Syvz) +∇xp, ψ2〉ΩT×Yz = 0 .

Since divy ψ2(t, x, y) = 0 in ΩT × Yz, there exists p1,z ∈ L2(ΩT , L
2
per(Yz)/R), see [17,19], such that

−2η divy(Syvz) +∇xp+∇yp1,z = 0 in ΩT × Yz . (5.8)

Similarly we obtain the existence of p1,a ∈ L2(ΩT , L
2
per(Ya)/R), p1,sp ∈ L2(ΩT , L

2
per(Yas)/R) and

K−1a va +∇xp+∇yp1,a = 0 in ΩT × Ya ,
K−1sp vsp +∇xp+∇yp1,sp = 0 in ΩT × Yas .

(5.9)

Considering div vεj ∈ L2((0, T )×Ωεj ) and div vεj = 0 in (0, T )×Ωεj , with j = z, a, sp and Ωεsp := Ωεas, we
obtain for ψ ∈ C∞0 ((0, T )×Ω;C∞0 (Yj)), where Ysp := Yas,

0 = lim
ε→0
〈div vεj , ψ(t, x, x/ε)〉Ωεj ,T = lim

ε→0
〈vεj ,∇xψ(t, x, x/ε) + ε−1∇yψ(t, x, x/ε)〉Ωεj ,T .

The two-scale convergence of vεj ensures lim
ε→0
〈vεj(t, x),∇yψ(t, x, x/ε)〉Ωεj ,T = 0 and then implies that

divy vz = 0 in ΩT × Yz, divy vsp = 0 in ΩT × Yas, and divy va = 0 in ΩT × Ya. Similarly, using div vε ∈
L2(ΩT ) and div vε = 0 in ΩT , the two-scale convergence of vε ensures divy v = 0 in ΩT × Y .
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Considering the two-scale convergence of vεz, v
ε
a, vεsp, and using the calculations similar to (5.5)-(5.6)

we can conclude vz · n = (va + vsp) · n on ΩT × Γas and vz · n = va · n on ΩT × Γz.
Inequality (4.30), applied to vεz, with Γ εzs and Ωεz , and the estimates for ‖vεz‖L2((0,T )×Ωεz) and

ε‖∇vεz‖L2((0,T )×Ωεz) in (4.12) ensure the uniform in ε boundedness of ε1/2‖vεz‖L2((0,T )×Γ εzs). Then the
compactness theorem for the two-scale convergence on oscillating boundaries, see [28] or Theorem 5.9
in Appendix, together with the two-scale convergence of ε∇vεz and div vεz = 0, as well as divy vz = 0,
implies the two-scale convergence of vεz to vz on ΩT × Γzs and ensures vz × n = 0 on ΩT × Γzs.

Applying in (5.7) integration by parts and accounting equations (5.8) and (5.9) yield

〈2η(Syvzn) · n− p1,z, ψ1 · n〉ΩT×Γz + 〈2η(Syvzn) · n− p1,z, (ψ1 + ψ2) · n〉ΩT×Γas
+〈p1,a + δ(y)(cs − ca) + κ(y)va · n, ψ1 · n〉ΩT×Γzs + 〈p1,sp, ψ2 · n〉ΩT×Γas = 0

for ψ1, ψ2 ∈ C∞0 (ΩT , C
∞
per(Y )) with ψ2 ·n = 0 on Γz ∪Γaw and ψ2×n = −ψ1×n on Γzs, divy ψ1 = 0 in

ΩT ×Y , divy ψ2 = 0 in ΩT ×Ys. Thus, we conclude that vz ∈ L2(ΩT ;H1
per(Yz)/R), vsp ∈ L2(ΩT ×Yas),

va ∈ L2(ΩT × Ya), and p ∈ L2(0, T ;L2
0(Ω)), p1,z ∈ L2(ΩT ;L2

per(Yz)/R), p1,sp ∈ L2(ΩT ;L2
per(Yas)/R),

and p1,a ∈ L2(ΩT ;L2
per(Ya)/R), satisfy equations

−η∆yvz +∇xp+∇yp1,z = 0 in ΩT × Yz ,
K−1a va +∇xp+∇yp1,a = 0 in ΩT × Ya ,
K−1sp vsp +∇xp+∇yp1,sp = 0 in ΩT × Yas ,

divy vz = 0 in ΩT × Yz , divy va = 0 in ΩT × Ya , divy vsp = 0 in ΩT × Yas ,

(5.10)

with boundary and transmission conditions

−2η(Syvzn) · n+ p1,z − p1,a = δ(y)(cs − ca) + κ(y)va · n on ΩT × Γzs ,
−2η(Sy vzn) · n+ p1,z = p1,sp on ΩT × Γas ,
vz · n = va · n+ vsp · n , vz × n = 0 on ΩT × Γas ,
vz · n = va · n , vz × n = 0 on ΩT × Γz ,
vsp · naw = 0 on ΩT × Γaw .

(5.11)

Considering the structure, linearity, and uniqueness of a solution of equations (5.10) and (5.11), the proof
of which follows the same lines as for microscopic model (4.1), we can express vl and p1,l, with l = z, a
or sp, in the form
vz = −

3∑
i=1

∂xip w
i
z + (cs − ca)rz , va = −

3∑
i=1

∂xip w
i
a + (cs − ca)ra , vsp = −

3∑
i=1

∂xip w
i
sp ,

p1,z = −
3∑
i=1

∂xip π
i
z + (cs − ca)ζz , p1,a = −

3∑
i=1

∂xip π
i
a + (cs − ca)ζa , p1,sp = −

3∑
i=1

∂xip π
i
sp ,

(5.12)

where wi
l, π

i
l , with l = z, a and sp, are solutions of the unit cell problems
−η∆yw

i
z +∇yπiz = ei in Yz ,

K−1a wi
a +∇yπia = ei in Ya ,

K−1sp w
i
sp +∇yπisp = ei in Yas ,

divyw
i
z = 0 in Yz , divyw

i
a = 0 in Ya , divyw

i
sp = 0 in Yas ,

with transmission conditions

−2η(Syw
i
zn) · n+ πiz − πia = κ(y)wi

a · n on Γzs ,

−2η(Syw
i
zn) · n+ πiz = πisp on Γas ,

wi
z · n = (wi

a +wi
sp) · n , wi

z × n = 0 on Γas ,

wi
z · n = wi

a · n , wi
z × n = 0 on Γz ,

wi
sp · naw = 0 on Γaw ,
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and rl, ζl, with l = z and a, solve the following problem

−η∆yrz +∇yζz = 0 in Yz ,

K−1a ra +∇yζa = 0 in Ya ,

−2η(Sy rzn) · n+ ζz − ζa = δ(y) + κ(y) ra · n on Γzs ,

ra · n = rz · n , rz × n = 0 on Γzs ,

divy rz = 0 in Yz , divy ra = 0 in Ya .

Averaging the expressions in (5.12) over Yz, Ya and Yas, respectively, using the definition of v and
defining the vector M and the permeability tensor K = (Kij)1≤i,j≤3 by

M =
1

|Y |

(∫
Yz

rzdy +

∫
Ya

rady
)
, Kij =

1

|Y |

(∫
Yz

wi
z,jdy +

∫
Ya

wi
a,jdy +

∫
Yas

wi
sp,jdy

)
, (5.13)

we obtain the equation for v stated in (5.4). �

For concentrations of a osmotically active solute and transporters on the cell membrane we obtain the
following macroscopic problem

Theorem 5.4. The sequence of solutions of the microscopic model (3.2)-(3.7), (3.9) converges to a unique
solution cl ∈ H1(0, T ;H1(Ω)) ∩ L∞(ΩT ), ϑj,l ∈ H1(0, T ;L2(Ω × Γzs)) ∩ L∞(ΩT × Γzs), with l = a, s,
j = f, b, of the initial boundary values problem in ΩT = (0, T )×Ω
∂tca − div(Aa∇ca − ĤM (va) ca) = 1

|Ya| 〈Fa(t, y, ca), 1〉Ya + 1
|Ya| 〈βs(t, y)ϑb,s − caαa(t, y)ϑf,a, 1〉Γzs ,

(Aa∇ca − ĤM (va) ca) · n = 0 on (0, T )× ∂Ω,
ca(0, x) = c0a(x) in Ω,

(5.14)

and
∂tcs − div(As∇cs − ĤM (vs) cs) = 1

|Ys| 〈Fs(t, y, cs), 1〉Ys + 1
|Ys| 〈βa(t, y)ϑb,a − csαs(t, y)ϑf,s, 1〉Γzs ,

(As∇cs − ĤM (vs) cs) · n = 0 on (0, T )× ∂Ω ,

cs(0, x) = c0s(x) in Ω ,

(5.15)

where homogenized diffusion coefficients Aa, As and velocity fields ĤM (va), ĤM (vs) are defined by
(5.20) with va and vs given as solutions of (5.10), (5.11), and transporter concentrations satisfy ordinary
differential equations, for l = a, s,

∂tϑf,l = Rl(t, y, ϑf,l)− αl(t, y)clϑf,l + βl(t, y)ϑb,l − γf,l(t, y)ϑf,l on ΩT × Γzs ,
∂tϑb,l = αl(t, y)clϑf,l − βl(t, y)ϑb,l − γb,l(t, y)ϑb,l on ΩT × Γzs ,
ϑf,l(0, x, y) = ϑ0f,l(x, y), ϑb,l(0, x, y) = ϑ0b,l(x, y) on Ω × Γzs .

(5.16)

Proof. To derive macroscopic equations we shall apply two-scale and strong convergences stated in
Lemmata 5.1 and 5.2. The Lipschitz continuity of Fl and the strong L2-convergence of cεl imply
F εl (t, x, cεl ) → Fl(t, y, cl) two-scale in ΩT × Yl, with l = a, s. Taking ϕ(t, x) = ψ1(t, x) + εψ2(t, x, x/ε)
with ψ1 ∈ L2(0, T ;H1(Ω)) and ψ2 ∈ C∞0 (ΩT ;C∞per(Y )) as a test function in (4.2) and (4.3), applying
two-scale convergences and strong convergence in L2(ΩT ) of cεl , together with two-scale convergences for
vεl and ϑεj,l, where j = f, b and l = a, s, and the linearity of HM , considering appropriate subsequences
and passing to the limit as ε→ 0, imply

|Yl|〈∂tcl, ψ1〉ΩT + 〈Dl(t, y)(∇cl +∇yc1l )−HM (vl(t, x, y))cl,∇ψ1 +∇yψ2〉ΩT×Yl
= 〈βl−1(t, y)ϑb,l−1 − αl(t, y)cl ϑf,l, ψ1〉ΩT×Γzs + 〈Fl(t, y, cl), ψ1〉ΩT×Yl .

(5.17)
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where l = a, s, with a− 1 := s and s− 1 := a. Choosing now ψ1 = 0 in (5.17) we obtain

〈Dl(t, y)(∇cl +∇yc1l )−HM (vl) cl,∇yψ2〉ΩT×Yl = 0 , with l = a, s ,

for all ψ2 ∈ C∞0 (ΩT ;C∞per(Y )) and can conclude that c1l depends linearly on ∇cl and cl. Thus we can
consider an Ansatz

c1l (t, x, y) =

3∑
i=1

∂cl(t, x)

∂xi
ωil(y) + cl(t, x)zl(t, x, y) ,

where l = a, s, and ωil and zl are solutions of the cell problems
−divy(Dl(t, y)∇yωil) =

∑3
k=1 ∂ykDl,ki(t, y) in (0, T )× Yl ,

−Dl(t, y)∇yωil · n =
∑3
k=1Dl,ki(t, y)nk in (0, T )× (∂Yl \ ∂Y ) ,

ωil and Dl(t, y)∇yωil · n|∂Yl∩∂Y are Y − periodic ,

(5.18)

and 
divy

(
Dl(t, y)∇yzl −HM (vl)

)
= 0 in ΩT × Yl,(

Dl(t, y)∇yzl −HM (vl)
)
· n = 0 on ΩT × (∂Yl \ ∂Y ) ,

zl and Dl(t, y)∇yzl · n|∂Yl∩∂Y are Y − periodic .

(5.19)

Next, setting ψ2 = 0 in (5.17) yields macroscopic equations (5.14)-(5.15) for cs and ca, where homogenized
diffusion matrices and macroscopic velocity fields are given by

Al,ij(t) =
1

|Yl|

∫
Yl

(
Dl,ij(t, y) +

3∑
k=1

Dl,ik(t, y)∂ykω
j
l (y)

)
dy for l = a, s ,

ĤM (vl)i(t, x) =
1

|Yl|

∫
Yl

HM (vl(t, x, y))i dy −
1

|Yl|

∫
Yl

3∑
k=1

Dl,ik(t, y)∂ykzl(t, x, y) dy ,

(5.20)

whereas wjl and zl are solutions of the unit cell problems (5.18) and (5.19).

Applying the boundary unfolding operator T εΓ to (3.5) and testing with ψ ∈ L2(ΩT × Γzs) give

〈∂tT εΓ (ϑεf,l), ψ〉Ω×Γzs,T = 〈Rl(t, y, T εΓ (ϑεf,l)), ψ〉Ω×Γzs,T − 〈αl(t, y)T εΓ (ϑεf,l)T εΓ (cεl ), ψ〉Ω×Γzs,T
+〈βl(t, y)T εΓ (ϑεb,l)− γf,l(t, y)T εΓ (ϑεf,l), ψ〉Ω×Γzs,T ,

〈∂tT εΓ (ϑεb,l), ψ〉Ω×Γzs,T = 〈αl(t, y)T εΓ (ϑεf,l)T εΓ (cεl )− (βl(t, y) + γb,l(t, y))T εΓ (ϑεb,l), ψ〉Ω×Γzs,T .
(5.21)

Considering the strong convergence of T εΓ (ϑεf,l) and T εΓ (cεl ) stated in (5.3), the equivalence between
two-scale convergence and the weak convergence of the unfolded sequence, and Lipschitz continuity of Rl,
with l = a, s, we can pass in (5.21) to the limit as ε→ 0 and obtain equations (5.16). The assumption on
the initial data, the similar arguments as in the proof of Lemma 5.2, the two-scale convergence of cεl , ϑ

ε
j,l

and of their time derivatives ensure that the initial conditions for cl and ϑj,l, with l = a, s and j = f, b,
are satisfied in L2(Ω) and in L2(Ω × Γzs), respectively. The proof of the uniqueness follows along the
same lines as for the microscopic model and implies the convergence of the entire sequence of solutions
of the microscopic problems. �

Appendix

We recall here the definition of the two-scale convergence and unfolding operator.
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Definition 5.5. [2, 29] A sequence {uε} ⊂ L2((0, T ) × Ω) is said to two-scale converge to a limit u0 ∈
L2((0, T )×Ω × Y ) iff for any φ ∈ L2((0, T )×Ω,Cper(Y )) we have

lim
ε→0

∫ T

0

∫
Ω

uε(t, x)φ(t, x, x/ε)dxdt =
1

|Y |

∫ T

0

∫
Ω

∫
Y

u0(t, x, y)φ(t, x, y)dydxdt .

Theorem 5.6. [2,29] From each bounded sequence {uε} in L2((0, T )×Ω) we can extract a subsequence,
which two-scale converges to u0 ∈ L2((0, T )×Ω × Y )

Theorem 5.7. [2, 29] 1. Let {uε} be a bounded sequence in L2(0, T ;H1(Ω)), which converges weakly
to u ∈ L2(0, T ;H1(Ω)). Then, there exists u1 ∈ L2(ΩT ;H1

per(Y )/R) such that, up to a subsequence, uε

two-scale converges to u and ∇uε two-scale converges to ∇u+∇yu1.
2. Let {uε} and {ε∇uε} be bounded sequences in L2(ΩT ). Then, there exists u0 ∈ L2(ΩT , H

1
per(Y )/R)

such that, up to a subsequence, uε and ε∇uε two-scale converge to u0 and ∇yu0, respectively.

Definition 5.8. [28] A sequence {wε} ⊂ L2((0, T ) × Γ εzs) is said to two-scale converge to a limit w ∈
L2((0, T )×Ω × Γzs) iff for every ψ ∈ L2((0, T )×Ω;Cper(Γzs)) we have

lim
ε→0

ε

∫ T

0

∫
Γ εzs

wε(t, x)ψ(t, x, x/ε)dγxdt =
1

|Y |

∫ T

0

∫
Ω

∫
Γzs

w(t, x, y)ψ(t, x, y)dγydxdt .

Theorem 5.9. 1.[28] For each sequence {wε} ⊂ L2((0, T )× Γ εzs) with ε
1
2 ‖wε‖L2((0,T )×Γ εzs) bounded uni-

formly in ε, there exists a subsequence and w ∈ L2((0, T )×Ω × Γzs) such that the subsequence two-scale
converges to w.
2.[27] If {wε} is bounded in L∞((0, T )× Γ εzs), then the limit w ∈ L∞((0, T )×Ω × Γzs).

Definition 5.10. [10] 1. For any function φ Lebesgue-measurable on the perforated domain Ωεl , the
unfolding operator T εYl : Ωεl → Ω × Yl, l = a, s, is defined by

T εYl(φ)(x, y) =

{
φ(ε
[
x
ε

]
Y

+ εy) a.e. for y ∈ Yl, x ∈ Ω̃εint ,
0 a.e. for y ∈ Yl, x ∈ Ω \ Ω̃εint ,

where k := [xε ] denotes the unique integer combination, such that x − [xε ] belongs to Yl, and Ω̃εint =

Int(∪k∈Z3{εY k, εY k ⊂ Ω}). We note that for w ∈ H1(Ω) it holds that T εYl(w|Ωεl ) = T εY (w)|Ω×Yl .
2. For any function φ Lebesgue-measurable on oscillating boundary Γ εl , l = zs, a, s, the boundary
unfolding operator T εΓl : Γ εl → Ω × Γl, is defined by

T εΓl(φ)(x, y) =

{
φ(ε
[
x
ε

]
Y

+ εy) a.e. for y ∈ Γl, x ∈ Ω̃εint ,
0 a.e. for y ∈ Γl, x ∈ Ω \ Ω̃εint .

Lemma 5.11. [27] If {ψε} ⊂ L2((0, T ) × Γ εzs) converges two-scale to ψ ∈ L2((0, T ) × Ω × Γzs) and
{T εΓzs(ψ

ε)} ⊂ L2((0, T )×Ω × Γzs) converges weakly to ψ∗ in L2((0, T )×Ω × Γzs), then ψ = ψ∗ a.e. in
(0, T )×Ω × Γzs.
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