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Methods We modified Richards’ equation to incor-
porate root-oriented preferential flow of soil moisture. 
Using the finite element method and Bayesian optimi-
sation, we developed a pipeline to calibrate our model 
with respect to a given root system.
Results When applied to simulated root distribu-
tions, our model produced pore-water pressure profiles 
which agreed with those derived from experimental 
saturated hydraulic conductivity values of soils veg-
etated with willow and grass. Agreement improved for 
simulated root distributions where root segments were 
oriented in a more realistic way, suggesting that the 
hydraulic characteristics of vegetated soils are a con-
sequence of root-oriented preferential flow.
Conclusion By incorporating root-oriented prefer-
ential flow, our model improves the ability to describe 
and analyse water infiltration through vegetated soil. 
This could help optimise irrigation, forecast flood 
events and plan landslide prevention strategies.

Keywords Richards equation · Infiltration in 
vegetated soil · Root-soil interactions · Root-oriented 
preferential flow · Bayesian optimisation

Introduction

Vegetated soils often exhibit higher hydraulic con-
ductivity values than fallow soils (Leung et al. 2018). 
Furthermore, the influence of root systems on the 
hydraulic conductivity of a soil has been reported 

Abstract 
Purpose There is strong experimental evidence that 
root systems substantially change the hydraulic prop-
erties of soil. However, the mechanisms by which 
they do this remain largely unknown. In this work, 
we made the hypothesis that a preferential flow of 
soil moisture occurs in directions which follow the 
orientation and distribution of roots within the soil, 
and that this phenomenon alters soil moisture flow 
patterns.
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to vary among plant species (Song et  al. 2017). 
This indicates that the impact of a certain root sys-
tem on infiltration may depend upon specific traits, 
for example root distribution and branching angle. 
However, the precise mechanism by which the soil’s 
hydraulic properties are changed by plant roots is not 
well characterised.

Several studies have shown the presence of root 
systems to be associated with a preferential flow (PF) 
of moisture through soil (Luo et  al. 2019; Holden 
2005). When using dye to trace the patterns of water 
infiltration beneath a tropical rainforest, Noguchi 
et  al. (1997) found that dye accumulated along the 
axes of plant roots, thus indicating a PF that follows 
the orientation of roots. Noguchi et  al. (1999) con-
cluded that this PF is induced by zones of more fri-
able soil, and that the locations of these zones are 
determined by the position and orientation of roots 
within the soil. Figure 1 gives an illustration of this 
phenomenon. A number of experimental studies have 
found that root activity changes the porosity of the 
Rhizosphere and other regions of soil close to roots 
(Dexter 1991; Bruand et al. 1996; Feeney et al. 2006). 
There are several factors which could contribute to 
this. One explanation is that the penetration of grow-
ing roots fragments and loosens previously compact 
regions of soil (Angers and Caron 1998). Addition-
ally, it has been shown that mucilage exuded by roots 
causes the wetting and drying patterns of surround-
ing soil to change. This is also said to cause increased 
soil fragmentation (Caron et al. 1992). Furthermore, 

roots, and associated decaying matter, can serve as 
a food source for underground fauna, whose activ-
ity may also cause fragmentation of the nearby soil 
(Angers and Caron 1998).

Unfortunately, experimental studies investigat-
ing root-oriented PF, and the resultant impact on 
a soil’s hydraulic properties, are lacking (Ghestem 
et  al. 2011). Traditional measures of a vegetated 
soil’s hydraulic conductivity only consider vertical 
moisture transport, and neglect the contribution of 
PF induced by individual roots. Electrical Resistivity 
Tomography allows access to 3-dimensional mois-
ture distributions, providing richer information about 
the impact of root systems on soil hydraulics (Beff 
et  al. 2013). However, such techniques require spe-
cialised equipment and, at present, access is limited. 
Modelling and simulation based investigations of PF 
often involve dual-porosity models (Gerke and Van 
Genuchten 1993). These models comprise of an equa-
tion for PF occurring in a network of macropores, 
coupled with an equation for moisture transport in the 
bulk soil. They do not, however, explicitly account 
for the architecture of the macropore network, or the 
fact that this may be determined by the distribution 
and orientation of roots within the soil (Noguchi et al. 
1999). With these points in mind, the 3 objectives of 
this study are:

 (i) To develop the PF model for soil moisture 
transport that explicitly incorporates root-ori-
ented PF, under the assumption that representa-

Fig. 1  An illustration of root-oriented preferential flow (PF). 
a Fallow soil domain with no PF occurring. b Vegetated soil 
domain with PF occurring. c Representative volume of the 

vegetated soil domain, composed of a volume of bulk soil 
(blue), and a volume of soil in which root-oriented PF is occur-
ring (red)
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tive volumes of the domain are composed of 
a volume of bulk soil and a volume of soil in 
which root-oriented PF occurs, see Fig. 1c.

 (ii) Define and demonstrate how the PF model is 
calibrated using experimental data.

 (iii) Investigate the capacity of the PF model to 
recreate experimental results, hence providing 
support to the hypothesis that PF is a contrib-
uting factor to water infiltration in vegetated 
soils.

We integrated the PF model into a software pipe-
line, which linked root system simulation, volumet-
ric root density construction, finite-element approxi-
mation of partial differential equations, and model 
calibration, in order to simulate 3-dimensional pore-
water pressure profiles within vegetated soils. Using 
this pipeline, with the experimental data of Leung 
et al. (2018), we provided evidence that root-oriented 
PF is a contributing factor to the hydraulic prop-
erties of a vegetated soil. It should be noted that in 
this work we do not include root water uptake in the 
model we develop. This is because the experimen-
tal data we used to calibrate our model also did not 
consider uptake. We intend to incorporate root water 
uptake into future versions of the PF model.

Materials and methods

The PF model

Richards’ equation, Richards (1931),

is the classic equation for moisture transport through 
fallow unsaturated soil. This equation defines the 
change with time of soil moisture content 𝜃  (L3L− 3), 
where the flux q  (LT− 1) is induced by a negative gra-
dient in hydraulic potential and given by the Darcy-
Buckingham law, Darcy (1856) and Buckingham 
(1907),

Here Ks  (LT− 1) is the saturated hydraulic conduc-
tivity of the soil and the variable h (L) is the pres-
sure head, related to pore-water pressure p (P) by 
the equation p = ρgh, where ρ  (ML− 3) is the density 

(1)�t�(h) + �⋅� = 0 in Ω × (0, T],

(2)� = −Ks�(h)�(h + x3).

of water and g  (LT− 2) is gravitational acceleration. 
The function κ defines the relationship between the 
soil’s hydraulic conductivity and the pressure head 
h. In Richards’ equation (1), the soil domain Ω ⊂ℝ3 
is  assumed to have Lipschitz continuous boundary 
∂Ω, and T > 0 is a final time. Spatial coordinates are 
denoted as x = (x1,x2,x3) ∈Ω and x3 is positive in the 
upward direction. The constitutive relations in Rich-
ards’ equation (1) and the Darcy-Buckingham law 
(2) are the soil moisture retention function 𝜃 and the 
hydraulic conductivity function κ. The formulas of 
Van Genuchten (1980)

are popular choices in experimental studies of water 
flow through soil, and analysis of Richards’ equation 
(Radu et al. 2008; Leung et al. 2018). In the moisture 
retention function (3) the residual and saturated mois-
ture contents are given by 𝜃r and 𝜃s  (L3L− 3) respec-
tively, and α  (L− 1), n > 1 (−) and m = 1 − 1/n are 
shape parameters. The values of all 5 of these param-
eters depend upon the soil type under consideration. 
In the hydraulic conductivity function (4), the param-
eter l is linked to pore connectivity (−).

We assume the soil domain Ω is such that all 
representative volumes are composed of a bulk soil 
volume, uninfluenced by root activity, and a volume 
of soil closer to roots through which root-oriented 
PF occurs. Therefore, to formulate a model for soil 
moisture transport which incorporates root-oriented 
PF, we propose a decomposition of the macro-
scopic soil moisture flux into a component for the 
unoriented flow occurring in bulk soil (Fig. 1c blue 
arrows) and the oriented flow occuring in regions 
close to roots (Fig. 1c red arrows):

Here ψ : Ω → [0,1) is a function describing vol-
umetric root density, which increases and decreases 
with the level of root abundance, therefore giv-
ing a continuous approximation of the distribu-
tion of root mass within the soil. The matrix func-
tion H : Ω →ℝ3×3is termed the “flow-anisotropy” 

(3)�(h) = �r +
�s−�r

(1+|�h|n)m ,

(4)�(h) =
(

�(h)−�r

�s−�r

)l

[
1 −

(
1 −

(
�(h)−�r

�s−�r

) 1

m

)m
]2

,

(5)�̃ = (1 − 𝜓)� + H�.
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matrix and causes soil moisture flux to be increased 
in directions parallel to nearby roots. Further-
more, the extent of this oriented preferential flow, 
induced by H, increases in regions of soil that are 
closer to roots, and also increases with increasing 
lateral surface area of nearby roots. This action of 
the flow-anisotropy matrix H is justified firstly by 
the fact that the low radial hydraulic conductiv-
ity of root tissue forms a barrier to water uptake 
(Frensch and Steudle 1989; Naseer et  al. 2012), 
thus causing moisture flow to be diverted away 
from directions perpendicular to the root axis. Sec-
ondly, due to root activity altering pore distribu-
tion, increasing soil fragmentation and changing 
wetting and drying patterns, the hydraulic conduc-
tivity of soil regions that are close to roots is often 
enhanced (Feeney et  al. 2006; Angers and Caron 
1998; Carminati et al. 2010). These 2 factors com-
bine to support the hypothesis, modelled by the 
action of the flow-anisotropy matrix H, that soil 
moisture flow is enhanced in directions parallel to 
the axes of nearby roots. The explicit formulation 
of both the volumetric density function ψ and the 
flow-anisotropy matrix H, for a given root system, 
shall be described in the remainder of this section. 
However, from this high level description alone, it 
can be seen from Eq. 5 that the macroscopic flux �̃ 
is formulated so that in regions of higher root abun-
dance PF is increased in the direction of roots, and 
in regions of low root abundance soil moisture flux 
closely resembles the isotropic Darcy-Buckingham 
flux (2).

To formulate the volumetric root density ψ and 
the flow-anisotropy matrix H for a given root system 
ℜ ⊂ Ω , it is assumed that the root system can be dis-
cretised into a union of Nℜ segments ℜ =

⋃Nℜ

i=1
ℜi . 

First consider a single root segment ℜ = ℜ1 ⊂ Ω , as 
seen in Fig. 2a. The centres and radii of the circular 
ends of the segment are a1, b1, and ra1 , rb1 respectively. 
The length, midpoint, volume and lateral surface area 
of the segment are denoted by �1 , β1, V1 and S1 respec-
tively. A normalised lateral surface area is defined as 
S1 = S1/Smax , where Smax is the maximum possible lat-
eral surface area of any segment for a given root sys-
tem, and is determined by the criteria of the discretisa-
tion process. Using these dimensions, the volumetric 
root density ψ is formulated so that it is proportional to 
the probability density function f1 of the multivariate 
normal distribution N(�1, C̃1) . The covariance matrix 

C̃1 is determined so that the principal axes of variation 
are oriented along the root segment, with variances 
proportional to the length and radius of the segment. 
This is achieved by setting C̃1 = R1C1R

−1
1

 , where

and R1 is the rotation matrix such that R1(0,0,1)⊤ 
produces the unit vector parallel to the segment ℜ1 . 
Rotation matrices such as R1 are computed as in 
Rodrigues (1840) (supplementary material). To also 
ensure that the volumetric density function integrates 
over the domain to give the volume occupied by the 
root system i.e. ∫

Ω
�dx = V1 , the full formulation of 

the volumetric density function ψ is

The volumetric density ψ is therefore a Gaussian func-
tion which has its peak at the midpoint β1 of the root seg-
ment ℜ1 , a spread in the radial directions of the segment 
that is proportional to the segment’s average radius, and 
a spread in the axial direction of the root segment that is 
equal to the segment’s length. The result of this formula-
tion is illustrated in Fig. 2b and shows how the volumet-
ric root density function ψ gives a continuous approxima-
tion of the root segment ℜ1 in the soil domain Ω.

To define the flow-anisotropy matrix H for the 
root segment ℜ1 , we must consider how the flux 
of soil moisture is affected by this single root seg-
ment. With this in mind, the matrix A1 is defined 
such that for any vector 𝜁 = (𝜁1, 𝜁2, 𝜁3)

⊤ ∈ ℝ
3,  the 

operation A1ζ increases the magnitude of the vertical 
component:

Here, ca > 1 is defined as the “facilitation” constant 
and it can be seen that the operation R1A1(ca)R

−1
1
� 

increases the magnitude of ζ in the axial direction of 
the segment ℜ1 . The flow-anisotropy matrix associ-
ated with the root segment ℜ1 is therefore computed 
as the product of the corresponding volumetric root 
density ψ (7), and the matrix A1 rotated in the root 
segment’s direction:

(6)C1 =

⎛⎜⎜⎝

ra1 + rb1 0 0

0 ra1 + rb1 0

0 0 �1

⎞⎟⎟⎠
,

(7)� = V1f1

(
∫

Ω

f1(x)dx

)−1

.

(8)A1(ca) =

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 ca(1 + S1)

⎞⎟⎟⎠
.
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This means that the operation H(ca;x)q has the 
effect of modifying the magnitude of the component of 
the Darcy-Buckingham flux q (2) that is parallel to the 
axial direction of root segment ℜ1 . Furthermore, due 
to multiplication by the volumetric root density ψ, the 
extent of this modification is greater in regions closer to 
the root segment ℜ1 , and also increases for larger val-
ues of the facilitation constant ca and segment lateral 
surface area S1. The zone of influence of the individual 
root segment ℜ1 , on the orientation and magnitude of 

(9)H(ca;x) = �(x)R1A1(ca)R
−1
1
, for x ∈ Ω. soil moisture flow, increases with the length and radii 

of the segment. This is because the spread of the asso-
ciated Gaussian density function ψ is determined by the 
covariance matrix C̃1 , the entries of which are propor-
tional to the segment’s dimensions. As an example, the 
macroscopic flux �̃(ca;x) = (1 − 𝜓(x))� + H(ca;x)� 
for a segment at  45∘ from the downward x3 axis, as seen 
in Fig. 2a, b, exhibits PF in a direction of  45∘ from the 
downward x3 axis in regions close to the root segment. 
However, in regions away from the segment, less PF 
is exhibited and the macroscopic flux more closely 
resembles the isotropic Darcy-Buckingham flux.

Fig. 2  Examples of the volumetric root density function and 
the effect of the flow-anisotropy matrix for specific root sys-
tems. a A root system made of a single segment ℜ1 . b The 
volumetric density function ψ1 that is constructed for ℜ1 and 
arrows showing the effect of the associated flow-anisotropy 
matrix H on soil moisture flow, i.e. the arrows show ((1 − 
ψ(x)) + H(ca;x))q, assuming a unit downward Darcy-Buck-

ingham flux of q = (0,0,− 1)⊤. c A root system of a Maritime 
Pine tree, discretised into multiple segments. d The volumetric 
density function ψ constructed for the Maritime Pine root sys-
tem, and arrows showing the effect of the associated flow-ani-
sotropy matrix H on a unit downward Darcy-Buckingham flux 
q = (0,0,− 1)⊤

Plant Soil (2022) 478:709–729 713
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This principle can be extended to complex root 
systems that are discretised into multiple segments 
ℜ =

⋃Nℜ

i=1
ℜi where Nℜ is the total number of segments. 

Each root segment ℜi then defines its own volumetric 
density function ψi and flow anisotropy matrix Hi(ca; ⋅), 
and these can be superposed to define global functions 
for the volumetric root density ψ, and the flow-anisotropy 
matrix H, corresponding to the entire root system:

This method of constructing the volumetric den-
sity function ψ and flow-anisotropy matrix H is a type 
of kernel based method. It has been shown for these 
methods that increasing the number of kernels used, 
and decreasing their size, causes the density estima-
tors to converge to the distributions they are designed 
to estimate (Silverman 2018). The approach described 
in this work uses kernel functions ψi that are defined 
using the geometry of the root segments ℜi to which 
they uniquely correspond. Furthermore, the overlap-
ping supports of the kernel functions corresponding 
to connected root segments ensures that there are no 
noticeable transitions in density function value at the 
connection points between root segments. This con-
struction method therefore yields a volumetric density 
function ψ that gives a physical representation of the 
whole root system, and integrates over the soil domain 
to give the volume occupied by the full root system. 
An illustration of ψ for a real root system is shown 
in Fig. 2c, d. It can be seen from the definition of the 
flow-anisotropy matrix for the full root system (10), 
that H(ca;x)q aggregates the modifications that are 
made to the Darcy-Buckingham flux q by each com-
ponent flow-anisotropy matrix Hi(ca;x). This means the 
macroscopic flux �̃ in Eq. 5 behaves like the isotropic 
Darcy-Buckingham flux in regions of low root abun-
dance, but that PF is induced in the axial direction of 
nearby roots as root abundance increases, see Fig. 2d. 
As with the single segment root system, the zone of 
influence of a multi-segment root system depends upon 
the dimensions of the component segments. The larger 
the radii and lengths of the segments, the farther reach-
ing their influence on the orientation and magnitude 
of soil moisture flow. As a result, if there are many 
large root segments, distributed relatively uniformly 
throughout the domain, then some degree of root-ori-
ented PF will be induced in most regions of the soil.

(10)

�(x) =

Nℜ∑
i=1

�
i
(x) and H(c

a
;x) =

Nℜ∑
i=1

H
i
(c

a
;x) for x ∈ Ω.

The PF equation corresponding to a multiple-root 
system is then formulated as

Despite the hypothesis that roots induce PF in direc-
tions parallel to their axes, the root tissue itself remains 
an obstacle to soil moisture transport (Frensch and 
Steudle 1989). This is incorporated into the PF  equa-
tion (11) through the factor of η(x) = 1 − ψ(x). In 
numerical simulations and analysis of the PF equation 
(11) we considered a soil domain Ω = A ×L  , where 
A ⊂ ℝ

2  has  Lipschitz continuous boundary �A and 
L =

{
x3 ∈ ℝ ∶ D < x3 < 0

}
 . To formulate the full PF 

model we equip the PF equation (11) with boundary and 
initial conditions

where j denotes the flux at the boundaries (in the case 
of the PF model � = 𝜂(x)�̃ ) and n denotes the outward 
unit normal vector. The soil surface is Γ1 = A × {0} , 
where A = A ∪ �A . The lateral boundaries of the soil 
column are Γ2 = �A ×L  and the base of the soil col-
umn is Γ3 = A × {D} . The Neumann boundary condi-
tion qin < 0 on Γ1 reflects the rate of infiltration into the 
soil surface and we assume no-flux conditions on the 
lateral surfaces of the soil domain Ω. The Dirichlet con-
dition on the lower boundary Γ3 imposes that the base of 
the soil column is at the interface between the soil and 
the water table. These choices of conditions mean the 
model is well disposed to comparison with the experi-
mental data of Leung et  al. (2018). However, more 
general choices of boundary conditions would also be 
admissible, and could be easily integrated into our cali-
bration pipeline.

Calibration of the PF model

Experimental data and the benchmark model

In the work of Leung et al. (2018), effective saturated 
hydraulic conductivities K∗

s
 were obtained for soils veg-

etated by willow and Festulolium grass root systems, 
see Table 1.

(11)
𝜕t
(
𝜂(x)𝜃(h)

)
+ �⋅

(
𝜂(x)�̃(ca;x)

)
= 0 in Ω × (0, T].

(12)

� ⋅ � = qin x ∈ Γ1, t ∈ (0, T],

� ⋅ � = 0 x ∈ Γ2, t ∈ (0, T],

h = 0 x ∈ Γ3, t ∈ (0, T],

h(x, 0) = h0(x) x ∈ Ω,
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This allows the formulation of the equation of the 
benchmark model for the influence of root systems on 
water infiltration through soil

with

Here the influence of the root system on the infiltra-
tion through Ω is incorporated by way of an experimen-
tally obtained, depth dependent, saturated hydraulic 
conductivity

In this formulation (15), the value x∗
3
< 0 is the 

depth that the root system reaches and K∗
s
> 0 is the 

experimentally observed saturated hydraulic conduc-
tivity of the vegetated soil (Table  1). Equation  13 of 
the benchmark model does not directly incorporate 
the influence of root-induced PF on water infiltration. 
However, the K∗

s
 values for the saturated hydraulic 

conductivity of vegetated soil are experimental obser-
vations, and solution profiles can therefore be used as 
a benchmark to calibrate the value of the facilitation 
constant ca in the PF model (11), (12). Due to this, we 
consider (13) of the benchmark model over the same 
soil domain Ω and assign the same boundary and ini-
tial conditions as given in Eq. 12, with the flux given 
by � = �̂.

Formulating the PF model for incomplete root system 
data

For the willow and grass root systems studied by 
Leung et al. (2018), discretisations into unions of Nℜ 
segments ℜ =

⋃Nℜ

i=1
ℜi , described in the subsection 

“The PF model”, are unavailable. This means that the 
volumetric density function ψ and the flow-anisotropy 
matrix H, cannot be directly computed to formulate the 

(13)𝜕t𝜃(h) + �⋅�̂(x) = 0, in Ω × (0, T],

(14)�̂(x) = −K̂s(x3)𝜅(h)�(h + x3).

(15)K̂s(x3) =

{
K∗
s

if x3 ∈
[
x∗
3
, 0
]
,

Ks if x3 ∈
[
D, x∗

3

)
.

corresponding parametrisation of the PF model (11), 
(12). However, the total root length, rooting depth, and 
distribution of root diameters are provided for each 
root system. As a result, we used a root system simu-
lator (Algorithm 1), to construct distributions of wil-
low and grass root segments which agree with these 
measurements. Algorithm  1 constructs a list of root 
segments whose start and end points are uniformly 
distributed throughout the section of the soil domain 
that lies above the recorded rooting depth (Leung et al. 
2018). For each segment, the azimuthal angle 𝜗i on 
the horizontal x1 − x2 plane is drawn uniformly from 
the interval [0,2π]. The polar angle φi of each segment 
from the upward x3 axis is drawn from the interval 
[
�

2
,�] , with �i =

�

2
 giving a horizontal root segment 

and φi = π giving a root segment pointing vertically 
downwards. In setting up simulations, we chose either 
to let all segment polar angles be drawn from a uni-
form distribution U(

�

2
,�) or to draw them all from a 

truncated normal distribution TN(�, �,
�

2
,�) . Draw-

ing from a truncated normal distribution means that 
the segments are more likely to have polar angles φi 
from the upward x3 axis that are close to some mean 
value � ∈ [

�

2
,�] . The value of the standard deviation 

� ∈ [0.01,
�

2
] determines the extent to which segment 

polar angles vary from this mean. The third and fourth 
parameters �

2
 and π in TN(�, �,

�

2
,�) , state the interval 

from which segment polar angles can be drawn (Burk-
ardt 2014). When the polar angles φi, of root segments 
from the upward x3 axis, are distributed uniformly 
from horizontal to vertical, �i ∼ U(

�

2
,�) , the resulting 

root distribution is referred to as uniform. However, 
when polar angles φi follow a truncated normal dis-
tribution, �i ∼ TN(�, �,

�

2
,�) , the root distribution is 

referred to as truncated normal with mean � and stand-
ard deviation σ.

Formally, Algorithm 1 constructs an array M ∈ ℝ
Nℜ×8 , 

where the entries (Mi,1,Mi,2,Mi,3) ∈ Ω give the centre point of 
the proximal end of segment ℜi , the entry Mi,4 is the diam-
eter of the proximal end, the entries (Mi,5,Mi,6,Mi,7) ∈ Ω give 
the centre point of the distal end of the segment and Mi,8 is 

Table 1  Rooting depth 
of each plant studied by 
Leung et al. (2018) and the 
corresponding effective 
saturated hydraulic 
conductivities K∗

s
 of the 

rooted zone

Species Willow Grass

Plant age (weeks) 2 4 6 8 2 4 6 8

Rooting depth, |x∗
3
| (m) 0.256 0.450 0.630 0.800 0.172 0.367 0.450 0.500

K
∗
s
  (md− 1) 0.435 0.860 1.503 2.212 0.187 0.530 0.660 1.140
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the diameter of the distal end. Furthermore, if segment polar 
angles from the x3 axis are drawn from the truncated normal 
distribution TN(�, �,

�

2
,�) , then the probability P(a ≤ φ ≤ 

b) that a polar angle φ lies between values a and b, is given 
by

where

Here fN  and FN  are the probability density 
function and cumulative density function of the 
parent normal distribution N(�, �) respectively 
(Burkardt 2014). The while loop in lines 12 and 
13 of Algorithm 1 states the procedure if the dis-
tal end point (Mi,5,Mi,6,Mi,7) of a candidate root 
segment lies outwith the lateral boundary �A of 
the soil domain Ω. Namely, the azimuthal 𝜗i and 
polar φi angles of the segment are redrawn from 
their respective distributions to generate a new end 
point (Mi,5,Mi,6,Mi,7). This step is repeated until 
(Mi,5,Mi,6,Mi,7) ∈  Ω. In a similar way, the while 
loop in line 3 of Algorithm 1 ensures that the dis-
tance between the experimentally observed root-
ing depth x∗

3
 and the deepest distal endpoint in the 

simulated root distribution is less than some preset 
acceptable tolerance δ.

P(a ≤ 𝜑 ≤ b) = �
b

a

fTNd𝜑, for
𝜋

2
≤ a < b ≤ 𝜋,

fTN

�
𝜑, 𝜎,

𝜋

2
,𝜋;𝜑

�
=

⎧⎪⎨⎪⎩

0 if 𝜑 <
𝜋

2
,

fN(𝜑,𝜎;𝜑)

FN(𝜑,𝜎;𝜋)−FN

�
𝜑,𝜎;

𝜋

2

� if
𝜋

2
≤ 𝜑 ≤ 𝜋,

0 if 𝜑 > 𝜋.

Calibration pipeline

To calibrate the value of the facilitation constant ca in 
the PF model (11), (12) against the experimental data 
in Table 1, we first set the initial and boundary condi-
tions (12), and values of the other parameters in the 
PF  equation (11), to match the conditions reported 
in Leung et  al. (2018). The soil column Ω = A ×L  
has depth D = − 2m, and circular end surfaces 
A =

{
(x1, x2) ∈ ℝ

2 ∶ x2
1
+ x2

2
< r2

Ω

}
 , of radius rΩ 

= 0.025m. We considered a simulation time of 2 days 
(d), where the water infiltration rate through the upper 
surface was gin = −0.01md−1 , with qin = η(x)gin in 
the PF model (11), (12), and qin = gin in the bench-
mark model (13), (12). The saturated and residual 
water contents were 𝜃s = 0.383  (m3m− 3), and 𝜃r = 0.17 
 (m3m− 3) respectively, with α = 1.47m− 1 and n = 1.43. 
The saturated hydraulic conductivity in the PF model 
(11), (12) and for fallow soil in the benchmark model 
(13), (12), was Ks = 0.187md−1 , and the experimen-
tal values for the saturated hydraulic conductivity of 
vegetated soil K∗

s
  (md− 1) in the benchmark model 

(13), (12), were taken from Table 1. The initial pres-
sure head profile in both models was set to hydrostatic 
equilibrium, with an initial pore-water pressure of 
− 20kPa at the soil surface Γ1, and 0 at the interface 
between the soil and the water table Γ3. The root distri-
bution simulator (Algorithm 1) was then used to gen-
erate willow and grass root distributions that agreed 
with the total root length, rooting depth and diameter 
distribution recorded by Leung et  al. (2018). Willow 
root distributions after 8 weeks growth were simulated 
using 25000 segments of the same length. So, with a 
total willow root length of 47.1m, this meant a seg-
ment length of 0.001884m. Each segment in simulated 
grass root distributions was also given this length, 
so the total 8 week grass root length of 63.1m meant 
that grass distributions were composed of 33492 
root segments. For both 8 week old grass and wil-
low plants, Leung et al. (2018) state the percentage of 
total root length which fell in the following root diam-
eter ranges: 0 − 0.0001m, 0.0001 − 0.0002m, 0.0002 
− 0.0003m, 0.0005 − 0.001m, 0.001 − 0.002m, 0.002 
− 0.003m and 0.003 − 0.005m. This provided empiri-
cal cumulative distribution functions for the radii of 
root segments of both species. Using these distribu-
tion functions in Algorithm  1, the interval to which 
the radius of each segment belonged was randomly 
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assigned, and each radius was drawn uniformly from 
its corresponding interval. We initially simulated wil-
low and grass root distributions where the polar angles 
of root segments from the positive vertical axis x3 are 
uniformly distributed between horizontal and verti-
cally downwards. The 8 week old willow root system 
had a smaller total root length than the 8 week old 
grass (Leung et al. 2018), yet the willow root system 
reached greater depths within the soil. To reflect this, 
we also simulated root distributions where the polar 
angles of root segments from the positive vertical axis 
x3 were likely to be closer to π (vertically downwards) 
for willow and �

2
 (horizontal) for grass. This was 

achieved by drawing segment polar angles φi from 
truncated normal distributions: TN(�w, �w,

�

2
,�) for 

willow and TN(�g, �g,
�

2
,�) for grass. The mean val-

ues for the distributions of segment polar angles from 
the upward x3 axis were set to �w between 3�

4
 and π for 

willow, and �g between �
2
 and 

3�

4  for grass. The values 
of σw and σg determined the standard deviation of seg-
ment polar angles from these means, for willow and 
grass plants respectively. As in the infiltration experi-
ment conducted by Leung et  al. (2018), we assumed 
that these root distributions were static over the 2 day 
infiltration scenario. The volumetric root density func-
tion ψ and the flow-anisotropy matrix H were then 
constructed for each simulated root distribution, and 
the PF model (11), (12) was parametrised, in accord-
ance with the experimental conditions. For numeri-
cal solutions to the benchmark model (13), (12) and 
the PF model (11), (12), we used the first-order con-
formal finite element method with an implicit Euler 
discretisation in time. The finite element mesh was 
comprised of tetrahedra, where the minimum circum-
radius of a component tetrahedron was 0.0145m and 
the maximum was 0.0275m. The time-step size in the 
implicit Euler method was 0.01 days. For linearisation 
of the soil moisture retention function 𝜃 and hydrau-
lic conductivity κ, we used an L-scheme (List and 
Radu 2016) with constant L = 0.067 (supplementary 
material). Calibration of the PF model (11), (12) for 
the optimal value of the facilitation constant ca then 
required the minimisation of a cost function u(ca) 
which evaluates the difference between numerical 
solutions of the PF model (11), (12) and the bench-
mark model (13), (12), for a given value of facilita-
tion constant ca, see the next subsection for details. 
These cost functions cannot be expressed analytically, 
their derivatives are hard to obtain and their convexity 

properties are unknown. A classical approach to mini-
mising functions such as these is Powell’s method 
which is a line search algorithm (Brent 2013). Evalu-
ations of the cost functions involve time intensive 
steps, i.e. numerically solving nonlinear PDEs. Con-
sequently, Powell’s method requires long computation 
times to find minimisers, and a maximum number of 
function evaluations cannot be set a priori. This moti-
vates the use of Bayesian optimisation which does not 
require derivatives of the cost function and efficiently 
explores the parameter space. Furthermore, the num-
ber of function evaluations performed can be fixed a 
priori (see supplementary material for details).

This framework of formulation and optimisation 
provides a pipeline to calibrate the PF model and 
generate simulations of moisture transport through 
soil which incorporate PF oriented by the roots of 
a root system (Fig. 3). The pipeline takes as input a 
discretisation of a root system into segments, and the 
method in the subsection titled “The PF model” is 
employed to construct the corresponding volumetric 
root density function ψ and flow-anisotropy matrix 
H, then parametrise the PF model (11), (12). The 
evolution of pore-water pressure over time, through 
the vegetated soil, is simulated by numerically solv-
ing the PF model (11), (12) given the hydraulic prop-
erties of the soil, an initial pressure distribution and 
specific infiltration conditions. By employing Bayes-
ian optimisation to minimise the relevant cost func-
tion (see the next subsection), the pipeline calibrates 
the PF model (11), (12) with respect to the saturated 
hydraulic conductivity of the soil vegetated by the 
root system, see e.g. Table 1. The parameter values 
which minimise the cost function are given as the 
output of the pipeline, along with the numerical solu-
tions to the corresponding calibrated PF model (11), 
(12).

The finite-element scheme was implemented using 
the FEniCS library (Alnæs et  al. 2015) for Python 
3. Applications of Algorithm 1 and the methods for 
constructing the volumetric root density function ψ 
and the flow-anisotropy matrix H were carried out 
using the NumPy and SciPy libraries (Harris et  al. 
2020; Virtanen et  al. 2020). Bayesian optimisation 
was implemented with the scikit-optimise library for 
Python 3 (Head et al. 2018), and Powell’s method was 
carried out using the optimize module of the SciPy 
library. Simulations were visualised using Paraview 
(Ahrens et al. 2005).
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Testing the calibration pipeline and the capacity of 
the PF model to replicate experimental results

We used the PF model (11), (12) to test the following 
questions:

Q1 Is the calibration pipeline capable of identifying

(i) the optimal facilitation constant  ca when 
parametrising the PF model (11), (12) for a 
specific simulated root distribution?

Fig. 3  The calibration pipeline for the PF model (11), (12). Red arrows indicate the pipeline of the standard Richard’s equation. 
Green arrows indicate the pipeline of the PF model

Plant Soil (2022) 478:709–729718
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(ii) the optimal values of (�, �) with which to 
simulate a root distribution, and the opti-
mal facilitation constant ca so that the cor-
responding parametrisation of the PF model 
(11), (12) reflects experimental results? 
Here � is the mean and � is the standard 
deviation of the truncated normal distribu-
tion from which segment polar angles from 
the upward x3 axis in a simulated root distri-
bution are drawn.

Q2 When considering simulated root distributions 
where the polar angles of root segments from the 
upward  x3 axis were drawn from a uniform dis-
tribution between horizontal and vertically down-
wards, does the PF model (11), (12) effectively 
replicate experimental results for water infiltra-
tion through vegetated soil?

Q3(i) For simulated root distributions, where 
the polar angles �i  of root segments from the 
upward x3 axis were drawn from a truncated nor-
mal distribution with a biologically informed 
mean value � , does the PF model effectively rep-
licate experimental results for water infiltration 
through vegetated soil?

(ii)   For simulated root distributions, where the 
polar angles �i  of root segments from the 
upward  x3 axis were drawn from a trun-
cated normal distribution with a biologically 
informed mean value � , can the PF model 
be parametrised for both species with a sin-
gle facilitation constant  ca , and still effec-
tively replicate experimental results for 
water infiltration through vegetated soil?

Q1, Q2 and Q3 are addressed in the first, second 
and third subsection of “Results” respectively.

To calibrate the PF model (11), (12) with respect 
to experimental data, we first parametrised the bench-
mark model (13), (12) using the experimental satu-
rated hydraulic conductivity values K∗

s
 in Table 1, and 

then solved numerically to obtain the pressure head 
profiles hej , where the subscript j indicates whether a 
grass (j = g) or willow (j = w) root system was con-
sidered. Given a pressure head profile hej from the 
benchmark model, the corresponding laterally aver-
aged pore-water pressure profile pej (kPa) is

To address Q1 (i), we constructed the volumetric 
root density function ψ for a simulated grass root dis-
tribution. Given some value of facilitation constant 
caj > 1 , we then constructed the flow-anisotropy 
matrix H(caj ;x) and parametrised the PF model (11), 
(12). Solutions to the PF model (11), (12) were 
obtained numerically and, using the same formula as 
in Eq. 16, the laterally averaged pore-water pressure 
pj,caj was computed. The optimal value of the facilita-
tion constant caj > 1 was then found by minimising 
the cost function

where T > 0 is the final time and ND > 0 is a num-
ber of equally spaced points {x1

3
, ..., x

ND

3
} from the soil 

surface (x3 = 0) to the water table (x3 = D).
Testing Q1 (ii) involved determining the mean �j

 
and standard deviation σj, of the truncated normal dis-
tribution from which the polar angles of root seg-
ments from the upward x3 axis within a simulated 
root distribution of species j are drawn, and also the 
facilitation constant caj with which to parametrise the 
corresponding PF model (11), (12) so that it most 
accurately reflected experimental results. For root 
species j, given a mean segment polar angle �j

 from 
the upward x3 axis and a standard deviation of σj from 
this mean value, we used Algorithm 1 to construct a 
root distribution in which segment polar angles are 
drawn from a truncated normal distribution, and then 
generated the corresponding volumetric root density 
function ψ. With facilitation constant caj the flow-ani-
sotropy matrix H(caj ;x) was constructed and the PF 
model (11), (12) was parametrised. The laterally aver-
aged pore-water pressure from the PF model is 
denoted as pcaj ,�j ,�j and optimal parameters (caj ,�j, �j) 
were found by minimising

(16)
pej(x3, t) =

1

|A|∫ A

pej(x1, x2, x3, t)dx1dx2,

where pej =
�g

1000
hej .

(17)uj(caj) =

ND∑
i=1

[
pj,caj

(xi
3
, T) − pej(x

i
3
, T)

]2
,

(18)ûj(caj ,𝜑j, 𝜎j) =

ND∑
i=1

[
pcaj ,𝜑j ,𝜎j

(xi
3
, T) − pej(x

i
3
, T)

]2
.
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We addressed Q2 by using Algorithm  1 to simu-
late grass and willow root distributions where the 
polar angles of root segments from the upward x3 
axis follow a uniform distribution. The cost function 
uj in Eq.  17 for each uniform root system was then 
minimised to find the optimal facilitation constant 
caj so that simulations from the PF model (11), (12) 
reflected the experimental results in Table 1. In these 
root distributions, segments are equally likely to be 
oriented in any direction. Therefore, solutions do 
not provide information on the impact of root system 
structure on infiltration, they only indicate the influ-
ence of root abundance.

Question Q3 (i) was tested by using Algorithm 1 to 
simulate grass and willow root distributions where 
the orientations of segments are more biologically-
realistic. The roots in grass root systems are deemed 
to be oriented more horizontally and those in willow 
root systems are deemed to be closer to vertically 
downward. Therefore, we simulated a grass root dis-
tribution where segment polar angles from the 
upward x3 axis are drawn from a truncated normal 
distribution with mean �g = 0.625� and standard 
deviation σg = 1.0, and a willow root distribution 
where segment angles from the upward axis are 
drawn from a truncated normal distribution with 
mean �w = � and standard deviation σw = 0.15, see 
the subsection titled “Formulating the PF model for 
incomplete root system data”. The cost function uj in 
Eq. 17 corresponding to the parametrisation of the PF 
model (11), (12) for each of these truncated normal 
root distributions was minimised to find each optimal 
facilitation constant caj , for j = g,w. Since the orienta-
tions of segments in these root distributions are drawn 
from non-uniform distributions, the corresponding 
parametrisations of the PF model (11), (12) truly 
incorporate the influence of root-oriented PF.

Question Q3 (ii) was tested by taking the same 
willow and grass root distributions simulated to test 
Q3 (i), and considering a single cross-species facilita-
tion constant ca. We then minimised the cost function

to find this optimal facilitation constant ca which 
parametrises the PF model (11), (12) so that its 

(19)
u(c

a
) =

1

2

N
D∑

i=1

([
pg,c

a
(xi

3
, T) − peg

(xi
3
, T)

]2

+
[
pw,c

a
(xi

3
, T) − pew

(xi
3
, T)

]2)
,

profiles match the pressure profiles from the bench-
mark model (13), (12) corresponding to both root 
systems. Since these parametrisations of the PF 
model use one cross-species facilitation constant 
ca, any agreement with simulated profiles from the 
benchmark model (13), (12) must result from incor-
porating the PF caused by the orientation and posi-
tion of the segments in the simulated distributions 
of different species. To provide similar evidence we 
minimised

to determine optimal values for the standard devia-
tions (σg,σw) of the truncated normal distributions 
from which segment polar angles from the upward x3 
axis in simulated grass and willow root distributions 
are drawn, with mean values of �g = 0.625� and 
�w = � respectively, and also identify the optimal 
cross-species facilitation constant ca with which to 
parametrise the PF model (11), (12) so that pressure 
profiles agree with the profiles from the benchmark 
model (13), (12).

Results

Effectiveness of the calibration pipeline

First, we tested Q1 (i): whether or not the calibration 
pipeline was capable of finding a facilitation constant 
c∗
ag which optimally parametrised the PF model (11), 

(12) for a simulated grass root distribution with polar 
angles from the upward x3 axis drawn from a trun-
cated normal distribution with mean angle 
�g = 0.625� and standard deviation σg = 1.0. We 
minimised cost function uj (17), with j = g, to find the 
optimal facilitation constant, and the use of Bayesian 
optimisation provided a moderate advantage over 
Powell’s method (Table  2). Powell’s method identi-
fied a facilitation constant c∗

ag
 with small value for 

ug(c
∗
ag
) . However, Bayesian optimisation located a 

very similar value of facilitation constant c∗
ag

 , with 
similarly small ug(c∗ag) , but in approximately half the 
time taken by Powell’s method (Table 2).

(20)
û(c

a
, 𝜎g, 𝜎w) =

1

2

ND∑
i=1

([
p
ca ,𝜎g

(xi
3
, T) − peg

(xi
3
, T)

]2

+
[
p
ca ,𝜎w

(xi
3
, T) − pew

(xi
3
, T)

]2)
,
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To test Q1 (ii): whether or not the calibration pipe-
line could identify optimal parameters with which to 
simulate a root distribution, and also the optimal 
facilitation constant c∗aj with which to parametrise the 
corresponding PF model, we minimised the cost 
function ûj , given by Eq. 18. This identified the opti-
mal mean value �∗

g
 and standard deviation �∗

g
 of seg-

ment polar angle from the upward x3 axis when seg-
ment polar angles in a grass root distribution were 
drawn from a truncated normal distribution, and also 
the optimal facilitation constant c∗

ag
 with which to par-

ametrise the corresponding PF model (11), (12) 
(Table 3). Due to the use of random number genera-
tors in Algorithm  1, two root distributions that are 
simulated using the same mean � and standard devia-
tion σ, for segment angles from the upward x3 axis, 
will never have exactly the same structure. This adds 
noise to the optimisation process. Furthermore, the 
increase in the parameter space dimension from 1 to 
3, and the nonlinear dependence of solutions to the 
PF model (11), (12) on (�, �) , makes the existence of 

multiple local minimisers likely. As a result, Powell’s 
method performed much less efficiently than for the 
1-dimensional optimisation problem (Tables 2 and 3). 
Table  3 shows that Bayesian optimisation identifies 
parameter values that minimise cost function ûj to the 
same extent as those identified by Powell’s method, 
but in less than a third of the computation time.

In testing Q1 (i) and (ii), the sufficient number 
of evaluations in the Bayesian optimisation scheme 
was determined by the value of the cost function at 
the identified minimiser. If this value was within a 
tolerance of the cost function value at the minimiser 
identified by Powell’s method, then the number of 
evaluations was deemed sufficient. Additionally, 
when searching a 1-dimensional parameter space for 
an optimal facilitation constant, the Bayesian opti-
misation scheme would eventually begin to cluster 
its chosen evaluation points in a small region of the 
parameter space. These clustered points yielded simi-
larly low cost function values, which suggested that 
the scheme had converged. This was also used to 
judge the number of evaluations required (Figure  1 

Table 2  Convergence results for Powell’s method and Bayesian optimisation

 Seeking the minimising facilitation constant c∗
ag

 of the cost function ug, see Eq. 17. The minimising facilitation constant c∗
ag

 will opti-
mally calibrate the PF model (11), (12) when it is parametrised for a simulated grass root distribution in which root segment polar 
angles from the upward x3 axis were drawn from a truncated normal distribution, over the interval [ �

2
,�] , with a mean angle of 

�g = 0.625� and a standard deviation of σg = 1.0. The parameter interval searched was [600, 800] with a starting facilitation constant 
c
ag
= 762.33

Method Bayesian Optimisation Powell’s

Function evaluations 5 10 15 20 20

Run times, (hr,min,sec) 44m 23s 1h 28m 41s 2h 13m 33s 3h 3m 45s 2h 58m 51s
c
∗
ag

668.66 669.39 669.15 668.95 669.44
ug(c

∗
ag
) 0.05083 0.05077 0.05078 0.05079 0.05077

Table 3  Convergence results for optimisation schemes seeking minimisers of the cost function ûg(cag ,𝜑g, 𝜎g) , see Eq. 18

 Minimising the cost function identifies the optimal mean �∗

g
 and standard deviation �∗

g for the truncated normal distribution from 
which segment polar angles from the upward x3 axis are drawn in a simulated grass root distribution, and also the optimal facilitation 
constant c∗ag , so that the corresponding PF model (11) (12) is optimally calibrated to the experimental data in Table 1. The parameter 
space searched was [500, 800] × [

�

2
,
3�

4
] × [0.01,

�

2
] with start point (c

ag
,�g, �g) = (751.24, 0.7�, 0.86)

Method Bayesian Optimisation Powell’s

Function evaluations 5 10 20 64

Run times, (hr, min, sec) 50m 26s 1h 44m 32s 3h 28m 42s 12h 15m 8s
c
∗
ag

 640.44 730.54 561.83 612.15

(�
∗

g
, �∗

g
) (0.70π, 0.96) (0.57π, 0.84) (0.74π, 1.48) (0.74π, 0.48)

ûg(c
∗
ag
,𝜑

∗

g
, 𝜎∗

g
) 0.27 0.17 0.11 0.11
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in supplementary material). Given the results in 
Tables  2 and 3, it was therefore judged that 25 cost 
function evaluations was sufficient for the Bayesian 
optimisation schemes used to obtain the results in 
Tables 4, 5 and 6, and Figs. 4 and 5.

Both results from this section indicate that our pipe-
line is effective in efficiently calibrating the PF model 
(11), (12) using experimental data. In the 3-dimensional 
parameter space there appear to be multiple local mini-
misers of the cost function ûg (Table 3). However, in the 
case of searching a 1-dimensional parameter space for 
an optimal c∗aj that minimises a cost function uj, results 
suggest the existence of a unique global minimiser 
(Table 2). This is supported by Figure 1 in the supple-
mentary material, which shows the convergence of the 
Bayesian optimisation scheme that was used here.

An increase in root abundance causes an increase in 
infiltration rate

We next addressed Q2: whether or not the PF model 
(11) (12), is capable of replicating experimental 

results for water infiltration through vegetated soil, 
when parametrised for simulated root distributions 
in which the angles of segments from the upward 
axis are drawn uniformly between �

2
 (horizontal) 

and π (vertical). Laterally averaged pore-water pres-
sure profiles from the optimal parametrisations of 
the PF model (11), (12), for these simulated uni-
form root distributions, were found to agree 
strongly with the corresponding profiles from the 
benchmark model (13), (12) (Figure 4 and columns 
2 and 5 of Table 4). Thus supporting the hypothesis 
that increasing root abundance increases infiltra-
tion. Furthermore, from Fig. 4, the minimum pore-
water pressure is lower in soil vegetated by willow 
compared to grass, meaning more water infiltrates 
through soil vegetated by willow.

Drastically different optimal values of facilitation 
constant c∗ag and c∗

aw
 were obtained when the PF model 

(11), (12) was calibrated for willow and grass root 

Table 5  The value of the cross-species axial facilitation constant c∗
a
 which minimises the cost function u, see Eq. 19

This minimising value optimally calibrates the PF model (11), (12) when parametrised for: (i) a simulated grass root distribution in 
which segment polar angles from the upward x3 axis were drawn from a truncated normal distribution with mean angle �g = 0.625�

and standard deviation σg = 1.0, and (ii) a simulated willow root distribution in which segment polar angles from the upward x3 axis 
were drawn from a truncated normal distribution with mean angle �g = � and standard deviation σg = 0.15

Species Grass Willow

Parameters in truncated normal distribution for φi over [ �
2
,�] (�g, �g) = (0.625�, 1.0)   (�w, �w) = (�, 0.15)

Optimal cross-species c∗
a
. 665.78 665.78

u(c∗
a
) 0.0723 0.0723

uj(c
∗
a
) 0.0521 0.0925

Table 6  The optimal parameters (c∗
a
, �∗

g
, �∗

w
) found by Bayes-

ian optimisation to minimise the cost function û , see Eq. 20

 Here �∗
g is the standard deviation of the truncated normal dis-

tribution, with mean �g = 0.625� , from which the segment 
polar angles from the upward x3 axis were drawn in a simu-
lated grass root system, and �∗

w is the standard deviation of the 
truncated normal distribution, with mean �w = � , from which 
the polar angles from the upward x3 axis were drawn in a sim-
ulated willow root system, and c∗

a
 is the facilitation constant, 

so that the PF model corresponding to either simulated root 
distribution is optimally calibrated to the experimental data in 
Table 1. The scheme searches for the optimal standard devia-
tions �∗

g and �∗
w
 within [0.01, �

2
] , and the optimal cross-species 

facilitation constant c∗
a
 within [550, 750]

Function 
evaluations

Random 
start point 
(ca,σg,σw) 

Optimum 
(c∗

a
, �∗

g
, �∗

w
) 

 û(c
a
, 𝜎g, 𝜎w)

25 (683.80, 0.28, 
0.71) 

(693.41, 0.82, 
0.11) 

0.15

Table 4  Values of the facilitation constant c∗aj ≥ 1 that opti-
mally calibrate the PF model (11), (12) for each simulated wil-
low (j = w) and grass (j = g) root distribution

 See Eq. 17 for the definition of cost function uj

Species Grass Willow

Distribution 
of root polar 
angles φi 
over [ �

2
,�] , 

in the simu-
lated root 
system

Uniform Truncated 
Normal 
�g = 0.625� 
σg = 1.0 

Truncated 
Normal 
�w = �  
σw = 0.15 

Uniform

c
∗
aj

597.49 669.25 662.53 1254.04
uj(c

∗
aj
) 0.0845 0.0508 0.0913 0.3143
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distributions in which segment angles from the 
upward x3 axis were drawn from uniform distribu-
tions. This means that these parametrisations of the 
PF model (11), (12) do not reflect the impact on infil-
tration of root-oriented PF, they only show the impact 
of varying root abundance.

Agreement with experimental infiltration data is 
improved by incorporating root-oriented PF

The next question to be addressed was Q3 (i): 
whether or not the PF model (11), (12) effectively 
replicated experimental results for water infiltra-
tion through vegetated soil when parametrised for 
simulated root distributions in which the polar 
angles of segments from the upward x3 axis were 
drawn from a truncated normal distribution with 
biologically informed mean. In this case, laterally 
averaged pore-water pressure profiles obtained 

from optimal parametrisations of the PF model 
(11), (12) agreed strongly with the profiles 
obtained from the benchmark model (13), (12) 
(Columns 3 and 4 of Table 4). The lower values of 
the cost function when evaluated at optimal facili-
tation constant values uj(c∗aj) , indicate that this 
agreement was stronger than for root distributions 
in which segment orientations from the upward x3 
axis followed a uniform distribution (Table  4). 
Furthermore, the optimal facilitation constants c∗ag 
and c∗aw were considerably more similar than for 
root distributions in which segment orientations 
from the upward x3 axis were uniformly 
distributed.

Finally, considering Q3 (ii): whether or not the 
PF model (11), (12) can effectively replicate experi-
mental results for water infiltration through vegetated 
soil when parametrised, using a single cross-species 
facilitation constant ca, for root distributions that 

Fig. 4  The effect of root abundance on infiltration. (a) (wil-
low), (c) (grass) Laterally averaged pore-water pressure pro-
files, simulated from the benchmark model (13), (12) and 
optimal parametrisations of the PF model (11), (12) for simu-
lated root distributions in which segment polar angles from the 

upward x3 axis were drawn from a uniform distribution. The 
values of the facilitation constant caj that optimally parametrise 
the PF model (11), (12) for the different root distributions are 
shown in Table  4. (b), (d) Laterally averaged profiles of the 
volumetric density function ψ for each root distribution
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were simulated by using a truncated normal distribu-
tion, with biologically informed mean value, to assign 
segment polar angles from the upward x3 axis. It was 
found that pore-water pressure profiles from para-
metrisations of the PF model (11) (12) for simulated 
root distributions, where segment polar angles from 
the upward x3 axis were drawn from a truncated nor-
mal distribution with a biologically informed mean 
value, agreed more strongly with experimental data 
than solutions from parametrisations of the PF model 
(11), (12) for the simulated root distributions in which 
segment angles from the upward axis were drawn 
from a uniform distribution (Table 5 and Fig.  5a, c, 
f and h). Furthermore, pore-water pressure profiles 
from parametrisations of the PF model (11), (12) for 
root distributions in which segment polar angles from 
the upward x3 axis were drawn from a uniform distri-
bution, and from parametrisations of the PF model for 
root distributions where segment polar angles were 
drawn from a truncated normal distribution, differ 
most at the shallow soil depths, where root density is 
highest (Fig. 5e and g).

Discussion

Improving models for soil moisture transport by 
incorporating root-oriented preferential flow

The influence of root systems on soil hydraulics is 
modelled in many ways. Approaches often involve 
modifying Richards’ equation, for example by intro-
ducing a sink term for water uptake that depends on 
the root biomass distribution (Wu et  al. 1999). This 
oversimplifies root system influence since properties 
like root diameter distribution and branching angle 
are neglected.

Richards’ equation for moisture transport in the 
soil, coupled with the Darcy flux for axial moisture 
transport through root tissue, is often used to solve 
simultaneously for moisture transport in the soil and 
in the root system (Arbogast et  al. 1993; Doussan 
et al. 2006). The coupling is achieved through a sink/
source term in each equation which is proportional to 
the radial conductivity of the root tissue and the dif-
ference in matric potential between the soil and root 
moisture. The influence of root abundance is incor-
porated through the dependence of the radial hydrau-
lic conductivity of root tissue on the fraction of roots 

which occupy that layer of soil. However, no depend-
ence of the soil’s hydraulic conductivity on root abun-
dance or structure is considered, despite the experi-
mental evidence for this (Song et  al. 2017; Leung 
et al. 2018).

Dual-porosity and dual-permeability models for 
soil moisture transport are another approach for 
incorporating flow along preferential channels cre-
ated by plant roots (Gerke and Van Genuchten 1993; 
Simunek et al. 2005; Valle et al. 2017). These models 
either couple different parametrisations of Richards’ 
equation, or couple a transport equation or ordinary 
differential equation with Richards’ equation, in order 
to account for the flow in the channels and the bulk 
soil. Dual-porosity or dual-permeability models do 
not, however, incorporate the influence of root system 
structure, despite evidence for this determining the 
layout of preferential channels (Noguchi et al. 1999).

We have addressed the shortcomings of existing 
approaches with a model for moisture transport in 
vegetated soil that incorporates root-oriented prefer-
ential flow by using a volumetric root density func-
tion ψ and a flow-anisotropy matrix H to impose a 
dependence of the soil moisture flux on root abun-
dance and orientation. Our approach tackles two limi-
tations of existing models. Firstly, the incorporation 
of root orientation and distribution information into a 
flow-anisotropy matrix, allows us to account for the 
influence of a specific root system’s architecture on 
the flow of moisture through the soil which it inhab-
its. Secondly, since this information is aggregated in 
the flow-anisotropy matrix H, explicit representation 
of root systems is not needed, making simulation 
across a wide range of spatial and temporal scales 
possible.

Results show that the PF model (11), (12) can be 
parametrised and calibrated effectively, using a sin-
gle cross-species facilitation constant ca, for simu-
lated willow and grass root distributions in which root 
segment orientations are drawn from biologically-
realistic non-uniform distributions. Simulations from 
these parametrisations of the PF model agreed more 
strongly with experimental data (Leung et al. 2018), 
than those from parametrisations of the PF model that 
only incorporate the effect of root abundance, and not 
the root-oriented PF caused by the structural traits of 
different root architectures (Figs.  4,  5 and Table  4). 
The capacity to model root-oriented preferential 
flow appears therefore to improve agreement with 
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Fig. 5  The capacity of the PF model to replicate experimental 
infiltration results, when incorporating the effect of root system 
architecture. (a) (willow), (c) (grass) Laterally averaged pro-
files, simulated from the benchmark model (13), (12) and the 
PF model (11), (12), where the PF model was optimally para-
metrised for simulated willow root distributions in which seg-
ment polar angles from the upward x3 axis were drawn from a 
truncated normal distribution with mean angle �w = � and 
standard deviation σw = 0.15, and grass root distributions simu-
lated using mean polar angle �g = 0.625� and standard devia-
tion σg = 1.0. (b), (d) Laterally averaged profiles of the volumet-

ric root densities ψ. (e), (g) Laterally averaged profiles from 
optimal parametrisations of the PF model (11), (12), the faintest 
lines correspond to the earliest times and the lines of full opac-
ity show the final profiles. (f), (h) Distance at each time step, 

d(t) =
ND∑
i=1

�
pj,c∗

a
(xi

3
, t) − pej (x

i
3
, t)

�2
 , between profiles from the 

PF model when optimally parametrised for uniform and trun-
cated normal root distributions, see Eq. 16 for the definitions of 
pj,c∗

a
 and pej . For all results in this Figure, the PF model (11) 

(12) was parametrised using the cross-species optimal facilita-
tion constant c∗a = 665.78
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experimental data on how root systems impact water 
infiltration through vegetated soil. This provides 
evidence that root-oriented PF may be a key cause 
of the variances in hydraulic characteristics that are 
observed between soils vegetated by different plant 
species.

Due to root activities e.g. elongation and mucilage 
exudation, the wettability and porosity of the rhizo-
sphere soil in the direct vicinity of roots will differ 
from that of bulk soil (Carminati et al. 2010; Dexter 
1991; Bruand et al. 1996; Feeney et al. 2006). In the 
PF model, this heterogeneity and anisotropy in the 
hydraulic properties of a vegetated soil is incorpo-
rated using the flow-anisotropy matrix H. Future PF 
models may be enhanced by encoding some depend-
ence on the volumetric root density into the residual 
moisture content, saturated moisture content, satu-
rated hydraulic conductivity, and other shape param-
eters in the Van Genuchten (1980) functions for soil 
moisture content (3) and hydraulic conductivity (4). 
In this way, the model would explicitly incorpo-
rate the changes to soil hydraulic properties that are 
observed experimentally in regions very close to root 
surfaces, whilst still exhibiting the phenomena of 
root-oriented PF.

Acquiring data with which to parametrise the PF 
model

With the PF model (11), (12), we have developed a 
pipeline from data on a root system’s architecture to 
simulations of the root-oriented PF it induces (Fig. 3). 
Assembling this pipeline requires the decomposition 
of root systems into segments, where the dimensions 

and position of each segment are available. Such data 
can be obtained by excavating and digitizing root sys-
tems (Danjon et al. 1999). More recently, x-ray com-
puted tomography has allowed 3D architectures of 
root systems to be imaged without excavation (Zhao 
et  al. 2020), thus providing a potential method of 
obtaining our required data in a non-invasive manner. 
Data can also be generated by root growth simulators 
like CRootBox (Schnepf et  al. 2018) and OpenSim-
Root (Postma et al. 2017), or by modelling the volu-
metric root density ψ as the solution to a partial dif-
ferential equation for root growth (Dupuy et al. 2005). 
The latter being amenable to applications at different 
spatial and temporal scales. With data on root system 
architecture and saturated hydraulic conductivity, 
our pipeline (Fig. 3) can be applied to complex root 
systems to simulate the patterns of preferential infil-
tration that they induce (Fig. 6). Furthermore, if suf-
ficient root system data is provided, then calibrating 
the PF model (11) (12) requires searching a 1-dimen-
sional parameter space for the facilitation constant 
c∗
a
 that minimises a cost function like that given by 

Eq. 17. Table 2, and the convergence results in Fig-
ure  1 from the supplementary material, suggest that 
a Bayesian optimisation scheme will locate a unique 
global minimiser of such a cost function.

Towards new approaches integrating root-oriented 
preferential flow into soil hydrological models

Vegetated soils generally exhibit higher rates of 
infiltration during rainfall and irrigation than bare 
soils (Huang et al. 2015; Leung et al. 2018). Below 
ground however, the impact of root systems varies. 

Fig. 6  The PF model applied to real root architecture data. a 
A discretisation of a pine root system into multiple segments 
(Dupuy et al. 2005). b Volumetric root density function ψ for 

the discretisation in (a), and the resultant moisture transport 
from the parametrised PF model (11), (12). Arrow orientation 
and size indicate flow direction and strength respectively

Plant Soil (2022) 478:709–729726



1 3
Vol.: (0123456789)

Results obtained by Song et al. (2017) showed that 
PF caused by Vetivier grass root systems facilitated 
downward moisture drainage through a landfill site, 
resulting in harmful chemicals leaching into water 
supplies. In contrast, Bermuda grass root systems 
were found to induce a pattern of PF which reduced 
soil moisture drainage (Song et  al. 2017). Further-
more, results of Lourenço et al. (2006) showed that 
hill slope regions where below ground pore-water 
pressure is high are more prone to landslide, and 
that pressure distributions vary significantly with 
the type of vegetation cover (Ghestem et al. 2011). 
The idea of harnessing the different PF patterns 
induced by different vegetation types may therefore 
have great potential as a method of making soils 
more resilient to drought, and maintaining desirable 
conditions for agriculture and land management 
purposes. Unfortunately, real world implementation 
of this strategy is limited because it is difficult to 
predict the effect of vegetation types on the hydrau-
lic properties of soil. Software packages which 
model flood inundation focus on above ground 
water flow, with some account taken for the differ-
ent drying and wetting cycles of affected soil (Teng 
et  al. 2017). The hydraulic properties of cultivated 
soil affect water distribution and nutrient dynam-
ics, which has consequences for soil irrigation 
and fertility (van der Heijden et  al. 2013). Widely 
used crop models, such as APSIM (Holzworth 
et al. 2014) and DSSAT (Jones et al. 2003), predict 
responses to environmental conditions and integrate 
groundwater flow models into their simulations. 
They do not, however, account for PF induced by 
crop roots. Models like the PF model (11), (12) help 
to improve the understanding of these PF patterns 
that are induced by root systems of specific crops. 
Therefore, they could be used to facilitate the design 
and implementation of species-specific irrigation 
schemes, based on the root system architectures 
of different crops. This work shows that it is pos-
sible to incorporate the influence of root architec-
ture while modelling soil hydraulics. Furthermore, 
results suggest that there may exist a single facili-
tation constant with which to parametrise the PF 
model (11), (12), so that it adequately describes the 
root-oriented PF induced by different root system 
species at different stages of growth. This indicates 
the potential of the PF model (11), (12) as a tool 
to help understand general water transport patterns 

in vegetated soil, and supplement field scale stud-
ies into the impact of specific root systems on water 
infiltration through soil.
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