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a b s t r a c t

A model for the cell-to-cell transport of the plant hormone auxin is presented. Auxin is a
weak acid which dissociates into ions in the aqueous cell compartments. A microscopic
model is defined by diffusion-reaction equations and a Poisson equation for a given charge
distribution. The microscopic properties of the plant cell were taken into account through
oscillating coefficients in themodel. Via formal asymptotic expansion amacroscopicmodel
was obtained. The effective diffusion coefficients and transport velocities are expressed
by the solution of unit cell problems. Published experimental values of diffusivity and
permeability were used to determine numerically the effective transport coefficients and
the calculated transport velocity was shown to be of the same order as measured values.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Auxins belong to themost important plant hormones and play a central role in growth and development regulation (for a
review see e.g. [5]). There are several synthetic and natural auxins, the most prominent probably being indole-3-acetic acid
(IAA, denominated also simply as auxin in the sequel). IAA is mostly produced in the plant shoot and is transported polarly
from cell to cell through the shoot and stem towards the primary root [6]. This transport occurs over several centimeters
and extends over thousands of cells.
Quantitative description of auxin transport has been based up-to-date on the chemiosmotic model of polar auxin diffusion,

proposed in the mid 1970s, [7–9]. The chemiosmotic model uses the fact that IAA is a weak acid and in its ionic form it
cannot freely pass through the cell membrane. IAA can enter the cell either as protonated molecules (through passive
diffusion) or as ions (through transport proteins). Once in the cell, IAA will dissociate almost completely in the slightly
alkaline cytoplasm and can hence exit the cell only through transport proteins. Polarity arises through an asymmetric
distribution of the transport proteins. The chemiosmotic model predicted the existence of efflux and influx transporter
proteins, [10], which have been observed experimentally in the last decade, [11,12], and describes sufficiently well the
transport of radioactively labeled auxin through plant tissues, [13,8]. The mathematical approach used in the chemiosmotic
model is to describe either the cells or even cell compartments (cell wall, cell membrane, cytoplasm, vacuole; cmp. Fig. 1) as
discrete objects. This approach has led to some open questions, the most remarkable is probably whether auxin transport
has a velocity, [7]. Until now themovement of the center ofmass of simulated auxin pulses has been used to assign a velocity
of transport. This approach is imprecise and does not show the existence of a true transport velocity.
The article presented here focuses on the extension of the chemiosmotic model by usage of a multiscale approach to

finally define a macroscopic average velocity of long-range auxin transport. Using conservation of protonated auxin and
auxin ions, a microscopic model describing the diffusion, reaction and electric flux is posed.We assume that the plant tissue
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Fig. 1. Unity cell Y , which corresponds to a biological cell, and tissue represented by the microscopic domainΩ with corresponding boundaries (ΓN , ΓD
and ΓF ). Influx (AUXs) and efflux (PINs) transport proteins are distributed asymmetrically on the plasma membrane.

is composed periodically of identical plant cells. The microscopic properties of the plant cells are reflected by oscillating
coefficients in the model. A macroscopic model is obtained by means of a formal asymptotic expansion. Related results on
asymptotic analysis of diffusion-convection equations can be found in [14–16]. The solutions of unit cell problems determine
themacroscopic diffusion coefficients and transport velocity, which allow one to do numerical simulations which relate the
distribution and permeability of transport proteins with the effective velocity.

2. Microscopic description

The situation modeled here is described in Fig. 1. The plant tissue is assumed to be composed periodically of identical
plant cells. The internal structure of these plant cells is assumed to consist of cell wall, a plasma membrane, cytoplasm,
tonoplast and a vacuole. On the membrane we assume that two kinds of transport protein are present: influx (AUXs/LAXs)
and efflux (PINs) proteins.
IAA is a weak acid and dissociates in aqueous solutions. The dissociation rate is independent of pH. However the

recombination rate depends on the amount of protons in the solution and hence on the pH value. We assume following
reaction

IAAH
rd


rr
IAA− + H+,

where rd = const and rr = rr(pH) are the dissociation and recombination rates, respectively. The pH value depends on the
cell compartment and therefore the equilibrium shifts towards dissociated auxin (in cytoplasm) or protonated auxin (in cell
wall and vacuole). The concentration of the ion IAA− will be denoted by u, while v is the concentration of the protonated
auxin IAAH. We assume that there is no bulk flow and that both IAAH and IAA− diffuse. The diffusion coefficients will be
denoted by Du and Dv , respectively. Due to the negative charge of the ions, the electric potential differences across the
plasma membrane and tonoplast produce an additional flux of IAA−. The mobility of the ions is given by the permeability
P , which determines together with the electric field φ and u, the electric flux P uφ. The concentrations u and v are in the
order of 1 nM, while other ions (in particular K+, Na+ and Cl−) appear in concentrations of 1 mM. Therefore we can assume
that the electric field inside a cell is independent of u and is generated by the equilibriummembrane potential produced by
the other ions (ca. −120 mV between cell wall and cytoplasm and 50 mV between cytoplasm and vacuole). Moreover the
equilibrium membrane potential is assumed to be stationary.
Thus the diffusion and transport of IAA− and IAA is described by the following equations

∂tu+ div (P φ u)− div (Du ∇u) = rd v − rr u,
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Fig. 2. Simplified geometry and parameters used in simulation. Units: [PPIN ] = [PAUX ] = cm h−1 , [Du] = [Dv] = cm2 h−1 .

∂tv − div (Dv ∇v) = −rd v + rr u, (1)
divφ = ρ,

where ρ = ρ(x) is only a function of the space variable.
In the single cellwehave five different domains (Figs. 1 and2). The order of the coefficients can vary substantially between

these domains. In the cell wall diffusion coefficients Du,v are ca. Dw/15, where Dw is the diffusion coefficient of auxin in
water, in the plasma membrane and tonoplast Du,v is ca. Dw × 10−10 and in the vacuole and in the cytoplasm Du,v ≈ Dw .
The electric field is about 105 V cm−1 in the plasmamembrane, 5× 104 V cm−1 in the tonoplast and almost zero elsewhere.
The permeability P is of the order of 3 × 10−6 cm2 V−1 h−1. The thickness of the cell wall and cytoplasm is 10−4 cm, the
thickness of themembranes is 10−6 cm. Thus D∇u0 is proportional to 16 u0 in the cell wall, to 240 u0 in cytoplasm and 10−9
in the membranes. For the transport termwe obtain P φ u0 ≈ 0.3 u0 to 30 u0 in the plasmamembrane. The dissociation and
recombination of auxin is very fast and for the reaction rates we have rd ≈ 5× 109 h−1 and rr ≈ 5× 106 to 5× 108 h−1.
Let Ω = (0, 1) × (0, 10) × (0, 1) represent the plant tissue. The ratio between the size of the cells and the size of the

whole domainΩ is denoted as ε > 0 (here ε ≈ 100 µm
10 cm = 10

−3). Choosing the characteristic reaction time as the time scale
in the model, the flux terms have to be scaled by ε.
We consider the so-called ‘‘standard cell’’, Y = [0, 2]× [0, 10]× [0, 2] (cmp. Fig. 2 and ε = 10−3), periodically repeated

over R3 and define, for k ∈ Z3 and vectors qi (with q1 = 2 e1, q2 = 10 e2 and q3 = 2 e3), Y k = Y +
∑3
i=1 kiqi, and

Ω = ∪{εY k|εY k ⊂ Ω, k ∈ Z3}.
The coefficients in the equations are defined by the Y -periodic functions Pε(x) = P( x

ε
), ρε(x) = ρ( x

ε
),Dεu(x) =

Du( xε ),D
ε
u(x) = Du(

x
ε
), Rεd(x) = Rd(

x
ε
) = ε−1rd( xε ), R

ε
r (x) = Rr(

x
ε
) = ε−1rr( xε ).

We assume that the potential ρ ∈ L∞(Y ), ρ is periodic in Y , and
∫
Y ρ(y)dy = 0. Then we consider a problem

∆ϕ = ρ in Y , ϕ is periodic in Y . (2)

The existence and regularity theory for elliptic equations implies the existence of a solution ϕ(y), periodic in Y and Lipschitz
continuous, [17]. We extend ϕ periodically from Y into R3 and define the microscopic electric field by

φε = ε∇xϕ
( x
ε

)
. (3)

Although ϕ is determined up to an additive constant, the electric field φε is uniquely defined.
Then, due to the Eq. (2) and the appropriate scaling of the coefficients in (1), themicroscopic equations for IAA− and IAAH

are

∂tuε + ε div (Pε φε uε)− ε div
(
Dεu ∇u

ε
)
= Rεd v

ε
− Rεr u

ε in (0, T )×Ω,

∂tv
ε
− ε div

(
Dεv ∇v

ε
)
= −Rεd v

ε
+ Rεr u

ε in (0, T )×Ω,
ε divφε = ρε inΩ,
uε = uD on ΓD,
vε = vD on ΓD, (4)
(Pεφε uε − Dε∇uε) · ν = 0 on ΓN ,
∇vε · ν = 0 on ΓN ,
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(Pε φε uε − Dε ∇uε) · ν = uε c · ν on ΓF ,
∇vε · ν = vεc · ν on ΓF ,
uε, vε periodic in x3,
uε = uint, vε = vint inΩε.

Definition 2.1. The weak solution of the problem (4) is given by the functions uε, vε ∈ H1(0, T ; L2(Ω)), uε − uD, vε − vD ∈
L2(0, T ;W (Ω)) such that∫ T

0

∫
Ω

∂tuεψ dxdt + ε
∫ T

0

∫
Ω

(−Pεφεuε ∇ψ + Dεu ∇u
ε
∇ψ)dxdt

+

∫ T

0

∫
ΓF

uε c · ν dγ dt =
∫ T

0

∫
Ω

(Rεd v
ε
− Rεr u

ε)ψ dxdt,∫ T

0

∫
Ω

∂tv
εψ dxdt + ε

∫ T

0

∫
Ω

Dεv ∇v
ε
∇ψ dxdt +

∫ T

0

∫
ΓF

vε c · νdγ dt

=

∫ T

0

∫
Ω

(−Rεd v
ε
+ Rεr u

ε) ψ dxdt

(5)

for allψ ∈ L2(0, T ;W (Ω)), for φε ∈ L∞(Ω) given by (3), and uε , vε satisfy the initial conditions, i.e. uε → uint, vε → vint in
L2(Ω) as t → 0.

Here
W (Ω) = {v ∈ H1(Ω), v = 0 on ΓD}.

To ensure the existence of the solution of system (4) the following assumptions on the coefficients and initial data are
needed

Assumption 2.2. • Diffusion coefficients Du,Dv ∈ L∞(Y ) are uniformly elliptic, i.e. Duξξ ≥ d0|ξ |2, Dvξξ ≥ d0|ξ |2 for
ξ ∈ R3.
• Permeability P ∈ L∞(Y ), and outflow velocity c ∈ H1(0, T ; L∞(ΓF )).
• Reaction rates Ru, Rv ∈ L∞(Y ).
• Boundary conditions uD, vD ∈ H1(0, T ;H1(Ω)), and initial condition uint, vint ∈ H1(Ω).

Theorem 2.3. Under the Assumption 2.2 for each fixed ε there exists a unique weak solution of the problem (4).
Proof. For given φε ∈ L∞(Ω) the existence of a unique weak solution of Eq. (4) with bounded vector field and Robin
boundary conditions follows from Theorem 5.1 in [18] or Theorem 6.39 in [19] combined with a priori estimates for ∂tuε
and ∂tvε similar to the Theorem 6.1, [18], for Dirichlet boundary conditions. �

3. Macroscopic model

Macroscopic equations are gained using the Ansatz of asymptotic expansion uε(x) = u0(x, y) + εu1(x, y) + O(ε2),
vε(x) = v0(x, y)+ εv1(x, y)+ O(ε2) and φε(x) = φ0(y)+ εφ1(y)+ O(ε2), where the functions ui, vi, φi are periodic with
respect to the microscopic fast variable y = x/ε and ∇ = ∇x + 1

ε
∇y. We obtain thus for the order O(ε−1) the equations

∇y ·
(
Du ∇yu0

)
= 0,

∇y ·
(
Dv ∇yv0

)
= 0

with periodic boundary conditions. This implies that the functions u0 and v0 do not depend on the microscopic variable y
and are functions of the macroscopic variable x. The next order in the expansion gives

∂tu0 −∇y ·
(
Du ∇yu1 + Du∇xu0

)
+∇y · (P φ0 u0)−∇x ·

(
Du ∇yu0

)
= Rd v0 − Rr u0, (6)

∂tv0 −∇y ·
(
Dv ∇yv1 + Dv ∇xv0

)
−∇x ·

(
Dv ∇yv0

)
= −Rd v0 + Rr u0,

∇y · φ0 = ρ.

By the Fredholm alternative, the equations in (6), as elliptic equations in y with periodic boundary conditions, have a
solution if and only if

∂tu0 = 〈Rd〉 v0 − 〈Rr〉 u0,
∂tv0 = −〈Rd〉 v0 + 〈Rr〉 u0,

(7)

where 〈Rd〉 = 1
|Y |

∫
Y Rd dy and 〈Rr〉 =

1
|Y |

∫
Y Rrdy and u0 and v0 fulfill initial conditions

u0 = uint, v0 = vint for t = 0.
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The Eq. (7) represents the dissociation and recombination of auxin. Since the reaction rates are much faster than transport
and diffusion, it was expected that the zero order approximations u0 and v0 are solutions of ordinary differential equations.
Due to regularity of initial conditions we obtain that u0, v0 ∈ C1(0, T ;H1(Ω)).
In order to see the influence of transport and diffusion on the solution and also to define the auxin transport velocity, we

consider the terms of O(ε) in the asymptotic expansion and find u1 and v1. Using the expression for ∂tu0 and ∂tv0 from (7)
in the Eq. (6) we obtain

−∇y ·
(
Du ∇yu1 + Du ∇xu0

)
+∇y · (P φ0 u0) = (Rd − 〈Rd〉) v0 − (Rr − 〈Rr〉) u0, (8)

−∇y ·
(
Dv ∇yv1 + Dv ∇xv0

)
= − (Rd − 〈Rd〉) v0 + (Rr − 〈Rr〉) u0.

The system (8) is composed of linear elliptic equations in respect to y, where zero order terms are proportional to ∇xu0,
∇xv0, u0, and v0. This structure suggests the Ansatz

u1(t, x, y) = wu(y) · ∇xu0(t, x)+ Zuu(y) u0(t, x)+ Zuv(y) v0(t, x)+ ū1(t, x),
v1(t, x, y) = wv(y) · ∇xv0(t, x)+ Zvu(y) u0(t, x)+ Zvv(y) v0(t, x)+ v̄1(t, x),

and from (8) we obtain the unit cell problems

∇y ·
(
Dα∇ywαj

)
= −∇y ·

(
Dα ej

)
for α = {u, v}

∇y ·
(
Du∇yZuu

)
= (Rr − 〈Rr〉)+∇y · (P φ0)

∇y ·
(
Du∇yZuv

)
= − (Rd − 〈Rd〉)

∇y ·
(
Dv∇yZvu

)
= − (Rr − 〈Rr〉) (9)

∇y ·
(
Dv∇yZvv

)
= (Rd − 〈Rd〉)

wαj, Zuu, Zuv, Zvu, Zvv periodic and fulfilling∫
Y
wαjdy = 0,

∫
Y
Zuudy = 0,

∫
Y
Zuvdy = 0,

∫
Y
Zvudy = 0,

∫
Y
Zvvdy = 0.

For terms of order ε we obtain following equations

∂tu1 −∇y ·
(
Du ∇yu2 + Du ∇xu1

)
+∇y · (P φ0 u1 + P φ1 u0)

−∇x ·
(
Du ∇yu1 + Du ∇xu0

)
+∇x · (P φ0 u0) = Rd v1 − Rr u1, (10)

∂tv1 −∇y ·
(
Dv ∇yv2 + Dv ∇xv1

)
−∇x ·

(
Dv ∇yv1 + Dv ∇xv0

)
= −Rd v1 + Rr u1,

∇y · φ1 = 0.

Using the Ansatz for u1(t, x, y) and v1(t, x, y), the zeromean values assumption onwα and Zαβ and the solvability condition
for (10) we obtain the equations for the nonoscillating terms ū1(t, x) and v̄1(t, x)

∂t ū1 − div (Au∇u0)+ div (Vuu u0)+ div (Vuv v0) = 〈Rd〉 v̄1 − 〈Rr〉 ū1 +Rr u0 −Rd v0,

∂t v̄1 − div (Av∇v0)+ div (Vvu u0)+ div (Vvv v0) = −〈Rd〉 v̄1 + 〈Rr〉 ū1 +Rd v0 −Rr u0,
(11)

where the effective coefficients are defined

Aα =
1
|Y |

∫
Y
Dα

(
∇ywα + I

)
dy

Vuu =
1
|Y |

∫
Y

(
−Du ∇yZuu + Rr wu + Pε φ0

)
dy

Vuv = −
1
|Y |

∫
Y

(
Du ∇yZuv + Rdwv

)
dy

Vvu = −
1
|Y |

∫
Y

(
Dv ∇yZvu + Rr wu

)
dy

Vvv =
1
|Y |

∫
Y

(
−Dv ∇yZvv + Rdwv

)
dy

Rd =
1
|Y |

∫
Y
(Rr Zuv − Rd Zvv) dy

Rr =
1
|Y |

∫
Y
(Rd Zvu − Rr Zuu) dy.

(12)
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Table 1
Simulation parameters. Diffusion coefficient of auxin in water is Dw = 0.024 cm2h−1 . Units: [Dεu] = [D

ε
v] = cm

2 h−1 , [Rεd] = [R
ε
r ] = h

−1 , [|φε |] = V cm−1 ,
[Pε] = cm h−1 .

Parameter Cell wall Plasma membrane Cytoplasm Tonoplast Vacuole

pH 5.8 – 7.6 5.7
Dεu

Dw
15 3.6× 10−12 Dw 3.6× 10−12 Dw

Dεv
Dw
15 2× 10−7 Dw 2× 10−7 Dw

Rεd 5× 109 5× 109 5× 109 5× 109 5× 109

|φε | 0 120× 103 0 50× 103 0

Permeability PPIN PAUX PTon
0.1 0.2 0.2

References: [1–4].

Then for the nonoscillating part of the first two terms in uε , vε , i.e. uε1(t, x) = u0(t, x) + εū1(t, x) and vε1(t, x) =
v0(t, x)+ εv̄1(t, x)we obtain the equations

∂tuε1 − ε div (Au∇u0)+ ε div (Vuu u0)+ ε div (Vuv v0) = 〈Rd〉 v
ε
1 − 〈Rr〉 u

ε
1 + ε(Rr u0 −Rd v0),

∂tv
ε
1 − ε div (Av∇v0)+ ε(div (Vvu u0)+ div (Vvv v0)) = −〈Rd〉 vε1 + 〈Rr〉 u

ε
1 + ε(Rd v0 −Rr u0)

(13)

with boundary conditions

−ε(Au∇u0 − Vuuu0 − Vuvv0) · ν = εc · νu0 on ΓF ,
−ε(Av∇v0 − Vvuu0 − Vvvv0) · ν = εc · νv0 on ΓF ,
−ε(Au∇u0 − Vuuu0 − Vuvv0) · ν = 0 on ΓN ,
−ε(Av∇v0 − Vvuu0 − Vvvv0) · ν = 0 on ΓN ,
u0, v0 periodic in x3,

and initial conditions

uε1(0, x) = uint(x), vε1(0, x) = vint(x).

Since the zero-order terms solve ordinary differential equations, the approximative solution uε1, v
ε
1 does not fulfill

the Dirichlet boundary conditions. The natural idea to correct the boundary effect would be to construct boundary layer
functions. But the corresponding boundary layer functions will decay exponentially to a nonzero constant and create
additional error. This indicates that inflow boundary conditions should be defined in a differentway than Dirichlet boundary
conditions and provide new prospects for a further modeling. Additionally we have only boundedness of coefficients in the
model. For proving the error estimates between original and homogenized solutions more regularity of coefficients would
be needed. Since the main aim of the present work is to define macroscopic equations and to find an expression for the
effective transport velocities, we are not considering the error estimates here.

4. Simulation

4.1. Geometry

For simplicity the problem was simulated in two dimensions (Fig. 2). A quadratic plant cell of length 100 µm and width
20 µm was used, because it represents the typical size of auxin transporting cells in maize coleoptiles, [20]. The cell wall
and the cytoplasm were assumed to be 1 µm thick and the membranes, i.e. plasma membrane and tonoplast, were chosen
to be 10 nm thick.

4.2. Parameters

A slightly acidic pH is found in the cell wall and vacuole, while the pH in the cytoplasm is slightly alkaline (compare Fig. 2
and Table 1). Therefore the recombination rate Rεr oscillates in space. The reaction rates R

ε
d and R

ε
r are not independent, as

these can be expressed by the dissociation rate as follows

Rεr = Rd 10
pKa−pHε , (14)

where pKa = 4.75 is the acid dissociation constant of auxin. No published value for the dissociation rate of auxin is known
to the authors. However, the dissociation rate of weak acids seems to depend linearly on the pKa value of the acid, [3].
Therefore the dissociation rate Rd was assumed here to be constant and was chosen as 5× 109 h−1, [3].
The diffusion coefficient of auxin inwater isDw = 0.024 cm2h−1, [2]. As a rough approximation, we assume that both the

ion and protonated auxin have similar diffusion coefficients in aqueous solutions. The cell wall is a very complex anisotropic
layered polymer. Diffusion inside the cell wall is therefore a complex process which would deserve a treatment by itself and

Please cite this article in press as: A. Chavarría-Krauser, M. Ptashnyk, Homogenization of long-range auxin transport in plant tissues, Nonlinear Analysis:
Real World Applications (2009), doi:10.1016/j.nonrwa.2008.12.003



ARTICLE  IN  PRESS
A. Chavarría-Krauser, M. Ptashnyk / Nonlinear Analysis: Real World Applications ( ) – 7

is therefore outside the scope of this paper. Until now, diffusion coefficients have been determined experimentally without
taking themicrostructure of the cell wall into account, [2]. We therefore use here for both the cell wall and cytoplasm scalar
diffusion coefficients (Fig. 2 and Table 1).
We use here the constant field approximation for the electric field, [21], which assumes a constant field inside the

membrane. Moreover, as a rough approximation, we assume that the field is zero outside the membrane. A membrane
potential of −120 mV between the cell wall and the cytoplasm, and of +50 mV between the cytoplasm and the vacuole
were used. Compare Fig. 2 and Table 1. The mobility of the ions is given by the permeability Pε

Pε = −
z F
R T

(
Dεu + hm (P

ε
PIN − P

ε
AUX )

)
, (15)

where z = −1 is the valence of the ion, F = 96485.3383 C mol−1 is the Faraday constant, R = 8.314472 J K−1mol−1 is
the ideal gas constant, T = 300 K is the temperature, hm = 10−6 cm is the membrane thickness, PεPIN and P

ε
AUX are the

permeabilities of the efflux and influx transport proteins, respectively (Table 1).

4.3. Results

The cell problems (9) were solved using a discrete difference method, which is equivalent to a finite volume method
for a regular grid. The numerical treatment of the membrane and tonoplast deserve more attention, because of their small
thickness. If sufficiently small finite volumes are used, then the membrane can be resolved. However, the membrane is very
thin compared to the characteristic size of Y , which would result in huge amounts of finite volumes. Another approach is to
use non-uniform discretizations, which need substantially more programming effort. Due to the strong difference between
the diffusion coefficients in the membrane and outside, it is possible to use a standard finite volume method on a uniform
grid. The reason for this will be outlined in the following paragraph.
In the spirit of the finite volume method, for each finite volume, a volume integral of the divergence ∇y · (Dα ∇y ·) in

Eq. (9) is converted into a integral of the flux n · Dα ∇y · over the surface. The gradient ∇y · is then approximated at the
boundary between two volumes by a finite difference. Assume that the discretization is such that two neighboring finite
volumes share the membrane, i.e. one half of the thickness is in e.g. the left volume and the other half in the right volume.
The flux between these two volumes is then determined by the effective diffusion coefficient Deffα for the straight path C
between the two volume centers. The effective diffusion coefficient is given by

1/Deffα =
∫

C

Dα(s)−1ds =
hl
Dlα
+
hm
Dmα
+
hr
Drα
,

where the path was split into three subpaths: one left of themembrane, on themembrane and to the right of themembrane
(indexed by l, m and r). Within these subpaths Dα is assumed to be constant. The paths have the lengths hl, hm and hr ,
respectively. hm corresponds to the membrane thickness. Using the characteristic values of the problem (cmp. Table 1), we
find that hmDmα �

hl
Dlα
and hmDmα �

hr
Drα
, and hence with high accuracy Deffα ≈ D

m
α . Hence, the thin and impermeable membranes

can be treated numerically as surfaces of low permeability between two finite volume cells. The flux between two cells
separated by a membrane is then proportional to the membrane diffusivity.
After solving the cell problems, the effective transport coefficients have to be determined. This was achieved by means

of Eq. (12) and numerical integration. The numerical solution (wu)1 of the diffusion cell problem in y1-direction and the
solution Zuu of the transport cell problem are presented in Fig. 3. The mean reaction rates are

ε−1〈Rd〉 = 5× 109 h−1 and ε−1〈Rr〉 = 4.09× 108 h−1,

which results in an equilibrium constant 〈Rd〉/〈Rr〉 = 12.2. Therefore in the homogenized tissue almost all auxin is
dissociated. The effective diffusion coefficients are

Au

Dw
=

(
0.137 O(10−13)

O(10−13) 0.67

)
× 10−2 and

Av

Dw
=

(
0.285 O(10−12)

O(10−12) 2.16

)
× 10−2.

These are very small compared to the diffusion coefficient in water Dw . As expected diffusion is of small importance at the
macroscopic scale. Due to the chosen geometry, Au,v are diagonal up to numerical approximation errors. Diffusion in the
y2-direction is larger, because the cells are longer in this direction and thus the appearance frequency of the membranes is
lower.
As far as the authors know, there are no measured values of the effective diffusivity. The reason for this becomes clear,

when the accuracy of the original measurements is considered, [13]. The spatial resolution of the measurements was low,
2 mm sections were measured to obtain a profile for a 20 mm plant section. Moreover, the sensitive spatial angle of the
detector might have been large, and might have resulted in also measuring the radioactivity of neighboring sections. The
experimental method is good enough to determine the transport velocity of profiles, however, when it comes to obtain
true dispersion coefficients, it is too imprecise. From the measurements presented in [13], one would expect to have a
substantially larger diffusion/dispersion coefficient than the ones determined here. The reason for the discrepancy might
be due to the low resolution of the experimental method, but probably mostly due to the high intrinsic variation found in
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Fig. 3. Numerical simulation of the solution of the cell problems: (wu)1 (diffusion) and Zuu (transport).

biological systems. Not only variations in cell form and size (up to 100% is common), but also in distribution and density
of transporters are typical. Plant cells might also ‘‘sequestrate’’ marked auxin into their vacuoles or other organelles (a
process not accounted for in the model presented here). All these processes broaden substantially an auxin peak during its
transportation in the tissue, and are denominated collectively as dispersion by experimentalists. Already in [13] this theme
was discussed and a contribution was attributed to diffusion (without quantification). The results found here show actually
that the dispersion found in measurements cannot be explained by diffusivity and disagrees with the hypothesis posed
in [13].
More important than the diffusion coefficients are the effective transport velocities, because the literature offers better

results. As a consequence of the constant dissociation rate Rd and the symmetry of the selected geometry (Fig. 2), only the
transport velocity Vuu is expected to be different from zero. The distribution of the permeability of the transport proteins
was chosen so that transport is in y2-direction. Both are confirmed by the numerical results

Vuu =

(
O(10−4)
0.638

)
cm h−1 , Vuv =

(
O(10−11)
O(10−7)

)
cm h−1,

Vvu =

(
O(10−11)
O(10−7)

)
cm h−1 , Vvv =

(
O(10−8)
O(10−4)

)
cm h−1.

Measurements of pulses of radioactively labeled auxin confirm the transport velocity (measurements: 1.2–1.5 cm h−1, [13]).
Also the results of discrete models for root tips is within this range, [4].
Homogenization was used successfully to show that auxin transport has a transport velocity. Although the electrical

field is localized to the membranes, macroscopic transport is a consequence of it. Through numerical simulation of the
cell problems, the velocity was shown to be of the order of measured values. It was a priori not clear if the measured
permeabilities found in the literature truly reflect the real situation, as these have been partially measured using wrong
assumptions on the type of transport model.
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