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Interactions between mechanics and chemistry 
• mechanical forces can break load-bearing cross-links 
• dynamics of cross-links influences mechanical properties 

of plant cell wall matrix

Plant cell walls: 
microstructure, mechanics & chemistry 

Microscopic structure of plant cell walls  
• cellulose microfibrils 
• cell wall matrix of pectin, hemicellulose, water, 

enzymes 
• allows for anisotropic cell expansion

(Homogalacturonan) Pectin
Chemical processes:

I Pectin is deposited into cell walls from
Golgi apparatus in a methylesterified form

I enzyme PME interacts with
methylestrified pectin to form
demethylestrified pectin

I Demethylestrified pectin and calcium ions
form calcium-pectin cross-links

Mechanics:

I linear elasticity

I elastic-viscoelastic material

Bosch et al. 2005). The pollen tube grows by massive
incorporation of secretory vesicles into the plasma mem-
brane exclusively at the tip (Bosch and Hepler 2005;
McKenna et al. 2009). Notably, only highly methyl-
esterified pectin is present in the growing apex, whereas
demethylesterified pectin is found along the shank of the
tube in accordance with a role of the latter type in wall
consolidation (Parre and Geitmann 2005; Bosch et al.
2005). Based on protein localization studies, a possible
mechanism for the maintenance of this distribution was
proposed (Rockel et al. 2008). A PME inhibitor protein
(PMEI) is exclusively localized at the pollen tube tip wall,
where it could interact with the ubiquitous PME, thus pre-
venting PME activity here. PMEI undergoes selective endo-
cytosis, presumably near the transition region between tip
and shank, thereby liberating PME for its wall solidifying
role in the lateral cell wall (Rockel et al. 2008).

In accordance with the role of pollen PMEs in wall
consolidation, mutation of VGD1, a highly expressed

Arabidopsis pollen PME isoform, results in unstable tubes
which lack the mechanical integrity to successfully pene-
trate the female tissue (Jiang et al. 2005). Similar effects,
albeit to a weaker extent, were observed after genetic inter-
ference with other pollen PMEs in tobacco and Arabidopsis
(Tian et al. 2006; Bosch and Hepler 2006). Conversely,
ubiquitous overexpression of VGD1, leading to ectopic
labeling of demethylesterified pectin, results in dwarf plants,
a phenotype which could be explained by reduced cell wall
extensibility (Fig. 2a). Interestingly, labeling with an anti-
body directed against HG with a low degree of methyl
esterification showed a high abundance of this epitope in
the outer epidermal wall of stem sections, whereas it is
apparently undetectable in these walls in the wildtype
(Fig. 2b). This is noteworthy with respect to the discussion
on growth control exerted by the epidermis over the inner
tissues (Savaldi-Goldstein et al. 2007).

However, genetic interference with PME expression and
activity does not always result in effects as clear as observed

Fig. 1 Schematic representation of homogalacturonic acid demethyl
esterification. a The reaction catalyzed by pectin methylesterase (PME)
leads to a free carboxylic acid group and the release of methanol and a
proton, respectively. PMEI can block the reaction through interaction
with PME. b Possible consequences of PME activity. 1 The decrease in
pH caused by the reaction outlined in a might alter cell wall properties
indirectly through changing the activity of cell wall remodeling
enzymes. 2 Continuous demethyl esterification of more than nine
galacturonic acid residues can lead to the Ca2+ cross-linking of two

adjacent HG molecules, which in vitro, leads to gelation and stiffening
of the pectin. 3 Demethyl esterification can promote hydration, which
in turn leads to a reduction in wall stiffness. 4 PME activity is a
prerequisite for HG degradation by polygalacturonase (PG). In addi-
tion to the wall loosening effect of pectin removal, PG activity can
result in the production of oligogalacturonides (OGAs), which can act
as signaling molecules during pathogen attack and normal
development
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incorporation of secretory vesicles into the plasma mem-
brane exclusively at the tip (Bosch and Hepler 2005;
McKenna et al. 2009). Notably, only highly methyl-
esterified pectin is present in the growing apex, whereas
demethylesterified pectin is found along the shank of the
tube in accordance with a role of the latter type in wall
consolidation (Parre and Geitmann 2005; Bosch et al.
2005). Based on protein localization studies, a possible
mechanism for the maintenance of this distribution was
proposed (Rockel et al. 2008). A PME inhibitor protein
(PMEI) is exclusively localized at the pollen tube tip wall,
where it could interact with the ubiquitous PME, thus pre-
venting PME activity here. PMEI undergoes selective endo-
cytosis, presumably near the transition region between tip
and shank, thereby liberating PME for its wall solidifying
role in the lateral cell wall (Rockel et al. 2008).

In accordance with the role of pollen PMEs in wall
consolidation, mutation of VGD1, a highly expressed

Arabidopsis pollen PME isoform, results in unstable tubes
which lack the mechanical integrity to successfully pene-
trate the female tissue (Jiang et al. 2005). Similar effects,
albeit to a weaker extent, were observed after genetic inter-
ference with other pollen PMEs in tobacco and Arabidopsis
(Tian et al. 2006; Bosch and Hepler 2006). Conversely,
ubiquitous overexpression of VGD1, leading to ectopic
labeling of demethylesterified pectin, results in dwarf plants,
a phenotype which could be explained by reduced cell wall
extensibility (Fig. 2a). Interestingly, labeling with an anti-
body directed against HG with a low degree of methyl
esterification showed a high abundance of this epitope in
the outer epidermal wall of stem sections, whereas it is
apparently undetectable in these walls in the wildtype
(Fig. 2b). This is noteworthy with respect to the discussion
on growth control exerted by the epidermis over the inner
tissues (Savaldi-Goldstein et al. 2007).

However, genetic interference with PME expression and
activity does not always result in effects as clear as observed

Fig. 1 Schematic representation of homogalacturonic acid demethyl
esterification. a The reaction catalyzed by pectin methylesterase (PME)
leads to a free carboxylic acid group and the release of methanol and a
proton, respectively. PMEI can block the reaction through interaction
with PME. b Possible consequences of PME activity. 1 The decrease in
pH caused by the reaction outlined in a might alter cell wall properties
indirectly through changing the activity of cell wall remodeling
enzymes. 2 Continuous demethyl esterification of more than nine
galacturonic acid residues can lead to the Ca2+ cross-linking of two

adjacent HG molecules, which in vitro, leads to gelation and stiffening
of the pectin. 3 Demethyl esterification can promote hydration, which
in turn leads to a reduction in wall stiffness. 4 PME activity is a
prerequisite for HG degradation by polygalacturonase (PG). In addi-
tion to the wall loosening effect of pectin removal, PG activity can
result in the production of oligogalacturonides (OGAs), which can act
as signaling molecules during pathogen attack and normal
development
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long chain of galacturonic acids

Interactions between chemistry and mechanics

I Under the presence of strain or stress, calcium-pectin cross-links break.

I Calcium-pectin cross-links change mechanical properties of the cell wall matrix.

Bosch et al. 2005). The pollen tube grows by massive
incorporation of secretory vesicles into the plasma mem-
brane exclusively at the tip (Bosch and Hepler 2005;
McKenna et al. 2009). Notably, only highly methyl-
esterified pectin is present in the growing apex, whereas
demethylesterified pectin is found along the shank of the
tube in accordance with a role of the latter type in wall
consolidation (Parre and Geitmann 2005; Bosch et al.
2005). Based on protein localization studies, a possible
mechanism for the maintenance of this distribution was
proposed (Rockel et al. 2008). A PME inhibitor protein
(PMEI) is exclusively localized at the pollen tube tip wall,
where it could interact with the ubiquitous PME, thus pre-
venting PME activity here. PMEI undergoes selective endo-
cytosis, presumably near the transition region between tip
and shank, thereby liberating PME for its wall solidifying
role in the lateral cell wall (Rockel et al. 2008).

In accordance with the role of pollen PMEs in wall
consolidation, mutation of VGD1, a highly expressed

Arabidopsis pollen PME isoform, results in unstable tubes
which lack the mechanical integrity to successfully pene-
trate the female tissue (Jiang et al. 2005). Similar effects,
albeit to a weaker extent, were observed after genetic inter-
ference with other pollen PMEs in tobacco and Arabidopsis
(Tian et al. 2006; Bosch and Hepler 2006). Conversely,
ubiquitous overexpression of VGD1, leading to ectopic
labeling of demethylesterified pectin, results in dwarf plants,
a phenotype which could be explained by reduced cell wall
extensibility (Fig. 2a). Interestingly, labeling with an anti-
body directed against HG with a low degree of methyl
esterification showed a high abundance of this epitope in
the outer epidermal wall of stem sections, whereas it is
apparently undetectable in these walls in the wildtype
(Fig. 2b). This is noteworthy with respect to the discussion
on growth control exerted by the epidermis over the inner
tissues (Savaldi-Goldstein et al. 2007).

However, genetic interference with PME expression and
activity does not always result in effects as clear as observed

Fig. 1 Schematic representation of homogalacturonic acid demethyl
esterification. a The reaction catalyzed by pectin methylesterase (PME)
leads to a free carboxylic acid group and the release of methanol and a
proton, respectively. PMEI can block the reaction through interaction
with PME. b Possible consequences of PME activity. 1 The decrease in
pH caused by the reaction outlined in a might alter cell wall properties
indirectly through changing the activity of cell wall remodeling
enzymes. 2 Continuous demethyl esterification of more than nine
galacturonic acid residues can lead to the Ca2+ cross-linking of two

adjacent HG molecules, which in vitro, leads to gelation and stiffening
of the pectin. 3 Demethyl esterification can promote hydration, which
in turn leads to a reduction in wall stiffness. 4 PME activity is a
prerequisite for HG degradation by polygalacturonase (PG). In addi-
tion to the wall loosening effect of pectin removal, PG activity can
result in the production of oligogalacturonides (OGAs), which can act
as signaling molecules during pathogen attack and normal
development
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Bosch et al. 2005). The pollen tube grows by massive
incorporation of secretory vesicles into the plasma mem-
brane exclusively at the tip (Bosch and Hepler 2005;
McKenna et al. 2009). Notably, only highly methyl-
esterified pectin is present in the growing apex, whereas
demethylesterified pectin is found along the shank of the
tube in accordance with a role of the latter type in wall
consolidation (Parre and Geitmann 2005; Bosch et al.
2005). Based on protein localization studies, a possible
mechanism for the maintenance of this distribution was
proposed (Rockel et al. 2008). A PME inhibitor protein
(PMEI) is exclusively localized at the pollen tube tip wall,
where it could interact with the ubiquitous PME, thus pre-
venting PME activity here. PMEI undergoes selective endo-
cytosis, presumably near the transition region between tip
and shank, thereby liberating PME for its wall solidifying
role in the lateral cell wall (Rockel et al. 2008).

In accordance with the role of pollen PMEs in wall
consolidation, mutation of VGD1, a highly expressed

Arabidopsis pollen PME isoform, results in unstable tubes
which lack the mechanical integrity to successfully pene-
trate the female tissue (Jiang et al. 2005). Similar effects,
albeit to a weaker extent, were observed after genetic inter-
ference with other pollen PMEs in tobacco and Arabidopsis
(Tian et al. 2006; Bosch and Hepler 2006). Conversely,
ubiquitous overexpression of VGD1, leading to ectopic
labeling of demethylesterified pectin, results in dwarf plants,
a phenotype which could be explained by reduced cell wall
extensibility (Fig. 2a). Interestingly, labeling with an anti-
body directed against HG with a low degree of methyl
esterification showed a high abundance of this epitope in
the outer epidermal wall of stem sections, whereas it is
apparently undetectable in these walls in the wildtype
(Fig. 2b). This is noteworthy with respect to the discussion
on growth control exerted by the epidermis over the inner
tissues (Savaldi-Goldstein et al. 2007).

However, genetic interference with PME expression and
activity does not always result in effects as clear as observed

Fig. 1 Schematic representation of homogalacturonic acid demethyl
esterification. a The reaction catalyzed by pectin methylesterase (PME)
leads to a free carboxylic acid group and the release of methanol and a
proton, respectively. PMEI can block the reaction through interaction
with PME. b Possible consequences of PME activity. 1 The decrease in
pH caused by the reaction outlined in a might alter cell wall properties
indirectly through changing the activity of cell wall remodeling
enzymes. 2 Continuous demethyl esterification of more than nine
galacturonic acid residues can lead to the Ca2+ cross-linking of two

adjacent HG molecules, which in vitro, leads to gelation and stiffening
of the pectin. 3 Demethyl esterification can promote hydration, which
in turn leads to a reduction in wall stiffness. 4 PME activity is a
prerequisite for HG degradation by polygalacturonase (PG). In addi-
tion to the wall loosening effect of pectin removal, PG activity can
result in the production of oligogalacturonides (OGAs), which can act
as signaling molecules during pathogen attack and normal
development
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Calcium-pectin chemistry

Mechanics (hyperelastic material)
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Nonlinear deformations and growth
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Bosch et al. 2005). The pollen tube grows by massive
incorporation of secretory vesicles into the plasma mem-
brane exclusively at the tip (Bosch and Hepler 2005;
McKenna et al. 2009). Notably, only highly methyl-
esterified pectin is present in the growing apex, whereas
demethylesterified pectin is found along the shank of the
tube in accordance with a role of the latter type in wall
consolidation (Parre and Geitmann 2005; Bosch et al.
2005). Based on protein localization studies, a possible
mechanism for the maintenance of this distribution was
proposed (Rockel et al. 2008). A PME inhibitor protein
(PMEI) is exclusively localized at the pollen tube tip wall,
where it could interact with the ubiquitous PME, thus pre-
venting PME activity here. PMEI undergoes selective endo-
cytosis, presumably near the transition region between tip
and shank, thereby liberating PME for its wall solidifying
role in the lateral cell wall (Rockel et al. 2008).

In accordance with the role of pollen PMEs in wall
consolidation, mutation of VGD1, a highly expressed

Arabidopsis pollen PME isoform, results in unstable tubes
which lack the mechanical integrity to successfully pene-
trate the female tissue (Jiang et al. 2005). Similar effects,
albeit to a weaker extent, were observed after genetic inter-
ference with other pollen PMEs in tobacco and Arabidopsis
(Tian et al. 2006; Bosch and Hepler 2006). Conversely,
ubiquitous overexpression of VGD1, leading to ectopic
labeling of demethylesterified pectin, results in dwarf plants,
a phenotype which could be explained by reduced cell wall
extensibility (Fig. 2a). Interestingly, labeling with an anti-
body directed against HG with a low degree of methyl
esterification showed a high abundance of this epitope in
the outer epidermal wall of stem sections, whereas it is
apparently undetectable in these walls in the wildtype
(Fig. 2b). This is noteworthy with respect to the discussion
on growth control exerted by the epidermis over the inner
tissues (Savaldi-Goldstein et al. 2007).

However, genetic interference with PME expression and
activity does not always result in effects as clear as observed

Fig. 1 Schematic representation of homogalacturonic acid demethyl
esterification. a The reaction catalyzed by pectin methylesterase (PME)
leads to a free carboxylic acid group and the release of methanol and a
proton, respectively. PMEI can block the reaction through interaction
with PME. b Possible consequences of PME activity. 1 The decrease in
pH caused by the reaction outlined in a might alter cell wall properties
indirectly through changing the activity of cell wall remodeling
enzymes. 2 Continuous demethyl esterification of more than nine
galacturonic acid residues can lead to the Ca2+ cross-linking of two

adjacent HG molecules, which in vitro, leads to gelation and stiffening
of the pectin. 3 Demethyl esterification can promote hydration, which
in turn leads to a reduction in wall stiffness. 4 PME activity is a
prerequisite for HG degradation by polygalacturonase (PG). In addi-
tion to the wall loosening effect of pectin removal, PG activity can
result in the production of oligogalacturonides (OGAs), which can act
as signaling molecules during pathogen attack and normal
development
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Linear elasticity or viscoelasticity

Plant cell walls: mechanics & chemistry 
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Reaction-diffusion equations for chemical reactions

• demethyl-esterification of pectin by PME 
• demethyl-esterified pectin can decay
• formation and destruction of calcium-pectin cross-links
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Microscopic Model
In (0,T )⇥ G
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(ŷ) + EF �

ˆYF
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(ŷ) are

ˆY -periodic,

ˆY = Y \ {x
3

= const}
In (0,T )⇥ G "

M

@tp
" = div(Dprp")

@tb
"
1

= div(Db
1

rb"
1

)� f (b"
1

, b"
2

, p")

@tb
"
2

= div(Db
2

rb"
2

) + f (b"
1

, b"
2

, p")� 2g(c")b"
2

+ 2 b"
3

R(e(u"e))

@tc
" = div(Dcrc")� g(c")b"

2

+  b"
3

R(e(u"e))

@tb
"
3

= div(Db
3

rb"
3

) + g(c")b"
2

�  b"
3

R(e(u"e))
F

YM

Y



Existence of solutions of the model for the cell wall

• For b" 2 L1(0,T ; L1(G "
M)) with b" � 0

9 u"e 2 L1(0,T ;W(G )) satisfying elasticity or viscoelasticity problem

ke(u",1e � u",2e )k2L1
(0,T ;L2

(G))

 Ckb",1 � b",2k2L1
(0,T ;L1

(G"
M ))

• For u"e 2 L1(0,T ;W(G )) such that

ku"ekL1
(0,T ;W(G))

 C ,

9 non-negative unique weak solution (b", c") such that

kb",1 � b",2k2
L1

(0, ˜T ;L1
(G"

M ))

 CT̃ ke(u",1e �u",2e )k2
L1

(0, ˜T ;L2

(G))

, T̃ 2 (0,T ]

• K : L1(G "
M, ˜T

) ! L1(G "
M, ˜T

) by K(b̃") = b"
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Existence of solutions of the model for the cell wall

• For b" 2 L1(0,T ; L1(G "
M)) with b" � 0
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Homogenization 

Multiscale analysis
Aim of multiscale analysis:
     to defined macroscopic behaviour of a biological or physical
     system by taking microscopic processes and microstructure
     into account 

Multiscale Analysis

I The aim of homogenization is to define macroscopic
behaviour by taking properties of the microscopic structure
and microscopic processes into account.

I Macroscopic models are needed for numerical simulation
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Figure 1: (a) A depiction of the domain � with the subsets representing the matrix ��
M

and the microfibrils ��
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Homogenization

+

Methods: • formal asymptotic expansion
• two-scale convergence
• H- ,   - , and G- convergences 
• periodic and locally-periodic unfolding operators

• Periodic or locally-periodic microstructures
• Stochastic microstructures

Microstructures: 
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Two-scale convergence
• A special type of convergence in Lp, 1 < p < 1 and 1/p + 1/q = 1

Definition. {u"} ⇢ Lp(⌦) two-scale converge to u, u 2 Lp(⌦⇥ Y )
i↵ for any � 2 Lq(⌦,Cper (Y ))

lim
"!0

Z

⌦

u"(x)�
⇣
x ,

x

"

⌘
dx =

Z

⌦

�
Z

Y

u(x , y)�(x , y)dxdy .

Notice:

u" * �
Z

Y

u(·, y)dy weakly in Lp(⌦)

Definition. {u"} ⇢ L2(�✏) two-scale converge to u, u 2
L2(⌦⇥ �) i↵ for  2 C (⌦,Cper (Y )):

lim
"!0

"

Z

�

"

u✏(x) (x , x/")d�x =
1

|Y |
Z

⌦

Z

�

u(x , y) (x , y)dxd�y .

Y

Γ



Convergence results

b, c 2 L2(0,T ;H1(G )), c1, b1 2 L2(GT ;H
1
per

(Ŷ ))

ue 2 L1(0,T ;W(G )), u1e 2 L2(GT ;H
1
per

(Ŷ ))

b" * b, c" * c weakly in L2(0,T ;H1(G ))

rb" * rb + r̂yb
1, rc" * rc + r̂yc

1 weakly two-scale

b" ! b, c" ! c strongly in L2(GT )

u"e * ue weakly⇤ in L1(0,T ;W(G ))

ru"e * rue + r̂yu
1
e weakly two-scale

e(u"e) ! e(ue) + ey (u
1
e) strongly two-scale

Ŷ = Y \ {x3 = const}, GT = (0,T )⇥ G



Microscopic Model

In (0,T )⇥ G

div(E"(b", x)e(u"e)) = 0

or

div(E"(b", x)e(u"e) + V"(b", x)e(@tu
"
e)) = 0

In (0,T )⇥ G "
M

@tb
" = div(Dbrb") + gb(b

", c",R(e(u"e)))

@tc
" = div(Dcrc") + gc(b

", c",R(e(u"e)))

R(e(u"e)) =
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+EF�GF
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⌘

+
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Numerical simulations for plant cell wall model

Macroscopic model for plant cell wall biomechanics

div(E
hom

(b
3

) e(ue)) = 0 in GT

@tb = div(Dbrb) + gb(b, c ,R(e(ue))) in GT

@tc = div(Dcrc) + gc(b, c ,R(e(ue))) in GT

R(e(ue)) =
⇣

tr
�

E
hom

(b
3

) e(ue)
�

⌘

+

or
�

tr e(ue)
�

+

D↵,j3 = D↵,3j = D↵�3j , D↵,ij = D↵�
Z

ˆYM

⇥

�ij + @yj v
i
↵(y)

⇤

dy ,

↵ = b
1

, b
2

, b
3

, c

E
hom,ijkl(b3) = �

Z

Y

⇥

Eijkl(b3, y) +
�

E(b
3

, y)ey (w
ij)
�

kl

⇤

dy
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Macroscopic elasticity tensor 

The impact of microfibril orientations on the biomechanics of plant cell walls and tissues 7
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Fig. 7 A depiction of the Representative Volume Element (RVE) Y with three configurations of microfibrils. (a) A picture
of the RVE with one microfibril occupying the set specified in (6). (b) A picture of the RVE with two microfibrils occupying
the set specified in (7). (c) A picture of the RVE with two microfibrils occupying the set specified in (8), reflecting a lower
density in the distribution of microfibrils in the y

1

and y

2

-directions than in the y

3

-direction.

wall U with a periodic microstructure on the length scale of " defined by the structure of "Y , the periodic
extension of E

Y

must be scaled appropriately. Namely, the elasticity tensor in U is given by

E"(x, c) = E
Y

⇣x
"
, c
⌘

for all x 2 U

Then homogenization theory yields a macroscopic elasticity tensor E
hom

that describes a material whose
behavior approximates the behavior of the cell wall with elasticity tensor E" when " is very small [?]. In
our situation " ⇡ 10�3. Moreover, E

hom

is given by

E
hom,ijkl

(x, c) = �
Z

Y

⇥
E
Y,ijkl

(y, c) + E
Y,ijpq

(y, c)e
y

(wkl)
pq

(y)
⇤
dy for x 2 U (9)

where w

kl 2 H1(Y,R3) is the unique solution of

div
y

�
E
Y

(y, c)(e
y

(wkl) + b

kl)
�
= 0 in Y

Z

Y

w

kl dy = 0, w

kl is Y -periodic
(10)

with

b

kl =
1

2
(bk ⌦ b

l + b

l ⌦ b

k), k, l = 1, 2, 3

where

(b1,b2,b3) the standard basis in R3

When Y
F

is given by (7) and (8), the elasticity tensor given in (9) will be denoted by E12

hom,1

and

E12

hom,2

, respectively, as there are microfibrils in the x
1

and x
2

-directions, while when Y
F

is given by (6)

the elasticity tensor defined in (9) will be denoted by E1

hom

since the microfibrils are pointing in the
x
1

-direction.
Moreover, when Y

F

is given by (6), then the microscopic elasticity tensor E" depends only on the two
variables x

2

and x
3

. Hence for this configuration of the microstructure the elasticity tensor E
Y

depends
only on y

2

and y
3

and the solutions of the elliptic problems (10) depend only on ŷ = (y
2

, y
3

). Thus,
since w

kl are independent of y
1

, the problems (10) can be reduced to two-dimensional problems [?]. To
formulate the reduced problems, we consider

Ŷ = (0, 1)2

c"

and

Ŷ
F

= {(ŷ
2

, ŷ
3

) 2 Ŷ | (ŷ
2

� 0.5)2 + (ŷ
3

� 0.5)2 < 0.252},

Multiscale Analysis

I The aim of homogenization is to define macroscopic
behaviour by taking properties of the microscopic structure
and microscopic processes into account.

I Macroscopic models are needed for numerical simulation
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wall U with a periodic microstructure on the length scale of " defined by the structure of "Y , the periodic
extension of E

Y

must be scaled appropriately. Namely, the elasticity tensor in U is given by

E"(x, c) = E
Y

⇣x
"
, c
⌘

for all x 2 U

Then homogenization theory yields a macroscopic elasticity tensor E
hom

that describes a material whose
behavior approximates the behavior of the cell wall with elasticity tensor E" when " is very small [?]. In
our situation " ⇡ 10�3. Moreover, E

hom

is given by

E
hom,ijkl

(x, b
3

) = �
Z

Y

⇥
E
Y,ijkl

(b
3

, y) + E
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(b
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, y)e
y

(wkl)
pq

(y)
⇤
dy for x 2 U (9)
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kl 2 H1(Y,R3) is the unique solution of

div
y

�
E
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3
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y

(wkl) + b

kl)
�
= 0 in Y

Z

Y

w

kl dy = 0, w

kl is Y -periodic
(10)

with

b

kl =
1

2
(bk ⌦ b

l + b

l ⌦ b

k), k, l = 1, 2, 3

where

(b1,b2,b3) the standard basis in R3

When Y
F

is given by (7) and (8), the elasticity tensor given in (9) will be denoted by E12

hom,1

and

E12

hom,2

, respectively, as there are microfibrils in the x
1

and x
2

-directions, while when Y
F

is given by (6)

the elasticity tensor defined in (9) will be denoted by E1

hom

since the microfibrils are pointing in the
x
1

-direction.
Moreover, when Y

F

is given by (6), then the microscopic elasticity tensor E" depends only on the two
variables x

2

and x
3

. Hence for this configuration of the microstructure the elasticity tensor E
Y

depends
only on y

2

and y
3

and the solutions of the elliptic problems (10) depend only on ŷ = (y
2

, y
3

). Thus,
since w

kl are independent of y
1

, the problems (10) can be reduced to two-dimensional problems [?]. To
formulate the reduced problems, we consider

Ŷ = (0, 1)2

c"

and

Ŷ
F

= {(ŷ
2

, ŷ
3

) 2 Ŷ | (ŷ
2

� 0.5)2 + (ŷ
3

� 0.5)2 < 0.252},
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3

� 0.5)2 < 0.252},

6 Mariya Ptashnyk, Brian Seguin

where ↵
i

, for i = 1, 2, 3, 4, 5, are related to the five parameters described above through

↵
1

=
E

F

(1� ⌫
F1

)

n
F

(1� ⌫
F1

)� 2⌫2
F2

, ↵
2

=
E

F

n
F

2n
F

(1� ⌫
F1

)� 4⌫2
F2

,

↵
3

=
E

F

⌫
F2

n
F

(1� ⌫
F1

)� 2⌫2
F2

, ↵
4

= Z
F

, ↵
5

=
E

F

2(1 + ⌫
F1

)
.

We assign these parameters the values

E
F

= 15000MPa, ⌫
F1

= 0.3, n
F

= 0.068, ⌫
F2

= 0.06, Z
F

= 85000MPa,

which are chosen based on experimental results [?] and to ensure that the elasticity tensor for the mi-
crofibrils is positive definite [?,?].

We assume that the middle lamella is isotropic, with elasticity tensor E
ML

, and has a Young’s modulus
of 15 MPa and Poisson’s ratio of 0.3. It is known from experiments that the density of calcium-pectin
cross-links strongly influences the elastic properties of the cell wall matrix and middle lamella [?]. Thus,
since in the middle lamella almost all pectin is de-esterified and the density of the pectin-calcium cross-
links is higher than in the cell wall matrix, where usually only 70% of the pectin is de-esterified, we
assume that the Young’s modulus for the middle lamella is three times larger than the Young’s modulus
for the cell wall matrix.

We first consider that the cellulose microfibrils are arranged periodically within the cell wall matrix
[?] and so standard techniques in homogenization theory, see e.g. [?], yield a macroscopic elasticity tensor
for a plant cell wall from the microscopic description of the mechanical properties of a cell wall on the
level of a single microfibril. In addition to the elastic properties of the microfibrils and cell wall matrix,
the macroscopic elasticity tensor depends on the orientation of the cellulose microfibrils. The components
of this tensor are determined by solving problems defined on a Representative Volume Element (RVE),
in the homogenization literature called the ‘unit cell’ problem, which have the form of the equations of
linear elasticity and reflect the arrangement of the microfibrils in di↵erent parts of the cell walls. Notice
that the multiscale analysis of the microscopic model is preformed for the nondimensionalized model
equations and the dimensional quantities are then recovered in the macroscopic equations, while the
problem defined on the RVE is dimensionless.

The microscopic structure in a plant cell wall is determined by the radius and orientation of microfibrils
and by the distance between the microfibrils. In the context of homogenization theory the microstructure
of the cell wall is characterized by the configuration of microfibrils in the corresponding RVE. Three types
of configurations of microfibrils are of primary interest:
(a) there is only one microfibril in the RVE Y = (0, 1)3 occupying the set

Y
F

= {y 2 Y | (y
2

� 0.5)2 + (y
3

� 0.5)2 < 0.252}, (6)

(b) there are two perpendicular microfibrils in the RVE Y = (0, 0.5)2 ⇥ (0, 1) occupying the set

Y
F

= {y 2 Y | (y
2

� 0.25)2 + (y
3

� 0.75)2 < 0.1252 or (y
1

� 0.25)2 + (y
3

� 0.25)2 < 0.1252}, (7)

(c) the RVE Y = (0, 1)3 with two perpendicular microfibrils occupying the domain

Y
F

= {y 2 Y | (y
2

� 0.5)2 + (y
3

� 0.75)2 < 0.1252 or (y
1

� 0.5)2 + (y
3

� 0.25)2 < 0.1252}, (8)

see Figure 7. Cases (b) and (c) are similar, except in case (c) the density of the microfibrils in the
y
3

-direction is higher than in the y
1

and y
2

-directions.
We have Y = Y

M

[ Y
F

, where Y
M

and Y
F

are disjoint and Y
M

represents the part of Y occupied by
the cell wall matrix. Notice that for the simplicity of presentation we use the same notations for domains
Y , Y

M

, and Y
F

, defining di↵erent RVEs and di↵erent microfibrils configurations.
The elasticity tensor E

Y

in Y is given by

E
Y

(b
3

, y) =

(
E
M

(b
3

) if y 2 Y
M

E
F

if y 2 Y
F

and can be extended Y -periodically to all of R3. Consider a subdomain U of ⌦ in which the cellulose
microfibrils are arranged periodically with the distribution and orientation specified by the RVE Y and
Y
F

defined in (6), (7), or (8). Let " be a small parameter associated with the ratio between the distance
between the cellulose microfibrils and the size of U . The microfibrils of a plant cell wall are about 3 nm
in diameter and are separated by a distance of about 6 nm, see e.g. [?,?,?], whereas the thickness of a
plant cell wall is of the order of a few micrometers. To obtain the elasticity tensor for the part of the cell

Continuous rotation of microfibrils in cell walls
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so that Y = (0, 1)⇥ Ŷ and Y
F

= (0, 1)⇥ Ŷ
F

. It can be shown that

E
hom,ijkl

(x, c) = �
Z

ˆ

Y

⇥
E
Y,ijkl

(0, ŷ, c) + E
Y,ijpq

(0, ŷ, c) ê
ŷ

(ŵkl)
pq

(ŷ)
⇤
dŷ for x 2 U (11)

with ŵ

kl 2 H1(Ŷ ,R3) being the unique solution of

d̂iv
ŷ

�
E
Y

(0, ŷ, c)(ê
ŷ

(ŵkl) + b

kl)
�
= 0 in Ŷ

Z

ˆ

Y

ŵ

kl dŷ = 0, ŵ

kl is Ŷ -periodic
(12)

where for a function ŵ 2 H1(Ŷ ,R3), the di↵erential operators ê
ŷ

and d̂iv
ŷ

are defined by

ê

ŷ

(ŵ) =

0

@
0 1

2

@
y2ŵ1

1

2

@
y3ŵ1

1

2

@
y2ŵ1

@
y2ŵ2

1

2

(@
y2ŵ3

+ @
y3ŵ2

)
1

2

@
y3ŵ1

1

2

(@
y2ŵ3

+ @
y3ŵ2

) @
y3ŵ3

1

A and d̂iv
ŷ

ŵ = @
y2ŵ2

+ @
y3ŵ3

see e.g. [?]. Reducing the dimension of the problem defined on the RVE to two allows for the consideration
of a higher resolution mesh when solving the problem (12) numerically.

Besides considering the macroscopic elasticity tensor for the microstructure defined by microfibrils
parallel to the x

1

-axis, we will also consider the macroscopic elasticity tensor for the microstructure
generated by microfibrils that are arranged in other directions in the x

1

x
2

-plane. Given ✓ 2 [�⇡/2,⇡/2],
let R✓ denote the rotation about the x

3

-axis through the angle ✓, so that

R

✓ =

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A

The macroscopic elasticity tensor E1,✓

hom

for a microstructure consisting of microfibrils aligned in the
direction R

✓

b

1 is given by
E✓

hom,ijkl

= R

✓

ip

R

✓

jq

R

✓

kr

R

✓

ls

E
hom,pqrs

(13)

So, for example, the macroscopic elasticity tensor for a microstructure with microfibrils parallel to the

x
2

-axis is given by E1,⇡/2

hom

.
To summarize, the elasticity tensor E in the domain ⌦ is di↵erent in di↵erent regions within the cell

wall. In Figures 4 and 6 we specify the regions of the cell walls where the microfibrils are parallel to
the x

1

-axis, i.e. E = E1

hom

, and the regions of the primary cell wall where the microfibrils are parallel

to the x
2

-axis, i.e. E = E1,⇡/2

hom

. Within subregion ⌦
i

, for i = 1, . . . , 4, corresponding to the upper and

lower parts of the cell walls, see Figures 1, 2, 3 and 5, the elasticity tensor E will be set equal to Ei,l

end

and Ei,u

end

, for lower and upper parts respectively, where di↵erent choices of Ei,l

end

and Ei,u

end

associated with
di↵erent microfibril configurations will be considered. Within the middle lamella there are no microfibrils
and E = E

ML

. To specify the macroscopic elasticity tensor for the side walls consisting of layers of
microfibrils rotated through the thickness of the cell wall we use a formula similar to (13) with the
rotation being about the x

1

or x
2

-axes, respectively, and the angle ✓ depending on the spatial position
in the cell walls, so that ✓ = 0 at the inner side of the cell wall and ✓ = ⇡/2 near the middle lamella.

It follows from the properties of E
M

, E
F

, and E
ML

that the macroscopic elasticity tensor E for the
plant cell wall and middle lamella satisfies the conditions 1–3 mentioned at the end of Section 1.2. Hence
problem (5) describing the macroscopic elastic properties of the plant cell walls connected by middle
lamella is well-posed.

2 Results of numerical simulations

This section presents the results of the numerical simulations of the problems (10) and (12) necessary to
calculate the macroscopic elasticity tensors E1

hom

, E12

hom,1

, and E12

hom,2

and the simulations of the system
(5) for di↵erent configurations of cellulose microfibrils in the cell walls. For the numerical simulations of
the system (5) we nondimensionalize the model equations by considering 1 spatial unit to be equal to
2µm and 1 unit for stress to be equal to 1 MPa.

The numerical simulations were performed using FEniCS [?,?,?]. This involved discretizing the domain
using a nonuniform mesh and applying the continuous Galerkin method to solve the equations of linear
elasticity. The resulting linear system was solved using the iterative Krylov solver, i.e. the general minimal
residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping
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y2ŵ3

+ @
y3ŵ2
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see e.g. [?]. Reducing the dimension of the problem defined on the RVE to two allows for the consideration
of a higher resolution mesh when solving the problem (12) numerically.
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To summarize, the elasticity tensor E in the domain ⌦ is di↵erent in di↵erent regions within the cell

wall. In Figures 4 and 6 we specify the regions of the cell walls where the microfibrils are parallel to
the x
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associated with
di↵erent microfibril configurations will be considered. Within the middle lamella there are no microfibrils
and E = E
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. To specify the macroscopic elasticity tensor for the side walls consisting of layers of
microfibrils rotated through the thickness of the cell wall we use a formula similar to (13) with the
rotation being about the x
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or x
2

-axes, respectively, and the angle ✓ depending on the spatial position
in the cell walls, so that ✓ = 0 at the inner side of the cell wall and ✓ = ⇡/2 near the middle lamella.

It follows from the properties of E
M

, E
F

, and E
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that the macroscopic elasticity tensor E for the
plant cell wall and middle lamella satisfies the conditions 1–3 mentioned at the end of Section 1.2. Hence
problem (5) describing the macroscopic elastic properties of the plant cell walls connected by middle
lamella is well-posed.

2 Results of numerical simulations

This section presents the results of the numerical simulations of the problems (10) and (12) necessary to
calculate the macroscopic elasticity tensors E1
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, E12
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, and E12
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and the simulations of the system
(5) for di↵erent configurations of cellulose microfibrils in the cell walls. For the numerical simulations of
the system (5) we nondimensionalize the model equations by considering 1 spatial unit to be equal to
2µm and 1 unit for stress to be equal to 1 MPa.

The numerical simulations were performed using FEniCS [?,?,?]. This involved discretizing the domain
using a nonuniform mesh and applying the continuous Galerkin method to solve the equations of linear
elasticity. The resulting linear system was solved using the iterative Krylov solver, i.e. the general minimal
residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping

1



Microscopic Model

div(E"(n
b

, x)e(u)) = 0 in ⌦,

(E"(n
b

, x)e(u))⌫ = �pI⌫ on �I ,

(E"(n
b

, x)e(u))⌫ = fE on �E [ �U

E"(⇠, x) = E(⇠, x̂/"), where
E(⇠, ŷ) = E
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surfaces on the top and bottom of ⌦. (b) A depiction of the unit cell Y .
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The boundary @⌦ of the domain can be split into the union of three sets:

�
0

= {x 2 @⌦ | x
1

= 0 or x
2

= 0 or x
3

= 0}, (1)

�
max

= {x 2 @⌦ | x
1

= 7.5 or x
2

= 7.5 or x
3

= 21.5}, (2)

�I = @⌦ \ (�
0

[ �
max

). (3)

The set �I is the part of @⌦ in contact with the interior of the cells. A pressure boundary condition
corresponding to the turgor pressure will be imposed on �I . On �

max

a tensile traction boundary condition
will be specified. Finally, �

0

is the part of the boundary of ⌦ that lies on the planes x
1

= 0, x
2

= 0, or
x
3

= 0 associated with the planes of symmetry. Thus, the displacement in the normal direction on �
0

must be zero.
Neglecting inertia and external body forces, the elasticity equation with these boundary conditions

for the displacement u is 8
>>>>>><

>>>>>>:

div(Ee(u)) = 0 in ⌦,

u · ⌫ = 0 on �
0

,

(Ee(u))⌫ is parallel to ⌫ on �
0

,

(Ee(u))⌫ = f⌫ on �
max

,

(Ee(u))⌫ = �p⌫ on �I ,

(4)

where e(u) = 1

2

(ru + ru

T ) is the symmetric part of the gradient of the displacement and ⌫ is the
exterior unit-normal to @⌦. A unique solution of (4) exists in H1(⌦,R3) [10] provided that f 2 L2(�

max

),
p 2 L2(�

I

), and E satisfies the following conditions:

1. |E| is bounded in L1(⌦).
2. There is a strictly positive ↵ such that ↵|A|2  A · E(x)A for all symmetric A 2 R3⇥3 and x 2 ⌦.
3. E possesses major and minor symmetries, i.e. Eijkl = Ejikl = Eklij = Eijlk.

2.3 The elasticity tensor

Next, we specify the elasticity tensor E on the domain ⌦. To do so, we must specify the elasticity tensor
for the middle lamella and the primary cell wall for di↵erent microfibril configurations. The macroscopic
elastic properties of the primary cell wall are derived from the microscopic description of the elastic prop-
erties of the cell wall matrix and microfibrils using homogenization theory. This requires the specification
of the elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic [22], and so the elasticity tensor of the matrix EM is of the form

EMA = 2µMA+ �M (trA)1,

where the Lamé moduli µM and �M are related to the Young’s modulus EM and Poisson’s ratio ⌫M
through

EM =
µM (2µM + 3�M )

µM + �M
and ⌫M =

�M

2(µM + �M )
.

We take ⌫M = 0.3, which is common for biological materials, and EM = 5 MPa. This value is lower
than the Young’s modulus measured for highly de-methylesterfied pectin gels considered in [22] since the
pectin within the cell wall matrix is not fully de-esterfied.

The cellulose microfibrils are not isotropic [3], so we assume that they are transversely isotropic
and, hence, the elasticity tensor EF for the microfibrils is determined by specifying five parameters: the
Young’s modulus EF associated with the directions lying perpendicular to the microfibril, the Poisson’s
ratio ⌫F1

characterizing the transverse reduction of the plane perpendicular to the microfibril for stress
lying in this plane, the ratio nF between EF and the Young’s modulus associated with the direction of
the axis of the microfibril, the Poisson’s ratio ⌫F2

governing the reduction in the plane perpendicular to
the microfibril for stress in the direction of the microfibril, and the shear modulus ZF for planes parallel
to the microfibril. A transversely isotropic elasticity tensor expressed in Voigt notation is given by
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The set �I is the part of @⌦ in contact with the interior of the cells. A pressure boundary condition
corresponding to the turgor pressure will be imposed on �I . On �

max

a tensile traction boundary condition
will be specified. Finally, �

0

is the part of the boundary of ⌦ that lies on the planes x
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2

= 0, or
x
3

= 0 associated with the planes of symmetry. Thus, the displacement in the normal direction on �
0

must be zero.
Neglecting inertia and external body forces, the elasticity equation with these boundary conditions

for the displacement u is 8
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div(Ee(u)) = 0 in ⌦,

u · ⌫ = 0 on �
0
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(Ee(u))⌫ is parallel to ⌫ on �
0

,

(Ee(u))⌫ = f⌫ on �
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(4)

where e(u) = 1
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(ru + ru

T ) is the symmetric part of the gradient of the displacement and ⌫ is the
exterior unit-normal to @⌦. A unique solution of (4) exists in H1(⌦,R3) [10] provided that f 2 L2(�

max

),
p 2 L2(�

I

), and E satisfies the following conditions:

1. |E| is bounded in L1(⌦).
2. There is a strictly positive ↵ such that ↵|A|2  A · E(x)A for all symmetric A 2 R3⇥3 and x 2 ⌦.
3. E possesses major and minor symmetries, i.e. Eijkl = Ejikl = Eklij = Eijlk.

2.3 The elasticity tensor

Next, we specify the elasticity tensor E on the domain ⌦. To do so, we must specify the elasticity tensor
for the middle lamella and the primary cell wall for di↵erent microfibril configurations. The macroscopic
elastic properties of the primary cell wall are derived from the microscopic description of the elastic prop-
erties of the cell wall matrix and microfibrils using homogenization theory. This requires the specification
of the elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic [22], and so the elasticity tensor of the matrix EM is of the form

EMA = 2µMA+ �M (trA)1,

where the Lamé moduli µM and �M are related to the Young’s modulus EM and Poisson’s ratio ⌫M
through

EM =
µM (2µM + 3�M )

µM + �M
and ⌫M =

�M

2(µM + �M )
.

We take ⌫M = 0.3, which is common for biological materials, and EM = 5 MPa. This value is lower
than the Young’s modulus measured for highly de-methylesterfied pectin gels considered in [22] since the
pectin within the cell wall matrix is not fully de-esterfied.

The cellulose microfibrils are not isotropic [3], so we assume that they are transversely isotropic
and, hence, the elasticity tensor EF for the microfibrils is determined by specifying five parameters: the
Young’s modulus EF associated with the directions lying perpendicular to the microfibril, the Poisson’s
ratio ⌫F1

characterizing the transverse reduction of the plane perpendicular to the microfibril for stress
lying in this plane, the ratio nF between EF and the Young’s modulus associated with the direction of
the axis of the microfibril, the Poisson’s ratio ⌫F2

governing the reduction in the plane perpendicular to
the microfibril for stress in the direction of the microfibril, and the shear modulus ZF for planes parallel
to the microfibril. A transversely isotropic elasticity tensor expressed in Voigt notation is given by
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Neglecting inertia and external body forces, the elasticity equations with these boundary conditions
for the displacement u are given by

div(E"(x, c") e(u")) = 0 in ⌦

u

" · ⌫ = 0 on �
0

(E"(x, c") e(u"))⌫ is parallel to ⌫ on �
0

(E"(x, c") e(u"))⌫ = f⌫ on �
max

(E"(x, c") e(u"))⌫ = �p⌫ on �
I

(4)

div(E
hom

(x, c) e(u)) = 0 in ⌦

u · ⌫ = 0 on �
0

(E
hom

(x, c) e(u))⌫ is parallel to ⌫ on �
0

(E
hom

(x, c) e(u))⌫ = f⌫ on �
max

(E
hom

(x, c) e(u))⌫ = �p⌫ on �
I

(5)

where

e(u) =
1

2
(ru+ru

T )

is the symmetric part of the gradient of the displacement and ⌫ is the exterior unit-normal to @⌦. A
unique solution of (5) exists in H1(⌦,R3), see e.g. [?], provided that f 2 L2(�

max

), p 2 L2(�
I

), and E
satisfies the following conditions:

1. |E| is bounded in L1(⌦).
2. There is a strictly positive ↵ such that ↵|A|2  A · E(x)A for all symmetric A 2 R3⇥3 and x 2 ⌦.
3. E possesses major and minor symmetries, i.e. E

ijkl

= E
jikl

= E
klij

= E
ijlk

.

1.3 The elasticity tensor

Next, we specify the elasticity tensor E on the domain ⌦. To do so, we must specify the elasticity tensor
for the middle lamella and the cell walls for di↵erent microfibril configurations. The macroscopic elastic
properties of the cell wall are derived from the microscopic description of the elastic properties of the cell
wall matrix and microfibrils using techniques of periodic homogenization. This requires the specification
of the elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic [?], and so the elasticity tensor of the matrix E
M

is of the form

E
M

A = 2µ
M

A+ �
M

(trA)1

where the Lamé moduli µ
M

and �
M

are related to the Young’s modulus E
M

and Poisson’s ratio ⌫
M

through

E
M

=
µ
M

(2µ
M

+ 3�
M

)

µ
M

+ �
M

and ⌫
M

=
�
M

2(µ
M

+ �
M

)

We take ⌫
M

= 0.3, which is common for biological materials, see [?,?,?,?] for more information about
the Poisson’s ratio for plant cell walls, and E

M

= 5 MPa. This value is lower than the Young’s modulus
measured for highly de-methylesterified pectin gels considered in [?] since the pectin within the cell wall
matrix is not fully de-esterified.

The cellulose microfibrils are not isotropic [?], so we assume that they are transversely isotropic
and, hence, the elasticity tensor E

F

for the microfibrils is determined by specifying five parameters: the
Young’s modulus E

F

associated with the directions lying perpendicular to the microfibril, the Poisson’s
ratio ⌫

F1

characterizing the transverse reduction of the plane perpendicular to the microfibril for stress
lying in this plane, the ratio n

F

between E
F

and the Young’s modulus associated with the direction of
the axis of the microfibril, the Poisson’s ratio ⌫

F2

governing the reduction in the plane perpendicular to
the microfibril for stress in the direction of the microfibril, and the shear modulus Z

F

for planes parallel
to the microfibril. A transversely isotropic elasticity tensor expressed in Voigt notation is given by
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Neglecting inertia and external body forces, the elasticity equations with these boundary conditions
for the displacement u are given by

div(E"(x, c") e(u")) = 0 in ⌦

u

" · ⌫ = 0 on �
0

(E"(x, c") e(u"))⌫ is parallel to ⌫ on �
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(E"(x, c") e(u"))⌫ = f⌫ on �
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(5)

where

e(u) =
1

2
(ru+ru

T )

is the symmetric part of the gradient of the displacement and ⌫ is the exterior unit-normal to @⌦. A
unique solution of (5) exists in H1(⌦,R3), see e.g. [?], provided that f 2 L2(�

max

), p 2 L2(�
I

), and E
satisfies the following conditions:

1. |E| is bounded in L1(⌦).
2. There is a strictly positive ↵ such that ↵|A|2  A · E(x)A for all symmetric A 2 R3⇥3 and x 2 ⌦.
3. E possesses major and minor symmetries, i.e. E
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= E
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= E
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= E
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.

1.3 The elasticity tensor

Next, we specify the elasticity tensor E on the domain ⌦. To do so, we must specify the elasticity tensor
for the middle lamella and the cell walls for di↵erent microfibril configurations. The macroscopic elastic
properties of the cell wall are derived from the microscopic description of the elastic properties of the cell
wall matrix and microfibrils using techniques of periodic homogenization. This requires the specification
of the elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic [?], and so the elasticity tensor of the matrix E
M

is of the form

E
M

A = 2µ
M
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M

(trA)1

where the Lamé moduli µ
M

and �
M

are related to the Young’s modulus E
M

and Poisson’s ratio ⌫
M

through

E
M

=
µ
M

(2µ
M

+ 3�
M

)

µ
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+ �
M

and ⌫
M

=
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M
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M

)

We take ⌫
M

= 0.3, which is common for biological materials, see [?,?,?,?] for more information about
the Poisson’s ratio for plant cell walls, and E

M

= 5 MPa. This value is lower than the Young’s modulus
measured for highly de-methylesterified pectin gels considered in [?] since the pectin within the cell wall
matrix is not fully de-esterified.

The cellulose microfibrils are not isotropic [?], so we assume that they are transversely isotropic
and, hence, the elasticity tensor E

F

for the microfibrils is determined by specifying five parameters: the
Young’s modulus E

F

associated with the directions lying perpendicular to the microfibril, the Poisson’s
ratio ⌫

F1

characterizing the transverse reduction of the plane perpendicular to the microfibril for stress
lying in this plane, the ratio n

F

between E
F

and the Young’s modulus associated with the direction of
the axis of the microfibril, the Poisson’s ratio ⌫

F2

governing the reduction in the plane perpendicular to
the microfibril for stress in the direction of the microfibril, and the shear modulus Z

F

for planes parallel
to the microfibril. A transversely isotropic elasticity tensor expressed in Voigt notation is given by
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residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping
criteria for the iterative Krylov solver are characterised by the norm of the residual of the n-th iteration
r
n

= Ax
n

� b for the corresponding linear system Ax = b, obtained by applying the Galerkin method to
the system of linear elasticity, which must be smaller than the absolute tolerance parameter, chosen to
be 10�15, and the relative tolerance parameter, chosen to be 10�6, times the initial residual.

2.1 Numerical simulations for the problems defined on the Representative Volume Element (RVE) that
determine the macroscopic (e↵ective) elasticity tensor

It was observed experimentally that the calcium-pectin chemistry influences the mechanical properties
of the cell wall matrix and middle lamella [?]. Hence in general, the elastic properties of the cell wall
matrix depend on the density of the calcium-pectin cross-links n and the microscopic elasticity tensor E"

of the plant cell wall is a function of n. It was shown in [?] that under the assumption of an isotropic cell
wall matrix, the macroscopic elasticity tensor E

hom

corresponding to any microfibril configuration is an
a�ne function of the Young’s modulus of the cell wall matrix. From experiments [?], it is known that the
Young’s modulus E

M

of the cell wall matrix is a function of the density of the calcium-pectin cross-links
n through the formula

E
M

(b
3

) = 0.775 b
3

+ 8.08 (14)

E(y, b
3

) = E
M

(b
3

) �
YM (y) + E

F

�
YF (y) (15)

E
M

(b
3

) = E
M

(b
3

) E
1

+ E
0

(16)

E
hom

(b
3

) = E
M

(b
3

) E
hom,1

+ E
hom,0

(17)

where E
M

has the units of MPa and n has the units of µM. Thus, knowing the macroscopic elasticity
tensor E

hom

for two di↵erent values of E
M

we can determine the tensor for any value of E
M

. Then using
(17) we obtain the macroscopic elasticity tensor for the cell wall for any calcium-pectin cross-links density
n. This approach enables us to analyse the changes in the mechanical properties of plant cell walls and
tissues in response to the dynamics of calcium-pectin chemistry and changes in calcium-pectin cross-link
density, which will be the subject of future research.

To obtain the macroscopic elasticity tensor we first calculate numerically E
hom

(E
M

) for two Young’s
moduli E

M

= 10 and E
M

= 20. Then using the fact that E
hom

= E
hom

(E
M

) is an a�ne function we can
determine E

hom

for any value of E
M

, in particular for E
M

= 5.
To determine E1

hom

, the RVE Ŷ was discretized by a mesh with 18,645,460 vertices with a higher
density of vertices near the boundary between the cell wall matrix and the microfibrils. Using Voigt
notation, the resulting macroscopic (e↵ective) elasticity tensors E1

hom

(E
M

) for E
M

= 10 and 20 are shown
in Table 1, to two decimal places. Using the symmetry of the microstructure it can be shown analytically
that the macroscopic elasticity tensors have tetragonal symmetry [?], meaning that the entries of the
matrices C

1(10) and C

1(20) that are zero are exact and that some of the coe�cients of the matrices
C

1(10) and C

1(20) are equal. Specifically, for E
M

= 10 or 20, C1(E
M

)
22

and C

1(E
M

)
33

should be equal,
C

1(E
M

)
12

and C

1(E
M

)
13

should be equal, and C

1(E
M

)
55

and C

1(E
M

)
66

should be equal. The largest
scale involved in the numerical computations of the macroscopic elasticity tensors is determined by the
Young’s modulus of the microfibrils in the direction of the microfibrils and is equal to

2.2⇥ 105 MPa
Using this scale, the relative error (the di↵erence divided by 2.2⇥105) associated with C

1(E
M

)
55

and
C

1(E)
66

not being equal is on the order of 10�8.
For the numerical calculations of the e↵ective elasticity tensors for the microscopic structures given by

the RVE Y and the domain occupied by microfibrils Y
F

defined in (7) and (8), respectively, we discretize Y
by a mesh with 9,177,795 vertices in the case of (7) and 11, 750, 289 vertices in the case of (8), with a higher
density of vertices near the boundary between the cell wall matrix and the microfibrils. The calculated
macroscopic elasticity tensors E12

hom,1

(E
M

) for microfibrils configuration given by (7) and E12

hom,2

(E
M

)
for microfibrils configuration as in (8), where E

M

= 10 or E
M

= 20, are shown in Table 2 and Table 3
using Voigt notation. Similar to the results in the previous paragraph, the macroscopic elasticity tensors
should have tetragonal symmetry. The largest relative error associated with the components expected to
be equal is on the order of 10�5.

The results of this section allow us to compute the elasticity tensor for any Young’s modulus of the
cell wall matrix, however in the following analysis we only consider the case where E

M

= 5 MPa.
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residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping
criteria for the iterative Krylov solver are characterised by the norm of the residual of the n-th iteration
r
n

= Ax
n

� b for the corresponding linear system Ax = b, obtained by applying the Galerkin method to
the system of linear elasticity, which must be smaller than the absolute tolerance parameter, chosen to
be 10�15, and the relative tolerance parameter, chosen to be 10�6, times the initial residual.

2.1 Numerical simulations for the problems defined on the Representative Volume Element (RVE) that
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of the cell wall matrix and middle lamella [?]. Hence in general, the elastic properties of the cell wall
matrix depend on the density of the calcium-pectin cross-links n and the microscopic elasticity tensor E"

of the plant cell wall is a function of n. It was shown in [?] that under the assumption of an isotropic cell
wall matrix, the macroscopic elasticity tensor E
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where E
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has the units of MPa and n has the units of µM. Thus, knowing the macroscopic elasticity
tensor E
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we can determine the tensor for any value of E
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. Then using
(17) we obtain the macroscopic elasticity tensor for the cell wall for any calcium-pectin cross-links density
n. This approach enables us to analyse the changes in the mechanical properties of plant cell walls and
tissues in response to the dynamics of calcium-pectin chemistry and changes in calcium-pectin cross-link
density, which will be the subject of future research.

To obtain the macroscopic elasticity tensor we first calculate numerically E
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) for two Young’s
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= 20. Then using the fact that E
hom
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, in particular for E
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density of vertices near the boundary between the cell wall matrix and the microfibrils. Using Voigt
notation, the resulting macroscopic (e↵ective) elasticity tensors E1
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) for E
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= 10 and 20 are shown
in Table 1, to two decimal places. Using the symmetry of the microstructure it can be shown analytically
that the macroscopic elasticity tensors have tetragonal symmetry [?], meaning that the entries of the
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1(20) that are zero are exact and that some of the coe�cients of the matrices
C

1(10) and C

1(20) are equal. Specifically, for E
M

= 10 or 20, C1(E
M

)
22

and C

1(E
M

)
33

should be equal,
C

1(E
M

)
12

and C

1(E
M

)
13

should be equal, and C

1(E
M

)
55

and C

1(E
M

)
66
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scale involved in the numerical computations of the macroscopic elasticity tensors is determined by the
Young’s modulus of the microfibrils in the direction of the microfibrils and is equal to
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Using this scale, the relative error (the di↵erence divided by 2.2⇥105) associated with C

1(E
M

)
55

and
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1(E)
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not being equal is on the order of 10�8.
For the numerical calculations of the e↵ective elasticity tensors for the microscopic structures given by

the RVE Y and the domain occupied by microfibrils Y
F

defined in (7) and (8), respectively, we discretize Y
by a mesh with 9,177,795 vertices in the case of (7) and 11, 750, 289 vertices in the case of (8), with a higher
density of vertices near the boundary between the cell wall matrix and the microfibrils. The calculated
macroscopic elasticity tensors E12

hom,1

(E
M

) for microfibrils configuration given by (7) and E12

hom,2

(E
M

)
for microfibrils configuration as in (8), where E

M

= 10 or E
M

= 20, are shown in Table 2 and Table 3
using Voigt notation. Similar to the results in the previous paragraph, the macroscopic elasticity tensors
should have tetragonal symmetry. The largest relative error associated with the components expected to
be equal is on the order of 10�5.

The results of this section allow us to compute the elasticity tensor for any Young’s modulus of the
cell wall matrix, however in the following analysis we only consider the case where E

M

= 5 MPa.
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residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping
criteria for the iterative Krylov solver are characterised by the norm of the residual of the n-th iteration
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n

� b for the corresponding linear system Ax = b, obtained by applying the Galerkin method to
the system of linear elasticity, which must be smaller than the absolute tolerance parameter, chosen to
be 10�15, and the relative tolerance parameter, chosen to be 10�6, times the initial residual.

2.1 Numerical simulations for the problems defined on the Representative Volume Element (RVE) that
determine the macroscopic (e↵ective) elasticity tensor

It was observed experimentally that the calcium-pectin chemistry influences the mechanical properties
of the cell wall matrix and middle lamella [?]. Hence in general, the elastic properties of the cell wall
matrix depend on the density of the calcium-pectin cross-links n and the microscopic elasticity tensor E"

of the plant cell wall is a function of n. It was shown in [?] that under the assumption of an isotropic cell
wall matrix, the macroscopic elasticity tensor E

hom

corresponding to any microfibril configuration is an
a�ne function of the Young’s modulus of the cell wall matrix. From experiments [?], it is known that the
Young’s modulus E

M

of the cell wall matrix is a function of the density of the calcium-pectin cross-links
n through the formula
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3
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0
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M
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(17) we obtain the macroscopic elasticity tensor for the cell wall for any calcium-pectin cross-links density
n. This approach enables us to analyse the changes in the mechanical properties of plant cell walls and
tissues in response to the dynamics of calcium-pectin chemistry and changes in calcium-pectin cross-link
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) for two Young’s
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= 20. Then using the fact that E
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) for microfibrils configuration given by (7) and E12
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)
for microfibrils configuration as in (8), where E
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= 10 or E
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= 20, are shown in Table 2 and Table 3
using Voigt notation. Similar to the results in the previous paragraph, the macroscopic elasticity tensors
should have tetragonal symmetry. The largest relative error associated with the components expected to
be equal is on the order of 10�5.

The results of this section allow us to compute the elasticity tensor for any Young’s modulus of the
cell wall matrix, however in the following analysis we only consider the case where E

M

= 5 MPa.

The impact of microfibril orientations on the biomechanics of plant cell walls and tissues 9

residual method (GMRES), with an algebraic multigrid preconditioner. The convergence and the stopping
criteria for the iterative Krylov solver are characterised by the norm of the residual of the n-th iteration
r
n

= Ax
n

� b for the corresponding linear system Ax = b, obtained by applying the Galerkin method to
the system of linear elasticity, which must be smaller than the absolute tolerance parameter, chosen to
be 10�15, and the relative tolerance parameter, chosen to be 10�6, times the initial residual.

2.1 Numerical simulations for the problems defined on the Representative Volume Element (RVE) that
determine the macroscopic (e↵ective) elasticity tensor

It was observed experimentally that the calcium-pectin chemistry influences the mechanical properties
of the cell wall matrix and middle lamella [?]. Hence in general, the elastic properties of the cell wall
matrix depend on the density of the calcium-pectin cross-links n and the microscopic elasticity tensor E"

of the plant cell wall is a function of n. It was shown in [?] that under the assumption of an isotropic cell
wall matrix, the macroscopic elasticity tensor E

hom

corresponding to any microfibril configuration is an
a�ne function of the Young’s modulus of the cell wall matrix. From experiments [?], it is known that the
Young’s modulus E

M

of the cell wall matrix is a function of the density of the calcium-pectin cross-links
n through the formula
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where E
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has the units of MPa and n has the units of µM. Thus, knowing the macroscopic elasticity
tensor E

hom

for two di↵erent values of E
M

we can determine the tensor for any value of E
M

. Then using
(17) we obtain the macroscopic elasticity tensor for the cell wall for any calcium-pectin cross-links density
n. This approach enables us to analyse the changes in the mechanical properties of plant cell walls and
tissues in response to the dynamics of calcium-pectin chemistry and changes in calcium-pectin cross-link
density, which will be the subject of future research.

To obtain the macroscopic elasticity tensor we first calculate numerically E
hom

(E
M

) for two Young’s
moduli E
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= 10 and E
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= 20. Then using the fact that E
hom
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) is an a�ne function we can
determine E
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for any value of E
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, in particular for E
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= 5.
To determine E1

hom

, the RVE Ŷ was discretized by a mesh with 18,645,460 vertices with a higher
density of vertices near the boundary between the cell wall matrix and the microfibrils. Using Voigt
notation, the resulting macroscopic (e↵ective) elasticity tensors E1

hom

(E
M

) for E
M

= 10 and 20 are shown
in Table 1, to two decimal places. Using the symmetry of the microstructure it can be shown analytically
that the macroscopic elasticity tensors have tetragonal symmetry [?], meaning that the entries of the
matrices C

1(10) and C

1(20) that are zero are exact and that some of the coe�cients of the matrices
C

1(10) and C

1(20) are equal. Specifically, for E
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= 10 or 20, C1(E
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and C

1(E
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)
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should be equal,
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M

)
12

and C

1(E
M

)
13

should be equal, and C

1(E
M

)
55

and C

1(E
M

)
66

should be equal. The largest
scale involved in the numerical computations of the macroscopic elasticity tensors is determined by the
Young’s modulus of the microfibrils in the direction of the microfibrils and is equal to

2.2⇥ 105 MPa
Using this scale, the relative error (the di↵erence divided by 2.2⇥105) associated with C

1(E
M

)
55

and
C

1(E)
66

not being equal is on the order of 10�8.
For the numerical calculations of the e↵ective elasticity tensors for the microscopic structures given by

the RVE Y and the domain occupied by microfibrils Y
F

defined in (7) and (8), respectively, we discretize Y
by a mesh with 9,177,795 vertices in the case of (7) and 11, 750, 289 vertices in the case of (8), with a higher
density of vertices near the boundary between the cell wall matrix and the microfibrils. The calculated
macroscopic elasticity tensors E12

hom,1

(E
M

) for microfibrils configuration given by (7) and E12

hom,2

(E
M

)
for microfibrils configuration as in (8), where E

M

= 10 or E
M

= 20, are shown in Table 2 and Table 3
using Voigt notation. Similar to the results in the previous paragraph, the macroscopic elasticity tensors
should have tetragonal symmetry. The largest relative error associated with the components expected to
be equal is on the order of 10�5.

The results of this section allow us to compute the elasticity tensor for any Young’s modulus of the
cell wall matrix, however in the following analysis we only consider the case where E

M

= 5 MPa.
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Neglecting inertia and external body forces, the elasticity equations with these boundary conditions
for the displacement u are given by

div(E e(u)) = 0 in ⌦

u · ⌫ = 0 on �
0

(E e(u))⌫ is parallel to ⌫ on �
0

(E e(u))⌫ = f⌫ on �
max

(E e(u))⌫ = �p⌫ on �
I

(4)

where

e(u) =
1

2
(ru+ru

T )

is the symmetric part of the gradient of the displacement and ⌫ is the exterior unit-normal to @⌦. A
unique solution of (4) exists in H1(⌦,R3), see e.g. [?], provided that f 2 L2(�

max

), p 2 L2(�
I

), and E
satisfies the following conditions:

1. |E| is bounded in L1(⌦).
2. There is a strictly positive ↵ such that ↵|A|2  A · E(x)A for all symmetric A 2 R3⇥3 and x 2 ⌦.
3. E possesses major and minor symmetries, i.e. E

ijkl

= E
jikl

= E
klij

= E
ijlk

.

1.3 The elasticity tensor

Next, we specify the elasticity tensor E on the domain ⌦. To do so, we must specify the elasticity tensor
for the middle lamella and the cell walls for di↵erent microfibril configurations. The macroscopic elastic
properties of the cell wall are derived from the microscopic description of the elastic properties of the cell
wall matrix and microfibrils using techniques of periodic homogenization. This requires the specification
of the elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic [?], and so the elasticity tensor of the matrix E
M

is of the form

E
M

A = 2µ
M

A+ �
M

(trA)1,

where the Lamé moduli µ
M

and �
M

are related to the Young’s modulus E
M

and Poisson’s ratio ⌫
M

through

E
M

=
µ
M

(2µ
M

+ 3�
M

)

µ
M

+ �
M

and ⌫
M

=
�
M

2(µ
M

+ �
M

)
.

We take ⌫
M

= 0.3, which is common for biological materials, see [?,?,?,?] for more information about
the Poisson’s ratio for plant cell walls, and E

M

= 5 MPa. This value is lower than the Young’s modulus
measured for highly de-methylesterified pectin gels considered in [?] since the pectin within the cell wall
matrix is not fully de-esterified.

The cellulose microfibrils are not isotropic [?], so we assume that they are transversely isotropic
and, hence, the elasticity tensor E

F

for the microfibrils is determined by specifying five parameters: the
Young’s modulus E

F

associated with the directions lying perpendicular to the microfibril, the Poisson’s
ratio ⌫

F1

characterizing the transverse reduction of the plane perpendicular to the microfibril for stress
lying in this plane, the ratio n

F

between E
F

and the Young’s modulus associated with the direction of
the axis of the microfibril, the Poisson’s ratio ⌫

F2

governing the reduction in the plane perpendicular to
the microfibril for stress in the direction of the microfibril, and the shear modulus Z

F

for planes parallel
to the microfibril. A transversely isotropic elasticity tensor expressed in Voigt notation is given by
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where ↵
i

, for i = 1, 2, 3, 4, 5, are related to the five parameters described above through
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where ↵i, for i = 1, 2, 3, 4, 5, are related to the five parameters described above through

↵
1

=
EF (1� ⌫F1

)

nF (1� ⌫F1

)� 2⌫2F2

,

↵
2

=
EFnF

2nF (1� ⌫F1

)� 4⌫2F2

,

↵
3

=
EF ⌫F2

nF (1� ⌫F1

)� 2⌫2F2

,

↵
4

= ZF ,

↵
5

=
EF

2(1 + ⌫F1

)
.

We assign these parameters the values

EF = 15,000MPa, ⌫F1

= 0.3, nF = 0.068, ⌫F2

= 0.06, ZF = 84,842MPa,

which are chosen based on experimental results [3] and to ensure that the elasticity tensor for the mi-
crofibrils is positive definite [12].

We assume that the middle lamella is isotropic, with elasticity tensor EML, and has a Young’s modulus
of 15 MPa and Poisson’s ratio of 0.3. It is know from experiments that the density of calcium-pectin cross-
links strongly influence the elastic properties of the cell wall matrix and middle lamella [21]. Thus, since
in the middle lamella almost all pectin is de-esterified and the density of the pectin-calcium cross links is
higher than in the cell wall matrix, where usually only 70% of the pectin is de-esterified, we assume that
the Young’s modulus for the middle lamella is three times larger than the Young’s modulus for the cell
wall matrix.

The cellulose microfibrils are arranged periodically within the cell wall matrix [19] and so standard
techniques in homogenization theory, see e.g. [10], yield a macroscopic elasticity tensor for a plant cell
wall from the microscopic description of the mechanical properties of a cell wall on the level of a single
mibcrofibril. In addition to the elastic properties of the microfibrils and cell wall matrix, the macroscopic
elasticity tensor depends on the orientation of the cellulose mirofibrils. The components of this tensor are
determined by solving unit cell problems, which have the form of the equations of linear elasticity and
reflect the arrangement of the microfibrils.

To specify the microstructure of a cell wall, consider the unit cell Y = (0, 1)3 and let YM and YF

represent the parts of Y occupied by the cell wall matrix and microfibrils, respectively, so that YM and
YF are disjoint and Y = Y M [ Y F . Two configurations of microfibrils within Y are of primary interest.
The first is when there is only one microfibril in Y occupying the set

YF = {y 2 Y | (y
2

� 0.5)2 + (y
3

� 0.5)2 < 0.252}, (5)

and the other is when there are two microfibrils oriented in opposite directions and occupy

YF = {y 2 Y | (y
2

� 0.5)2 + (y
3

� 0.75)2 < 0.1252 or (y
1

� 0.5)2 + (y
3

� 0.25)2 < 0.1252}, (6)

see Figure 5.
Then, the elasticity tensor EY in Y is given by

EY (y) =

(
EM if y 2 YM ,

EF if y 2 YF ,

and can be extended Y -periodically to all of R3. Consider a subdomain U of ⌦ in which the cellulose
microfibrils are arranged periodically with the orientation specified in Y by (5) or (6). Let " be a small
parameter associated with the distance between the cellulose microfibrils. The microfibrils of a plant cell
wall are about 3 nm in diameter and are separated by a distance of about 6 nm, see e.g. [2,6,20], whereas
the thickness of a plant cell wall is of the order of a few micrometers. To obtain the elasticity tensor for
the part of the cell wall U with a periodic microstructure on the length scale of " defined by the structure
of "Y , the periodic extension of EY must be scaled appropriately. Namely, the elasticity tensor in U is
given by

E"(x) = EY

⇣x
"

⌘
for all x 2 U.

(Robert Moon, Review Wisconsin 2013-2014,   Diddens et al., 2008) 
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10927.86 99.60 67.85 0 0 0
99.60 10927.69 66.46 0 0 0
67.85 66.46 91.00 0 0 0
0 0 0 186.83 0 0
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0 0 0 0 0 352.58

1

CCCCCA

C

12

2

(20) =

0

BBBBB@

10943.35 107.84 75.25 0 0 0
107.84 10943.18 73.87 0 0 0
75.25 73.87 106.55 0 0 0
0 0 0 191.43 0 0
0 0 0 0 198.56 0
0 0 0 0 0 357.20

1

CCCCCA

0

BBBBB@

18393 6855 22277 0 0 0
6855 18393 22277 0 0 0
22277 22277 259901 0 0 0

0 0 0 84842 0 0
0 0 0 0 84842 0
0 0 0 0 0 5769

1

CCCCCA

Table 3 The macroscopic (e↵ective) elasticity tensor E12

hom,2

for a part of the cell wall with the microscopic structure

defined by the REV in which YF is specified by (8), expressed in Voigt notation to two decimal places when the Young’s
modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.

r denotes the inner radius of the cell and � the thickness of the cell wall. For our geometry this formula
gives f = 4.48p�,1.

For the boundary conditions we considered the following four cases:

(BC1) Base case: p = p�,1 = 0.209 MPa and f = 2.938p�,1 MPa

(BC10) Di↵erent turgor pressure: p = p�,2 = 0.3 MPa and f = 2.047p�,2 MPa

(BC2) No tensile tractions: p = p�,1 and f = 0

(BC3) Di↵erent turgor pressures in neighbouring cells and no tensile tractions: p
1

= p
4

= p
5

= p
8

= p�
and p

2

= p
3

= p
6

= p
7

= 1.3p�,1, where p
i

, for i = 1, . . . , 8, is the pressure in cell i, and f = 0

For each of these boundary conditions we consider five di↵erent configurations of the microfibrils in the
eight subregions corresponding to the lower and upper parts of the cell walls, see Figure 8.

(C1) In subregions ⌦
1,l

, ⌦
1,u

, ⌦
3,l

and ⌦
3,u

the microfibrils are parallel to R

⇡/4

b

1 and in subregions

⌦
2,l

, ⌦
2,u

, ⌦
4,l

and ⌦
4,u

the microfibrils are parallel to R

�⇡/4

b

1. Thus, Ei,l

end

= Ei,u

end

= E1,⇡/4

hom

for

i = 1, 3, and Ei,l

end

= Ei,u

end

= E1,�⇡/4

hom

for i = 2, 4, see Figure 8(a).
(C2) In subregions ⌦

2,l

, ⌦
4,l

, ⌦
1,u

and ⌦
3,u

the microfibrils are parallel to R

⇡/4

b

1 and in subregions

⌦
1,l

, ⌦
3,l

, ⌦
2,u

and ⌦
4,u

the microfibrils are parallel to R

�⇡/4

b

1. Thus E2,l

end

= E4,l

end

= E1,u

end

= E3,u

end

=

E1,⇡/4

hom

and E1,l

end

= E3,l

end

= E2,u

end

= E4,u

end

= E1,�⇡/4

hom

, see Figure 8(b).
(C3) In all of the eight subregions the orientations of the microfibrils on the microscale are generated
by the RVE depicted in Figure 7(b). Thus, Ei,l

end

= Ei,u

end

= E12

hom,1

for i = 1, . . . , 4.
(C30) In all of the eight subregions the orientations of the microfibrils on the microscale are generated
by the RVE depicted in Figure 7(c). Thus, Ei,l

end

= Ei,u

end

= E12

hom,2

for i = 1, . . . , 4.
(C4) There are no microfibrils in the upper and lower parts of the cell walls. Instead, the upper and
lower parts of the cell walls consist of middle lamella and, hence, Ei,l

end

= Ei,u

end

= E
ML

for i = 1, . . . , 4.

As a base case for the geometry we consider the domain ⌦ depicted in Figure 2. For the numerical
simulations we discretize the domain ⌦ with a mesh comprising 12, 143, 330 vertices with a higher density
of vertices within the subdomains corresponding to the lower and upper parts of the cell walls and near
the round edges of the cell walls.

The results of the numerical simulations of the system (5) with the boundary conditions (BC1)–(BC3)
for the base case of the geometry, for the configurations (C1)–(C4) in the upper and lower parts of the cell
walls and the microfibrils in the side walls oriented orthogonal to the x

3

-axis are shown in Tables 4 and
6–8 and Figures 9 and 12. For the boundary condition (BC1) and the configurations (C1)–(C4) we also
consider the microscopic structure in the side walls defined by the layers of microfibrils rotated through
the wall thickness, see Table 5 and Figure 10.
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Table 2 The macroscopic (e↵ective) elasticity tensor E12

hom,1
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C

12

2

(10) =

0

BBBBB@

10927.86 99.60 67.85 0 0 0
99.60 10927.69 66.46 0 0 0
67.85 66.46 91.00 0 0 0
0 0 0 186.83 0 0
0 0 0 0 193.97 0
0 0 0 0 0 352.58

1

CCCCCA

C

12

2

(20) =

0

BBBBB@

10943.35 107.84 75.25 0 0 0
107.84 10943.18 73.87 0 0 0
75.25 73.87 106.55 0 0 0
0 0 0 191.43 0 0
0 0 0 0 198.56 0
0 0 0 0 0 357.20

1

CCCCCA

Table 3 The macroscopic (e↵ective) elasticity tensor E12

hom,2

for a part of the cell wall with the microscopic structure

defined by the REV in which YF is specified by (8), expressed in Voigt notation to two decimal places when the Young’s
modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.

2.2 Numerical simulations of problem (5) for di↵erent boundary conditions and microfibril orientations
in the upper and lower parts of cell walls and in the side walls

Using the numerical results for the e↵ective elasticity tensor for di↵erent microfibril orientations, in this
section we consider di↵erent microfibril orientations in the eight subregions corresponding to the upper
and lower parts of the cell walls and di↵erent specifications of the turgor pressure p and tensile force f
in problem (5). We also consider two scenarios for the microfibril orientation in the side walls: (a) the
microfibrils are parallel to the cell walls and orthogonal to the x

3

-axis and (b) the layers of the microfibrils
are rotated through the cell wall thickness.

We consider two di↵erent choices for p in the boundary conditions in (5). For the pressure inside the
cells we set p = p�,j , j = 1, 2, with p�,1 = 0.209 MPa or p�,2 = 0.3 MPa, which are common values for the
turgor pressure in plant cells [?,?]. For the tensile traction condition in (5), following the experimental
results in [?], we consider the force f

ex

= 0.049 N acting on 1 mm of circumference plant tissue surface.
This corresponds to f = 0.614 = 2.938p�,1 MPa and f = 2.047p�,2 MPa, respectively. A similar value for
a force acting on the ends of a part of a cell wall was used in [?] by assuming that f = (r/2�)p�,1, where
r denotes the inner radius of the cell and � the thickness of the cell wall. For our geometry this formula
gives f = 4.48p�,1.

For the boundary conditions we considered the following four cases:

(BC1) Base case: p = p�,1 = 0.209 MPa and f = 2.938p�,1 MPa

(BC10) Di↵erent turgor pressure: p = p�,2 = 0.3 MPa and f = 2.047p�,2 MPa

(BC2) No tensile tractions: p = p�,1 and f = 0

(BC3) Di↵erent turgor pressures in neighbouring cells and no tensile tractions: p
1

= p
4

= p
5

= p
8

= p�
and p

2

= p
3

= p
6

= p
7

= 1.3p�,1, where p
i

, for i = 1, . . . , 8, is the pressure in cell i, and f = 0

For each of these boundary conditions we consider five di↵erent configurations of the microfibrils in the
eight subregions corresponding to the lower and upper parts of the cell walls, see Figure 8.
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3 Discussion and Conclusion

Our results indicate that in the case of (i) directed tensile forces applied to plant cells and tissues, (ii)
tissue tension created by di↵erent values of turgor pressure in the neighbouring cells, and/or (iii) the
staggered distribution of cells in plant tissues, the orientation of the microfibrils in the lower and upper
parts of the cell walls plays a role and may be important for the expansion and development of plant
tissues, see the grey columns in Tables 4, 5, 7–10. The orientation of the microfibrils in the upper and
lower parts of plant cell walls has a very small e↵ect on the elongation of the cells, but it influences
their radial expansion. Also, the qualitative impact of the orientation of microfibrils in the upper and
lower parts of cell walls on the deformation of plant tissues does not depend on the actual values for the
tensile forces and turgor pressure and the increase in tensile traction or turgor pressure results only in
the corresponding increase in the maximal values for the displacements.

The staggered distribution of cells in a plant tissue induce a di↵erent tissue tension than in the case
of a tissue without a shift in the positions of neighbouring cells. Also, the staggered distribution of cells
allows for larger deformations and larger values of the diagonal components of the strain tensor. This
can be explained by the fact that the upper and lower parts of the cell walls are not equilibrated by the
upper and lower parts from the neighbouring cells. The higher maximal values of the displacements in
the negative x

1

and x
2

-directions for the geometries with the staggered distribution of cells, compared to
the geometry without a shift in the positions of the neighbouring cells, constitute a noticeable di↵erence
between three geometries considered here. Also, for the geometry without a shift in the positions of
neighbouring cells along the x

3

-axis we have a uniform deformation of the side walls, whereas in the two
other cases we observe nonuniform patterns in the displacement and larger values of the displacement
occur near the lower and upper parts of the cell walls. The ability for larger and nonuniform deformations
can be favourable for plants and may be one of the explanations for the staggered distribution of cells in
plant tissues.

The orientation of microfibrils in the side walls has a strong impact on the deformation of the plant
cell walls and tissues. If the microscopic structure of the side walls is given by the layers of the microfibrils
rotated through the thickness of the cell wall, the maximal displacement in the x

3

-direction is reduced
by a factor of 14 compared to the case where the microfibrils are orthogonal to the x

3

-axis. The higher
values for the strain e

33

in the case of rotated microfibrils, compared to the case where the microfibrils are
orthogonal to the x

3

-axis, constitute a nonintuitive result, see Tables 4, 5 and 9 (the corresponding values
are coloured in brown). These large values for the strain e

33

may be important for some stress-related
signalling processes, e.g. related to the reorientation of microtubules [?]. Comparing Table 4 and Table 7
we also see that the presence of the tensile traction boundary condition causes the displacements in the
positive directions to increase by an order of magnitude.

We also obtain that the di↵erent pressures in neighbouring cells, which can be observed during the
growth process, influence the direction of the maximal displacement, see Table 7 (here the maximal
displacement in the x

1

-direction is due to pressure distributions).
Using the fact that for most cases considered here (besides the case (BC1), (C4) for the geometry

where all four pairs of cells are shifted relative to each other) the maximal values for the displacement
in the positive x

3

-direction occur on the plane x
3

= x
3,max

, we can calculate the relative displacement
(RD) in the x

3

-direction, defined by the maximal deformed length in the x
3

-direction divided by the
initial length in the x

3

-direction. This quantity can be related to the measurements of the changes in
the length (extension or compression) of strips or cylinders of an outer or inner tissue, respectively, due
to the elimination of tissue tension by separating them from the plant hypocotyl [?]. In our numerical
simulations we used the same tension at the boundary of the plant tissue as in the experiments. The
relative changes in the length obtained from our mathematical model range between 0.38% and 6.98%,
see Table 11, and are in relatively good agreement with the experimental results ranging between 0.3% and
4.99%, see Table 1 in [?]. The small relative changes in the length correspond to the case where no tensile

RD (BC1) parallel MF (BC1) no shift (BC1) 4 shifts (BC1) rotated MF (BC2) (BC3)
(C1) 1.06497 1.06396 1.06984 1.00456 1.00683 1.00816
(C2) 1.06452 1.06391 1.00462 1.00671 1.00823
(C3) 1.06234 1.06294 1.06680 1.00379 1.00672 1.00831
(C4) 1.06411 1.06320 1.00497 1.00696 1.00811

Table 11 The relative displacement (RD) is defined as the maximal deformed length in the x

3

-direction divided by the
initial length in the x

3

-direction.

forces were applied and to the case where the microstructure of the side cell walls was given by layers

Good agreement with experimental data on changes in inner or outer tissue length due to 
tissue tension elimination, Hejnowicz, Sievers, J Exp.Botany 1995:
 
                                relative displacement (RD) ranging between 0.38% and 6.98%         
                                                                     versus experimental data: 0.3% - 4.99% 

Comparison with experimental results  
on tissue extension and compression 
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Table 2 The macroscopic (e↵ective) elasticity tensor E12

hom,1

for a part of the cell wall with the microscopic structure

defined by the REV in which YF is specified by (7), expressed in Voigt notation to two decimal places when the Young’s
modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.
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Table 3 The macroscopic (e↵ective) elasticity tensor E12

hom,2

for a part of the cell wall with the microscopic structure

defined by the REV in which YF is specified by (8), expressed in Voigt notation to two decimal places when the Young’s
modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.

2.2 Numerical simulations of problem (5) for di↵erent boundary conditions and microfibril orientations
in the upper and lower parts of cell walls and in the side walls

Using the numerical results for the e↵ective elasticity tensor for di↵erent microfibril orientations, in this
section we consider di↵erent microfibril orientations in the eight subregions corresponding to the upper
and lower parts of the cell walls and di↵erent specifications of the turgor pressure p and tensile force f
in problem (5). We also consider two scenarios for the microfibril orientation in the side walls: (a) the
microfibrils are parallel to the cell walls and orthogonal to the x

3

-axis and (b) the layers of the microfibrils
are rotated through the cell wall thickness.

We consider two di↵erent choices for p in the boundary conditions in (5). For the pressure inside the
cells we set p = p�,j , j = 1, 2, with p�,1 = 0.209 MPa or p�,2 = 0.3 MPa, which are common values for the
turgor pressure in plant cells [?,?]. For the tensile traction condition in (5), following the experimental
results in [?], we consider the force f

ex

= 0.049 N acting on 1 mm of circumference plant tissue surface.
This corresponds to f = 0.614 = 2.938p�,1 MPa and f = 2.047p�,2 MPa, respectively. A similar value for
a force acting on the ends of a part of a cell wall was used in [?] by assuming that f = (r/2�)p�,1, where
r denotes the inner radius of the cell and � the thickness of the cell wall. For our geometry this formula
gives f = 4.48p�,1.

For the boundary conditions we considered the following four cases:

(BC1) Base case: p = p�,1 = 0.209 MPa and f = 2.938p�,1 MPa

(BC10) Di↵erent turgor pressure: p = p�,2 = 0.3 MPa and f = 2.047p�,2 MPa

(BC2) No tensile tractions: p = p�,1 and f = 0

(BC3) Di↵erent turgor pressures in neighbouring cells and no tensile tractions: p
1

= p
4

= p
5

= p
8

= p�
and p

2

= p
3

= p
6

= p
7

= 1.3p�,1, where p
i

, for i = 1, . . . , 8, is the pressure in cell i, and f = 0

For each of these boundary conditions we consider five di↵erent configurations of the microfibrils in the
eight subregions corresponding to the lower and upper parts of the cell walls, see Figure 8.
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modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.

2.2 Numerical simulations of problem (5) for di↵erent boundary conditions and microfibril orientations
in the upper and lower parts of cell walls and in the side walls

Using the numerical results for the e↵ective elasticity tensor for di↵erent microfibril orientations, in this
section we consider di↵erent microfibril orientations in the eight subregions corresponding to the upper
and lower parts of the cell walls and di↵erent specifications of the turgor pressure p and tensile force f
in problem (5). We also consider two scenarios for the microfibril orientation in the side walls: (a) the
microfibrils are parallel to the cell walls and orthogonal to the x

3

-axis and (b) the layers of the microfibrils
are rotated through the cell wall thickness.

We consider two di↵erent choices for p in the boundary conditions in (5). For the pressure inside the
cells we set p = p�,j , j = 1, 2, with p�,1 = 0.209 MPa or p�,2 = 0.3 MPa, which are common values for the
turgor pressure in plant cells [?,?]. For the tensile traction condition in (5), following the experimental
results in [?], we consider the force f

ex

= 0.049 N acting on 1 mm of circumference plant tissue surface.
This corresponds to f = 0.614 = 2.938p�,1 MPa and f = 2.047p�,2 MPa, respectively. A similar value for
a force acting on the ends of a part of a cell wall was used in [?] by assuming that f = (r/2�)p�,1, where
r denotes the inner radius of the cell and � the thickness of the cell wall. For our geometry this formula
gives f = 4.48p�,1.

For the boundary conditions we considered the following four cases:

(BC1) Base case: p = p�,1 = 0.209 MPa and f = 2.938p�,1 MPa

(BC10) Di↵erent turgor pressure: p = p�,2 = 0.3 MPa and f = 2.047p�,2 MPa

(BC2) No tensile tractions: p = p�,1 and f = 0

(BC3) Di↵erent turgor pressures in neighbouring cells and no tensile tractions: p
1

= p
4

= p
5

= p
8

= p�
and p

2

= p
3

= p
6

= p
7

= 1.3p�,1, where p
i

, for i = 1, . . . , 8, is the pressure in cell i, and f = 0

For each of these boundary conditions we consider five di↵erent configurations of the microfibrils in the
eight subregions corresponding to the lower and upper parts of the cell walls, see Figure 8.
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defined by the REV in which YF is specified by (8), expressed in Voigt notation to two decimal places when the Young’s
modulus of the cell wall matrix is 10 MPa and 20 MPa, respectively.

2.2 Numerical simulations of problem (5) for di↵erent boundary conditions and microfibril orientations
in the upper and lower parts of cell walls and in the side walls

Using the numerical results for the e↵ective elasticity tensor for di↵erent microfibril orientations, in this
section we consider di↵erent microfibril orientations in the eight subregions corresponding to the upper
and lower parts of the cell walls and di↵erent specifications of the turgor pressure p and tensile force f
in problem (5). We also consider two scenarios for the microfibril orientation in the side walls: (a) the
microfibrils are parallel to the cell walls and orthogonal to the x

3

-axis and (b) the layers of the microfibrils
are rotated through the cell wall thickness.

We consider two di↵erent choices for p in the boundary conditions in (5). For the pressure inside the
cells we set p = p�,j , j = 1, 2, with p�,1 = 0.209 MPa or p�,2 = 0.3 MPa, which are common values for the
turgor pressure in plant cells [?,?]. For the tensile traction condition in (5), following the experimental
results in [?], we consider the force f

ex

= 0.049 N acting on 1 mm of circumference plant tissue surface.
This corresponds to f = 0.614 = 2.938p�,1 MPa and f = 2.047p�,2 MPa, respectively. A similar value for
a force acting on the ends of a part of a cell wall was used in [?] by assuming that f = (r/2�)p�,1, where
r denotes the inner radius of the cell and � the thickness of the cell wall. For our geometry this formula
gives f = 4.48p�,1.

For the boundary conditions we considered the following four cases:

(BC1) Base case: p = p�,1 = 0.209 MPa and f = 2.938p�,1 MPa

(BC10) Di↵erent turgor pressure: p = p�,2 = 0.3 MPa and f = 2.047p�,2 MPa

(BC2) No tensile tractions: p = p�,1 and f = 0

(BC3) Di↵erent turgor pressures in neighbouring cells and no tensile tractions: p
1

= p
4

= p
5

= p
8

= p�
and p

2
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3

= p
6

= p
7

= 1.3p�,1, where p
i

, for i = 1, . . . , 8, is the pressure in cell i, and f = 0

For each of these boundary conditions we consider five di↵erent configurations of the microfibrils in the
eight subregions corresponding to the lower and upper parts of the cell walls, see Figure 8.MP, B. Seguin, Bull Math Biology, 2016



Intercellular transport of signalling molecules

Signalling molecules interact with cells

I as a ligand for membrane
receptors

I and/or by entering into the
cell through its membrane or
endocytosis

J. Downward, Nature 2001

I Consider signalling molecules c
in the intercellular space and
receptors on the cell membrane

I Free and bound receptors: rf , rb

I Cells produce new receptors rf
and signalling molecules c

I Ligands c di↵use in the
intercellular space and bind to
the receptors on the membrane

I Bound receptors rb dissociate
back to free receptors and
ligands

I All the considered molecules
undergo natural decay

Intercellular transport of signalling molecules

J. Downward, Nature 2001

I Di↵usion of signalling molecules c and
s in the extra- and intracellular spaces

I Di↵usion of free and bound receptors rf
and rb and of active and inactive
co-receptors (proteins) pa and pd on
cell membrane

I Ligands c bind to rf to produce rb
and s interact with pa

I Bound receptors rb dissociate into free
receptors and ligands
Active co-receptors (proteins) pa
dissociate into inactive co-receptors
(proteins) and bound receptors

Mathematical model for intercellular signalling
I Di↵usion, production and decay of ligands in extracellular space

@tc = r · (De(x)rc) + Fe(c) in ⌦e , t > 0

De(x)rc · ⌫ = 0 on @⌦, t > 0

c(0) = c
0

in ⌦e

I Interaction between a signalling molecule C and
a free receptor Rf results into a bound receptor Rb

C + Rf
be⌦
ae

Rb

Equations for the receptors on the cell surface �

@trf = Df ��

rf + Fr (rf , rb)� ae(x) rf c + be(x) rb � df rf on �, t > 0

@trb =Db ��

rb + ae(x) rf c � be(x) rb � db rb on �, t > 0

Ω

Ω

Γ

I Binding on the cell surfaces

De(x)rc · ⌫ = � ae(x) c rf + be(x) rb on �

• Activation of an intracellular signalling pathway by rb

c, rf , rb density of ligands/receptors, df , db rate of decay of ligands/receptors
Fe ,Fr product. of ligands/receptors, De ,Df ,Db di↵usion coe�cients
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Microscopic model for signalling processes
I Di↵usion, production and decay of signalling molecules

@tc = r · (D"
e (x)rc) + Fe(c) in ⌦"

e , t > 0

@ts = "2r · (D"
i (x)rs) + Fi (s) in ⌦"

i , t > 0

I Equations for the receptors /proteins on the cell surface �"

@trf = "2Df��

rf � Ge(c , rf , rb) + Fr (rf , rb) � df rf

@trb = "2Db��

rb + Ge(c , rf , rb)� Gd(rb, pd , pa)� db rb

@tpd = "2Dd��

pd � Gd(rb, pd , pa) + Fd(pd) � dd pd

@tpa = "2Da��

pa + Gd(rb, pd , pa)� Gi (pa, s)� da pa

I Binding on the cell surfaces �"

D"
e (x)rc · ⌫ = �"Ge(c , rf , rb) on �", t > 0

"2D"
i (x)rs · ⌫ = "Gi (pa, s) on �", t > 0

I Binding reactions

Ge(c, rf , rb) = a"e (x) c rf � b"
e (x) rb

Gd(rb, pd , pa) = ai (x) rb pd � b"
i (x) pa

Gi (pa, s) = �"
i (x) pa � "

i (x) s

MULTISCALE ANALYSIS AND SIMULATION OF A SIGNALLING PROCESS WITH DIFFUSION 3

Figure 1. Left shows the ‘unit cell’ that describes the microstructure consisting of a
single cell with the intra- and extracellular spaces denoted by Y

i

and Y
e

respectively
and the cell membrane by �. Right is a sketch of the tissue consisting of a periodic
distribution of identically shaped cells surrounded by the extracellular space.
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where nonlinear boundary conditions
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model production of new free receptors and inactive proteins, respectively.
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e�cient numerical method for the approximation of the macroscopic two-scale problem and apply it
in a biologically relevant parameter regime.

The main di�culty in the multiscale analysis of the microscopic problem considered here is the
strong nonlinearity of reaction terms coupled with surface di↵usion and dependence on small param-
eter, corresponding to the size of the microstructure. This requires a rather delicate analysis and
new approach in the derivation of a priori estimates. The bulk-surface coupling in the macroscopic
model induce some challenges in the design of two-scale numerical scheme. We consider the trace
and Gagliardo-Nirenberg inequalities together with an iteration processes to show the a priori esti-
mates and boundedness of solutions of model equations. Similar ideas were used in [6] to show the
well-posedness of a system describing nonlinear ligand-receptor interactions for a single cell, whose
shape is evolving in time. However due to the multiscale nature and the corresponding scaling in the
microscopic equations, the techniques from [6] cannot be applied directly to obtain uniform a priori
estimates for the solutions of our microscopic model. To overcome this di�culty we use the structure
of the nonlinear reaction terms and the periodic unfolding operator [9, 10, 19].

For the numerical approximation of the macroscopic two-scale system we employ a two-scale bulk-
surface finite element method. Bulk-surface finite element methods have been used in a number of
recent studies for the approximation of coupled bulk-surface systems of elliptic and parabolic equations,
including those modelling receptor-ligand interactions [12, 29, 32, 41], however to the best of the
authors knowledge all such works have focussed on interactions at the scale of a single cell. Coupling
the bulk-surface finite element approach with a two-scale finite element method [38], we are able to
treat the approximation of the full macroscopic two-scale system and hence provide, as far as we
are aware, the first work in which tissue level models for receptor-ligand interaction are simulated
where receptor binding, unbinding and transport as well as cell signalling are taken into account at
the cell scale. In order to validate the method we perform some benchmark tests to investigate the
convergence of the method. We then propose and simulate a macroscopic two-scale cell signalling
model in a biologically relevant regime. Our results illustrate the influence of the cell shape on the
transport of macroscopic species as well as spatial heterogeneities at the cell-scale and their influence
on tissue level behaviour. We focus on incorporating the single cell model within a generic cell
signalling process outlined in [17] into our multiscale modelling framework. However we note that
the majority of signalling pathways that are described in the literature lie within the general model
framework considered in this work. For example, GTPase (e.g. Rho) and GPCR (G-protein coupled
receptors) related signalling pathways [27], uPAR-mediated signalling processes in human tissue [26]
and Brassinosteroid hormone mediated signalling in plant cells [11].

The remainder of this paper is organised as follows. In Section 2 we derive our microscopic model
for cell-signalling processes consisting of coupled bulk-surface systems of PDEs. In Section 3 we prove
existence and uniqueness results and derive some a priori estimates for solutions of the microscopic
model. Convergence results in the limit as the number of cells tends to infinity and the resultant
macroscopic two-scale model equations satisfied by the limiting solutions are presented in Section 4.
In Section 5 we formulate a numerical scheme for the approximation of the macroscopic two-scale
model. We benchmark the convergence of the scheme in Section 6 and in Section 7 we apply the
numerical method to the approximation of a biological example of a GTPase signalling network taking
parameter values from previous studies.

2. Microscopic model

In this section we present derivation of a microscopic mathematical model for a signalling process
in a biological tissue. We consider a Lipschitz domain ⌦ ⇢ Rd, with d = 2, 3, representing a part of
a biological tissue and assume periodic distribution of cells in the tissue. To describe the microscopic
structure of a biological tissue, given by extra- and intracellular spaces separated by cell membranes,
we consider a ‘unit cell’ Y = [0, 1]d, and the subdomains Y

i

⇢ Y and Y
e

= Y \ Y
i

, together with
the boundary � = @Y

i

. Then the domain occupied by the intracellular space is given by ⌦"

i

=S
⇠2⌅" "(Y

i

+ ⇠), where ⌅" = {⇠ 2 Zn, "(Y
i

+ ⇠) ⇢ ⌦}, and the extracellular space is denoted by

⌦"

e

= ⌦ \ ⌦
"

i

. The surfaces that describe cell membranes are denoted by �" =
S

⇠2⌅" "(� + ⇠), see
Figure 1 for a sketch of the geometry.

In modelling intercellular signalling processes we assume that signalling molecules (ligands) di↵use
in the extracellular space and interact with cell membrane receptors. We distinguish between free
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The dimensionless parameter values are
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For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �
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with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
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=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by
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.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
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0 1.841 · 10�3
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for the case of the ellipse and
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=
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for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
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},
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geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},
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The dimensionless parameter values are

(57)
D⇤
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= 10, D⇤
f
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b

= D⇤
d
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= 5, a⇤
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= 2, ⇤
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= 1.

For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �
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c⇤
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r⇤
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f,1(x)r
f,2(z)), p⇤

d0(x, z) = 0.065(1 + p
d,1(x)p

d,2(z)),

with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},
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with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},
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(a) t = 10

(b) t = 100

Figure 4. Results of the simulation of Section 7 with the elliptical cell geometry. The
inset in each subfigure show the microscopic solutions at the corresponding macroscopic
DOF (grey line). The macroscopic domain is shaded by C

e

whilst in each inset the cell
interior is shaded by C

i

and reading from top to to bottom, the membrane is shaded
by R

f

, R
b

, P
d

and P
a

respectively. For further details see text.

domain. Focusing on the di↵erences between the two sets of results, we see that the strongly anisotropic
homogenised di↵usion tensor associated with the elliptical cell geometry leads to faster transport in
the horizontal direction and slower vertical transport. As a result for t = 200, see Figure 5a, there
are very few bound receptors present on the cell at the macroscopic point (0.1, 0.1) and it is only by
t = 250 that bound receptors are clearly visible on this cell. On the other hand the almost isotropic
homogenised di↵usion tensor associated with the cell geometry specified in (57) leads to equally fast
vertical and horizontal transport and by t = 200 there are clearly a large number of bound receptors
present on the cell membrane at the macroscopic point (0.1, 0.1). More generally, in both cases we
see significant heterogeneity at the microscopic level in the concentrations of the di↵erent membrane
resident species at di↵erent times during the simulation motivating the multiscale modelling approach
we employ.

8. Conclusion

In this work we consider microscopic modelling and multiscale analysis of ligand-receptor based
intercellular signalling processes in a biological tissues, assuming periodic distribution of cell in a
tissue. Generalisation of our results to a locally-periodic or random distribution of cells in a tissue
will be considered in future studies.
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8. Conclusion

In this work we consider microscopic modelling and multiscale analysis of ligand-receptor based
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tissue. Generalisation of our results to a locally-periodic or random distribution of cells in a tissue
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