Multiscale modelling, analysis and simulations of plant biomechanics and cellular signalling processes

Mariya Ptashnyk

Women in Applied and Computational Mathematics May 9-11, 2018, GSSI Gran Sasso Science Institute, L'Aquila

Engineering and Physical Sciences Research Council

Plant cell walls: microstructure, mechanics & chemistry

Microscopic structure of plant cell walls

- cellulose microfibrils
- cell wall matrix of pectin, hemicellulose, water, enzymes
- allows for anisotropic cell expansion

Interactions between mechanics and chemistry

- mechanical forces can break load-bearing cross-links
- dynamics of cross-links influences mechanical properties of plant cell wall matrix, of plant cell wall matrix, by cell wall pectins

B pH+

activity of cell wall remodeling enzymes

Mechanics (hyperelastic material)

div
$$\mathbf{T} = 0$$
, $\mathbf{T} = J_e^{-1} \mathbf{F}_e \frac{\partial W(\mathbf{F}_e)}{\partial \mathbf{F}_e}$

+ boundary conditions

 $\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}$ deformation gradient $\mathbf{F} = \mathbf{F}_e \mathbf{F}_g$ decomposition in elastic & growth $J_e = \det(\mathbf{F}_e), J_g = \det(\mathbf{F}_g)$

Ogden, *Nonlinear elastic deform*. 1984 Rodriguez, Hoger, McCulloch, *J Biomech*. 1994 Goriely, Moulton, Vandiver, *EPL* 2010 Goriely, Ben Amar, *J Mech.Phys.Solids* 2005 Goriely, Ben Amar, *Biomech.Model.Mechan*. 2007 Huang, Becker, Jones, *J Mech.Phys.Solids* 2012

or $\mathbf{T} = \mathbf{F}_e \frac{\partial W(\mathbf{F}_e)}{\partial \mathbf{F}} - p\mathbf{I}$

Calcium-pectin chemistry

- methylestrified pectin: b₁
- ► demethylestrified pectin: *b*₂
- pectin-calcium cross links: b₃
- enzyme PME: p
- calcium ions: c

$$\partial_t n - \operatorname{div}(D_n \nabla n) = g(n, \nabla \mathbf{u})$$

$$n \in \{b_1, b_2, b_3, p, c\}$$

$$\bigwedge^{\mathsf{PME}} \longrightarrow^{\mathsf{PME}} + \bullet^{\mathsf{+}} \mathsf{H}^{\mathsf{+}}$$

Plant cell walls: mechanics & chemistry

Linear elasticity or viscoelasticity

div
$$\mathbf{T} = 0$$
 in G , $\mathbf{T} \cdot \mathbf{n} = -P\mathbf{n}$ on ∂G
 $\mathbf{T} = \left(\mathbb{E}_{M}(b_{3})\chi_{G_{M}} + \mathbb{E}_{F}\chi_{G_{F}}\right)\mathbf{e}(\mathbf{u}_{e})$
 $\mathbf{T} = \left(\mathbb{E}_{M}(b_{3})\mathbf{e}(\mathbf{u}_{e}) + \mathbb{V}_{M}(b_{3})\mathbf{e}(\partial_{t}\mathbf{u}_{e})\right)\chi_{G_{M}} + \mathbb{E}_{F}\chi_{G_{F}}\mathbf{e}(\mathbf{u}_{e})$
 $\mathbf{e}(\mathbf{u}_{e})_{ij} = \frac{1}{2}(\partial_{x_{i}}\mathbf{u}_{e,j} + \partial_{x_{j}}\mathbf{u}_{e,i})$

Reaction-diffusion equations for chemical reactions

$$\partial_t n - \operatorname{div}(D_n \nabla n) = g_n(n, \mathcal{R}(\mathbf{e}(\mathbf{u}_e))),$$

- demethyl-esterified pectin can decay
- formation and destruction of calcium-pectin cross-links

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_e)) = \left(\operatorname{tr} \left(\mathbb{E}_M(b_3) \chi_{G_M} + \mathbb{E}_F \chi_{G_F} \right) \mathbf{e}(\mathbf{u}_e) \right)^+$$

$$rac{\kappa}{1+eta b_2} b_1 \, p$$

 $n \in \{b_1, b_2, b_3, p, c\}$

$$-2g(c)b_2+2\kappa b_3 \mathcal{R}(\mathbf{e}(\mathbf{u}_e))$$

or
$$\mathcal{R}(\mathbf{e}(\mathbf{u}_e)) = (\operatorname{tr} \mathbf{e}(\mathbf{u}_e))^+$$

MP, B. Seguin, ESAIM M2AN, 2016

Microscopic Model In $(0, T) \times G$

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x})\mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x})\mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

 $\mathbb{E}^{\varepsilon}(\xi, x) = \mathbb{E}(\xi, \hat{x}/\varepsilon), \quad \mathbb{V}^{\varepsilon}(\xi, x) = \mathbb{V}(\xi, \hat{x}/\varepsilon), \text{ where }$

 $\mathbb{E}(\xi, \hat{y}) = \mathbb{E}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) + \mathbb{E}_{F} \chi_{\hat{Y}_{F}}(\hat{y}), \quad \mathbb{V}(\xi, \hat{y}) = \mathbb{V}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) \quad \text{are } \hat{Y} - \text{periodic}, \\ \hat{Y} = Y \cap \{x_{3} = \text{const}\}$

In $(0, T) \times G_M^{\varepsilon}$

 $\begin{aligned} \partial_{t} p^{\varepsilon} &= \operatorname{div}(D_{p} \nabla p^{\varepsilon}) \\ \partial_{t} b_{1}^{\varepsilon} &= \operatorname{div}(D_{b_{1}} \nabla b_{1}^{\varepsilon}) - f(b_{1}^{\varepsilon}, b_{2}^{\varepsilon}, p^{\varepsilon}) \\ \partial_{t} b_{2}^{\varepsilon} &= \operatorname{div}(D_{b_{2}} \nabla b_{2}^{\varepsilon}) + f(b_{1}^{\varepsilon}, b_{2}^{\varepsilon}, p^{\varepsilon}) - 2g(c^{\varepsilon})b_{2}^{\varepsilon} + 2\kappa b_{3}^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) \\ \partial_{t} c^{\varepsilon} &= \operatorname{div}(D_{c} \nabla c^{\varepsilon}) - g(c^{\varepsilon})b_{2}^{\varepsilon} + \kappa b_{3}^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) \\ \partial_{t} b_{3}^{\varepsilon} &= \operatorname{div}(D_{b_{3}} \nabla b_{3}^{\varepsilon}) + g(c^{\varepsilon})b_{2}^{\varepsilon} - \kappa b_{3}^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) \end{aligned}$

▲□▶ ▲□▶ ▲ 三

Existence of solutions of the model for the cell wall

- For $b^{\varepsilon} \in L^{\infty}(0, T; L^{\infty}(G_{M}^{\varepsilon}))$ with $b^{\varepsilon} \geq 0$
- $\exists \mathbf{u}_{e}^{\varepsilon} \in L^{\infty}(0, T; \mathcal{W}(G)) \text{ satisfying elasticity or viscoelasticity problem} \\ \|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,1} \mathbf{u}_{e}^{\varepsilon,2})\|_{L^{\infty}(0,T;L^{2}(G))}^{2} \leq C \|b^{\varepsilon,1} b^{\varepsilon,2}\|_{L^{\infty}(0,T;L^{\infty}(G_{M}^{\varepsilon}))}^{2}$

• For
$$\mathbf{u}_e^{\varepsilon} \in L^{\infty}(0, T; \mathcal{W}(G))$$
 such that

 $\|\mathbf{u}_{e}^{\varepsilon}\|_{L^{\infty}(0,T;\mathcal{W}(G))}\leq C,$

 \exists non-negative unique weak solution $(b^{\varepsilon}, c^{\varepsilon})$ such that

$$\|\boldsymbol{b}^{\varepsilon,1}-\boldsymbol{b}^{\varepsilon,2}\|_{L^{\infty}(0,\tilde{T};L^{\infty}(G_{M}^{\varepsilon}))}^{2} \leq C\tilde{T} \|\boldsymbol{e}(\boldsymbol{u}_{e}^{\varepsilon,1}-\boldsymbol{u}_{e}^{\varepsilon,2})\|_{L^{\infty}(0,\tilde{T};L^{2}(G))}^{2}, \quad \tilde{T} \in (0,T]$$

• $\mathcal{K}: L^{\infty}(G_{M,\tilde{T}}^{\varepsilon}) \to L^{\infty}(G_{M,\tilde{T}}^{\varepsilon})$ by $\mathcal{K}(\tilde{b}^{\varepsilon}) = b^{\varepsilon}$

$$\mathcal{W}(G) = \left\{ \mathbf{u} \in H^1(G; \mathbb{IR}^3) \mid \int_G \mathbf{u} \, dx = \mathbf{0}, \int_G [(\nabla \mathbf{u})_{12} - (\nabla \mathbf{u})_{21}] dx = \mathbf{0}, \ \mathbf{u} \text{ periodic in } x_3 \right\}$$

Existence of solutions of the model for the cell wall

• For
$$b^{\varepsilon} \in L^{\infty}(0, T; L^{\infty}(G_{M}^{\varepsilon}))$$
 with $b^{\varepsilon} \geq 0$

 $\exists \mathbf{u}_e^{\varepsilon} \in L^{\infty}(0, T; \mathcal{W}(G))$ satisfying elasticity or viscoelasticity problem

$$\|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,1}-\mathbf{u}_{e}^{\varepsilon,2})\|_{L^{\infty}(0,T;L^{2}(G))}^{2} \leq C\|b^{\varepsilon,1}-b^{\varepsilon,2}\|_{L^{\infty}(0,T;L^{\infty}(G_{M}^{\varepsilon}))}^{2}$$

• For
$$\mathbf{u}_e^{\varepsilon} \in L^{\infty}(0, T; \mathcal{W}(G))$$
 such that

$$\|\mathbf{u}_{e}^{\varepsilon}\|_{L^{\infty}(0,T;\mathcal{W}(G))}\leq C,$$

 \exists non-negative unique weak solution $(b^{\varepsilon}, c^{\varepsilon})$ such that

$$\|\boldsymbol{b}^{\varepsilon,1}-\boldsymbol{b}^{\varepsilon,2}\|_{L^{\infty}(0,\tilde{T};L^{\infty}(G_{M}^{\varepsilon}))}^{2} \leq C\tilde{T} \|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,1}-\mathbf{u}_{e}^{\varepsilon,2})\|_{L^{\infty}(0,\tilde{T};L^{2}(G))}^{2}, \quad \tilde{T} \in (0,T]$$

•
$$\mathcal{K}: L^{\infty}(G^{\varepsilon}_{\mathcal{M},\tilde{T}}) \to L^{\infty}(G^{\varepsilon}_{\mathcal{M},\tilde{T}})$$
 by $\mathcal{K}(\tilde{b}^{\varepsilon}) = b^{\varepsilon}$

Main tools: Gagliardo-Nirenberg inequality & Moser-Alikakos iteration
 technique

Multiscale analysis

Aim of multiscale analysis:

to defined macroscopic behaviour of a biological or physical system by taking microscopic processes and microstructure into account

- H-, I-, and G- convergences
- periodic and locally-periodic unfolding operators

Two-scale convergence

• A special type of convergence in L^p , 1 and <math>1/p + 1/q = 1

Definition. $\{u^{\varepsilon}\} \subset L^{p}(\Omega)$ two-scale converge to $u, u \in L^{p}(\Omega \times Y)$ iff for any $\phi \in L^{q}(\Omega, C_{per}(Y))$

$$\lim_{\varepsilon \to 0} \int_{\Omega} u^{\varepsilon}(x) \phi\left(x, \frac{x}{\varepsilon}\right) dx = \int_{\Omega} f_{Y} u(x, y) \phi(x, y) dx dy.$$

Notice:

$$u^{\varepsilon} \rightharpoonup \int_{Y} u(\cdot, y) dy$$
 weakly in $L^{p}(\Omega)$

Definition. $\{u^{\varepsilon}\} \subset L^2(\Gamma^{\epsilon})$ two-scale converge to $u, u \in L^2(\Omega \times \Gamma)$ iff for $\psi \in C(\overline{\Omega}, C_{per}(Y))$:

$$\lim_{\varepsilon \to 0} \varepsilon \int_{\Gamma^{\varepsilon}} u^{\epsilon}(x) \psi(x, x/\varepsilon) d\gamma_{x} = \frac{1}{|Y|} \int_{\Omega} \int_{\Gamma} u(x, y) \psi(x, y) dx d\gamma_{y}$$

Y

Convergence results

 $b, c \in L^2(0, T; H^1(G)), \quad c^1, b^1 \in L^2(G_T; H^1_{per}(\hat{Y}))$ $\mathbf{u}_e \in L^\infty(0, T; \mathcal{W}(G)), \quad \mathbf{u}_e^1 \in L^2(G_T; H^1_{per}(\hat{Y}))$

$$b^{\varepsilon}
ightarrow b, \quad c^{\varepsilon}
ightarrow c$$
 weakly in $L^{2}(0, T; H^{1}(G))$
 $\nabla b^{\varepsilon}
ightarrow \nabla b + \hat{\nabla}_{y} b^{1}, \quad \nabla c^{\varepsilon}
ightarrow \nabla c + \hat{\nabla}_{y} c^{1}$ weakly two-scale
 $b^{\varepsilon}
ightarrow b, \quad c^{\varepsilon}
ightarrow c$ strongly in $L^{2}(G_{T})$

$$\begin{aligned} \mathbf{u}_{e}^{\varepsilon} \rightharpoonup \mathbf{u}_{e} & \text{weakly}^{*} \text{ in } L^{\infty}(0, T; \mathcal{W}(G)) \\ \nabla \mathbf{u}_{e}^{\varepsilon} \rightharpoonup \nabla \mathbf{u}_{e} + \hat{\nabla}_{y} \mathbf{u}_{e}^{1} & \text{weakly two-scale} \end{aligned}$$

 $\mathbf{e}(\mathbf{u}_e^{\varepsilon}) \rightarrow \mathbf{e}(\mathbf{u}_e) + \mathbf{e}_y(\mathbf{u}_e^1)$ strongly two-scale

 $\hat{Y} = Y \cap \{x_3 = \text{const}\}, \qquad G_T = (0, T) \times G$

Microscopic Model

In $(0, T) \times G$

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\mathbf{b}^{\varepsilon}, x)\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

In $(0, T) \times G_M^{\varepsilon}$

 $\partial_t b^{\varepsilon} = \operatorname{div}(D_b \nabla b^{\varepsilon}) + g_b(b^{\varepsilon}, c^{\varepsilon}, \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})))$ $\partial_t c^{\varepsilon} = \operatorname{div}(D_c \nabla c^{\varepsilon}) + g_c(b^{\varepsilon}, c^{\varepsilon}, \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})))$

or $\mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) = (\operatorname{tr} \mathbf{e}(\mathbf{u}_e^{\varepsilon}))^+$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < ?

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \left(\operatorname{tr}\left(\mathbb{E}_{M}(\mathbf{b}^{\varepsilon})\chi_{G_{M}} + \mathbb{E}_{F}\chi_{G_{F}}\right)\mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) \right)^{+}$$

Numerical simulations for plant cell wall model

Macroscopic model for plant cell wall biomechanics

$$\operatorname{div}(\mathbb{E}_{\operatorname{hom}}(\boldsymbol{b}_3)\,\mathbf{e}(\mathbf{u}_e))=\mathbf{0}\qquad \text{ in } G_T$$

$$\partial_t b = \operatorname{div}(\mathcal{D}_b \nabla b) + g_b(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$
$$\partial_t c = \operatorname{div}(\mathcal{D}_c \nabla c) + g_c(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$

$$R(\mathbf{e}(\mathbf{u}_{e})) = \left(\operatorname{tr}\left(\mathbb{E}_{\operatorname{hom}}(b_{3})\,\mathbf{e}(\mathbf{u}_{e})\right)\right)^{+} \text{ or } \left(\operatorname{tr}\mathbf{e}(\mathbf{u}_{e})\right)^{+}$$
$$\mathcal{D}_{\alpha,j3} = \mathcal{D}_{\alpha,3j} = \mathcal{D}_{\alpha}\delta_{3j}, \quad \mathcal{D}_{\alpha,ij} = \mathcal{D}_{\alpha} \oint_{\hat{Y}_{M}} \left[\delta_{ij} + \partial_{y_{j}}v_{\alpha}^{i}(y)\right] dy,$$
$$\alpha = b_{1}, b_{2}, b_{3}, c$$

MP, B. Seguin, *ESAIM M2AN*, 2016

$$\mathbb{E}_{\mathrm{hom},ijkl}(b_3) = \oint_{Y} \left[\mathbb{E}_{ijkl}(b_3, y) + \left(\mathbb{E}(b_3, y) \mathbf{e}_{y}(\mathbf{w}^{ij}) \right)_{kl} \right] dy$$

Macroscopic elasticity tensor

$$\mathbb{E}_{\text{hom},ijkl}(x,b_{3}) = \int_{Y} \left[\mathbb{E}_{Y,ijkl}(b_{3},y) + \mathbb{E}_{Y,ijpq}(b_{3},y)\mathbf{e}_{y}(\mathbf{w}^{kl})_{pq}(y) \right] dy$$

$$\operatorname{div}_{y} \left(\mathbb{E}_{Y}(b_{3},y)(\mathbf{e}_{y}(\mathbf{w}^{kl}) + \mathbf{b}^{kl}) \right) = \mathbf{0} \quad \text{in } Y$$

$$\int_{Y} \mathbf{w}^{kl} dy = \mathbf{0}, \qquad \mathbf{w}^{kl} \text{ is } Y \text{-periodic}$$

$$\mathbb{E}_{x}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \begin{cases} \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{M} \\ \mathbb{E}_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \end{cases} \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{M}(b_{3}) & \text{if } y \in Y_{F}(b_{3},y) = \\ \mathbb{E}_{$$

Macroscopic elasticity tensor for cell wall

 $\mathbb{E}(y,b_3) = \mathbb{E}_M(b_3) \ \chi_{Y_M}(y) + \mathbb{E}_F \chi_{Y_F}(y)$

Cell wall matrix is assumed to be isotropic

 $\mathbb{E}_M(b_3) = E_M(b_3) \mathbb{E}_1 + \mathbb{E}_0 \longrightarrow \mathbb{E}_{\mathrm{hom}}(b_3) = E_M(b_3) \mathbb{E}_{\mathrm{hom},1} + \mathbb{E}_{\mathrm{hom},0}$

 $\mathbb{E}_M \mathbf{A} = 2\mu_M \mathbf{A} + \lambda_M (\operatorname{tr} \mathbf{A}) \mathbf{1}$ Lame moduli $\mu_M \quad \lambda_M$

$$E_M = \frac{\mu_M (2\mu_M + 3\lambda_M)}{\mu_M + \lambda_M}$$
 and $\nu_M = \frac{\lambda_M}{2(\mu_M + \lambda_M)}$

 $E_M(b_3) = 0.775 \ b_3 + 8.08 \ \text{MPa}$

(Zsivanovits, MacDougall, Smith, Ring Carbohydrate Research, 2004)

Microfibrils are transversally isotropic

/	$\alpha_2 + \alpha_5$	$\alpha_2 - \alpha_5$	$lpha_3$	0	0	$0 \rangle$	(18393)	B 685	5 22277	0	0	0 \
	$\alpha_2 - \alpha_5$	$\alpha_2 + \alpha_5$	$lpha_3$	0	0	0	6855	1839	3 22277	0	0	0
	$lpha_3$	$lpha_3$	α_1	0	0	0	2227	7 2227	7 259901	0	0	0
	0	0	0	α_4	0	0	0	0	0	84842	0	0
	0	0	0	0	α_4	0	0	0	0	0	84842	0
	0	0	0	0	0	α_5	\setminus 0	0	0	0	0	5769/

 $E_F = 15,000 \text{ MPa}, \ \nu_{F1} = 0.3, \ n_F = 0.068, \ \nu_{F2} = 0.06, \ Z_F = 84,842 \text{ MPa}$

(Robert Moon, Review Wisconsin 2013-2014, Diddens et al., 2008)

nicrofibrils Ω_M^{ε} labeled. The surhidden) surface Γ_{ε} is facing the n the top and bottom of Ω_{ε} (b) Δ

Impact of the orientation of microfibrils

(BC1) Base case: $p = p_{\circ,1} = 0.209$ MPa and $f = 2.938p_{\circ,1}$ MPa

MP, B. Seguin, Bull Math Biology, 2016

Comparison with experimental results on tissue extension and compression

RD	(BC1) parallel MF	(BC1) no shift	(BC1) 4 shifts	(BC1) rotated MF	(BC2)	(BC3)
(C1)	1.06497	1.06396	1.06984	1.00456	1.00683	1.00816
(C2)	1.06452	1.06391		1.00462	1.00671	1.00823
(C3)	1.06234	1.06294	1.06680	1.00379	1.00672	1.00831
(C4)	1.06411	1.06320		1.00497	1.00696	1.00811

Good agreement with experimental data on changes in inner or outer tissue length due to tissue tension elimination, Hejnowicz, Sievers, *J Exp.Botany* 1995:

relative displacement (RD) ranging between 0.38% and 6.98% versus experimental data: 0.3% - 4.99%

- (BC1) Base case: $p = p_{o,1} = 0.209$ MPa and $f = 2.938 p_{o,1}$ MPa
- (BC2) No tensile tractions: $p = p_{\circ,1}$ and f = 0
- (BC3) Different turgor pressures in neighbouring cells and no tensile tractions: $p_1 = p_4 = p_5 = p_8 = p_\circ$ and $p_2 = p_3 = p_6 = p_7 = 1.3p_{\circ,1}$, where p_i , for i = 1, ..., 8, is the pressure in cell *i*, and f = 0

MP, B. Seguin, Bull Math Biology, 2016

Intercellular transport of signalling molecules

Signalling molecules interact with cells

- as a ligand for membrane receptors
- and/or by entering into the cell through its membrane or endocytosis

$$C+R_f \stackrel{b_e}{\rightleftharpoons}_{a_e} R_b$$

- Diffusion of signalling molecules c and s in the extra- and intracellular spaces
- Diffusion of free and bound receptors r_f and r_b and of active and inactive co-receptors (proteins) p_a and p_d on cell membrane
- Ligands c bind to r_f to produce r_b and s interact with p_a
- Bound receptors r_b dissociate into free receptors and ligands
 Active co-receptors (proteins) p_a
 dissociate into inactive co-receptors
 (proteins) and bound receptors

Mathematical model for intercellular signalling

Diffusion, production and decay of ligands in extracellular space

 $\begin{array}{ll} \partial_t c = \nabla \cdot (D_e(x) \nabla c) + F_e(c) & \text{ in } \Omega_e, \ t > 0 \\ D_e(x) \nabla c \cdot \nu = 0 & \text{ on } \partial \Omega, \ t > 0 \\ c(0) = c_0 & \text{ in } \Omega_e \end{array}$

t, t > 0

• Equations for the receptors on the cell surface Γ

$$\partial_t r_f = D_f \Delta_{\Gamma} r_f + F_r(r_f, r_b) - a_e(x) r_f c + b_e(x) r_b - d_f r_f \quad \text{on } \Gamma$$
$$\partial_t r_b = D_b \Delta_{\Gamma} r_b \qquad + a_e(x) r_f c - b_e(x) r_b - d_b r_b \quad \text{on } \Gamma$$

Binding on the cell surfaces

$$D_e(x) \nabla c \cdot \nu = -a_e(x) c r_f + b_e(x) r_b \quad \text{on } \Gamma$$

Activation of an intracellular signalling pathway by r_b

 c, r_f, r_b density of ligands/receptors, d_f, d_b rate of decay of ligands/receptors F_e, F_r product. of ligands/receptors, D_e, D_f, D_b diffusion coefficients

Microscopic model for signalling processes

Diffusion, production and decay of signalling molecules

$$\partial_t c = \nabla \cdot (D_e^{\varepsilon}(x)\nabla c) + F_e(c) \quad \text{in } \Omega_e^{\varepsilon}, \ t > 0$$

 $\partial_t s = \varepsilon^2 \nabla \cdot (D_i^{\varepsilon}(x)\nabla s) + F_i(s) \quad \text{in } \Omega_i^{\varepsilon}, \ t > 0$

• Equations for the receptors /proteins on the cell surface Γ^{ε}

$$\partial_t r_f = \varepsilon^2 D_f \Delta_{\Gamma} r_f - G_e(c, r_f, r_b) + F_r(r_f, r_b) - d_f r_f$$

$$\partial_t r_b = \varepsilon^2 D_b \Delta_{\Gamma} r_b + G_e(c, r_f, r_b) - G_d(r_b, p_d, p_a) - d_b r_b$$

$$\partial_t p_d = \varepsilon^2 D_d \Delta_{\Gamma} p_d - G_d(r_b, p_d, p_a) + F_d(p_d) - d_d p_d$$

$$\partial_t p_a = \varepsilon^2 D_a \Delta_{\Gamma} p_a + G_d(r_b, p_d, p_a) - G_i(p_a, s) - d_a p_a$$

 \blacktriangleright Binding on the cell surfaces Γ^{ε}

$$D_e^{\varepsilon}(x) \nabla c \cdot \nu = -\varepsilon G_e(c, r_f, r_b) \quad \text{on } \Gamma^{\varepsilon}, \ t > 0$$

$$\varepsilon^2 D_i^{\varepsilon}(x) \nabla s \cdot \nu = \varepsilon G_i(p_a, s) \quad \text{on } \Gamma^{\varepsilon}, \ t > 0$$

 $\overbrace{Y_e}^{\Gamma}$

Binding reactions

$$G_{e}(c, r_{f}, r_{b}) = a_{e}^{\varepsilon}(x) c r_{f} - b^{\varepsilon}(x) r_{t}$$
$$G_{d}(r_{b}, p_{d}, p_{a}) = a_{i}(x) r_{b} p_{d}$$
$$G_{i}(p_{a}, s) = \gamma_{i}^{\varepsilon}(x) p_{a} - \bigvee_{Y_{e}}^{\Gamma}$$

Macroscopic equations

Macroscopic concentrations

$$\partial_t c - \nabla \cdot (D_e^{\text{hom}} \nabla c) = F_e(c) - \frac{1}{|Y_e|} \int_{\Gamma} G_e(c, r_f, r_b) \, d\gamma_y \quad \text{in } \Omega_T$$
$$\partial_t s - \nabla_y \cdot (D_i(y) \nabla_y s) = F_i(s) \quad \text{in } \Omega_T \times Y_i$$

► Receptors distribution on the cell surface on $\Omega_T \times \Gamma$

$$\partial_t r_f = D_f \Delta_{\Gamma,y} r_f - G_e(c, r_f, r_b) + F_r(r_f, r_b) - d_f r_f$$

$$\partial_t r_b = D_b \Delta_{\Gamma,y} r_b + G_e(c, r_f, r_b) - G_d(r_b, p_d, p_a) - d_b r_b$$

+ equations for p_a, p_d

Macroscopic coefficients

$$D_{e,ij}^{\text{hom}}(x) = \frac{1}{|Y_e|} \sum_{k=1}^{3} \int_{Y_e} (D_{e,ij}(x,y) + D_{e,ik}(x,y) \partial_{y_k} w_j) \, dy$$

where

$$\begin{aligned} -\nabla_y \cdot (D_e(x, y)(\nabla_y w^j + e_j)) &= 0 \text{ in } Y_e, \\ -D_e(x, y)(\nabla_y w^j + e_j) \cdot \nu &= 0 \text{ on } \Gamma, \quad w^j \quad Y - \text{periodic} \end{aligned}$$

 $\Omega_{\mathcal{T}} = (0, \mathcal{T}) imes \Omega$

Multiscale numerical simulations

$$\operatorname{div}_{y}(D_{e}^{*}(\nabla_{y}w^{j}+e_{j})) = 0 \quad \text{in } Y_{e}, \quad \int_{Y_{e}} w^{j}(y)dy = 0,$$
$$D_{e}^{*}(\nabla_{y}w^{j}+e_{j}) \cdot \nu = 0 \quad \text{on } \Gamma, \quad w^{j} \quad Y - \text{periodic},$$

$$D_{h,e}^{\text{hom}} = \begin{bmatrix} 8.167 \cdot 10^{-3} & 0\\ 0 & 1.841 \cdot 10^{-3} \end{bmatrix} \qquad D_{h,e}^{\text{hom}} = \begin{bmatrix} 6.556 \cdot 10^{-3} & 0\\ 0 & 6.149 \cdot 10^{-3} \end{bmatrix}$$

$$D_e^* = 10^{-2}, \quad D_i^* = 10, \quad D_f^* = D_b^* = D_d^* = D_a^* = 10^{-2},$$

MP, C. Venkataraman, arXiv 2018

Effect of anisotropic microstructure

