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PSEUDOPARABOLIC VARIATIONAL INEQUALITIES
WITHOUT INITIAL CONDITIONS

S. P. Lavrenyuk and M. B. Ptashnyk UDC 517.95

We consider a pseudoparabolic variational inequality in a cylindrical domain semibounded in a variable
t. Under certain conditions imposed on the coefficients of the inequality, we prove theorems on the
unique existence of a solution for a class of functions with exponential growth as t — o

1. Numerous practical problems (filtration of liquid in media with double porosity, liquid transport in soils, dif-
fusion in a cracked medium with absorption or partial saturation, etc.) lead to the investigation of boundary-value
problems for pseudoparabolic equations. The general theory of equations of this type is presented in [1-3]. The
Cauchy problem and mixed problems for pseudoparabolic equations and systems of equations were studied in {4-8];
problems without initial conditions were investigated in [9, 10} and other works. Parabolic variational inequalities
without initial conditions were studied in [12, 13].

In the present paper, we investigate conditions for the unique existence of a solution of a pseudoparabolic in-
equality without initial conditions.

We use the following notation:  CR” is a bounded domain, Q7= QX (—=o; T], T < oo, Q,],h =Q X (ty;

t,), —o <t <t,<T, V is aclosed subspace that is compactly and continuously imbedded in L3(Q), f;l(Q) -
vcH! (Q2), V" is the space dual to V, K is a convex closed subset in V that contains the zero element,

L (=T, B) = {u(x1): u(e)e L'((1,, T1,B)}, 1<r<es,
forall t,€ (—oo; T, B is a Banach space, and
W= {wxn: wx,t)e LT (~=TLV),w,e Li((-=T1,V")}.

In the domain Q7, we consider the problem of finding a solution of the following pseudoparabolic variational
inequality:

j v, (V—u)+ 2 b,-j(x,t)vxi‘,(uxj —uxj)

Qq.tg i, j=1

n n
1
+ Y o g (v, — ) + 5 2 by (5 Doy, = Yy~ )
ij=1 ij=1

Y By D0~ )0, )+ 365 Dty (=0

ij=1 =1

+ A(v- u)2 +co(x, Hu(—u)— f(x, ) (v - u)]ez}“ dxdt
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J

Q

N =

( Z bij(x’ t2)(vx,- (X, t2) - ux,» (-x9 tZ)) (vxj (x’ tZ) - uxj (xa t2 ))

ij=1

+ (v(x, 1)) —u(x, tz))2 M2 gx

J [ z bij(x’ tl)(vx,- (x’ tl) - ux,- (X, tl)) (vxj (x’ tl) - uxj (-x, t]))
Q\ij=1

B} —

+ (v(x, 1) —u(x, m)? eMdx, reR'. )

Definition 1. A solution of inequality (1) is understood as a function u(x, t) with the following properties:
(l) ue L;c((_oo; T], V)a U, Uy € W;
(ii) ue K foralmostall te (—-=;T];

(iti) u(x,t) satisfies inequality (1) for almost all t(,t, € (~oo; T] and for an arbitrary function v(x,t)
such that v,vye W and ve K foralmostall te (—=; T].

2. First, we consider the problem of uniqueness of a solution of inequality (1). Denote by 7y, the following
number:

n
Y, = sup Zciz(x,t).
Q. i=|

We assume that the coefficients of inequality (1) satisfy the conditions

n n
Y ai(xnEE; 2 a2 &L, ap>0, )
ij=1 i=1
b2 &2 < Y bl < BOYEL b >0, 3)
i=1 ij=1 i=1
colx 1) 2 7y >0 4

for almost all (x,r)e Qp andall EeR”,

Theorem 1. Suppose that the coefficients of inequality (1) satisfy conditions (2)~4), a; o b, 1T b, i € €
LZ(QT), and 2(2ay- b )Yo > 7Y,- Then inequality (1) cannot have more than one solution that satisfies the con-

dition
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t—> -~

lim | (uz(x, D+ Yk (x, t)]eﬁ'dx = 0,
Q

i=1

where

1 ! AR
p= 50| %5 Yo (ao—‘z—-”{oj +Y |

Proof. Assume that there exist two solutions u; and u, of inequality (1). Since u,, u €W k=12 j=
i

L,..., n, by virtue of Theorem 1.17 in (2] we have u,, u,, ,€ C((—oo; Ty, Lz(Q)), and the following integrals are
J

meaningful:

n
J wuy,dxdt, Z Upex el o dxdt, i=1,2.
.y Q. bJ =]

Consider the operators A and B defined for arbitrary functions wi(x, 1), wy(x,t) € W and almost all re
(—ee; T] by the following equalities:

n n
(Awl,w2>(t) = f Z AW Wy, + Zc,-wlxiwz +cow1w2de,
Q\ij=1 i=1

1 n
<BW1, W2>(t) = 5 J‘ Z bijtwlxiw2xjdx'
Qij=1

Let us show that A — B is a monotone operator. By virtue of the conditions of the theorem and the elementary esti-
mate

a*s b

ab < —+—, §>0,
2 28

we obtain the following inequality:

v

(A= B)(wy —wy), w —w,)(2)

' v,80) & 1
J [(ao 5" “12—0) El W1,z = W5, )Z(Yo —’2-{3;)("’1 ) )szX

Q

v

B J [ 2 b,-j(x, t)(Wl,xi —Wz’xj)(wlvxi -—Wz’xj) + (Wl "Wz)szx, (5)

Q\iLj=1

where w,(x, t) and w,(x, t) are arbitrary functions from W.
Estimate (5) yields

(A= B)(w; —=wy), wy —wy)(t) 2 0

for arbitrary w;, w,& W, i.e., the operator A — B is monotone.
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Consider functions u! for which
wihube L2 (= TEVINC((=o T IA(Q)), i=1,2,
and the following inequality holds:

J.[(vt HN-w+ 2 xi,(vxj—uxj)Je”‘dxdt

Q4.0 ij=1

-A _[ [(v—u)2+ 2": byj (vy, —ux )0y, —uxj)]en'

Q'IJZ i,j=1

_1 At
3 _[ 2 i € ux,.)(vxj~uxj)e2 dxdt

Q!le =l

l\)

%I( D by (g, (0 1) =10y, (x,12)) (Vg (%, 1) — e (X, 1))
ao\ij=1

+ (v(x, 1) —u(x, $))? M2 dx

-2]

Q

Nl'—-‘

{ 2 b; (vxi (x, 1) =1y (x, 4)) (ij (x, 1) - Uy, (x,1))

ij=1
+ (v(x, ) —u(x, tl))2 Mgy,

It is easy to show that, for f=f, and f=f,, respectively, such functions satisfy the following estimate:

[ Gi-p)ut -ut)e™ dxar

Q'IJZ
[
Q’l 7 L)

1 n
+5£[ % u (x - u (x tz))(u (x,t5)— u (x tz))

u' [\4=

e~ ) (i, iz, )+ G —uZ)ZJeZM dxdt

+ (ul(x, 1) —u?(x, t)) ] M2 dx =3 j[ Y bq(u (x, 1)

Q\ij=1
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- ”3,- (x, 4 ))(uij (x,4)— ufj (x, tl)) + (uI (x,4)— u? (x4 ))2)e2h‘ dx

1 n
T I Z bijt(“:lc,« ‘”i)(u,lcj —ufj]em dxdt.

Qq,/z i’j=1

Relation (6) yields

2 J [J[ u(x,t)y—u (x t)) i J( ! —ui)(u;j —ufj )}e”"dx]dt
Q ij=1

+ | A-p -v?)eMdxdr
Qn.ny

l J. 2 ’]’ )( ij—ufj)ezhdxdt_

Qq.npti=1

N

By setting f; =f—Au, and f,=f—-Au, in (7), we get

; f (J.( Z (ulxi _u’lx,«)(ulxj —u2xj)+(u1 _uz)Z]eZ)u dx]dt
4 Q

i,j=1

j [ z b,J Uy, — Uy, )(ulx uZXj)+(u1—u2)2]e”"dxdt

Ql),lz L J 1

2
+ f(A(uz — i), Uy —ul)e”“ dx

4

2
J. Z ij,t “Ixi ‘“2x,-)("1xj —uzxj)e dxdt.
Q1| 1 -1 1

Carrying out differentiation with respect to ¢ on the left-hand side of the last inequality, we obtain the estimate

J

Q

et

4

( 2 i (% t)(ulxi —uin)(ulxj —uij)+(u1 —uz)z]dx]dt

Lj=1

I

+ J((A—B)(uz—u,),uQ—Lq)eZMdt <0

1049

(6)

)

®
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We denote

y(t) = J.( Z by(x, t)(ulxi —u2xi)(u1xj ““2;:1-)‘*'(“1 —uz)z}dx

Q\ij=1

and use estimate (5). Then relation (8) yields

J' [y + By@)e™dr <0 (9)

i

forall 7,2,€ (—oo; T], £ty <t,. It follows from (9) that, for almost all t& ( —eo; T}, we have y'(z)+ By(r) <O0.
Multiplying the last inequality by eP* and integrating from ¢, to 1,, we get

1y

jg;(y(t)eﬁt)dt <90,

i
which yields
y(1p)ePa < y(rp)ebr. (10)

Passing to the limit as #;,—oo in (10) and using the condition of the theorem, we obtain y(r,)eP2<0 for all
t,€ (—oo; T]. Estimate (10) implies that

J' [ 2 bl'j(x, tz)(lllx,_ - u?_x‘_ )(ulxj - uij ) + (”1 - u2)2 dx =0

o\ij=1

forall 1,6 ( —o; T], ie., ui(x, t)=u,(x,t) almost everywhere in Q7. The theorem is proved.
3. Let us establish conditions for the existence of a solution of inequality (1). We set

N
2(0:0 +y 0 +y,b° ) ,

a1=

1
where a0=a0-—yob0—%— for v >0, and o; =0 for v, =0.

b..,b c

Theorem 2. Suppose that the coefficients of inequalities (1) satisfy conditions (2)~(4), a; ijr Bijer €

j9
2 . ..

L*(Qy;), and the functions t—> aij(x, t), t— bijt(x, 1) tocixt) i,j=1,...,n 1> cy(x, 1), and t—>f(x,1)

are continuous on (—oo; T] for almost all x € Q. Also assume that there exists a number A A <7Yy— 0, Such

that f(x, t)e At LZ(QT) . Then there exists a solution u(x,t) of inequality (1) such that

lim f [Zufi(x, t)+u2(x, t)}ntdx = 0. (11)
=== li=1
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Proof. Consider the following auxiliary problem in the domain Q.7
« 1
u, + Y (by(x, t)ux‘_’,)x +A(Nu + Ezz(u) = f, (x50, (12)
ij=1 /

u(x, tg) = 0, (13)

where €>0, rg€ (—oo; T, B(u)=J(u—Pg(u)), J is the operator of duality between the spaces V and V~, Py
is the operator of projection of V onto K, and

f(x’ t)’ (X, t) € Q’O’ T
Ta =1, (nDeQ,.

It is known [13] that the operator B is monotone, bounded, and continuous in the Lipschitz sense. By virtue of

the conditions of the theorem, the reasoning presented above, and the results of [10], there exists a solution u(x, t)
of problem (12), (13) such that

ue L(t,T).V), ue  L(tg, T)V"), u, e (. T)V),
u, € D6, T), V), i=1, ..., n

Consider a sequence of functions {uk's(x t)} that are solutions of problem (12), (13) for ¢, =T -k, k =1,
2, ..., and extend every function u*%(x, 1) by zero to the domain @ ,. Then the following equality holds:

keke k,€ ks kska
J( + Zbu("’ Dy g+ Zau(" D iy

0: i,j=1 i,j=1

+ Zc(x z‘)uks ke+co(x HWEE? + Q?(uk Eyuk-€
i=1

- fr_k(x,t)uk’s)emdxdt =0, ke N, 1<T (14)
This yields the estimate

;)

Q

b s ] {[ao 5280 S

i=1 Q. i=1

+ ("{o -x—ﬁ—%‘)(u"’s)z + éﬂ(u“)uk’e ]e”‘ dxdt

< 55 jf (x,)e’™ dxdt, ke N, §,>0, (15)
l



1052 S. P. LAVRENYUK AND M. B. PTASHNYK
Denote

F = [f(xne™dxdr.
QT

It is easy to verify that, under the conditions of the theorem, relation (15) yields the following estimates:

J. [boi (uici,s)2 +(uk'£)2}e2}d dx < ueFy,
Q i=1

[ 0 o 2 o
i=1

or

[BGEyub2 e dxdr < epoFy, ke N, (16)
QT

where [y does notdepend on € and k.

k

Estimates (16) imply that there exists a subsequence {u ”"E} of the sequence {uk’s} such that

Mukmt s Myt xweaklyin  Lo((~o0; T1, V),

a7
Mutm® 5 My weaklyin  LP((—es; T, V) as k,—>o.
It follows from (17) that u®(x,t) is a solution of the equation
z 1
u, + Y, (B Dug ) +A@Du + ZBw) = f(x,0). (18)

P
ij=1 / €

Furthermore,

Mife (- TN (=T V), Mufe H(-=T1LV"),
ehuii € Lz((_oo; T, V), ehuf:xi € Lz((_oo; 7], V*), i=1,..., n

and the function u®(x, 1) satisfies estimates (16).
Let a function v(x,t) be such that v,v,e€ W and v € K for almost all ¢t € (—oo; T]. Since B(v)=0, by
virtue of (18) we get

_[ [v,(u—u€)+ Y by(x, DY,z (g, -uﬁj)

Q!].Iz ihj=1

+ 2 aynnug (v, —up) + D (%bij,(x, 1)+ Ab;(x, z))

i, j=1 ij=1
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n
£ £ £ €
X (Vg —thy )y, —uﬁj) + Yy v—u®)+cqut (v -u®)

i=1

+ AMu—u®)? = fx, D - us)Je”“dxdt

[ (B0)-3wS)w-u")eMdxd:

+ % | [ i by, 1) (v, (3, 1) — u (x, tz))(vxj(x, B) - (x,1,))
alij=

+ (v(x, 1) —uf(x, rz))z]emldx - %J’[ i by(x,1;)
Q

ij=1

X (Ux,- (x,)— u; (x, 4 )) ( Vs, (x,4)— uij (x, 4 )) + (v(x, n)—-ut(x, ))z}ezh‘ dx

> %J'( i by(x, tg)(vx,.(x, tz)—uf;i (x, tz))(vxj (x, tz)—u;:j(x, fz))
Q\ij=1

+ (v(x, 1)~ ub(x, tz))z)e”‘jzdx - % f i by(x,1y)
Q\ij=1

X (v, (x, 1)~ (x.17)) (vxj (x, ) = (x5, 1 )+ (00 1)~ (. g ))2}:2“1 dx. (19)

Let us show that there exists a sequence {e)"ua'" (x, t)} c {e)"ue(x, t)} of functions that are defined for re
{—o0; T], take values in V, and are jointly continuous on any interval [T}, T»] C (—oo; T]. Since the second esti-
mate in (16) is valid for the functions €*4%(x,?), £>0, by virtue of the Fatou lemma we obtain

T
jle”‘ lim inf |4 (x, 0] dr < poF;.
T,~1

This implies that, for almost all 1 e [T} -1, T;],
2
e lim inf |u®(x, 0], < =.
Then there exists T €[ Ty — 1, T] such that

S lim inf |uf(x, D < pyo
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Let T =7, and let {us"' (x, t)} be a sequence for which

. . 2 : 2
lim inf [ (T, = lim Ju' (e T,

2
Then |u®"(x,T})|, Su, forall me N. Weset =Ty, 1,=T>+3, and v(x,1) = u*(x, )e*T ™ in (19).

By simple calculation, we obtain the following estimate:

l n
5 j z b(x, T, + 8)(145;" (x, T +8)eMN+d _ ui’" (x, 7])e”')
1

Q\i=

. AT, +8 ” AT,
x (uﬁj (6, T, +8)eM M i (x, 1) M)

+ (us’" (x, Iy +5)e)‘(T‘+8) ~u*m (x, T1)€XT' )2 dx < dusj, (20)

where the constant [t; >0 does not depend on m.
By using estimate (6) with

ty=Ty, t =t fi(xt) = flx,1)— A@u*"(x,1),
Folx, 1) = fx, 1 +8)e™ — A(t+8)usm (x, 1 +8)e™,
Uy () = ubm(x,1), uy(xt)= us"'(x,t+5)e}‘5,

we get

f (ue”' (x,2)~utm(x,1+98) em)2 eMdx
Q

N [ =

-

2
j (ue”' (6, T) =™ (x, T, + S)e}‘s) Mgy
Q

1 n
* ESJ; ,E lbi,-(x, f)(ui,f" (x, )= Uz (x, r+8)em)

X (”ﬁ’." (x, 1) - uf;;" (x,t+ 6)e’“5)e2” dx
J

N

j 2 by(x, T)(ugm (x, ) - ufr (x, T + 8)e™)
Q iLj=1

m " AB) 2AT,
X(“ﬁ,. (6, )~ u;"(x, T +8)e )e 'dx
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2
< Uy j (us”'(x, t)—ug"'(x,t+5)e)‘8) eMdxde
QT].I

+ | Z(“’fj+%bfj,x)(uif”(x’t)—ui;"(x,ws)em)
QOr,., bJ=]
X (uSm (x, 1) - (x, 1+ 8))e”™ dxdt
J J
+ f [f(x, = A)utm (x, 1) - f(x,z+8)+A(t+6)u5m(x,:+6)]
QT].!
X (ua”'(x, 1) —utm (x,t+8)em)e2}‘1dxdt. 1D

Note that the continuity of f(x, t) in the variable ¢ implies that the function

J' f(x, t)dx
Q

is uniformly continuous on the interval [T}, 7>]. Therefore,

J U r+8) - flx0)?e™ < Bus. 22
QT.:
By virtue of (20)~22) and the Gronwall-Bellman lemma, we have
n 2 2
j Z 1 ui’" (x,1+8)eM*d) _ u;’" (x,)e™ I + Ius"' (x, £+ 8) MO _ yfm (5 )M I ]dx < dpg. (23)

Qri=l

It follows from inequality (23) that the sequence {us"‘ (x, t)eh} is jointly continuous in the variable ¢ on the
interval [T, T>]. Since the terms of the sequence {ue"' (x, t)e’" } satisfy estimates (16), one can select a subse-

quence {ug”'“ (x, t)e}"} of this sequence such that
W (x, e = u(x, e *-weaklyin  L7((—e0; T], V),
W (x,0)eM = u(x, ™ weaklyin  L((—es;T], V),
W (e = u(x,n)e™  uniformlyin  C((T; ), V)
as m,—eo.

Now consider the intervals [T -k, T], k € N. According to the Arzelé—Ascoli theorem, we can construct a

diagonal subsequence such that, for any T € (—o; T],
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WM (x, e — u(x,f)e™  *weaklyin L((~oo; T1, V),
WM, )eM — u(x, e weaklyin I°((—w:T], V),
W™ (x,0)eM — u(x,n)e™  uniformly in C([7}; 1), LX(Q))

as m-—yoo.
It is easy to show that, for any 7, 7,€ (—o; T], 1, <1,, the functions {u"””‘(x, t)} satisfy the inequality

n
, m,m
j v (v-u"")+ z bij vy, (Vx, —u )
Ql].lz i’j=l

n n
1
mm m,m m,m m,m
+ Zaijuxi (g, —ug™) + 5 Zbij,,(vxi—uxi g, —ug"™)
ij=1 Lj=1

n
+ A Z b (v, —-u;'lf"")(vxj —u;';"") + ZCiu;'f‘”'(v—um"")
ij=1 i=1

+ AU —u™") 4™ MW —u™ ") = fFo—u™™) eMdxdt

I i by (x, fz)(vx,- (x,8))— u;':’ (x, tz))(vxj (x, ) - ufjf ™(x, ty ))
alij=1

> 1
2

. (v(x, £y —u™ ™ (x, tz))2)e2>~‘zdx - %J' i b;(x, 1)
a\ij=1

X (Ux,- (e ty)=ug " (x, )) ( vy, (% 1) = u;';’ (x4 )) +(v(x, 1) —u™ " (x, ))zjez}‘" dx, (24)

where v is an arbitrary function such that v, v, € W, i=1,...,n, ve K for almost all re ( —o; T1].

Passing to the limit as m—e<e in (24) and using estimates (16), we establish that u(x, ¢) is a solution of in-
equality (1) in the sense of Definition 1 and satisfies condition (11). The theorem is proved.
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