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ON CERTAIN NONLINEAR PSEUDOPARABOLIC VARIATIONAL INEQUALITIES
WITHOUT INITIAL CONDITIONS

S. P. Lavrenyuk and M. B. Ptashnyk UDC 517.95

We consider a nonlinear pseudoparabolic variational inequality in a tube domain semibounded in
variable 7. Under certain conditions imposed on coefficients of the inequality, we prove the theorems of
existence and uniqueness of a solution without any restriction on its behavior as t — — o,

It is known that fluid filtration in media with double porosity [1], heat transfer in a heterogeneous medium [2],
and moisture transfer in soil [3] are modelled by boundary-value problems for pseudoparabolic equations. The gen-
eral theory of such equations and boundary conditions for them were a subject of investigations of many authors
[3—-15]. For example, problems without initial conditions for some pseudoparabolic systems were investigated in
{14, 15].

Pseudoparabolic variational inequalities make it possible to obtain the conditions for correct solvability of some
other boundary-value problems for psendoparabolic equations.

In the present paper, we prove the correctness of a nonlinear pseudoparabolic variational inequality without ini-
tial conditions in the class of functions with arbitrary behavior as ¢ — —eo,

Note that certain parabolic variational inequalities without initial conditions were investigated in [16-18].
Moreover, the conditions for unique solvability of a pseudoparabolic inequality generated by a linear pseudopara-
bolic operator were obtained in {19]. In this case, the behavior of a solution was restricted by the condition that it
increase not faster than e’ as t — —co, where A is determined by coefficients of the inequality. The results pre-
sented in [19] cannot be obtained from the present paper.

Let Q be a bounded region of the space R” with the boundary 0Q c c', Or = QX (-, T), T<oo,
Q, ,=QX(1,0), 1<th,<T, Q. = Or{r=1}, let V be aclosed subspace continuously and compactly im-
bedded in L2(Q), H' Q)N WP(Q) c Ve H (Q)NW'P(Q), p>2, and let K be a closed convex subset in
V which contains the zero element.

We define a norm in the space V as the norm of the space H' «@nN w! PQ).
Consider the following variational inequality:

J v,(v—u) + i b (x,1) vx‘_,,(vxj —uxj)

Qll.lz Lj=1

n n
1
+ Y a4y v~y *3 2 By (1) (U, = Y0y, ~ i)
ij=1 ij=1

+ i c; (x, t)uxi (v—u) + cg(x, ) u(v—u)
i=1

o3 oy 1Py, o, =) + gl 2= ) — fy (5, 1) 0= 1)

i=1
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- i ACRICH —uxi)jl dxdt
i=1
2 % .[ { . bij (6, 1) Uy, = sy Y0y, —0y) + (v—u)z}ix
Q,2 i,j=1
- % J. { 2 bij(x’tl)(vxi -—uxi)(vxj —uxj) + (U—H)szx. (1)
g, Lij=1

Definition 1. A solution of inequality (1) is a function u(x,t) such that: u € L,z,:,C ((=o, T]; H ! (Q), ue
P (=22, TY; WYP(Q)) and u, e IE (-, T}, H(Q)), ue K foralmostall 1€ (—eo, T}, u(x,1) satisfies

(1) forall 1y, 1p€ (==, T}, 1 < 1y, and for all functions v(x,1) such that v & Hip (= Tk H ()N
P ((=oo, T; WP (Q)) and v e K foralmostall te (—o, T].

Let the coefficients of inequality (1) satisfy, respectively, the following conditions:

condition Ay :
n n 2
a,-jGL (QT), i,j=1,...,l’l, 2 aij(x,t)éiéj > aozéi, ao>0,
ij=1 i=1
for almost all £ € R" and almost all (x,?) € Qr,

condition A, :

o, e L7(Q), a;x)20q>0, i=1l,...,n,

condition B :

bij(xs Z‘) = bj,’(x, f)> bij’ bijt GLw(QT), l,_] = 1,...,n,

by (x, 1)

hyes 3 EEgE < v e

=1 i7=1
by>0, k=0,1; b=min{b,,-b'}
forall £e€ R" and almostall (x,?) € QOr,

condition C:

n
c,e L™(Qp), i=1,...,n, supz c?(x,t) =c!,

Or i=1

g€ Lo, TLL(Q), co(x,0)2c">0, (x,1) € Qr,



368 S. P. LAVRENYUK AND M. B. PTASHNYK
condition G :

ge L7(Q), gx)=2g,>0, xe Q.

Theorem 1. Let the coefficients of inequality (1) satisfy conditions A}, A, B, C, and G, and, moreover, let
(4ay-2b el > ¢l Then inequality (1) cannot have more than one solution.

Proof. Define operators A and B, according to the following formulas:

n n
(Aw!,w)(1) = J.( Z a; (x, 1) w)l(i wi’_ + 2 (xi(x)|wli IP_2w)lci w?

X;
Q Vij=1 i=1

n
+ 2 ¢ (x,1) w}‘i w? + ¢y (x, 1) wiw? + g(x)|w]|""2w1 WZde,
i=1

n
1.2
2 b, (x, 1) wy, Wy, dx,

1
(Blwl’ W2> = -
2 E[z ij=1

12 . .
where w, w” are arbitrary functions from V.

It is easy to verify that, under the conditions of the theorem, the operator A — B, is uniformly monotone. In-
deed,

{((A-BDw' = (A-B)wiw' —w?)

2 i - 2
+ 2° ”a02|w;‘_ —w§i|p + 2% Pgo|lw — w2l |dx

i=1

v

Bof[

Q

Z bij(x,t)lwli - wfil(wlj - wzj) + W - wz)zjdx, 2

ij=1

p/2
where B, = (n+1)(2"’)/222'Pmin{a0,g0}(min{l,bl}) .
0
Let ul(x, t) and u 2(x, t) be two solutions of inequality (1). Then, for the function v (x,?) =

% (u1 (x,1) + u? (x,1)), the following inequalities are valid:

n 1
1 k
J (v, “fk)(U—uk) + 2 bij Uxf,t(vxj —ufj) + 5 2 bij’ (Uxi —uii)(vxj _uxj) dxdr
Q1|‘12 ij=1 hj=1
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J

9,

BN | —

{ 2 by~ Yo — i) + <v—uk)2}dx

ij=1

{ Y b (v, i vy, —ug ) + (v—u")z}dx
where
=Y fir —Ad, k=12
i=1

By summing these two inequalities, we obtain

,[ li(fl - AW ~u )+ = z b,j,(u - ui)(uij - ufj)dedt

Oy 11 1

i' D by, — g Y, i ) + (! —u2)2}dx

i,j=1

- .21. I I: i bij(“)lc,» ~ ufl_)(u,l(j —ufj) + @ _uz)z}dx. 3

Q” ij=1
In view of the expressions of the functions f k, k=1,2, we can rewrite estimate (3) in the form

1% d
Efdz[

g

]

Q

[Zb,j(xt)(u —uz)(u —u2)+(u u)] ]dt

i,j=1

+ [ (Aa-By ~(A-BYA u —uPydr < 0

I

Hence, by using estimate (2), we obtain the inequality

[ &r@+ B0y <o, @

h

where

y(t) = J i b,-j(uii - ui)(u}]{j -uij) + (' -u?)? |dx,

Q Lij=1
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_ 2Bg
(mesQ)(”'z)ﬂ'

B
Since the numbers #; and ¢, are arbitrary, we obtain from estimate (4) the inequality

V(1) + B (y(0)”* <0

for almost all te€ (—eo, T].
Then, by virtue of Lemma 2 in [20], we have y(¢r) = O for almost all 1€ (-, T], ie., ul(x, t) = uz(x, 1)
almost everywhere in Qr. Theorem 1 is proved.

Theorem 2. Let the coefficients of inequality (1) satisfy conditions A}, A,, B, C, and G, and, moreover, let

a;; , €L7(Q7), i,j=1,....,n, ¢; ,€L™(Qr), i=0,1,...,n. Letthere exist a positive number y such that

Py = 2ag - 2b% - b > 0, 2(80 - Vpo > hys

f i (f2o,1) + fAx,0)e? dedr < o
Qr i=0

Then there exists a solution u(x,t) of inequality (1).

Proof. Consider a sequence of functions {@‘} which possess the following properties: @' € whhQ), i=1,
2, ..., the functions @', ..., @* are linearly independent for arbitrary k, and linear combinations of @' are dense

in W'P(Q).
Let
N
W= Y e, N=12..,
k=1
where clN e c,Q,/ is a solution of the Cauchy problem

n n n
Nk N k N _k Nk Nk
j[u, N L T I T SV S S PO
1

Q, ij= ij=1 i=1

n n
Nip-2 N .k Nyp-2 N .k k k
+ > o [l 1Pl ok + gV PP2uN ok - S0 —Zfi’O(Pxi]dx
i=1

i=1
+ i(@(u’vew),m’ﬁ =0, relsTl )

() =0, k=1,2,...,N. (6)

Here, £ >0, B is the penalty operator [16, p. 384], B (u) = J(u — Pgu), J is the operator of duality between the
spaces H ! (Q) and (H ! ()", P isthe operator of projection on the set K, and
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filx,n, if (x,n)e Q,O,T;

AIO =
fi? (x,0) {0, if (x,neQ,.

The existence of a solution of problem (5), (6) stems from the following a priori estimates. Continue the functions
c,fv (t) by zero to the interval (—oo, £5] and perform the substitution uN(x, 1) = UN(x, t)e™"" in system (5). Then
u (x, 1) = vV (x,0)e”"" — yo¥ (x,1)e”¥", and problem (5), (6) acquires the form

n n

Nk N k Nk
J. v, @ + Z bijvx,-,t(pxj + z (ay_ybtj)uxi (pxj
Q, i,j=1 ij=1

n n
Nk Nk -Y(p-2)t Nip-2 N k
+ 2 < Dxi ¢ + (CO - Y)U ¢ +e v(p=2) Z a,; !vx l,ﬂ vxi (pxi

i
i=1 i=1

+ e TR NP2y g [f(? of + 3 £ cp’;.je“}dx + @090 =0, ™
! £
i=]

UN (Io) = 0. (8)

Multiplying each equation of system (7), respectively, by the function c,iv (t)e"", summing them over the index k
from 1 to N, and integrating over the segment [7;, T] <[4, T], we obtain

n
N N N N N N
J. {u, vt E bvy Uy, + E (aj; — Vb))V, Vs,

n n
- - N
+ Y i oY + (o —PN)? + VP 2)’(2 o; X PP + gl |P}

i=1 i=1

n T
_ [fo"’ N+ Y £ v)]x]eyt}dxdt + éj BoY), ") di = 0. ©)
i=1

4

On the basis of the conditions of the theorem, one easily obtains the following estimates from equality (9):

n
J [M;z + 2y I2}dx < Fo (10)
Q, i=1
Ni2 oL NP
j [vY ] + ZIUX'_!' dxdr < piFy . (11
i=1

f oY (P2)t [|UN|p +Y |U;Vi;1’—2)dxdt < u, Foys (12)
i=1

n.T
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T
[ (B, 0Ny dr < ek, (13)

i
where T e [¢,T], the constant [, isindependent of €, n, and 7;, and
n
j S 1S 01 ¥ dxdr.
Qr i=0

We differentiate equation (7) with respect to the variable ¢, multiply each equation, respectively, by the func-

tion (c,’cV (1) + ye (1)) €Y', then sum them over & from 1to N and integrate over the segment [£;,T] Asare-
sult, we obtain the equality

n
N N N
J. Vg Uy F z blj xp.1 Vxjot Z (a; — Vb +bljt)vx tUx ot
QII-T i,j=1 i,j=1

n
DI vz,, v+ (e, —'y)(ufv)z}dxdt
=1

+

i=1

n
p-1 | e-w-z"(za,-luiflp-%vﬁ.,,)z+g|uN|P-2<v,” 2jdxd,

n.T

!

Y(p-2) [ 7" ”'{Za Y 17720 oY +g|v”|"‘2v”vf“}dxdt
Q:,,-z i=1

+

N N N_N
_[ I:Z (aljl thjt)v Xjl + zclt Uy, +C01U Y,

Q.1 ij=1 i=1

!

[(f()’, + ¥ )0 + 2 (fl + yﬁ’O)uQ{,,]eY’}dxdt + —j (B,0"), vy dr =

i=1

(14)

Taking into account the inequality ($, (UN ),U;V Y = 0 [16, p.413], conditions of the theorem, and estimates
(10)—(12), we easily obtain the inequality

J[Ivt I2 + Zlvx,lz)dx + J {( _Yb0+ bl _—SOC —8)2|Dx zlz

0, < i=1

1
+ [CO -Y - E - 82J|1)1N|2 :Idxdt

n
Q i=1

T
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from equality (14). In (15), the constant 1, is independent of €, N, and t;, 8,>0, §,>0, 6,>0, and
n
Ry = J- z [ﬁ-’,(x,t)lzezytdxdt.
Q, i=1

On the basis of estimate (12) and the Fatou lemma, we have

T
. - -2
jnmmf||vN||5v,,p(Q)e VPG <y Fy .
h

Hence,

Y (p=D)1 sl NP
e lim inf ||v ”W'-P(Q) <

for almost all ¢ e [#;,t]. Then thereexists T € [T — 1, T] such that the specified lower boundary is finite for 1 =
T. Byreplacing T by T and passing, if necessary, to a subsequence, we can consider that

v (p—-2)T —
e VP )T“UN(T)”ﬁ,Ln(Q) < Ui, (16)

where the constant |5 is independent of €, N, and ¢.
On the basis of the conditions of the theorem, one can choose the numbers 8, &, and &, such that inequal-
ity (15) will imply [in view of estimate (16)] the estimate

n
j [|U,N|2 + 3y |v2’,|2}dxdt < pg(Foy+ Fy oy a7
0« i=1

where the constant 1, is independent of €, N, and 1,.
Taking into account estimates (10)—(12), (17) and the monotonicity of the operators A, B, where the operator
Ay is defined by the formula

43
ooty = [ 3 alul 2ot bt
Q, i=1

wl, w2 e wh(Q),

we can assert the existence of a boundary point v’0(x, ¢) of the sequence {uN(x, 1)} which satisfies the equality

n n n
1) 1 1o ) _ L)
J {v, w + Z b,-ju)g’,wxj + Z (aij—yb,-j)vxi Wy ¥ Z CiUgw + (cg—Y)V w}dxdt
Q

ot ij=1 ij=1 i=1

+ j: (e‘Y(p—z)' (Ag V"0, w) + é(ﬂ "), w)) dt

I

= | [f0w+ i fiwx’)eytdxdt (18)

QIpt i=1
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for an arbitrary function we [f (=, T}; W7 (Q)), where 7, is an arbitrary number from [z, T].
Moreover, estimates (10)-(12) and (17) are valid for the function v lﬂ(x, t). If one successively sets 15 = T —

1, tg=T-2,..., tg = T—k,..., then one obtains a new sequence of functions {uk(x, t)}, each of which is a
solution of Eq. (18) and satisfies estimates (10)—(12), (17). Therefore, the given sequence also has a boundary point

v&(x, 1) that satisfies Eq. (18) and estimates (10)-(12), (17). Thus, one can select a subsequence {v%*(x,1)} <
{v®(x, 1)} such that

v¥% 5 v weaklyin LP((t),1,), Wl'p(Q)),
v& > v weaklyin L*((t, 1), H' (Q)),
v = v weaklyin L*((1,, 1), H'(Q)),

v — v uniformly in C([tl,tzl,Hl(Q))

as € > 0 forarbitrary 7,5, € (=2, T], 1;<1,.
Taking into account the monotonicity of the operators Ag, B, we have

Agv%k = Ay weaklyin LP((1,, 1), (WP(Q))"),
B®) > B(v) weaklyin L>((1,1),(H(Q))")
as € — 0. By using equality (18), which is satisfied by the functions vek(x,t) for 1=1,, we obtain
BwE) —> 0 weaklyin L*((¢;.1,), (H'(Q))").
Hence, B(v) = 0, ie., ve K foralmostall ¢ e (-, T]. Now consider equality (18) for the functions vE(x, 1)

and T=1, bysetting w = (z-u*ye™, uf = v¥e™¥, where re K for almost all te (-,T], z €
Hiyo (o0, TE H Q) U L (=0, TL, WP (Q) -

n n
k k k k k k
j u (z—u) + z bl'jux,nl(zxj - uxj) + z aijuxi(z—xj - uxj)
ij=1 Lj=1

1

n n
+ X o i 1P (2, - Ul )+ Y iy () + cout (2 — )
i=1 i=1

n
+ gluk P2 uk @ -u) - foa=ub) = Y filz, - ub) {drde

i=]

5
- %j (B(ze™""y - Bk ey, z—uk)dr 2 0. (19)

]
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After elementary transformations of the integral

n
[ lufa=uy+ Y byud Gy, - uf) | dxar,

Q ij=1

h.12

inequality (19) takes the form

1 n
| |atz=u 3 Y, by (e, — wi )z, - uk)

Q ij=1

.12

n n
k k k
+ 2 bij Zx,«,t(zxj - uxj) + z a;; Uy, (ij - uxj)
=1 =1

n n
kyp-2 k k k k k
+ zaihlxi‘p uxi(zxi _uxi)+zciuxi(z_u )+COuk(Z"u )

i=1 i=1

n
+ gluf 1Pk = db) - fyz-db) - Zfi(zxi - u’;i) dxdt

i=1

; > K k k2
> 5 2 bij(in—uxi)(ij—uxj)+|Z_u | dx
0, Lij=1
1 n k k k 2
- Eé[ 'jz—;lbij(zxi-uxi)(ij-—qu)-}-lZ_u 2 |dx .
W L5 T
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(20)

By setting z=u in (20), we obtain strong convergence of the sequence {uk(x, 1)} to the function u(x,t) in the

space wh? (£2). Therefore, one can pass to the limit in inequality (20) as k — co. In this case, we obtain inequal-

ity (1), i.e., the function u(x, t) is the required one. Theorem 2 is proved.
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