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Combining different theoretical approaches, curvature modulated sorting in lipid bilayers fixed on non-

planar surfaces is investigated. First, we present a continuous model of lateral membrane dynamics,

described by a nonlinear PDE of fourth order. We then prove the existence and uniqueness of solutions

of the presented model and simulate membrane dynamics using a finite element approach. Adopting a

truly multiscale approach, we use dissipative particle dynamics (DPD) to parameterize the continuous

model, i.e. to derive a corresponding macroscopic model.

Our model predicts that curvature modulated sorting can occur if lipids or proteins differ in at least

one of their macroscopic elastic moduli. Gradients in the spontaneous curvature, the bending rigidity or

the Gaussian rigidity create characteristic (metastable) curvature dependent patterns. The structure

and dynamics of these membrane patterns are investigated qualitatively and quantitatively using

simulations. These show that the decomposition time decreases and the stability of patterns increases

with enlarging moduli differences or curvature gradients. Presented phase diagrams allow to estimate if

and how stable curvature modulated sorting will occur for a given geometry and set of elastic parameters.

In addition, we find that the use of upscaled models is imperative studying membrane dynamics. Compared

with common linear approximations the system can evolve to different (meta)stable patterns. This

emphasizes the importance of parameters and realistic dynamics in mathematical modeling of biological

membranes.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Biological membranes define a mechanical boundary of cells
and of substructures inside cells. They provide environments
specialized for certain chemical or mechanical processes. The
main component of membranes is lipid molecules. In water lipids
form, due to hydrophobic interactions, a bilayer structure con-
sisting of two lipid monolayers physically opposed to each other.
Since membrane molecules can move freely in lateral direction of
the membrane, its lateral behavior can be compared to a two-
dimensional (2D) fluid, first described in the ‘fluid mosaic’ model
by Singer and Nicolson (1972). With respect to bending the
membrane behaves elastically and in the linear regime is well
described by the plate equation (Ciarlet, 1997).

In vivo, biological membranes are composed of many different
lipids, proteins and other molecules with different functions
ll rights reserved.
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. Mercker).
(Alberts et al., 2006). Lateral sorting of these components is
essential for maintaining the diversity of different membrane
systems inside the cell as well as their function (Gennis, 1989).
For both, lipids (Baumgart et al., 2003) and proteins (Bonifacino
and Lippincott-Schwartz, 2003) lateral phase separation and
clustering have been shown. It is widely accepted that membrane
curvature modulated sorting is a basal mechanism controlling the
spatial organization of lipids and proteins in the absence of
specific chemical interactions. However, the exact underlying
mechanisms remain mostly unknown (Tian and Baumgart, 2009).

Different membrane model systems, whose geometry, size and
composition can be modified in a defined way, have been used to
investigate curvature dependent sorting on different scales,
experimentally as well as theoretically: experiments with artifi-
cial membranes have been performed using unilamellar vesicles
(Baumgart et al., 2003; Heinrich et al., 2010; Kamal et al., 2009;
Pencer et al., 2008; Roux et al., 2005; Tian and Baumgart, 2009) as
well as solid supported membranes (Parthasarathy et al., 2006;
Yoon et al., 2006). On the theoretical side, molecular dynamical
approaches have been used to investigate the impact of molecular
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parameters (Cooke and Deserno, 2006; Risselada and Marrink,
2009). But these are limited to small spatial and temporal scales
due to computational complexity of the corresponding models. To
investigate upper scales and to compare experiments with analy-
tical estimates different continuous approaches have been devel-
oped (Bozic et al., 2006; Derganc, 2007; Rózycki et al., 2008;
Seifert, 1993; Mercker et al., 2011), mainly based on the mini-
mization of a free energy. A curvature dependent free energy of
lateral homogeneous membranes has been early described by
Helfrich (1973)

FHelfrich ¼

Z k
2
ðH�H0Þ

2 doþ
Z

kGK do, ð1Þ

where do depicts the surface measure, H the mean curvature and
K the Gaussian curvature, both depending on the geometry of the
membrane. If C1 and C2 are the two principal curvatures, H is
defined as their sum and K as their product (see also Fig. 1).
H0,k,kG are the elastic moduli, which are constant if the mem-
brane is lateral homogeneous. H0 is the spontaneous curvature
and represents the preferred curvature in the relaxed state. It is
non-zero e.g. if membrane molecules are wedge-shaped. k and kG

are the bending rigidity and the Gaussian rigidity (often referred
to as the saddle-splay modulus), respectively. Both represent the
stiffness of the membrane: in tubular structures (were K

vanishes; cf. Fig. 1B) k penalizes curvatures; in saddle structures
(were H vanishes; cf. Fig. 1A) kG causes a penalty of curvatures. In
general structures both moduli contribute to the energy penalty
of curved membranes and most of the geometries appearing in
biological membranes exhibit various intermediate structures of
tubes, saddle structures and spheres (Fig. 1A–C).

Considering non-homogeneous membranes, it has been shown
that gradients in elastic moduli can exhibit a driving force for
lateral curvature modulated sorting. Membrane proteins are
drawn to regions with curvature adapted to the protein shape
(Ramaswamy et al., 2000) and lipids with small bending rigidity
are sorted to highly curved membrane regions (Parthasarathy
et al., 2006), thus that lateral reorganization reduces the mem-
brane curvature energy. Although various theoretical and experi-
mental studies have been performed to investigate lateral sorting
due to gradients in spontaneous curvature (Bozic et al., 2006;
Cooke and Deserno, 2006; Derganc, 2007; Kamal et al., 2009;
Leibler, 1986; Liang and Ma, 2009; Ramaswamy et al., 2000;
Risselada and Marrink, 2009; Seifert, 1993) and bending rigidity
(Baumgart et al., 2003; Derganc, 2007; Parthasarathy et al., 2006;
Roux et al., 2005; Rózycki et al., 2008), the impact of the elusive
Gaussian rigidity on lateral sorting has not been investigated so
far. However, experimental studies show that different mem-
brane components can differ distinctly in their Gaussian rigidities
(Semrau et al., 2008).

In this study, we investigate theoretically the impact of an
inhomogeneous Gaussian rigidity on lateral sorting and compare
Fig. 1. Principle curvatures C1 ,C2, mean curvature H¼ C1þC2 and Gaussian

curvature K ¼ C1C2 for different geometries: (A) saddle, (B) tube, (C) sphere.
it with sorting due to gradients in the bending rigidity and
spontaneous curvature. Following the experimental approach of
Parthasarathy et al. (2006) and Roux et al. (2005), we consider
membranes attached to non-planar substrates. Thus by consider-
ing a geometrically fixed membrane the complexity is reduced
facilitating the extraction of hypotheses to be checked by experi-
mentalists. To do so, a continuous model of lateral membrane
dynamics, based on the minimization of a free energy, is derived.
Considering a gradient flow of the free energy, we obtain a model
in terms of a nonlinear PDE of fourth order, related to the Cahn–
Hilliard equation (Cahn and Hilliard, 1958) (cf. Elliott and Garcke,
1996; Elliott and Songmu, 1986 for analytical results). In the
following, we show that unique solutions exist and approximate
them using a finite element approach. Adopting a multiscale
approach, parametrization of the continuous model from the
molecular scale has been achieved via upscaling from dissipative
particle dynamic (DPD) studies. On the basis of this multiscale
modeling approach, simulations are performed comparing dynamics
and (metastable) patterns of lateral sorting.
2. Theoretical model

2.1. Continuous approach

Following the ideas of Parthasarathy et al. (2006) and Roux
et al. (2005), we consider a curved membrane represented by a
fixed smooth Riemannian manifold G—in contrast to free mem-
branes typically studied (Baumgart et al., 2003; Heinrich et al.,
2010; Kamal et al., 2009; Pencer et al., 2008; Roux et al., 2005;
Tian and Baumgart, 2009), where G itself is evolving in time. Here,
we consider a membrane composed of two different molecule
species, e.g. two different lipids or lipids and proteins. The
concentration of the two components fA and fB in G is described
by the order parameter f : G-½�1;1�, where f¼fA

�fB. That is,
if f¼ 1 the membrane is locally composed purely of species A and
if f¼�1 locally only species B is present.

It has been shown that sorting depends critically on mem-
brane curvature and phase separation (in the absence of specific
signals actively influencing lateral dynamics) (Parthasarathy
et al., 2006; Roux et al., 2005). Therefore our model is based on
the minimization of a free energy F ¼ F1þF2 containing both a
curvature depending energy F1 (related to Helfrich, 1973) and a
Cahn–Hilliard energy F2 (Cahn and Hilliard, 1958) modeling
lateral phase separation. In detail, both parts read

F1 ¼
1

2

Z
G
kðfÞðH�H0ðfÞÞ2 doþ

Z
G
kGðfÞK do,

F2 ¼ ~s
Z
G

x2

2
ðr

GfÞ2þ f ðfÞ

 !
do:

ð2Þ

Describing the fact that different components may differ in their
mechanical properties (such as shape and stiffness), each macro-
scopic elastic modulus h ðhAfk,kG,H0gÞ is taken as a function of
the concentration f. Each function h is chosen such that hð1Þ ¼ hA

and hð�1Þ ¼ hB, where hA and hB are the elastic moduli of the pure
components. Furthermore, x is a transition length, s¼ ~sx the
line-tension, rG the surface gradient and f a double well poten-
tial. The function f : R-Rþ is of the form f ðfÞ ¼ 9

32 ðf
2
�1Þ2.

Instead of minimizing F ¼ F1þF2 directly we adopt a dynamic
point of view. Thus assuming local mass conservation lateral
dynamics of the two species A and B are determined by the lateral
continuity equation

@tfþr
G
� j
!
¼ 0,
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where rG
� is the surface divergence operator. The flux is deter-

mined by the lateral gradient of the chemical potential m, i.e.
j
!
¼r

Gm; the chemical potential m is proportional to the varia-
tion of the free energy F with respect to f, thus m¼ Lfðd=dfÞ½F�;
the mobility Lf is assumed to be constant (scaling inversely with
the viscosity of the membrane—the corresponding diffusion
coefficient is given by D¼ Lf ~s). Altogether, we have the following
evolution equation for f:

@t ½f� ¼ LfD
G d
df
½F�

� �
¼ LfD

G 1

2
k0ðfÞðH�H0ðfÞÞ2

�

�kðfÞðH�H0ðfÞÞH0
0
ðfÞþk0GðfÞK� ~sðx

2DGf�f 0ðfÞÞ

#
:

ð3Þ

2.2. Analytical treatment

Existence and uniqueness results for the Cahn–Hilliard equa-
tion defined in a bounded domain of Rn, with nr3, have been
proven in Elliott and Garcke (1996) and Elliott and Songmu
(1986). In contrast to the classical Cahn–Hilliard equation,
Eq. (3) is considered on an arbitrarily shaped hyper-surface and
the curvature depending part of the free energy introduces
additional nonlinear terms. Therefore, we first address the ques-
tion of existence and uniqueness of solutions to ensure the
validity of our results and corresponding deductions. The curva-
ture depending nonlinear terms require additional steps in the
proof of existence, especially in the proof of corresponding a
priori estimates. The boundedness of rGf in L2

ð0,T; L1ðGÞÞ is
essential for the uniqueness result.

Let G be a smooth compact Riemannian manifold with a
boundary and dimðGÞr3. In the considered biological applica-
tions we have dimðGÞ ¼ 2, however the existence and uniqueness
results hold also for three-dimensional smooth Riemannian
manifolds. We consider on G Eq. (3) and rewrite it in the form

@tfþLf ~sx
2
ðDG
Þ
2f¼ LfD

GRðf,H,KÞ in ð0,TÞ � G, ð4Þ

with initial and boundary conditions

fð0,xÞ ¼f0ðxÞ in G, ð5Þ

rG
ð ~sx2DGf�Rðf,H,KÞÞ � n¼ 0, rGf � n¼ 0 on ð0,TÞ � @G, ð6Þ

where DG is the Laplace–Beltrami operator, n is the unit outward
normal vector to @G, and

Rðf,H,KÞ ¼ 1
2k
0ðfÞðH�H0ðfÞÞ2�kðfÞðH�H0ðfÞÞH00ðfÞþk

0
GðfÞKþ ~sf 0ðfÞ:

Assumption 1. We assume f ðfÞ ¼ 9
32 ðf

2
�1Þ2 and k, kG,

H0AC3
ðRÞ with k0, k00, k000, H00, H000, H0000 : R-R bounded, and

9kðZÞ9rc19Z9þc2, 9H0ðZÞ9rc19Z9þc2,

9kGðZÞ9þ9k0GðZÞ9rc19Z9
3
þc2, 9k00GðZÞ9rc19Z9

2
þc2,

9k000G ðZÞ9rc19Z9þc2,

for some positive constants c1, c2. The smoothness and compact-
ness of G imply that the mean curvature H and the Gaussian
curvature K are smooth and bounded.

For the initial data we assume f0AH2
ðGÞ.

Definition 2. A function fAL2
ð0,T;H2

ðGÞÞ \ H1
ð0,T; L2

ðGÞÞ, such
thatZ T

0

Z
G
ð@tfvþLf ~sx

2DGfDGvÞ do dt

þLf

Z T

0

Z
G
r

GRðf,H,KÞrGv do dt¼ 0, ð7Þ
for all vAL2
ð0,T;H2

ðGÞÞ and f-f0 in L2
ðGÞ as t-0, is called a

weak solution of the problem (4)–(6) .

Theorem 3. Under the Assumption1 on the functions k, H0, kG, f and

the initial data, there exists a unique weak solution of (4)–(6).

The extensive theory of Sobolev spaces and elliptic equations
on Riemannian manifolds, enables a direct generalization of the
known existence results for the Cahn–Hilliard equation in a
bounded domain of Rn to the problem posed on a smooth
Riemannian manifold. However, the nonlinear curvature depend-
ing terms in Eq. (4) require new steps in the proof of the existence
of a solution. A different approach is also used to show the
uniqueness result. Here, we summarize only the main ideas of the
proof and for more details we refer to Appendix A.

Main ideas of the proof. Existence: We show the existence of a
weak solution using the Galerkin method (Evans, 1998). Let
fwigiAN be an orthogonal basis of H2

ðGÞ, an orthonormal basis in
L2
ðGÞ and the functions wi are smooth. We are looking for a

function fk
ðt,xÞ ¼

Pk
i ¼ 1 ak

i ðtÞwiðxÞ in the finite-dimensional sub-
space Wk of H2(G) spanned by fw1, . . . ,wkg, such thatZ
G
ð@tf

kvþLf ~sx
2DGfkDGvÞ doþLf

Z
G
rGRðfk,H,KÞrGv do¼ 0,

ð8Þ

for vAWk and fk
0 ¼

Pk
i ¼ 1ðf0,wiÞL2

ðGÞwi with fk
0-f0 in H2

ðGÞ.
Using the a priori estimates from Lemma 4, presented in
Appendix A, we obtain the convergence of a subsequence of
ffkg in the appropriate function spaces. Then passing in (8) to the
limes as k-1 we obtain the existence of a weak solution of the
problem (4)–(6) . The detailed proof is presented in Appendix A.

Uniqueness: We assume there exist two solutions f1, f2 of the

problem (4)–(6). Eq. (7) with the test function v¼f1�f2 implies

that f1�f2 satisfies the equalityZ t

0

Z
G

1

2
@t9f1�f29

2
do dtþ

Z t

0

Z
G

Lf ~sx
29DG
ðf1�f2Þ9

2
do dt

þLf

Z t

0

Z
G
r

G
ðRðf1,H,KÞ�Rðf2,H,KÞÞrG

ðf1�f2Þ do dt¼ 0: ð9Þ

The third term in (9) can be estimated byZ t

0

Z
G
ðCd9f1�f29

2
þd29D

G
ðf1�f2Þ9

2
Þ do dtþd1sup

ð0,tÞ

Z
G
9f1�f29

2
do,

with 0od1r 1
4 and 0od2rLf ~sx

2=2. For explicit estimation

steps see Appendix A. Then, the integration by parts in the first

term in (9) and the fact f1ð0,xÞ ¼f2ð0,xÞ yieldZ
G
9f1�f29

2
doþLf ~sx

2
Z t

0

Z
G
9DG
ðf1�f2Þ9

2
do dt

r2Cd

Z t

0

Z
G
9f1�f29

2
do dtþ2d1sup

ð0,tÞ

Z
G
9f1�f29

2
do:

Using Gronwall inequality we obtainZ
G
9f1ðt,xÞ�f2ðt,xÞ92

dor2d1 expð2CdtÞ sup
tA ð0,tÞ

Z
G
9f1ðt,xÞ�f2ðt,xÞ92

do:

Then, there exists a t such that 2d1expð2CdtÞo1 and

sup
ð0,tÞ

Z
G
9f1�f29

2
dor0:

Thus, f1ðt,xÞ ¼f2ðt,xÞ a.e. in ð0,tÞ � G were t is independent of f1

and f2. The iteration argument implies the uniqueness in ð0,TÞ � G,

since t can be chosen the same in each iteration step. &

Remark 2.1. Existence and uniqueness proofs for the periodic
boundary conditions follows along the same lines.
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2.3. Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a versatile computer
simulation technique that is particularly well suited for studying
the behavior of lipid membranes on mesoscopic scales. Indeed,
DPD has been employed to study various membrane-related
processes such as lipid phase separation (Kranenburg et al.,
2003; Laradji and Kumar, 2005, 2004), self-assembly of lipid
vesicles (Yamamoto et al., 2002) and vesicle budding (Yamamoto,
2003). We outline the setup of a DPD simulation only briefly
and refer the reader to Nikunen et al. (2003) for more technical
details.

In DPD, atoms or groups of atoms are represented by spherical
beads with mass mi. Any two beads i,j with a distance rij ¼

9rij9¼ 9ri�rj9rr0 are subject to a linear repulsive force FC
ij ¼

aijð1�rij=r0Þeij. The degree of hydrophobicity can be tuned via
the interaction energies aij. Here eij ¼ rij=rij denotes the unit
vector. Lipids are modeled as linear chains of a single hydrophilic
head bead and three hydrophobic tail beads that are connected
via a harmonic potential Uðri,riþ1Þ ¼ kðri,iþ1�l0Þ

2=2. The relaxa-
tion distance between two beads in the lipid is hence l0. To
impose an intrinsic stiffness to the lipid chains, a bending
potential Vbðri�1,ri,riþ1Þ ¼ kbendð1�cosðFÞÞ is introduced between
consecutive beads i�1,i,iþ1. Here, cosðFÞ ¼ ei,i�1ei,iþ1, i.e. lipids
try to assume the shape of a rigid rod.

DPD simulations are based on the above conservative forces
combined with a DPD thermostat. The thermostat consists of
a dissipative force FD

i j¼�gijð1�rij=r0Þ
2
ðeij � vijÞeij and a random

force FR
i j¼ sijð1�rij=r0Þxijeij for particles with rijrr0. Here,

vij ¼ vi�vj denotes the relative velocity between particle i and j

and xij defines an uncorrelated random variable with vanishing
mean and unit variance. The thermostat parameters are related
via the fluctuation-dissipation theorem s2

ij ¼ 2gijkBT .
Following the approach of Schmidt et al. (2008), the interac-

tion cutoff r0, together with all bead masses and the thermostat
temperature are set to unity. Comparable to Laradji and Kumar
(2004) parameters are chosen as sij ¼ 3, gij ¼ 9=2, k¼ 100kBT=r2

0,
l0 ¼ 0:45r0, aHT ¼ aWT ¼ 200kBT , whereas aWW ¼ aHH ¼ aTT ¼ aWH ¼

25kBT. Here, W, H, T refer to water, lipid head and lipid tail beads,
respectively. Lipids are represented as linear chains HT3. Two
types of lipids that differ in the bending rigidity of their chains
(kDPD

A ¼ 10kBT and kDPD
B ¼ 30kBT) are considered. Integration of the

equations of motion is achieved using a velocity Verlet scheme
with time increment Dt¼ 0:01 and periodic boundary conditions.
Membrane patches of the size 25r0 � 25r0 are relaxed via a
barostat (Jakobsen, 2005) for a period of 2� 105 time steps. After
this period, the membrane is in a tensionless state and fluctua-
tions are recorded for 106 time steps with the size of the
simulation box being held constant. Intrinsic DPD units can be
converted to SI units by comparison of the typical membrane
thickness to experimental values, yielding r0 � 1 nm.

2.4. Finite element approximation

The bilayer is represented by a continuous two-dimensional
(2D) surface G depicted by a parametric representation X

!
ðu1,u2Þ :

U-G�R3, where U ¼ ½0;1� � ½0;1�, corresponding to a membrane
patch of 12 mm� 12 mm. By means of numerical studies Eq. (3)
will be investigated in detail using the finite element library
Gascoigne (Becker et al., 2012). Since here only first-order
derivatives are available, we discretize this fourth order PDE
in a mixed formulation (Brezzi and Fortin, 1991), with bilinear
finite elements.

Here, we shortly recapitulate the numerical approach adopted.
Let us assume 0¼ t0ot1o � � �otM�1otM ¼ T is a discretization of
the time interval [0,T] into time steps tm :¼ tmþ1�tm, which are
possibly variable. Further let us assume Gq is a conforming quad-
rangulation approximating G, where Gq

¼
SJ

j ¼ 1
~n j and f ~njg

J
j ¼ 1 is a

family of mutually disjoint open quadrangles. We define the finite
element space of globally continuous, piecewise bilinear elements
by VðGq

Þ :¼ fcACðGq,RÞ : c9 ~n j
is bilinear 8j¼ 1, . . . ,Jg �H1

ðGq,RÞ.
For scalar and vector valued functions f ,gAL2 we introduce the L2

inner product /:,:S over Gq as /f ,gS :¼
R
Gq ðf � gÞ do, where f � g

denotes the usual inner product for scalars and vectors. Approxima-
tions H of the mean curvature H, K of the Gaussian curvature K and
of other geometrical quantities concerning G are defined following
the ideas of Barrett et al. (2008).

To reformulate the fourth order PDE (3) in a weak formulation
using only first-order derivatives, we follow the idea of Elliott
et al. (1989) introducing an additional variable substituting the
chemical potential. This leads to the following discrete approx-
imation of Eq. (3): for mZ0, find fmþ1,Ymþ1AVðGq

Þ such that

fmþ1
�fm

tm
,c

* +
¼�Lf/r

G
½Ymþ1

�,rG
½c�S 8cAVðGq

Þ ð10Þ

and

/Ymþ1,cS¼
k0ðfm

Þ

2
ðH�H0ðf

m
ÞÞ

2,c
� �

þ ~sx2
rG
½fmþ1

�,rG
½c�

D E
�/kðfm

ÞðH�H0ðf
m
ÞÞH0

0
ðfm
ÞþkG

0ðfm
ÞKþ ~sf 0ðfm

Þ,cS
8cAVðGq

Þ ð11Þ

hold.
3. Results

3.1. Microscopic scale—dissipative particle dynamics

Previous DPD studies on binary lipid mixtures have focused
mainly on phase separation phenomena (Kranenburg et al., 2003;
Laradji and Kumar, 2004, 2005) or the influence of lipid length on
membrane stiffness (Illya et al., 2006; Imparato et al., 2005). Here,
we use DPD simulations to parameterize the relation between the
membrane’s bending rigidity k and the average local composition
f that enters the macroscopic continuum model. To do so, we
consider DPD membranes of varying composition for which we
determine directly the bending rigidity via the fluctuation spec-
trum of the bilayer. Since the Gaussian bending rigidity kG cannot
be measured directly (Siegel and Kozlov, 2004), we restrict the
analysis to the bending rigidity k. Indeed, for the chosen para-
meter set, the two lipid species form a well-mixed, tensionless
homogeneous membrane (Fig. 3) that is subject to thermally
excited undulations.

Based on the (linearized) Helfrich energy (1), a Fourier analysis
of height fluctuations hðx,yÞ predicts the widely used relation
between the Fourier spectrum bhq of the membrane height in
wave modes q, the bilayer’s macroscopic bending rigidity k and
its lateral tension Z (Seifert, 1997)

/9bh2

q9S¼
kBT

Aðkq4þZq2Þ
, ð12Þ

with A being the projected membrane area and kBT denoting
Boltzmann’s constant and temperature, respectively. Due to the
action of the barostat, the DPD membrane is tensionless and
hence Z¼ 0. Fitting Eq. (12) to the temporally averaged Fourier
spectrum of our simulated bilayers (see Fig. 4) yields the bending
rigidity for a single simulation run. Varying the concentration
ratio of the lipid species in 10% steps (lipids having a stiffness
kDPD

B ¼ 3kDPD
A ¼ 30kBT), yields the desired relation kðfÞ.

To reduce uncertainties, we averaged k for each f over 10
independent simulations and further determined the standard
deviation of the mean (Fig. 5). As a result, we observe that the



Fig. 3. Typical DPD simulation snapshot with /fS¼ 0, i.e. a 1:1 ratio of lipid

species A and B. The size of the patch corresponds to � 25 nm� 25 nm (cf. main

text for details on the conversion from DPD to SI units). The simulation setup

produced stable membranes in a tensionless state with thermally excited

undulations. Blue and red spheres indicate lipid headgroups corresponding of

lipids A and B, respectively; hydrophobic lipid chains are depicted in yellow. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.) Fig. 4. The fluctuation spectrum of the DPD bilayers (symbols) is well fitted by Eq.

(12) (full line). The anticipated scaling of a tensionless membrane is also indicated.

For large wave vectors (given here as q2), the spectrum is governed by protrusion

modes that are not considered in the mean-field derivation of the fitting function.

Fig. 2. Experiment and mathematical model. A: experimental curvature dependent phase separation in corrugated membranes (reprinted with permission from

Parthasarathy et al. (2006), & 2006 American Chemical Society). B: simulations of the mathematical model coupling curvature with lateral phase separation. High

curvatures induce an ordering, whereas phase separation on small curvatures appears randomly.
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bilayer’s bending rigidity interpolates sigmoidal between the two
limiting cases ðf¼ 71Þ in which only one lipid species is present.
Starting from a pure bilayer composed of soft or stiff lipids only
(i.e. f¼�1 or f¼ þ1) the addition of a small amount of the
second lipid species leads only to minor changes in the bilayers
bending rigidity. Only for comparable amounts of both lipid
species a considerable deviation from the limiting cases is seen.

3.2. Macroscopic scale—finite element simulations

Using the calibrated functional relationship kðfÞ obtained by
the DPD studies on a small scale level, we study numerically the
lateral phase separation behavior in curved lipid bilayers on the
large scale. Here, lateral phase separation is induced by gradients
in the macroscopic elastic moduli k,kG and H0. The molecular
pendant is differences in stiffness and shape of two kinds of
membrane molecules.

In the first part, we compare the difference in dynamics and
minimum patterns of our upscaled nonlinear function kðfÞ with
common linear approximations. In the second part, we qualita-
tively and quantitatively compare and analyze the impact of
gradients in each of the elastic moduli k, kG and H0 on lateral
phase separation.



Fig. 5. The bending rigidity k of the simulated bilayers varies sigmoidal with the

concentration of lipid species, f. Here, f¼ 71 correspond to pure membranes

consisting only of stiff or soft lipids (A,B), respectively. Lipid stiffness is here

kDPD
B ¼ 3kDPD

A ¼ 30kbT. Each data point reflects the mean of 10 simulations, error

bars denote the standard deviation of the mean. While k is barely affected by

small changes in the lipid composition, similar concentrations of both lipids yield

a massive change of the bilayer’s bending properties. Full line is a heuristic fit

(aþb tanhð�cfÞ with a¼21.3, b¼4.0 and c¼2.5) that may serve as a guide to

the eye.
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Throughout this section we use the following setup: the space
discretization Gq consists of J¼4096 quadrangles with periodic
boundary conditions for fm and Ym. Since the Cahn–Hilliard
functional has a small length scale, mesh sizes have been always
chosen significantly smaller than the transition length. We
numerically have proved an experimental order of convergence
of 2 as the mesh sizes are reduced. To control if the used mesh
size is sufficient to describe realistic dynamics and patterns, we
have ensured that J¼16 384 and J¼65 536 quadrangles yield the
same results. The time discretization is based on an adaptive time
stepping scheme, starting with t0 ¼ 0:3 s. (Since available experi-
mental data do not contain the full parameter set necessary to
parameterize our model; some parameter values have to be
estimated.) We have used a stochastically disturbed initial dis-
tribution f0

¼fðt¼ 0Þ of total average /f0S¼F0 over the
domain. To assure the comparability of different simulations,
always the same stochastically perturbed initial conditions have
been used. Additionally, we have set: ~s ¼ 119:47kBTmm�2,
x¼ 0:133 mm, Lf ¼ 3:87� 10�4 mm4 s�1ðkBTÞ�1 and for the double
well potential we have chosen f ðfÞ ¼ 9

32 ðf
2
�1Þ2. If not otherwise

stated, we have considered HA
0 ¼HB

0 ¼ 0 mm�1; kA ¼ kB ¼ 25:2kBT

and kA
G ¼ kB

G ¼�25:2kBT ensuring the stability restriction 0Z
kGZ�2k (Schwarz and Gompper, 2002). This set of parameters
implies the following molecular membrane diffusion coefficient
D¼ Lf ~s ¼ 1:15� 10�10 cm2 s�1 as well as the following ‘sharp’
line tension given by s¼ ~sx¼ 15:84kBTmm�1 (Kwak, 2007). (Odd
numbers result from the conversion of abstract nondimenziona-
lized model parameters into physical values.)
3.2.1. Parameterized model vs. linear approximations

Although the idea of coupling macroscopic elastic moduli with
the lateral composition of lipid bilayers has been used in the past,
the exact nature of these dependencies remains still unrevealed.
Different approaches reaching from phenomenological coupling
terms (Allain and Amar, 2006; Chen, 1999; Jiang et al., 2000;
Taniguchi, 1996; Yin and Lv, 2008) to linear (Li et al., 2006) and
nonlinear (Lowengrub et al., 2009; Wang and Du, 2008) functions
kðfÞ,kGðfÞ and H0ðfÞ have been used.

For the first time, a multiscale approach is proposed in this
study. As an example the bending rigidity k of the continuous
model has been parametrized via DPD experiments. We find that
kðfÞ has the form of a tanh-function (see Fig. 5) rather than a
simple linear relationship. In order to get an impression of the
importance using more realistic upscaled data, we have per-
formed comparative studies: considering on the one hand the
nonlinear (upscaled) function

ktanhðfÞ ¼ aþb1 tanhð�fÞ, ð13Þ

and on the other hand the linear case commonly adopted

klinðfÞ ¼ aþb2f: ð14Þ

In Fig. 6 the corresponding results are shown. The constants
a¼ ðkAþkBÞ=2, b1 ¼ ðkA�kBÞ=2 tanhð1Þ and b2 ¼ ðkA�kBÞ=2 are
chosen such that in both cases kð1Þ ¼ kA ¼ 17:3kBT and kð�1Þ ¼
kB ¼ 25:2kBT is ensured. Furthermore, in both simulations we use
the fixed geometry G¼ X

!
ðu1,u2Þ ¼ 0:625 sin ð6pu1Þmm (cf. Fig. 2B)

and the initial conditions /f0S¼ 0, i.e. a 1:1 mixture of both
components. The prescribed geometry ensures K 	 0 such that kG

does not play any role for this specific geometry.
We observe in early states of phase separation in the nonlinear

case of k a stronger dependence on the curvature (Fig. 6C) than in
the linear case (Fig. 6A). This is likely to be a consequence of the
steeper gradient of ktanh compared to klin close to the initial value
/f0S¼ 0. Since the breakage of already formed cross-connec-
tions between the phases is energetically costly (it would elon-
gate the overall size of the boundaries) early sorting effects can
trap the system into different minimum patterns, corresponding
to local minima of the free energy (2). This becomes obvious in
comparing the minimum configurations Fig. 6B with Fig. 6D.

Choosing initial conditions /f0S away from zero, e.g. having
much of one component and less of the other, does not result in
different local minimum configurations (results not shown). Since
in that case circular phases of the component with the smaller
amount are quickly arising and stable cross-connecting phases (cf.
green circular marks in Fig. 6A) are missing.

3.2.2. Gradients in elastic moduli and lateral sorting

So far we have only studied the influence of lipids with
differences in the bending rigidity kðfÞ, which has previously
shown to induce lateral sorting. In the following, we also
investigate the impact of spatial gradients in the spontaneous
curvature H0 and the Gaussian rigidity kG. Especially the latter
has not been studied so far in the literature. To do so, the moduli
are again assumed to be functions of the order parameter f. Due
to our results from the DPD studies we assume that the rigidity
functions kðfÞ as well as kGðfÞ have the form aþb1 tanhð�fÞ. For
the spontaneous curvature, we use the linear function
H0ðfÞ ¼ aþb2f. In further studies one should of course try to
identify kG as well as H0 from DPD studies or other molecular
approaches. Furthermore, for the following simulations we have
chosen G¼ X

!
ðu1,u2Þ ¼ 0:75 sinð4pu1Þsinð4pu2Þ mm (cf. Fig. 7L)

and /f0S¼�0:6.
In the following, the notation Dh depicts the difference

9hA
�hB9 in an elastic modulus hAfk,kG,H0g between the two

species A and B. Interestingly, varying independently all three
elastic moduli in our simulations we observe in principle the
same effects: the stronger Dh the faster phase separation occurs.
This can be observed by an early and faster decay of the Cahn–
Hilliard part F2 of the free energy from the instable initial
conditions (cf. Fig. 7A–C). Plotting the time Tmin required to
achieve the minimum against Dh yields in all cases an exponen-
tial decay of TminðDhÞ (cf. Fig. 7D–F). The exponential fit leads to



Fig. 6. Different minimum patterns depending on the form of the function kðfÞ. A–B: k is linear; C–D: k is a form of aþb tanhð�fÞ. Note that early sorting in (A) is less

curvature dependent than in (C), showing cross-connections between the red domains (green circular marks). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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a good approximation for physically reasonable values, but for
significantly larger values we observe that Tmin decays even
stronger, approaching the axis without any offset (as used in
the exponential fit).

In the case Dk¼DkG ¼DH0 ¼ 0, phase separation occurs
randomly (results not shown). Considering gradients in each of
the moduli distinct curvature dependent phase separation pat-
terns can be observed: choosing nonzero DkG induces phase
separation of the component with the lower absolute value of
kG in areas with high negative Gaussian curvature (Fig. 7H). Doing
the same with Dk we observe phase separation of the component
with the lower bending rigidity in regions with high mean
curvature (Fig. 7G). Choosing HAo0 while HB¼0 (causing
DH0a0) drives fA to regions allocating this curvature (Fig. 7I).
Interestingly in most of the cases these minimum patterns are
only metastable, showing only slight changes in the size of the
domains for a long time after Tmin, but resulting very late
(t4300 min) in different minimum patterns with less and larger
domains (cf. Section 3.2.4).

The observed minimum patterns (cf. Fig. 7G–I) differ signifi-
cantly—each minimum pattern is the optimal pattern for the
considered corresponding elastic modulus. Therefore, it is abso-
lutely necessary to consider all three effects if one is interested in
biological applications, since neglecting one part could lead to
completely different minimum patterns and thus different biolo-
gical interpretations.
3.2.3. Curvature gradients and lateral sorting

Curvature depending sorting in membranes appears to be the
result of the interplay between spatial gradients in the elastic
moduli and in membrane curvature (Parthasarathy et al., 2006).
In the previous section we have varied the strength of spatial
moduli gradients, keeping the membrane geometry constant. In
this section we vary the membrane geometry (i.e. the strength of
curvature gradients) keeping differences in the elastic moduli
constant. Corresponding results are shown in Fig. 8. In order to
quantify curvature gradients in mean curvature H and Gaussian
curvature K, we define H0max :¼ max f9rG

½HðX
!
Þ�9 : X
!

AGg as well
as K 0max :¼ maxf9rG

½KðX
!
Þ�9 : X
!

AGg. Since these are global quan-
tities, all following relationships in this regard are inherently
global.

First, we fix for each elastic modulus hAfk,kG,H0g a certain
difference Dha0 (while choosing vanishing differences in the
other two moduli) but varying the corresponding curvature
gradient G0maxAfH

0
max,K 0maxg. We observe in all three cases, the

stronger G0max is the earlier and faster phase separation occurs
(cf. Fig. 8A–C). Plotting the time to the achievement of the



Fig. 7. Investigating lateral sorting using different strengths of gradients in the elastic moduli Dk (A,D,G), DkG (B,E,H) and DH0 (C,F,I) on a fixed nonplanar surface. A–C: the

decay of the Cahn–Hilliard energy F2 in time. The stronger Dh (hAfk,kG ,H0g), is the earlier is the observed decay of F : 2. D–F: the time up to the metastable pattern Tmin

decays exponentially with Dh (red dots: values from simulations; green spotted line: exponential fit of the kind aþb expð�cDhÞ. For significantly larger Dh-values we

observe that Tmin decays even stronger, approaching the axis without any offset). G–I: representative minimum patterns. J: mean curvature of G. K: Gaussian curvature of

G. L: discretized surface G, side view. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Investigating lateral sorting using different strengths of curvature gradients G0max AfH
0
max ,K 0maxg but fixed differences in the elastic moduli Dka0 (A,D), DkG a0 (B,E)

and DH0 a0 (C,F). A–C: the decay of the Cahn–Hilliard energy F2 in time. The stronger G0max is, the earlier is the observed decay of F2. D–F: the time up to the metastable

pattern Tmin decays exponentially with G0max (red dots: values from simulations; green spotted line: exponential fit of the kind aþb expð�cDhÞ. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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minimum Tmin against the strength of G0max yields in all cases an
exponential decay of TminðG

0
maxÞ (cf. Fig. 8D–F). In detail we have

set Dk¼ 0:02kBT and DkG ¼DH0 ¼ 0 in Fig. 8A and D;
DkG ¼ 0:02kBT and Dk¼DH0 ¼ 0 in Fig. 8B and E as well as
DH0 ¼ 0:08 mm�1 and Dk¼DkG ¼ 0 in Fig. 8C and E.

Hence, increasing differences in elastic moduli as well as
increasing gradients in membrane curvature accelerate the lateral
sorting process exponentially.
3.2.4. Parameter interplay and its influence on the stability of

sorting patterns

As mentioned above, most of the observed curvature depend-
ing patterns appear to be metastable: if differences in elastic
moduli and curvature gradients are strong enough, a periodic
symmetric pattern appears at t¼ Tmin, which loses at t¼ Tmax its
symmetry by fusing to less and bigger domains. The latter can be
observed by a jump in the free energy F2 (cf. Fig. 9A). This process
continues stepwise; the assumed stable minimum pattern is built
up of one big domain. To quantify the stability of a curvature
modulated pattern, we define Tstab :¼ Tmax�Tmin which equals to
zero if no curvature depending sorting takes place. In order to
quantify the chemo-mechanical disposition for curvature modu-
lated sorting subject to line tension and modulus contrast, for
each hAfk,kG,H0g we introduce the elastic parameter wh

el ¼Dh=s
(Rózycki et al., 2008). We systematically investigate the influence of

gradients in elastic moduli, line tension and curvature gradients on

the stability Tstab. To do so, for each modulus h and the corresponding

curvature gradient G0maxAfH
0
max,K 0maxg we have performed Z25

simulations with different parameter sets ðG0max,wh
elÞ. Our results

clearly show, that increased values for G0max as well as for wh
el result

in an increased stability Tstab (cf. Fig. 9B–D).

For each hAfk,kG,H0g we present phase diagrams, showing
regions with at least metastable curvature modulated pattern
formation (CP) and curvature independent sorting regions (CIP)

relying on wh
el and the corresponding G0maxAfH

0
max,K 0maxg (cf.

Fig. 9E–G). To do so, we assume that the relation wh
el ¼

~f
h

trðG
0
maxÞ

describing the transition between CP and CIP regions can be

approximated by f h
trðG

0
maxÞ ¼ a=G0maxþb=ðG0maxÞ

2 for a,bARZ0. This

is physically motivated by the assumption that the graphð~f
h

trÞ

asymptotically approaches the axes. Based on our numerical

simulations, heuristic fits yield rough approximations of ~f
h

tr (blue

spotted lines in Fig. 9E–G). (Fits are based on the least square

method, using simulations within the G0max�wh
el-space, showing

small values Tstab40.) Especially it holds f ktrðH
0
maxÞ ¼ 0:0043= H0maxþ

0:0052=ðH0maxÞ
2,f kG

tr ðK
0
maxÞ ¼ 0:0048=K 0max as well as f H0

tr ðH
0
maxÞ ¼

0:00023=H0max. In future experiments these functions can be used



Fig. 9. Stability of patterns depending on the interplay of elastic moduli gradients, curvature gradients and the line tension. A: simulation example, Tstab :¼ Tmax�Tmin

measures the stability of a curvature modulated pattern, where Tmax defines the time where the symmetry of the pattern gets lost by fusing domains. Each fusion can be

recognized by a jump in the free energy F2 (black arrows). B–D: for each hAfk,kG ,H0g, Tstab increases with growing curvature gradient H0max and K 0max , respectively, as well

as with growing corresponding elastic parameter wh
el ¼Dh=s (in (D) the value Tstab has been catted at Tstab ¼ 2400 s due to limited simulation time). E–G: phase diagrams as

a function of the elastic parameter wel for each elastic modulus and the corresponding curvature gradient. CP: region with (metastable) curvature modulated sorting, CIP:

region with curvature independent sorting. Green x-marks: simulations with Tstab 40, red þ-marks: simulations with Tstab ¼ 0. Blue dotted line: heuristically fitted

transition line of the kind a=xþb=x2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to estimate if curvature modulated sorting will occur. This is the
case namely if for at least one elastic modulus h the relationship

wh
elb f h

trðG
0
maxÞ holds for the corresponding value G0maxAfH

0
max,K 0maxg.
4. Discussion

In the present paper, we have outlined a continuous multiscale
model for curvature induced lateral sorting in biological mem-
branes. Passive lateral organization in membranes is involved and
actually is a premiss for various cellular processes, such as
budding (Baumgart et al., 2003), signaling (Sugar et al., 2001)
and sorting (Lee, 2005). Furthermore, it is assumed to be a
condition precedent for the biogenesis and maintenance of
cellular organelles itself (Mullins, 2005). Thus it is critical for
the function of each biological cell. The presented model enables
to study the impact on dynamics and minimum patterns if
two membrane components differ in at least one of the macro-
scopic elastic moduli. Here, we have studied the influence of
curvature gradients in interplay with the bending rigidity k, the
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spontaneous curvature H0 and the Gaussian rigidity kG. The latter
has not been studied in the literature so far. In terms of molecular
parameters the different elastic moduli reflect differences in
stiffness and shape of the corresponding molecules.

Differences in the elastic moduli have been experimentally
used to study the interplay between molecular properties and
curvature (Baumgart et al., 2003; Heinrich et al., 2010; Kamal
et al., 2009; Parthasarathy et al., 2006; Pencer et al., 2008; Roux
et al., 2005; Tian and Baumgart, 2009; Yoon et al., 2006).
Furthermore, various theoretical continuous approaches have
already been used to study the coupling of different moduli with
curvature (Allain and Amar, 2006; Chen, 1999; Jiang et al., 2000;
Li et al., 2005; Lowengrub et al., 2009; Taniguchi, 1996; Wang and
Du, 2008; Yin and Lv, 2008; Elliott and Stinner, 2010). Despite of
this effort, four points have not been studied so far (at least up to
our knowledge):
(1)
 Parameterization of the presented continuous model directly
from the molecular scale.
(2)
 Studies of the influence of differences in the Gaussian rigid-
ities on lateral sorting.
(3)
 Phase diagrams estimating if and how stable curvature
depending sorting will occur.
(4)
 Proofs concerning the existence and uniqueness of a solution
for presented models.
In this study we have addressed these four gaps.

First of all, we have studied the influence of the detailed
parametrization, i.e. the functional dependencies used in the
model. To do so, we have used DPD to determine the dependence
of the bending rigidity kðfÞ on the composition of a binary lipid
bilayer. We have restricted ourselves to lipids of the same length
and type yet varied the lipids chain stiffness. This approach e.g.
reflects a flexible poly-cis unsaturated membranes and stiffer
saturated/monounsaturated phosphatidylcholine (PC) lipids
(Rawicz et al., 2000). Furthermore, this case is of special interest
for the finite element simulations, because the calculation of the
free energy requires microscopically well-mixed system. As a
result, we have found that the bending rigidity is only weakly
affected when minor amounts of a different lipid type are
introduced. For intermediate lipid concentrations, i.e. roughly a
1:1 ratio of lipids, however a strong deviation from the limiting
case of pure membranes has been observed. Indeed, kðfÞ is best
described by a sigmoid curve, e.g. having a tanh-form.

It has been previously shown that the functional relationship
kðfÞ can be nonlinear, depending on different molecular proper-
ties of membrane molecules (Brannigan and Brown, 2005; Illya
et al., 2006; Szleifer et al., 1988). In the macroscopic finite
element simulations, we have found that the steady state depends
strongly on the exact choice of kðfÞ. In Fig. 6 the dynamics and
minimum configurations of two simulations are shown compar-
ing the use of a linear bending rigidity klinðfÞ with the nonlinear
case ktanhðfÞ. The latter has been determined directly from DPD
studies. Although the global energy F of a given lateral distribu-
tion f on G is the same for the two cases klin,ktanh, we observe
strong differences in dynamics and minimum patterns. We
postulate that this effect is due to differences in ðd=dfÞklin and
ðd=dfÞktanh, leading locally (and very early in time) to differences
in the strength of curvature dependent sorting. This again traps
the whole system in completely different minimum patterns.
These results emphasize the importance of dynamics and para-
meters in mathematical modeling. That is, even if only minimum
patterns (with a certain set of parameters) are studied, one should
carefully check, the dependence of the minimum configuration on
initial conditions as well as the robustness with respect to
parameter variation.

Furthermore, the impact of differences in each of the macro-
scopic elastic moduli on lateral sorting has been investigated
using macroscopic finite element simulations (cf. Fig. 7). Our
results suggest that each of the moduli k, H0 and kG has a
comparable impact on dynamics and curvature dependent pat-
terns: in the parameter regime studied the decomposition time
decreases roughly exponentially with the gradient of each elastic
modulus. The same effect can be observed by fixing the difference
in each elastic modulus and increasing corresponding curvature
gradients (cf. Fig. 8). Additionally, each gradient can lead to a
distinct minimum pattern, influenced by the mean curvature or
the Gaussian curvature of the given geometry, respectively. These
findings suggest that the Gaussian rigidity plays an equivalent
role in lateral sorting, as the other two moduli, which are well
known to influence lateral sorting (Allain and Amar, 2006;
Baumgart et al., 2003; Chen, 1999; Heinrich et al., 2010; Jiang
et al., 2000; Kamal et al., 2009; Li et al., 2005; Lowengrub et al.,
2009; Parthasarathy et al., 2006; Pencer et al., 2008; Roux et al.,
2005; Taniguchi, 1996; Tian and Baumgart, 2009; Wang and Du,
2008; Yoon et al., 2006; Yin and Lv, 2008).

The presented results agree with the following molecular
intuition: given an arbitrary curved membrane containing a stiff
and a flexible component, it is energetically favorable for the
more flexible component to stay in curved regions, independent
of the sign of the principle curvatures. To account for each kind of
curvature, we have to consider both, gradients in the bending
rigidity and in the Gaussian rigidity (cf. Fig. 1).

These findings are supported by the experimental observation
that differences in bending rigidities usually coincide with differ-
ences in Gaussian rigidities (Semrau et al., 2008). The importance
of the elusive Gaussian rigidity in biological processes has been
neglected for a long time. Only very recently theoretical studies
investigate its influence on membrane shapes (Baumgart et al.,
2005; Brannigan and Brown, 2007; Das et al., 2009), fusion
(Siegel, 2008) and lateral diffusion (Yoshigaki, 2007) considering
either a homogeneous membrane composed of only one compo-
nent or – in the case of two component membranes – domains
composed of different molecular species have been assumed to be
lateral immobile. In experiments investigating lateral sorting,
effects due to Gaussian rigidities are also generally assumed to
be negligible (Yoon et al., 2006). This may be caused by the fact
that on the one hand kG cannot be measured directly in experi-
ments (Siegel and Kozlov, 2004) and on the other hand the
Gauss–Bonnet Theorem (stating

R
SK do¼ const in homogeneous

materials considering closed membranes) may have led to a
misunderstanding, that the effect of K is negligible in hetero-
geneous membranes as well. However, the results presented in
this study show that the impact of inhomogeneities in Gaussian
rigidities have a comparable strong effect on lateral sorting
compared with the other two moduli, the bending rigidity and
the spontaneous curvature.

The results presented in Fig. 9 show that the appearance and
stability of curvature modulated patterns strongly depends on the
exact choice of line tension, curvature gradients and moduli
gradients. The question if beside metastable patterns also stable
curvature modulated patterns exist, has to be traced by methods
of rigorous stability analysis and is far beyond the scope of this
paper. But the presented phase diagrams and corresponding
approximations of transition boundaries in this study allow to
estimate at least, under which conditions curvature modulated
sorting takes place.

In addition to the computational studies, we have outlined
the proof of existence and uniqueness for the macroscopic
model yielding the well-posedness and the boundedness of a
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solution. Thus we have ensured that the numerical simulations
indeed provide the approximation of the unique solution of the
considered problem. The structure of the nonlinear function f and
the assumptions on k, H0, kG guarantee the global existence of a
solution in contrast to the existence of a blow up in finite time for
the Cahn–Hilliard equation choosing different functions f, see
Elliott and Songmu (1986).

To sum up, an extended continuous multiscale model for
curvature modulated sorting in biological membranes has been
proposed. Particularly the model enables to study curvature
depending lateral sorting of different components as a result of
differences in their mechanical properties (such as the shape and
the stiffness). The model is given in terms of a nonlinear PDE of
fourth order, the existence of a unique solution has been shown
analytically. Furthermore, we have presented simulations using a
finite element approach and have derived detailed functional
relationships from the molecular level using DPD studies. Our
simulations show that gradients in the three elastic moduli result
in distinct metastable minimum patterns significantly different
for each modulus, and that the decomposition time decreases
exponentially with increasing difference in the modulus or
corresponding curvature gradient. Additionally we have shown
that the stability of curvature modulated patterns increases with
increasing moduli- or curvature gradients. Presented phase dia-
grams allow to estimate if curvature modulated sorting will occur
for set of geometry and elastic parameters.

In the future, all these findings can help to understand, predict
and interpret more precisely experimental observations concern-
ing curvature dependent lateral organization and its stability in
biological membranes.
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Appendix A

In this section we present the details on the proof of existence
and uniqueness of a solution of the problem (4)–(6), stated in
Theorem 3.

Proof of Theorem 3 Existence. To show the existence of a weak
solution of (4)–(6) we use the Galerkin method and look for a
function fk

ðt,xÞ ¼
Pk

i ¼ 1 ak
i ðtÞwiðxÞ satisfying Eq. (8) and initial

condition fk
ð0Þ ¼fk

0. Using the properties of the basis fwigiAN we
obtain that for each kAN the function fk is determined by the
solution ðak

1ðtÞ, . . .ak
kðtÞÞ of an initial value problem for a system of

ordinary differential equations

d

dt
ak

j ¼�a
k
j Lf ~sx

2
Z
G
9DGwj9

2
do�Lf

Z
G
rGR

Xk

i ¼ 1

ak
i ðtÞwiðxÞ,H,K

 !
�rGwj do,

ak
j ð0Þ ¼ ðf0,wjÞL2

ðGÞ, j¼ 1, . . . ,k: ð15Þ

The right hand side in (15) is locally Lipschitz-continuous
in ak

j and a unique local solution exists. The estimate
esssupð0,TÞ Jf

k
JL2
ðGÞrC, proved in Lemma 4, implies the bounded-

ness of ðak
1, . . . ,ak

kÞ and the existence of a global solution of (15).
From a priori estimates, shown in Lemma 4, follows the existence

of a function fAL2
ð0,T;H2

ðGÞÞ \ H1
ð0,T; L2

ðGÞÞ, fAL1ðð0,TÞ � GÞ,
and a subsequence (denoted again by ffk

g) such that fk*f in

L2
ð0,T;H2

ðGÞÞ, @tf
k*@tf in L2

ðð0,TÞ � GÞ, fk*
n f in L1ðð0,TÞ � GÞ as

k-1.

Using Lions–Aubin Lemma, Lions (1969), and compact embed-

ding of H2
ðGÞ in H1

ðGÞ (Hebey, 1996, p. 24), we obtain the strong

convergence fk
-f in L2

ð0,T;H1
ðGÞÞ and fk

-f a.e. in ð0,TÞ � G
as k-1. Due to fAH1

ð0,T; L2
ðGÞÞ we have fACð½0,T�; L2

ðGÞÞ and

fk
ð0Þ-fð0Þ in L2

ðGÞ implies fð0Þ ¼f0 in L2
ðGÞ.

Due to assumptions on k, H0, kG and boundedness of fk we

obtain that R, @HR, @fR and @K R are continuous and bounded. The

convergence of fk implies Rðfk,H,KÞ-Rðf,H,KÞ, @fRðfk,H,KÞ-

@fRðf,H,KÞ, @HRðfk,H,KÞ-@HRðf,H,KÞ, @K Rðfk,H,KÞ-@K Rðf,H,KÞ

a.e. in ð0,TÞ �G and the weak convergences Rðfk,H,KÞ*

Rðf,H,KÞ, @fRðfk,H,KÞ*@fRðf,H,KÞ, @HRðfk,H,KÞ*@HRðf,H,KÞ,

@K Rðfk,H,KÞ*@K Rðf,H,KÞ in L4
ðð0,TÞ � GÞ as k-1.

Now for fix mAN, mok, we take vAC1
ð½0,T�;H2

ðGÞÞ of the

form v¼
Pm

i ¼ 1 diðtÞwi as a test function in (8), where di are

given smooth functions. Then we integrate Eq. (8) with respect

to t and pass to the limit as k-1. For the linear terms we can use

the weak convergence of fk directly. The nonlinear term we

rewrite asZ T

0

Z
G
ð@fRðfk,H,KÞrGfk

þ@HRðfk,H,KÞrGH

þ@K Rðfk,H,KÞrGKÞrGv do dt

¼

Z T

0

Z
G
ð@fRðfk,H,KÞðrGfk

�rGfÞrGv

þ@fRðfk,H,KÞrGfrGvÞ do dt

þ

Z T

0

Z
G
ð@HRðfk,H,KÞrGHþ@K Rðfk,H,KÞrGKÞrGv do dt:

In the first integral we use the strong convergence of fk in

L2
ð0,T;H1

ðGÞÞ and boundedness of @fRðfk,H,KÞ, in all other terms

the weak convergence in L4
ðð0,TÞ � GÞ and the embedding of

L1ð0,T;H2
ðGÞÞ in L4

ð0,T;W1;4
ðGÞÞ for dimðGÞr3 are applied. Using

now the fact that all functions v of the considered form are dense

in L2
ð0,T;H2

ðGÞÞ we obtain that f is a weak solution of the

problem (4)–(6). &

In the next Lemma, we show the a priori estimates which are
essential for the proof of existence and uniqueness. Additionally,
these estimates imply the boundedness of a solution of (4)–(6).

Lemma 4. Any weak solution of (4)–(6) satisfies the following a

priori estimates:

JfJL1ð0,T;H1
ðGÞÞ þJD

GfJL1ð0,T;L2
ðGÞÞ þJðD

G
Þ
2fJL2

ðð0,TÞ�GÞrC,

J@tfJL2
ðð0,TÞ�GÞrC,

JfJL1ðð0,TÞ�GÞrC, Jr
GfJL2

ð0,T;L1ðGÞÞrC, ð16Þ

where C is a universal constant independent of f.

Proof of Lemma 4. Similar ideas for the proof of a priori
estimates for the Cahn–Hilliard equation, defined in a bounded
domain of dimension less or equal three, have been considered in
Elliott and Songmu (1986). However, a generalization of this proof
is necessary due to the nonlinear curvature-dependent terms in
Eq. (4), defined on a smooth Riemannian manifold G. First, we
show the estimates for the approximation sequence ffk

g. Then,
the convergence of a subsequence of ffk

g and the lower semi-
continuity of norms will imply the corresponding estimates for f.
In order to obtain the estimate for rGfk in L1ð0,T; L2

ðGÞÞ,



,
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we consider

Pðfk
Þ ¼

1

2
kðfk
ÞðH�H0ðf

k
ÞÞ

2
þkGðf

k
ÞKþ ~sf ðfk

Þ, P0ðfk
Þ ¼ Rðfk,H,KÞ

and the free energy

Eðfk
Þ ¼

1

Lf

Z
G

Pðfk
Þþ

1

2
~sx29rGfk92

� �
do,

with

d

dt
Eðfk
Þ ¼

1

Lf

Z
G
ðRðfk,H,KÞ@tf

k
þ ~sx2

r
Gfk
r

G@tf
k
Þ do: ð17Þ

The assumptions on f, k, H0, kG, H and K imply

PðxÞZCð9x94
�29x92

�9x93
�9x9�1Þ:

Using Eq. (8) and zero-flux boundary conditions, we rewrite the
integral in (17) byZ
G
ðRðfk

Þð� ~sx2
ðDG
Þ
2fk
þDGRðfk

ÞÞ� ~sx2DGfk
ð� ~sx2

ðDG
Þ
2fk

þDGRðfk
ÞÞÞ do

¼�

Z
G
ð9rGRðfk

Þ92
� ~sx2
r

GDGfk
r

GRðfk
Þþ ~s2x49rGDGfk92

� ~sx2
r

GDGfk
r

GRðfk
ÞÞ doþ

Z
@G
ðRðfk

Þðr
GRðfk

Þ

� ~sx2
rGDGfk

Þ � n� ~sx2DGfk
ðrGRðfk

Þ� ~sx2
rGDGfk

Þ � nÞ dB

¼�

Z
G
ð ~sx2
r

GDGfk
�r

GRðfk
ÞÞ

2 dor0:

Here, we have used the shorted notation Rðfk
Þ for Rðfk,H,KÞ. Thus,

ðd=dtÞEðfk
Þr0 andZ

G

1

2
~sx29rGfk92

þPðfk
Þ

� �
dor

Z
G

1

2
~sx29rGfk

09
2
þPðfk

0Þ

� �
do:

Using the structure of f, the assumptions on k, H0, kG, the estimate
9u9þu2þ9u93rdu4þCd, the regularity of initial conditions, and
the embedding H2

ðGÞ � L4
ðGÞ for compact G with n¼ dimðGÞr3,

see Aubin (1998) and Hebey (1996), we obtain that fk
0 is

uniformly bounded in H1
ðGÞ \ L4

ðGÞ and

sup
ð0,TÞ

Z
G
ð9rGfk92

þ9fk94
Þ dorC:

Then, the Sobolev embedding theorem (Aubin, 1998; Hebey,
1996) implies

Jfk
JL6
ðGÞðtÞrCJfk

JH1
ðGÞðtÞrC, tA ½0,T� for nr3

and

Jfk
JL1ð0,T;L6

ðGÞÞrC: ð18Þ

Due to zero Neumann boundary condition, the smoothness of G,
and Green’s identity we have for some d40

Jr
Gfk

J2
L2
ðGÞrJfk

JL2
ðGÞJD

Gfk
JL2
ðGÞrdJDGfk

J2
L2
ðGÞ þ

1

4d
Jfk

JL2
ðGÞ:

ð19Þ

Additionally, the regularity theory for the Laplace equation with
zero Neumann boundary condition, defined on a smooth Rieman-
nian manifold (Taylor, 1996, p. 344), implies the estimate

JðrG
Þ
2fk

JL2
ðGÞrCðJDGfk

JL2
ðGÞ þJf

k
JL2
ðGÞÞ: ð20Þ

We consider now v¼fk as a test function in (8) and integrate it
with respect to timeZ t

0

Z
G

1

2
@t9f

k92
þLf ~sx

29DGfk92
þLf ~s9f

k929rGfk92
� �

do dt

¼

Z t

0

Z
G

Lf 2k0ðfk
ÞðH�H0ðf

k
ÞÞH00ðf

k
Þ

�

�
1

2
k00ðfk

ÞðH�H0ðf
k
ÞÞ

2
�k00Gðf

k
ÞKþ ~s

þkðfk
ÞððH�H0ðf

k
ÞÞH000ðf

k
Þ�ðH00ðf

k
ÞÞ

2
Þ

	
9rGfk92

do dt

þ

Z t

0

Z
G

Lfðkðf
k
ÞH00ðf

k
ÞrGH�k0ðfk

ÞðH�H0ðf
k
ÞÞrGH

�k0Gðf
k
ÞrGKÞrGfk do dt: ð21Þ

Using the assumptions on f, k, H0 and kG, on the right hand side
we obtain the terms of the form

I1 ¼

Z t

0

Z
G
ð9fk9þ9fk92

þCÞ9rGfk92

þð9fk9þ9fk93
þCÞ9rGfk9 do dt,

that can be estimated by

I1rC

Z t

0

Z
G
9rGfk92

do dtþC

Z t

0

Z
G
ð9fk92

þ9fk96
Þ do dt

þC

Z t

0

Z
G
ð9fk93

þ9fk96
Þ do

� �1=3 Z
G
9rGfk93

do
� �2=3

dtþC

rC

Z t

0

Z
G
9DGfk92

do
� �1=2 Z

G
9fk96

do
� �1=6

�

Z
G
ð9fk93

þ9fk96
Þ do

� �1=3

dt

þCd1

Z t

0

Z
G
ð9fk96

þ9fk93
þ9fk92

Þ do dt

þd1

Z t

0

Z
G
9DGfk92

do dtþC

rCdsup
ð0,TÞ

Jfk
J6

L6
ðGÞ þd

Z t

0

Z
G
9DGfk92

do dtþC, ð22Þ

where d1 ¼ Lf ~sx
2=4 and d¼ Lf ~sx

2=2. Here, we have used the
estimate (20) and the Gagliardo–Nirenberg inequality (Aubin,
1998, p. 93), given in the general form by

JðrG
Þ
jvJLp

ðGÞrCJðrG
Þ
mvJaLr

ðGÞJvJ1�a
Lq
ðGÞ þCJvJLq

ðGÞ, ð23Þ

for vALq
ðGÞ and ðr

G
Þ
mvALr

ðGÞ, where ðj=mÞrar1, 1=p¼

j=nþað1=r�m=nÞþð1�aÞ1=q. In our situation, due to the estimate
(20) and the continuous embedding L6

ðGÞ � L2
ðGÞ for compact G

(Hebey, 1999, p. 33), the used Gagliardo–Nirenberg inequality
reads

JrGfk
JL3
ðGÞrCJDGfk

J
1=2

L2
ðGÞ

Jfk
J

1=2

L6
ðGÞ
þCJfk

JL6
ðGÞ for nr3:

Applying the estimates (18) and (22) in Eq. (21) impliesZ t

0

Z
G

1

2
@t9f

k92
þLf ~sx

29DGfk92
þ ~s9fk929rGfk92

� �
do dt

r
Z t

0

Z
G
ðd9DGfk92

þCdÞ do dt:

Then, integrating the first term with respect to time and using the
regularity of the initial data we obtain the estimate

Jfk
JL1ð0,T;L2

ðGÞÞ þJD
Gfk

JL2
ð0,T;L2

ðGÞÞrC:

To show the estimate for ðDG
Þ
2fk we choose v¼ ðDG

Þ
2fk as a test

function in (8). As a basis of Wk we can consider the eigenfunc-
tions of ðDG

Þ
2 with zero Neumann boundary conditions. Then, due

to smoothness of G, it holds that fkAC1ðGÞ (Taylor, 1996, p. 345,
379). Integration by parts and the boundary conditions (6) implyZ t

0

Z
G

1

2
@t9DGfk92

þLf ~sx
29ðDG

Þ
2fk92

� �
do dt

¼

Z t

0

Z
G

LfD
GRðfk,H,KÞðDG

Þ
2fk do dt: ð24Þ

Due to zero-flux boundary conditions and regularity theory for
elliptic operator of forth order (Taylor, 1996, p. 345, 379), we have
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that Jðr
G
Þ
4fk

JL2
ðGÞrCðJðDG

Þ
2fk

JL2
ðGÞ þJf

k
JL2
ðGÞÞ. Then, using the

Gagliardo–Nirenberg inequality (23) we obtain the following
estimates:

for n¼ 3 : JvJL12
ðGÞrCJðDG

Þ
2vJ1=12

L2
ðGÞ

JvJ11=12

L6
ðGÞ
þCJvJL6

ðGÞ,

JrGvJL6
ðGÞrCJðDG

Þ
2vJ1=3

L2
ðGÞ

JvJ2=3

L6
ðGÞ
þCJvJL6

ðGÞ,

JDGvJL3
ðGÞrCJðDG

Þ
2vJ1=2

L2
ðGÞ

JrGvJ1=2

L2
ðGÞ
þCJvJH1

ðGÞ,

for n¼ 2 : JvJL12
ðGÞrCJðDG

Þ
2vJ1=20

L2
ðGÞ

JvJ19=20

L6
ðGÞ
þCJvJL6

ðGÞ,

Jr
GvJL6

ðGÞrCJðDG
Þ
2vJ2=9

L2
ðGÞ

Jr
GvJ7=9

L2
ðGÞ
þCJvJH1

ðGÞ,

JDGvJL3
ðGÞrCJðDG

Þ
2vJ4=9

L2
ðGÞ

Jr
GvJ5=9

L2
ðGÞ
þCJvJH1

ðGÞ:

ð25Þ

Now, to estimate the right hand side of (24) we have to consider
terms of the form

I2 ¼

Z t

0

Z
G
½ð9fk9þ9fk92

þCÞ9rGfk9þð9fk9þ9fk93
Þ�9ðDG

Þ
2fk9 do dt,

I3 ¼

Z t

0

Z
G
ð9fk9þ9fk92

þCÞð9rGfk92
þ9DGfk9Þ9ðDG

Þ
2fk9 do dt:

Using Jfk
JL1ð0,T;L6

ðGÞÞrC, as well as JrGfk
JL1ð0,T;L2

ðGÞÞrC, and the
correspondent estimates in (25) we can estimate the integrals I2

and I3 by

I2rCd

Z t

0

Z
G
ð9fk96

þ9fk912
Þ do

� �2=3

JrGfk
J2

L6
ðGÞ dt

þd
Z t

0

Z
G
9ðDG
Þ
2fk92

do dtþCd

Z t

0

Z
G
ð9fk92

þ9fk96
Þ do dt

rCd

Z t

0
JðDG
Þ
2fk

JL2
ðGÞ dtþd

Z t

0

Z
G
9ðDG
Þ
2fk92

do dtþC

rd
Z t

0

Z
G
9ðDG
Þ
2fk92

do dtþC

and

I3rCd

Z t

0

Z
G
ð9fk96

þ9fk912
þCÞ do

� �1=3

�ðJDGfk
J2

L3
ðGÞ þJr

Gfk
J4

L6
ðGÞÞ dt

þd
Z t

0

Z
G
9ðDG
Þ
2fk92

do dtrd
Z t

0

Z
G
9ðDG
Þ
2fk92

do dt

þCd

Z t

0
ðJðDG

Þ
2fk

J
1=3

L2
ðGÞ
þCÞðJðDG

Þ
2fk

JL2
ðGÞ þJðD

G
Þ
2fk

J
4=3

L2
ðGÞ
þCÞ dt

rd
Z t

0

Z
G
9ðDG
Þ
2fk92

do dtþCd:

Then, from (24), choosing d¼ Lf ~sx
2=4, applying the integration

by parts in the first term and the regularity assumption on the

initial data, it followsZ
G
9DGfk

ðt,xÞ92
doþ

Z t

0

Z
G
9ðDG
Þ
2fk
ðt,xÞ92

do dtrC for all tA ½0,T�:

This estimate and Sobolev embedding theorem (Aubin, 1998;

Hebey, 1999) imply

Jfk
JL1ðð0,TÞ�GÞrC, JrGfk

JL2
ð0,T;L1ðGÞÞrC for dimðGÞr3: ð26Þ

We choose now v¼ @tf
k as a test function in (8) and obtain after

integration by parts and using the boundary conditions (6)Z t

0

Z
G

9@tf
k92
þ

Lf ~sx
2

2
@t9DGfk92

 !
do dt

¼�

Z t

0

Z
G

Lfr
GRðfk,H,KÞrGfk

t do dt
¼

Z t

0

Z
G

LfD
GRðfk,H,KÞfk

t do dt:

The structure of f, assumptions on k, H0, kG, boundedness of fk in

ð0,TÞ � G, Young inequality and the estimates (25) implyZ t

0

Z
G

9@tf
k92
þ

Lf ~s
2
ðx2@t9DGfk92

þ@tð9f
k99rGfk9Þ2Þ

� �
do dt

rC

Z t

0

Z
G
ð9rGfk92

þ9rGfk9þ9DGfk9þ1Þ@tf
k do dt

rCd

Z t

0

Z
G
ð9ðDG

Þ
2fk92

þ9rGfk92
þ9DGfk92

þ1Þ do dt

þd
Z t

0

Z
G
9@tf

k92
do dt:

Then, by integrating with respect to t in the second and third

terms and using the estimates for rGfk and DGfk, as well as the

regularity of the initial data, it followsZ T

0

Z
G
9@tf

k92
do dtþsup

ð0,TÞ

Z
G
9DGfk92

dorC:

Passing to the limes as k-1, using the weak convergence of a

subsequence of ffk
g to the solution of (4)–(6) and the lower

semicontinuity of norms, yield the estimates (16) for f. &

Proof of Theorem 3 Uniqueness. Here, we show the detailed
estimates for the last integral in the equality (9). First we write
the considered integral in the explicit formZ T

0

Z
G
r

G
ðRðf1Þ�Rðf2ÞÞr

G
ðf1�f2Þ do dt

¼

Z T

0

Z
G

1

2
ðk00ðf1Þ�k00ðf2ÞÞr

Gf1ðH�H0ðf1ÞÞ
2

�
þ

1

2
k00ðf2Þðr

Gf1ðH�H0ðf1ÞÞ
2
�r

Gf2ðH�H0ðf2ÞÞ
2
Þ

þðk0ðf1Þ�k0ðf2ÞÞ r
Gf1ðH�H0ðf1ÞÞH

0
0ðf1Þþ

1

2
r

G
ðH�H0ðf1ÞÞ

2

� �
þk0ðf2Þððr

Gf1ðH�H0ðf1ÞÞH
0
0ðf1Þ�r

Gf2ðH�H0ðf2ÞÞH
0
0ðf2ÞÞÞ

þ
1

2
k0ðf2Þr

G
ððH0ðf1Þ�H0ðf2ÞÞðH0ðf1ÞþH0ðf2Þ�2HÞÞ

þðkðf1Þ�kðf2ÞÞr
G
ððH�H0ðf1ÞÞH

0
0ðf1ÞÞ

þkðf2Þr
G
ððH�H0ðf1ÞÞðH

0
0ðf1Þ�H00ðf2ÞÞ

þðH0ðf1Þ�H0ðf2ÞÞH
0
0ðf2ÞÞþðk00Gðf1Þ�k00Gðf2ÞÞr

Gf2K

þk00Gðf2Þðr
Gf1�r

Gf2ÞKþðk0Gðf1Þ�k0Gðf2ÞÞr
GK

þ f 00ðf1Þðr
Gf1�r

Gf2Þþðf
00
ðf1Þ�f 00ðf2ÞÞr

Gf2

i
r

G
ðf1�f2Þ do dt:

The last two terms can be rewritten asZ T

0

Z
G
ðf 00ðf1Þr

G
ðf1�f2Þþðf

00
ðf1Þ�f 00ðf2ÞÞr

Gf2Þr
G
ðf1�f2Þ do dt

¼
9

8

Z T

0

Z
G
ðð3f2

1�1Þ9rG
ðf1�f2Þ9

2

þ3ðf2
1�f

2
2Þr

Gf2r
G
ðf1�f2ÞÞ do dt:

From the assumptions on k, H0, kG it follows that k, k0, k00, k0G, k00G,
H0, H00, H000 are locally Lipschitz-continuous. Thus, the boundedness
of f1 and f2 implies the estimate

Lf

Z t

0

Z
G
r

G
ðRðf1Þ�Rðf2ÞÞr

G
ðf1�f2Þ do dt





 




rC

Z t

0

Z
G
ð9f1�f29ð9r

Gf19þ9r
Gf29Þ9r

G
ðf1�f2Þ9

þ9rG
ðf1�f2Þ9

2
Þ do dt:
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Applying Young inequality, the estimate (19) and the last esti-
mate in (16) we obtainZ t

0

Z
G
9f1�f29ð9r

Gf19þ9r
Gf29Þ9r

G
ðf1�f2Þ9 do dt

r ~d1sup
ð0,tÞ

Z
G
9f1�f29

2
do
Z t

0
sup
G

9rGf19
2
þsup

G
9rGf29

2
� �

dt

þd2

Z t

0

Z
G
9DG
ðf1�f2Þ9

2
do dtþCd2

Z t

0

Z
G
9f1�f29

2
do dt

rd1 sup
ð0,tÞ

Z
G
9f1�f29

2
doþ

Z t

0

Z
G
ðd29DG

ðf1�f2Þ9
2

þCd2
9f1�f29

2
Þ do dt,

where 0od1r 1
4 and 0od2rLf ~sx

2=2. &

Appendix B

In terms of a local parametrization X
!

: U �Rn-G of a smooth
Riemannian manifold G the basis vectors of the tangential space

are given by @ui
X
!

(using a shorter notation @i X
!

), where i¼ 1, . . . ,n

and u¼ ðu1, . . . ,unÞAU. Then the tensor ðgijÞ
n
i,j ¼ 1, with gij ¼

@i X
!
� @j X
!

, defines the first fundamental form or a local represen-

tation of the Riemannian metric on G and ðgijÞi,j is the inverse of

the first fundamental form. The second fundamental form ðbijÞi,j is

given by bij ¼�@i X
!
� @j n
!

, where n
!

is the unit normal vector on G.

In local coordinates the volume element (surface measure) is

given by do¼ ffiffiffi
g
p

du1 � � � dun, where g ¼ detðgijÞi,j; the surface

gradient is defined as rGf ¼
P

i,jg
ij@jf@i X

!
; for each a

!
¼
P

iai@i X
!

the surface divergence is equal to rG
� a
!
¼ g�1=2

P
i@iðg

1=2aiÞ,

hence the surface Laplacian is DGf ¼rG
� rGf ¼ g�1=2

P
i,j@i

g1=2gij@jf
� 


. The mean curvature is equal to H¼ traceðbj
iÞ, where

bj
i ¼
P

kgkjbik, and the Gaussian curvature is given by K ¼ detðbj
iÞ.

Adopting this notations we can rewrite Eq. (3) in local
coordinates as follows:

@tf¼ Lfg�1=2
Xn

i,j ¼ 1

@i g1=2gij@j
1

2
k0ðfÞðH�H0ðfÞÞ2�kðfÞðH�H0ðfÞÞH00ðfÞ

��

þk0GðfÞK� ~sx
2g�1=2

Xn

i,j ¼ 1

@iðg
1=2gij@jfÞþ ~sf 0ðfÞ

1A1A:
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