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Combining different theoretical approaches, curvature modulated sorting in lipid bilayers fixed on non-
planar surfaces is investigated. First, we present a continuous model of lateral membrane dynamics,
described by a nonlinear PDE of fourth order. We then prove the existence and uniqueness of solutions
of the presented model and simulate membrane dynamics using a finite element approach. Adopting a
truly multiscale approach, we use dissipative particle dynamics (DPD) to parameterize the continuous
model, i.e. to derive a corresponding macroscopic model.

Our model predicts that curvature modulated sorting can occur if lipids or proteins differ in at least
one of their macroscopic elastic moduli. Gradients in the spontaneous curvature, the bending rigidity or
the Gaussian rigidity create characteristic (metastable) curvature dependent patterns. The structure
and dynamics of these membrane patterns are investigated qualitatively and quantitatively using
simulations. These show that the decomposition time decreases and the stability of patterns increases
with enlarging moduli differences or curvature gradients. Presented phase diagrams allow to estimate if
and how stable curvature modulated sorting will occur for a given geometry and set of elastic parameters.
In addition, we find that the use of upscaled models is imperative studying membrane dynamics. Compared
with common linear approximations the system can evolve to different (meta)stable patterns. This
emphasizes the importance of parameters and realistic dynamics in mathematical modeling of biological

membranes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Biological membranes define a mechanical boundary of cells
and of substructures inside cells. They provide environments
specialized for certain chemical or mechanical processes. The
main component of membranes is lipid molecules. In water lipids
form, due to hydrophobic interactions, a bilayer structure con-
sisting of two lipid monolayers physically opposed to each other.
Since membrane molecules can move freely in lateral direction of
the membrane, its lateral behavior can be compared to a two-
dimensional (2D) fluid, first described in the ‘fluid mosaic’ model
by Singer and Nicolson (1972). With respect to bending the
membrane behaves elastically and in the linear regime is well
described by the plate equation (Ciarlet, 1997).

In vivo, biological membranes are composed of many different
lipids, proteins and other molecules with different functions
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(Alberts et al., 2006). Lateral sorting of these components is
essential for maintaining the diversity of different membrane
systems inside the cell as well as their function (Gennis, 1989).
For both, lipids (Baumgart et al., 2003) and proteins (Bonifacino
and Lippincott-Schwartz, 2003) lateral phase separation and
clustering have been shown. It is widely accepted that membrane
curvature modulated sorting is a basal mechanism controlling the
spatial organization of lipids and proteins in the absence of
specific chemical interactions. However, the exact underlying
mechanisms remain mostly unknown (Tian and Baumgart, 2009).

Different membrane model systems, whose geometry, size and
composition can be modified in a defined way, have been used to
investigate curvature dependent sorting on different scales,
experimentally as well as theoretically: experiments with artifi-
cial membranes have been performed using unilamellar vesicles
(Baumgart et al., 2003; Heinrich et al., 2010; Kamal et al., 2009;
Pencer et al., 2008; Roux et al., 2005; Tian and Baumgart, 2009) as
well as solid supported membranes (Parthasarathy et al., 2006;
Yoon et al., 2006). On the theoretical side, molecular dynamical
approaches have been used to investigate the impact of molecular


www.elsevier.com/locate/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2012.01.039
mailto:moritz.mercker@bioquant.uni-heidelberg.de
dx.doi.org/10.1016/j.jtbi.2012.01.039

68 M. Mercker et al. / Journal of Theoretical Biology 301 (2012) 67-82

parameters (Cooke and Deserno, 2006; Risselada and Marrink,
2009). But these are limited to small spatial and temporal scales
due to computational complexity of the corresponding models. To
investigate upper scales and to compare experiments with analy-
tical estimates different continuous approaches have been devel-
oped (Bozic et al., 2006; Derganc, 2007; Rozycki et al., 2008;
Seifert, 1993; Mercker et al., 2011), mainly based on the mini-
mization of a free energy. A curvature dependent free energy of
lateral homogeneous membranes has been early described by
Helfrich (1973)

Fussio = [ 5 H=Ho)* dor+ [ ok do, M

where dw depicts the surface measure, H the mean curvature and
K the Gaussian curvature, both depending on the geometry of the
membrane. If C; and G, are the two principal curvatures, H is
defined as their sum and K as their product (see also Fig. 1).
Ho,K,Kkc are the elastic moduli, which are constant if the mem-
brane is lateral homogeneous. Hy is the spontaneous curvature
and represents the preferred curvature in the relaxed state. It is
non-zero e.g. if membrane molecules are wedge-shaped. x and k¢
are the bending rigidity and the Gaussian rigidity (often referred
to as the saddle-splay modulus), respectively. Both represent the
stiffness of the membrane: in tubular structures (were K
vanishes; cf. Fig. 1B) k penalizes curvatures; in saddle structures
(were H vanishes; cf. Fig. 1A) k¢ causes a penalty of curvatures. In
general structures both moduli contribute to the energy penalty
of curved membranes and most of the geometries appearing in
biological membranes exhibit various intermediate structures of
tubes, saddle structures and spheres (Fig. 1A-C).

Considering non-homogeneous membranes, it has been shown
that gradients in elastic moduli can exhibit a driving force for
lateral curvature modulated sorting. Membrane proteins are
drawn to regions with curvature adapted to the protein shape
(Ramaswamy et al., 2000) and lipids with small bending rigidity
are sorted to highly curved membrane regions (Parthasarathy
et al.,, 2006), thus that lateral reorganization reduces the mem-
brane curvature energy. Although various theoretical and experi-
mental studies have been performed to investigate lateral sorting
due to gradients in spontaneous curvature (Bozic et al., 2006;
Cooke and Deserno, 2006; Derganc, 2007; Kamal et al., 2009;
Leibler, 1986; Liang and Ma, 2009; Ramaswamy et al., 2000;
Risselada and Marrink, 2009; Seifert, 1993) and bending rigidity
(Baumgart et al., 2003; Derganc, 2007; Parthasarathy et al., 2006;
Roux et al., 2005; Rozycki et al., 2008), the impact of the elusive
Gaussian rigidity on lateral sorting has not been investigated so
far. However, experimental studies show that different mem-
brane components can differ distinctly in their Gaussian rigidities
(Semrau et al., 2008).

In this study, we investigate theoretically the impact of an
inhomogeneous Gaussian rigidity on lateral sorting and compare

A B C
C:1>0 Ci1>0 Ci >0
C2 <0 Ca=0 C2>0
K<0 K=0 K>0
H=0 H>0 H>0

Fig. 1. Principle curvatures C;,C;, mean curvature H=C;+C; and Gaussian
curvature K = C;C, for different geometries: (A) saddle, (B) tube, (C) sphere.

it with sorting due to gradients in the bending rigidity and
spontaneous curvature. Following the experimental approach of
Parthasarathy et al. (2006) and Roux et al. (2005), we consider
membranes attached to non-planar substrates. Thus by consider-
ing a geometrically fixed membrane the complexity is reduced
facilitating the extraction of hypotheses to be checked by experi-
mentalists. To do so, a continuous model of lateral membrane
dynamics, based on the minimization of a free energy, is derived.
Considering a gradient flow of the free energy, we obtain a model
in terms of a nonlinear PDE of fourth order, related to the Cahn-
Hilliard equation (Cahn and Hilliard, 1958) (cf. Elliott and Garcke,
1996; Elliott and Songmu, 1986 for analytical results). In the
following, we show that unique solutions exist and approximate
them using a finite element approach. Adopting a multiscale
approach, parametrization of the continuous model from the
molecular scale has been achieved via upscaling from dissipative
particle dynamic (DPD) studies. On the basis of this multiscale
modeling approach, simulations are performed comparing dynamics
and (metastable) patterns of lateral sorting.

2. Theoretical model
2.1. Continuous approach

Following the ideas of Parthasarathy et al. (2006) and Roux
et al. (2005), we consider a curved membrane represented by a
fixed smooth Riemannian manifold '—in contrast to free mem-
branes typically studied (Baumgart et al., 2003; Heinrich et al.,
2010; Kamal et al., 2009; Pencer et al., 2008; Roux et al., 2005;
Tian and Baumgart, 2009), where I’ itself is evolving in time. Here,
we consider a membrane composed of two different molecule
species, e.g. two different lipids or lipids and proteins. The
concentration of the two components ¢” and ¢ in I' is described
by the order parameter ¢ : I'>[—1,1], where ¢ = ¢"—¢®. That is,
if ¢ =1 the membrane is locally composed purely of species A and
if ¢ =—1 locally only species B is present.

It has been shown that sorting depends critically on mem-
brane curvature and phase separation (in the absence of specific
signals actively influencing lateral dynamics) (Parthasarathy
et al., 2006; Roux et al., 2005). Therefore our model is based on
the minimization of a free energy F = F;+F, containing both a
curvature depending energy F; (related to Helfrich, 1973) and a
Cahn-Hilliard energy F, (Cahn and Hilliard, 1958) modeling
lateral phase separation. In detail, both parts read

1
Fi=g [ K@)XH-Ho@) dor+ [ re(@K do,

a @
F=d (2 v +f(d>)> do

Describing the fact that different components may differ in their
mechanical properties (such as shape and stiffness), each macro-
scopic elastic modulus h (h e {x,k,Ho}) is taken as a function of
the concentration ¢. Each function h is chosen such that h(1) = h
and h(—1) = h®, where h* and h® are the elastic moduli of the pure
components. Furthermore, £ is a transition length, ¢ =6¢ the
line-tension, V' the surface gradient and f a double well poten-
tial. The function f: R—-R, is of the form f(¢)= %((j)zf])z.
Instead of minimizing F =F;+F, directly we adopt a dynamic
point of view. Thus assuming local mass conservation lateral
dynamics of the two species A and B are determined by the lateral
continuity equation

6[rl)+Vr -7:0,
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where V' is the surface divergence operator. The flux is deter-
mmed by the lateral gradient of the chemical potential g, i.e.
] =v’ 1; the chemical potential u is proportional to the varia-
tion of the free energy F with respect to ¢, thus p=_Ly(5/0¢)[F];
the mobility Ly is assumed to be constant (scaling inversely with
the viscosity of the membrane—the corresponding diffusion
coefficient is given by D = L;6). Altogether, we have the following
evolution equation for ¢:

1
1 = Lyt" [ 51| = Loa” [ @H-Ho()
3)
—K(p)H—Ho(p)Ho ($)+ K 5(0)K—6(E> A" p—f ().

2.2. Analytical treatment

Existence and uniqueness results for the Cahn-Hilliard equa-
tion defined in a bounded domain of R", with n <3, have been
proven in Elliott and Garcke (1996) and Elliott and Songmu
(1986). In contrast to the classical Cahn-Hilliard equation,
Eq. (3) is considered on an arbitrarily shaped hyper-surface and
the curvature depending part of the free energy introduces
additional nonlinear terms. Therefore, we first address the ques-
tion of existence and uniqueness of solutions to ensure the
validity of our results and corresponding deductions. The curva-
ture depending nonlinear terms require additional steps in the
proof of existence, especially in the proof of corresponding a
priori estimates. The boundedness of quﬁ in [%(0,T;L®(I")) is
essential for the uniqueness result.

Let I' be a smooth compact Riemannian manifold with a
boundary and dim(I") <3. In the considered biological applica-
tions we have dim(I") = 2, however the existence and uniqueness
results hold also for three-dimensional smooth Riemannian
manifolds. We consider on I" Eq. (3) and rewrite it in the form

oep+LyaE (AT p=LyA"R(p,HK) in (0,T) x T, )
with initial and boundary conditions
¢(0,x)=po(x) in T, (5)

ViGE A" p—R(PHK)-v=0, VI¢p.v=0 on ©T)xal, (6)

where 4' is the Laplace-Beltrami operator, v is the unit outward
normal vector to oI', and

R(¢.H,K) = 11 (p)(H—Ho(§))* — () H—Ho(dp)Ho () + K (D)K + Gf ().
Assumption 1. We assume f(¢)= 35 (d) -1? and %, kg,
Ho e C3(R) with x/, k", k", Hj, Hy, Hy : R— R bounded, and
[kp| <ci|n|+c2, |[Hot)| <cr1ln]+ca,

|+ || <cinP+can |rtop| <[]’ +ca

[kgm)| <c1|n|+ca,

for some positive constants cq, ¢,. The smoothness and compact-
ness of I' imply that the mean curvature H and the Gaussian
curvature K are smooth and bounded.

For the initial data we assume ¢, € H*(I).

Definition 2. A function ¢ e L*(0,T; H*(I')) "H'(0,T; L?(I')), such
that

T
/ /(at¢>v+Ld,c‘752AF¢Arv)dwdt
0o Jr

T
+Ly / / VI R(,HK)V v do dt =0, @
JOo JI

for all ve0,T;H*(I')) and ¢ — ¢, in [>(I') as t—0, is called a
weak solution of the problem (4)-(6) .

Theorem 3. Under the Assumptionl1 on the functions x, Hy, K¢, f and
the initial data, there exists a unique weak solution of (4)-(6).

The extensive theory of Sobolev spaces and elliptic equations
on Riemannian manifolds, enables a direct generalization of the
known existence results for the Cahn-Hilliard equation in a
bounded domain of R" to the problem posed on a smooth
Riemannian manifold. However, the nonlinear curvature depend-
ing terms in Eq. (4) require new steps in the proof of the existence
of a solution. A different approach is also used to show the
uniqueness result. Here, we summarize only the main ideas of the
proof and for more details we refer to Appendix A.

Main ideas of the proof. Existence: We show the existence of a
weak solution using the Galerkin method (Evans, 1998). Let
{wj};. n be an orthogonal basis of H(I'), an orthonormal basis in
[2(I') and the functions w; are smooth. We are looking for a
function ¢*(t,x)= S¢_, ok(Ow;(x) in the finite-dimensional sub-
space Wy of HX(I') spanned by {w1, ...,w}, such that

/ @ v+ Ly AT $* A ) doo 1L, / VI RN H IOV v der =0,
r r

®

for ve W) and ¢f = fo:1(¢>0,w,»)Lzmwi with ¢k > ¢, in H2(I).
Using the a priori estimates from Lemma 4, presented in
Appendix A, we obtain the convergence of a subsequence of
{¢,} in the appropriate function spaces. Then passing in (8) to the
limes as k— oo we obtain the existence of a weak solution of the
problem (4)-(6) . The detailed proof is presented in Appendix A.

Uniqueness: We assume there exist two solutions ¢, ¢, of the
problem (4)-(6). Eq. (7) with the test function v = ¢; —¢, implies
that ¢, —¢, satisfies the equality

T ‘l T -
| [ 3olo=af dodes [ [1,6804" =) dorat
0 r 0 r
Ly [ ] VR IRy HEOV (81~ dor de 0. (@)
o Jr
The third term in (9) can be estimated by
/ /(Cé‘¢1—¢2‘2+52‘AF(¢1—¢2)\2) dw dt+515UD/ \¢1—¢2‘2 do,
o Jr ©o0nJr

with 0<d; <1 and 0<é, sL(,,&éz/z. For explicit estimation
steps see Appendix A. Then, the integration by parts in the first
term in (9) and the fact ¢,(0,x) = ¢,(0,x) yield

T

[161=621 dos1,68 [ [ 1476, ~4) " dor

r 0 r

gzcé/ /\¢]_¢2\2 do dt+25lsup/\gb1—¢2\2 do.
Jo Jr ©00JI

Using Gronwall inequality we obtain
/\(/)1(1,)()—(/)2(1,)()\2 dw <261 exp(2CsT) sup /\¢1(t,x)—<p2(t,x)\2 do.

r te(0,0)JI
Then, there exists a T such that 20,exp(2Cs7) <1 and
sup/ \d)]—qﬁz\z dw <0.

©0,0Jr

Thus, ¢,(t,X) = ¢,(t,x) a.e. in (0,7) x I' were 7 is independent of ¢,
and ¢,. The iteration argument implies the uniqueness in (0,T) x I,
since T can be chosen the same in each iteration step. [

Remark 2.1. Existence and uniqueness proofs for the periodic
boundary conditions follows along the same lines.
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2.3. Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a versatile computer
simulation technique that is particularly well suited for studying
the behavior of lipid membranes on mesoscopic scales. Indeed,
DPD has been employed to study various membrane-related
processes such as lipid phase separation (Kranenburg et al.,
2003; Laradji and Kumar, 2005, 2004), self-assembly of lipid
vesicles (Yamamoto et al., 2002) and vesicle budding (Yamamoto,
2003). We outline the setup of a DPD simulation only briefly
and refer the reader to Nikunen et al. (2003) for more technical
details.

In DPD, atoms or groups of atoms are represented by spherical
beads with mass m;. Any two beads i,j with a distance r; =
|ry| = [ri—1;| <o are subject to a linear repulsive force Fj=
a;j(1—-r;/ro)e;. The degree of hydrophobicity can be tuned via
the interaction energies a; Here e;=r;/r; denotes the unit
vector. Lipids are modeled as linear chains of a single hydrophilic
head bead and three hydrophobic tail beads that are connected
via a harmonic potential U(r;,r;, )= k(ri;i;1—lo)*/2. The relaxa-
tion distance between two beads in the lipid is hence lp. To
impose an intrinsic stiffness to the lipid chains, a bending
potential Vy(r;_1,I;,T;; 1) = Kpena(1—Cos(®)) is introduced between
consecutive beads i—1,i,i+1. Here, cos(®)=e;; 1€;;,1, i.e. lipids
try to assume the shape of a rigid rod.

DPD simulations are based on the above conservative forces
combined with a DPD thermostat. The thermostat consists of
a dissipative force F?':—yij(l—r,j/ro)z(e,-j -vj)e; and a random
force Ffj=o;(1-r;/ro)ée; for particles with rj<ro. Here,
v; =V;—V; denotes the relative velocity between particle i and j
and ¢; defines an uncorrelated random variable with vanishing
mean and unit variance. The thermostat parameters are related
via the fluctuation-dissipation theorem o*izj = 2y;;ksT.

Following the approach of Schmidt et al. (2008), the interac-
tion cutoff rq, together with all bead masses and the thermostat
temperature are set to unity. Comparable to Laradji and Kumar
(2004) parameters are chosen as g =3, 7; =9/2, k= 100ksT /13,
lo = 0.451’0, ayr = awr = ZOOkBT, whereas aAww = ayy =daT = adwH =
25kgT. Here, W, H, T refer to water, lipid head and lipid tail beads,
respectively. Lipids are represented as linear chains HTs;. Two
types of lipids that differ in the bending rigidity of their chains
(k3™ = 10kpT and k3™ = 30kgT) are considered. Integration of the
equations of motion is achieved using a velocity Verlet scheme
with time increment At =0.01 and periodic boundary conditions.
Membrane patches of the size 25ry x 25ry are relaxed via a
barostat (Jakobsen, 2005) for a period of 2 x 10> time steps. After
this period, the membrane is in a tensionless state and fluctua-
tions are recorded for 10° time steps with the size of the
simulation box being held constant. Intrinsic DPD units can be
converted to SI units by comparison of the typical membrane
thickness to experimental values, yielding ro ~ 1 nm.

2.4. Finite element approximation

The bilayer is represented by a continuous two—dirgensional
(2D) surface I' depicted by a parametric representation X (uq,us) :
U-T c R3, where U=[0,1] x [0, 1], corresponding to a membrane
patch of 12 pm x 12 um. By means of numerical studies Eq. (3)
will be investigated in detail using the finite element library
Gascoigne (Becker et al., 2012). Since here only first-order
derivatives are available, we discretize this fourth order PDE
in a mixed formulation (Brezzi and Fortin, 1991), with bilinear
finite elements.

Here, we shortly recapitulate the numerical approach adopted.
Letusassume 0=ty <t; < --- <ty_1 <ty =T is a discretization of
the time interval [0,T] into time steps T := tm41—tm, Which are

possibly variable. Further let us assume I'? is a conforming quad-
rangulation approximating I", where I'! = Ujl.: 1 7; and {‘71#:1 is a
family of mutually disjoint open quadrangles. We define the finite
element space of globally continuous, piecewise bilinear elements
by VU= (e CIR): y; is bilinear vj=1,....J) cH'(IM',R).
For scalar and vector valued functions f,g € > we introduce the 2
inner product (.,.> over I'? as <{f,g> = [n(f-g) dw, where f - g
denotes the usual inner product for scalars and vectors. Approxima-
tions H of the mean curvature H, K of the Gaussian curvature K and
of other geometrical quantities concerning I" are defined following
the ideas of Barrett et al. (2008).

To reformulate the fourth order PDE (3) in a weak formulation
using only first-order derivatives, we follow the idea of Elliott
et al. (1989) introducing an additional variable substituting the
chemical potential. This leads to the following discrete approx-
imation of Eq. (3): for m>0, find ¢™*"', Y™+ ¢ V(I'%) such that

¢m+l_¢m
<,w> =LK VY™V Yy we v (10

Tm

and

vty = (G 0 Ho@ P ) 458 (V" Y )

—<{K(P™)(H—Ho(¢" DHo' (¢™)+ K6 (9™K +Ef (¢™) >
Vi e V(I 1n

hold.

3. Results
3.1. Microscopic scale—dissipative particle dynamics

Previous DPD studies on binary lipid mixtures have focused
mainly on phase separation phenomena (Kranenburg et al., 2003;
Laradji and Kumar, 2004, 2005) or the influence of lipid length on
membrane stiffness (Illya et al., 2006; Imparato et al., 2005). Here,
we use DPD simulations to parameterize the relation between the
membrane’s bending rigidity x and the average local composition
¢ that enters the macroscopic continuum model. To do so, we
consider DPD membranes of varying composition for which we
determine directly the bending rigidity via the fluctuation spec-
trum of the bilayer. Since the Gaussian bending rigidity x¢ cannot
be measured directly (Siegel and Kozlov, 2004), we restrict the
analysis to the bending rigidity x. Indeed, for the chosen para-
meter set, the two lipid species form a well-mixed, tensionless
homogeneous membrane (Fig. 3) that is subject to thermally
excited undulations.

Based on the (linearized) Helfrich energy (1), a Fourier analysis
of height fluctuations h(x,y) predicts the widely used relation
between the Fourier spectrum hq of the membrane height in
wave modes ¢, the bilayer’s macroscopic bending rigidity x and
its lateral tension # (Seifert, 1997)

kBT

A(xq*+ng?)’ 12

~2
< ‘hq| )=
with A being the projected membrane area and kzT denoting
Boltzmann’s constant and temperature, respectively. Due to the
action of the barostat, the DPD membrane is tensionless and
hence n =0. Fitting Eq. (12) to the temporally averaged Fourier
spectrum of our simulated bilayers (see Fig. 4) yields the bending
rigidity for a single simulation run. Varying the concentration
ratio of the lipid species in 10% steps (lipids having a stiffness
K™ = 3Kk3™ = 30kpT), yields the desired relation x(¢).

To reduce uncertainties, we averaged x for each ¢ over 10
independent simulations and further determined the standard
deviation of the mean (Fig. 5). As a result, we observe that the
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Fig. 2. Experiment and mathematical model. A: experimental curvature dependent phase separation in corrugated membranes (reprinted with permission from
Parthasarathy et al. (2006), © 2006 American Chemical Society). B: simulations of the mathematical model coupling curvature with lateral phase separation. High
curvatures induce an ordering, whereas phase separation on small curvatures appears randomly.

Fig. 3. Typical DPD simulation snapshot with (¢ > =0, i.e. a 1:1 ratio of lipid
species A and B. The size of the patch corresponds to ~ 25 nm x 25 nm (cf. main
text for details on the conversion from DPD to SI units). The simulation setup
produced stable membranes in a tensionless state with thermally excited
undulations. Blue and red spheres indicate lipid headgroups corresponding of
lipids A and B, respectively; hydrophobic lipid chains are depicted in yellow. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

bilayer’s bending rigidity interpolates sigmoidal between the two
limiting cases (¢ = + 1) in which only one lipid species is present.
Starting from a pure bilayer composed of soft or stiff lipids only
(ie. ¢=—1 or ¢ =+1) the addition of a small amount of the
second lipid species leads only to minor changes in the bilayers
bending rigidity. Only for comparable amounts of both lipid
species a considerable deviation from the limiting cases is seen.

3.2. Macroscopic scale—finite element simulations
Using the calibrated functional relationship x(¢) obtained by

the DPD studies on a small scale level, we study numerically the
lateral phase separation behavior in curved lipid bilayers on the

10°}
N.:D 2
, 10}
aE:r
Vv
10"}
100 I-‘ IO I'|
10 10 10
q [r;,z]

Fig. 4. The fluctuation spectrum of the DPD bilayers (symbols) is well fitted by Eq.
(12) (full line). The anticipated scaling of a tensionless membrane is also indicated.
For large wave vectors (given here as g2), the spectrum is governed by protrusion
modes that are not considered in the mean-field derivation of the fitting function.

large scale. Here, lateral phase separation is induced by gradients
in the macroscopic elastic moduli x,kc and Ho. The molecular
pendant is differences in stiffness and shape of two kinds of
membrane molecules.

In the first part, we compare the difference in dynamics and
minimum patterns of our upscaled nonlinear function x(¢) with
common linear approximations. In the second part, we qualita-
tively and quantitatively compare and analyze the impact of
gradients in each of the elastic moduli x, k¢ and Hy on lateral
phase separation.
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26} 1
24t :
22 1
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% 20}t ]
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Fig. 5. The bending rigidity x of the simulated bilayers varies sigmoidal with the
concentration of lipid species, ¢. Here, ¢ = +1 correspond to pure membranes
consisting only of stiff or soft lipids (A,B), respectively. Lipid stiffness is here
K™ =3K3™ =30k, T. Each data point reflects the mean of 10 simulations, error
bars denote the standard deviation of the mean. While « is barely affected by
small changes in the lipid composition, similar concentrations of both lipids yield
a massive change of the bilayer’s bending properties. Full line is a heuristic fit
(a+b tanh(—c¢) with a=21.3, b=4.0 and c=2.5) that may serve as a guide to
the eye.

Throughout this section we use the following setup: the space
discretization I'? consists of J=4096 quadrangles with periodic
boundary conditions for ¢™ and Y™. Since the Cahn-Hilliard
functional has a small length scale, mesh sizes have been always
chosen significantly smaller than the transition length. We
numerically have proved an experimental order of convergence
of 2 as the mesh sizes are reduced. To control if the used mesh
size is sufficient to describe realistic dynamics and patterns, we
have ensured that /=16 384 and J=65 536 quadrangles yield the
same results. The time discretization is based on an adaptive time
stepping scheme, starting with 7o = 0.3 s. (Since available experi-
mental data do not contain the full parameter set necessary to
parameterize our model; some parameter values have to be
estimated.) We have used a stochastically disturbed initial dis-
tribution ¢°=@(t=0) of total average ($°> =&° over the
domain. To assure the comparability of different simulations,
always the same stochastically perturbed initial conditions have
been used. Additionally, we have set: & =119.47kgTum=2,
¢=0.133 um, L, =3.87 x 10~* um* s~ !(kT)~" and for the double
well potential we have chosen f(¢) = %((f)z—l)z. If not otherwise
stated, we have considered Hf = Hf =0 pm~'; k* = B = 25.2k,T
and kA =8 =-252ksT ensuring the stability restriction 0>
K¢ > —2K (Schwarz and Gompper, 2002). This set of parameters
implies the following molecular membrane diffusion coefficient
D=Ly6=1.15x10"""cm?s™! as well as the following ‘sharp’
line tension given by ¢ =6 ¢ = 15.84kgTum~—! (Kwak, 2007). (Odd
numbers result from the conversion of abstract nondimenziona-
lized model parameters into physical values.)

3.2.1. Parameterized model vs. linear approximations

Although the idea of coupling macroscopic elastic moduli with
the lateral composition of lipid bilayers has been used in the past,
the exact nature of these dependencies remains still unrevealed.
Different approaches reaching from phenomenological coupling
terms (Allain and Amar, 2006; Chen, 1999; Jiang et al., 2000;
Taniguchi, 1996; Yin and Lv, 2008) to linear (Li et al., 2006) and

nonlinear (Lowengrub et al., 2009; Wang and Du, 2008) functions
K(¢),kc(¢p) and Hp(¢) have been used.

For the first time, a multiscale approach is proposed in this
study. As an example the bending rigidity x of the continuous
model has been parametrized via DPD experiments. We find that
K(¢) has the form of a tanh-function (see Fig. 5) rather than a
simple linear relationship. In order to get an impression of the
importance using more realistic upscaled data, we have per-
formed comparative studies: considering on the one hand the
nonlinear (upscaled) function

Kan($) = a+b; tanh(—¢), 13)
and on the other hand the linear case commonly adopted
Kin(¢) = a+ba . (14

In Fig. 6 the corresponding results are shown. The constants
a=#*+x8)/2, by =x*—xB)/2 tanh(1) and by = (K*—KF)/2 are
chosen such that in both cases x(1) =4 =17.3kgT and x(—1) =
KB =252kT is ensuredjurthermore, in both simulations we use
the fixed geometry I' = X (uy,u;) = 0.625 sin (67u;)pum (cf. Fig. 2B)
and the initial conditions < c/)o > =0, i.e. a 1:1 mixture of both
components. The prescribed geometry ensures K =0 such that x¢
does not play any role for this specific geometry.

We observe in early states of phase separation in the nonlinear
case of k a stronger dependence on the curvature (Fig. 6C) than in
the linear case (Fig. 6A). This is likely to be a consequence of the
steeper gradient of x4, compared to kj;, close to the initial value
<</>0> =0. Since the breakage of already formed cross-connec-
tions between the phases is energetically costly (it would elon-
gate the overall size of the boundaries) early sorting effects can
trap the system into different minimum patterns, corresponding
to local minima of the free energy (2). This becomes obvious in
comparing the minimum configurations Fig. 6B with Fig. 6D.

Choosing initial conditions < ¢°> away from zero, e.g. having
much of one component and less of the other, does not result in
different local minimum configurations (results not shown). Since
in that case circular phases of the component with the smaller
amount are quickly arising and stable cross-connecting phases (cf.
green circular marks in Fig. 6A) are missing.

3.2.2. Gradients in elastic moduli and lateral sorting

So far we have only studied the influence of lipids with
differences in the bending rigidity x(¢), which has previously
shown to induce lateral sorting. In the following, we also
investigate the impact of spatial gradients in the spontaneous
curvature Ho and the Gaussian rigidity rc. Especially the latter
has not been studied so far in the literature. To do so, the moduli
are again assumed to be functions of the order parameter ¢. Due
to our results from the DPD studies we assume that the rigidity
functions x(¢) as well as x¢(¢) have the form a+ b, tanh(—¢). For
the spontaneous curvature, we use the linear function
Ho(¢p) =a+by¢. In further studies one should of course try to
identify x¢ as well as Ho from DPD studies or other molecular
approaches. Egrthermore, for the following simulations we have
chosen I' = X (u,uy)=0.75 sin(4nu,)sin(4nuy) pm (cf. Fig. 7L)
and <¢>0> =-0.6.

In the following, the notation Ah depicts the difference
\hA—hB\ in an elastic modulus h e {x,x¢,Hy} between the two
species A and B. Interestingly, varying independently all three
elastic moduli in our simulations we observe in principle the
same effects: the stronger Ah the faster phase separation occurs.
This can be observed by an early and faster decay of the Cahn-
Hilliard part F» of the free energy from the instable initial
conditions (cf. Fig. 7A-C). Plotting the time T,,;, required to
achieve the minimum against Ah yields in all cases an exponen-
tial decay of T,;,(Ah) (cf. Fig. 7D-F). The exponential fit leads to
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Kiin(9) = a + by
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Fig. 6. Different minimum patterns depending on the form of the function x(¢). A-B: « is linear; C-D: « is a form of a+ b tanh(—¢). Note that early sorting in (A) is less
curvature dependent than in (C), showing cross-connections between the red domains (green circular marks). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

a good approximation for physically reasonable values, but for
significantly larger values we observe that T,;, decays even
stronger, approaching the axis without any offset (as used in
the exponential fit).

In the case Ax=AKx;=AHy=0, phase separation occurs
randomly (results not shown). Considering gradients in each of
the moduli distinct curvature dependent phase separation pat-
terns can be observed: choosing nonzero Ax; induces phase
separation of the component with the lower absolute value of
K¢ in areas with high negative Gaussian curvature (Fig. 7H). Doing
the same with Ax we observe phase separation of the component
with the lower bending rigidity in regions with high mean
curvature (Fig. 7G). Choosing Hy <0 while Hg=0 (causing
AHy # 0) drives ¢, to regions allocating this curvature (Fig. 7I).
Interestingly in most of the cases these minimum patterns are
only metastable, showing only slight changes in the size of the
domains for a long time after T, but resulting very late
(t > 300 min) in different minimum patterns with less and larger
domains (cf. Section 3.2.4).

The observed minimum patterns (cf. Fig. 7G-I) differ signifi-
cantly—each minimum pattern is the optimal pattern for the
considered corresponding elastic modulus. Therefore, it is abso-
lutely necessary to consider all three effects if one is interested in
biological applications, since neglecting one part could lead to

completely different minimum patterns and thus different biolo-
gical interpretations.

3.2.3. Curvature gradients and lateral sorting

Curvature depending sorting in membranes appears to be the
result of the interplay between spatial gradients in the elastic
moduli and in membrane curvature (Parthasarathy et al., 2006).
In the previous section we have varied the strength of spatial
moduli gradients, keeping the membrane geometry constant. In
this section we vary the membrane geometry (i.e. the strength of
curvature gradients) keeping differences in the elastic moduli
constant. Corresponding results are shown in Fig. 8. In order to
quantify curvature gradients in mean curvature H _)and Gaussian
curvature K, we deﬁne_)H;mxf max {\VF[H(X)]\ : X eI} as well
as Kiq = max{|V'[K(X)]| : X eT). Since these are global quan-
tities, all following relationships in this regard are inherently
global.

First, we fix for each elastic modulus h € {x,k¢,Hp} a certain
difference Ah##0 (while choosing vanishing differences in the
other two moduli) but varying the corresponding curvature
gradient G, € {Hp0xKimax}- We observe in all three cases, the
stronger G}, is the earlier and faster phase separation occurs
(cf. Fig. 8A-C). Plotting the time to the achievement of the
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and AHj # 0 (CF). A-C: the decay of the Cahn-Hilliard energy F. in time. The stronger G, is, the earlier is the observed decay of F,. D-F: the time up to the metastable
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references to color in this figure legend, the reader is referred to the web version of this article.)

minimum T,,,;, against the strength of G}, yields in all cases an
exponential decay of Tpin(G},,,) (cf. Fig. 8D-F). In detail we have
set Ax= 0.02kgT and Axc=AHo=0 in Fig. 8A and D;
Ak =0.02kgT and Ax=AHp=0 in Fig. 8B and E as well as
AHy =0.08 um~! and Ax = Ak =0 in Fig. 8C and E.

Hence, increasing differences in elastic moduli as well as
increasing gradients in membrane curvature accelerate the lateral
sorting process exponentially.

3.2.4. Parameter interplay and its influence on the stability of
sorting patterns

As mentioned above, most of the observed curvature depend-
ing patterns appear to be metastable: if differences in elastic
moduli and curvature gradients are strong enough, a periodic
symmetric pattern appears at t = T,;,, Which loses at t = Ty its
symmetry by fusing to less and bigger domains. The latter can be
observed by a jump in the free energy F, (cf. Fig. 9A). This process
continues stepwise; the assumed stable minimum pattern is built
up of one big domain. To quantify the stability of a curvature
modulated pattern, we define Ty ;== Tmax—Tmin Which equals to
zero if no curvature depending sorting takes place. In order to
quantify the chemo-mechanical disposition for curvature modu-
lated sorting subject to line tension and modulus contrast, for

each h e {k,xg,Hp} we introduce the elastic parameter ;(Q, =Ah/o

(Rozycki et al., 2008). We systematically investigate the influence of
gradients in elastic moduli, line tension and curvature gradients on
the stability Tsqp. To do so, for each modulus h and the corresponding
curvature gradient G, € {H},4.K},ox} we have performed >25
simulations with different parameter sets (Gj,,.x%). Our results
clearly show, that increased values for G, as well as for y/ result
in an increased stability Ty, (cf. Fig. 9B-D).

For each h e {x,k¢,Ho} we present phase diagrams, showing
regions with at least metastable curvature modulated pattern
formation (CP) and curvature independent sorting regions (CIP)
relying on xf and the corresponding Gj,g, € {HpgxKinax} (cf.

max
. . zh
Fig. 9E-G). To do so, we assume that the relation xf, =f (G,

describing the transition between CP and CIP regions can be
approximated by fi(Giuax) = a/Ginax+b/(Ginge)? for a,b e R~ o. This

is physically motivated by the assumption that the graph(f?r)
asymptotically approaches the axes. Based on our numerical

simulations, heuristic fits yield rough approximations of f ’:r (blue
spotted lines in Fig. 9E-G). (Fits are based on the least square
method, using simulations within the G},,,—y"-space, showing
small values Ty, > 0.) Especially it holds f}.(H,,,) = 0.0043/ H,, .. +
0.0052/(H,, )2 fXe(K;,.) =0.0048/K/. . as well as flom )=
0.00023/Hj,,. In future experiments these functions can be used
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4

1o and K, ., respectively, as well
as with growing corresponding elastic parameter X’g, = Ah/c (in (D) the value T4 has been catted at Ty, = 2400 s due to limited simulation time). E-G: phase diagrams as
a function of the elastic parameter y,, for each elastic modulus and the corresponding curvature gradient. CP: region with (metastable) curvature modulated sorting, CIP:
region with curvature independent sorting. Green x-marks: simulations with T, >0, red +-marks: simulations with Ty, =0. Blue dotted line: heuristically fitted
transition line of the kind a/x+b/x?. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to estimate if curvature modulated sorting will occur. This is the
case namely if for at least one elastic modulus h the relationship
x> f1(G,) holds for the corresponding value G, € {H, K.

max» max}'

4. Discussion

In the present paper, we have outlined a continuous multiscale
model for curvature induced lateral sorting in biological mem-
branes. Passive lateral organization in membranes is involved and

actually is a premiss for various cellular processes, such as
budding (Baumgart et al., 2003), signaling (Sugar et al., 2001)
and sorting (Lee, 2005). Furthermore, it is assumed to be a
condition precedent for the biogenesis and maintenance of
cellular organelles itself (Mullins, 2005). Thus it is critical for
the function of each biological cell. The presented model enables
to study the impact on dynamics and minimum patterns if
two membrane components differ in at least one of the macro-
scopic elastic moduli. Here, we have studied the influence of
curvature gradients in interplay with the bending rigidity x, the
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spontaneous curvature Hyp and the Gaussian rigidity k. The latter
has not been studied in the literature so far. In terms of molecular
parameters the different elastic moduli reflect differences in
stiffness and shape of the corresponding molecules.

Differences in the elastic moduli have been experimentally
used to study the interplay between molecular properties and
curvature (Baumgart et al., 2003; Heinrich et al., 2010; Kamal
et al., 2009; Parthasarathy et al., 2006; Pencer et al., 2008; Roux
et al, 2005; Tian and Baumgart, 2009; Yoon et al., 2006).
Furthermore, various theoretical continuous approaches have
already been used to study the coupling of different moduli with
curvature (Allain and Amar, 2006; Chen, 1999; Jiang et al., 2000;
Li et al., 2005; Lowengrub et al., 2009; Taniguchi, 1996; Wang and
Du, 2008; Yin and Lv, 2008; Elliott and Stinner, 2010). Despite of
this effort, four points have not been studied so far (at least up to
our knowledge):

(1) Parameterization of the presented continuous model directly
from the molecular scale.

(2) Studies of the influence of differences in the Gaussian rigid-
ities on lateral sorting.

(3) Phase diagrams estimating if and how stable curvature
depending sorting will occur.

(4) Proofs concerning the existence and uniqueness of a solution
for presented models.

In this study we have addressed these four gaps.

First of all, we have studied the influence of the detailed
parametrization, i.e. the functional dependencies used in the
model. To do so, we have used DPD to determine the dependence
of the bending rigidity x(¢) on the composition of a binary lipid
bilayer. We have restricted ourselves to lipids of the same length
and type yet varied the lipids chain stiffness. This approach e.g.
reflects a flexible poly-cis unsaturated membranes and stiffer
saturated/monounsaturated phosphatidylcholine (PC) lipids
(Rawicz et al., 2000). Furthermore, this case is of special interest
for the finite element simulations, because the calculation of the
free energy requires microscopically well-mixed system. As a
result, we have found that the bending rigidity is only weakly
affected when minor amounts of a different lipid type are
introduced. For intermediate lipid concentrations, i.e. roughly a
1:1 ratio of lipids, however a strong deviation from the limiting
case of pure membranes has been observed. Indeed, x(¢) is best
described by a sigmoid curve, e.g. having a tanh-form.

It has been previously shown that the functional relationship
K(¢) can be nonlinear, depending on different molecular proper-
ties of membrane molecules (Brannigan and Brown, 2005; Illya
et al., 2006; Szleifer et al., 1988). In the macroscopic finite
element simulations, we have found that the steady state depends
strongly on the exact choice of x(¢). In Fig. 6 the dynamics and
minimum configurations of two simulations are shown compar-
ing the use of a linear bending rigidity r;,(¢) with the nonlinear
case Knn(¢). The latter has been determined directly from DPD
studies. Although the global energy F of a given lateral distribu-
tion ¢ on I is the same for the two cases Kj,,Knn, We observe
strong differences in dynamics and minimum patterns. We
postulate that this effect is due to differences in (d/d¢)x;;, and
(d/d @)K ann, leading locally (and very early in time) to differences
in the strength of curvature dependent sorting. This again traps
the whole system in completely different minimum patterns.
These results emphasize the importance of dynamics and para-
meters in mathematical modeling. That is, even if only minimum
patterns (with a certain set of parameters) are studied, one should
carefully check, the dependence of the minimum configuration on

initial conditions as well as the robustness with respect to
parameter variation.

Furthermore, the impact of differences in each of the macro-
scopic elastic moduli on lateral sorting has been investigated
using macroscopic finite element simulations (cf. Fig. 7). Our
results suggest that each of the moduli k¥, Hy and kg has a
comparable impact on dynamics and curvature dependent pat-
terns: in the parameter regime studied the decomposition time
decreases roughly exponentially with the gradient of each elastic
modulus. The same effect can be observed by fixing the difference
in each elastic modulus and increasing corresponding curvature
gradients (cf. Fig. 8). Additionally, each gradient can lead to a
distinct minimum pattern, influenced by the mean curvature or
the Gaussian curvature of the given geometry, respectively. These
findings suggest that the Gaussian rigidity plays an equivalent
role in lateral sorting, as the other two moduli, which are well
known to influence lateral sorting (Allain and Amar, 2006;
Baumgart et al., 2003; Chen, 1999; Heinrich et al., 2010; Jiang
et al., 2000; Kamal et al., 2009; Li et al., 2005; Lowengrub et al.,
2009; Parthasarathy et al., 2006; Pencer et al., 2008; Roux et al.,
2005; Taniguchi, 1996; Tian and Baumgart, 2009; Wang and Du,
2008; Yoon et al., 2006; Yin and Lv, 2008).

The presented results agree with the following molecular
intuition: given an arbitrary curved membrane containing a stiff
and a flexible component, it is energetically favorable for the
more flexible component to stay in curved regions, independent
of the sign of the principle curvatures. To account for each kind of
curvature, we have to consider both, gradients in the bending
rigidity and in the Gaussian rigidity (cf. Fig. 1).

These findings are supported by the experimental observation
that differences in bending rigidities usually coincide with differ-
ences in Gaussian rigidities (Semrau et al., 2008). The importance
of the elusive Gaussian rigidity in biological processes has been
neglected for a long time. Only very recently theoretical studies
investigate its influence on membrane shapes (Baumgart et al.,
2005; Brannigan and Brown, 2007; Das et al., 2009), fusion
(Siegel, 2008) and lateral diffusion (Yoshigaki, 2007) considering
either a homogeneous membrane composed of only one compo-
nent or - in the case of two component membranes - domains
composed of different molecular species have been assumed to be
lateral immobile. In experiments investigating lateral sorting,
effects due to Gaussian rigidities are also generally assumed to
be negligible (Yoon et al., 2006). This may be caused by the fact
that on the one hand x; cannot be measured directly in experi-
ments (Siegel and Kozlov, 2004) and on the other hand the
Gauss-Bonnet Theorem (stating [(K dw = const in homogeneous
materials considering closed membranes) may have led to a
misunderstanding, that the effect of K is negligible in hetero-
geneous membranes as well. However, the results presented in
this study show that the impact of inhomogeneities in Gaussian
rigidities have a comparable strong effect on lateral sorting
compared with the other two moduli, the bending rigidity and
the spontaneous curvature.

The results presented in Fig. 9 show that the appearance and
stability of curvature modulated patterns strongly depends on the
exact choice of line tension, curvature gradients and moduli
gradients. The question if beside metastable patterns also stable
curvature modulated patterns exist, has to be traced by methods
of rigorous stability analysis and is far beyond the scope of this
paper. But the presented phase diagrams and corresponding
approximations of transition boundaries in this study allow to
estimate at least, under which conditions curvature modulated
sorting takes place.

In addition to the computational studies, we have outlined
the proof of existence and uniqueness for the macroscopic
model yielding the well-posedness and the boundedness of a
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solution. Thus we have ensured that the numerical simulations
indeed provide the approximation of the unique solution of the
considered problem. The structure of the nonlinear function f and
the assumptions on k, Hp, K¢ guarantee the global existence of a
solution in contrast to the existence of a blow up in finite time for
the Cahn-Hilliard equation choosing different functions f, see
Elliott and Songmu (1986).

To sum up, an extended continuous multiscale model for
curvature modulated sorting in biological membranes has been
proposed. Particularly the model enables to study curvature
depending lateral sorting of different components as a result of
differences in their mechanical properties (such as the shape and
the stiffness). The model is given in terms of a nonlinear PDE of
fourth order, the existence of a unique solution has been shown
analytically. Furthermore, we have presented simulations using a
finite element approach and have derived detailed functional
relationships from the molecular level using DPD studies. Our
simulations show that gradients in the three elastic moduli result
in distinct metastable minimum patterns significantly different
for each modulus, and that the decomposition time decreases
exponentially with increasing difference in the modulus or
corresponding curvature gradient. Additionally we have shown
that the stability of curvature modulated patterns increases with
increasing moduli- or curvature gradients. Presented phase dia-
grams allow to estimate if curvature modulated sorting will occur
for set of geometry and elastic parameters.

In the future, all these findings can help to understand, predict
and interpret more precisely experimental observations concern-
ing curvature dependent lateral organization and its stability in
biological membranes.
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Appendix A

In this section we present the details on the proof of existence
and uniqueness of a solution of the problem (4)-(6), stated in
Theorem 3.

Proof of Theorem 3 Existence. To show the existence of a weak
solution of (4)-(6) we use the Galerkin method and look for a
function qﬁk(t,x) = ;f: 1 oc{‘(t)w,-(x) satisfying Eq. (8) and initial
condition (/)"(0) = ¢,. Using the properties of the basis {w;}; . We
obtain that for each ke N the function ¢>" is determined by the
solution (oc’l‘(t), .. cx’,ﬁ(t)) of an initial value problem for a system of
ordinary differential equations

d L2 2 ol <&
=L /F 4" w;? deo—L /F v R(Z ok (OWi(0,H.K

i—1
r
xV' w; do,

0‘;"‘(0) =(PoW)py J=1,...k (15)

The right hand side in (15) is locally Lipschitz-continuous
in cx]" and a unique local solution exists. The estimate
esssup.) HqﬁkHLz ry < C, proved in Lemma 4, implies the bounded-
ness of (o, ... ,oi) and the existence of a global solution of (15).

From a priori estimates, shown in Lemma 4, follows the existence
of a function ¢ e [%(0,T; H>(I')) "H'(0,T;L*(I')), ¢ e L®°((0,T) x I,
and a subsequence (denoted again by {d)"}) such that qﬁkécl) in
[(0,T; H3(I')), 6;p* —d¢ ¢ in [*((0,T) x T), p* 2 ¢ in L®((0,T) x T') as
k— oc.

Using Lions-Aubin Lemma, Lions (1969), and compact embed-
ding of H*(I') in H'(I') (Hebey, 1996, p. 24), we obtain the strong
convergence ¢*— ¢ in [2(0,T;H'(I') and ¢*—>¢ ae. in (0,T)x I’
as k—oo. Due to ¢ e H'(0,T; L*(I')) we have ¢ e C([0,T]; L*(I')) and
$*(0)> ¢(0) in L*(I') implies ¢(0) = ¢, in L2(I).

Due to assumptions on «, Hog, k¢ and boundedness of d)" we
obtain that R, 6uR, 04R and okR are continuous and bounded. The
convergence of ¢ implies R(¢*,H,K)—R(¢,H,K), 6¢R(¢k,H,K)—>
0pR($,HK), 0uR(*H,K)—ouR(p,H.K), oxR($"H,K)—dcR(¢p,H,K)
ae. in (0,T)xI" and the weak convergences R(d)",H,K)A
R($,HK),  8,R(P" HK)—dsR(p,H,K), ouR(P"H,K)—3uR(¢p,H.K),
AR(¢* H,K)—axR(¢,H,K) in L*((0,T) x I') as k— oo.

Now for fix meN, m<k, we take ve C'([0,T];H*(I')) of the
form v= 3", di(t)w; as a test function in (8), where d; are
given smooth functions. Then we integrate Eq. (8) with respect
to t and pass to the limit as k— oo. For the linear terms we can use
the weak convergence of qﬁk directly. The nonlinear term we
rewrite as

/0 ' /r (@3RG  HIOV" ¢* +auR(¢* H KV H
+ kR  H IOV KOV v do dt

_ /O ! /F (@sR@* HKNV 5~V )V v
+0sR(@  HIOV ¢V v) dov dt

T
+ / / (OuR(" H,K)V H+0kR(* H KV )V v do dt.
0 r

In the first integral we use the strong convergence of qbk in
L2(0,T; H'(I")) and boundedness of 6,R(¢",H,K), in all other terms
the weak convergence in L*((0,T) x I') and the embedding of
L®(0,T; H3(I')) in L*(0,T; W*(I')) for dim(I') < 3 are applied. Using
now the fact that all functions v of the considered form are dense
in L[%(0,T;H*(I')) we obtain that ¢ is a weak solution of the
problem (4)-(6). O

In the next Lemma, we show the a priori estimates which are
essential for the proof of existence and uniqueness. Additionally,
these estimates imply the boundedness of a solution of (4)-(6).

Lemma 4. Any weak solution of (4)-(6) satisfies the following a
priori estimates:

r I'\2
Il 0.1t 1y 147 Dl 0,12y + 1AT P P20 1yey < C
10rpl 201y < Co
I
”d)HL’C((O,T)xF) <C, IV ¢HL2(0,T:L°“(I—)) <C, (16)
where C is a universal constant independent of ¢.

Proof of Lemma 4. Similar ideas for the proof of a priori
estimates for the Cahn-Hilliard equation, defined in a bounded
domain of dimension less or equal three, have been considered in
Elliott and Songmu (1986). However, a generalization of this proof
is necessary due to the nonlinear curvature-dependent terms in
Eq. (4), defined on a smooth Riemannian manifold I'. First, we
show the estimates for the approximation sequence {¢>"}. Then,
the convergence of a subsequence of {qbk} and the lower semi-
continuity of norms will imply the corresponding estimates for ¢.
In order to obtain the estimate for V'¢* in L™(0,T;[*(I),
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we consider
P(¢) =
and the free energy

B0 = 1 [ (P4 378 V197 Jdon
with

E<¢>"> - / RS H K0 + 52V ¢V 2p%) doo. 17)

SR NH—Ho(# + K6+ (),

The assumptions on f, k, Hy, g, H and K imply

P& = C(|¢]*=2| ¢~ &[>~ |¢]-1).

Using Eq. (8) and zero-flux boundary conditions, we rewrite the
integral in (17) by

/ RGN =G AP+ ARG —6 & AT (6 (A7)
+A R(¢ ) dw
—/F(\VFR(qSk)\2—6£2VFAF¢"VFR(¢")+02§ (VT AT g2
68V ATV R dot [ ROV R@Y

~GEV AT v-GE AT (VI RV AT ) - v) de
/ G EVI AT GV R dov < 0.

Here, we have used the shorted notation R(¢k) for R((/)k,H.K). Thus,
(d/dt)E(¢*) <0 and

1. 1.
/ (ioéz\vr¢k\2+P((/>")>dw < / <§a§2\vf 5\2+P(¢g)> do.
r r

Using the structure of f, the assumptions on k, Hy, K¢, the estimate

\u|+u2+\u|3 < du*+Cs, the regularity of initial conditions, and

the embedding H(I") c L*(I') for compact T" with n=dim(I') < 3,

see Aubin (1998) and Hebey (1996), we obtain that ng is

uniformly bounded in H'(I') n L*(I") and

sup/ (VI $* P+ ¢k dw < C.

©o,nJr

Then, the Sobolev embedding theorem (Aubin, 1998; Hebey,

1996) implies

16" 16 (8) < Cllp Il (D) < C, £ [0,T]  for n<3

and

1"l 0 759y < C- (18)

Due to zero Neumann boundary condition, the smoothness of I,

and Green’s identity we have for some 0 >0

r 1

v qS HLZ(I') < IIqS HLz(r)HA (/) ”Lz(r) <ola” (/) I\Lz(r) EH(I) ”Lz(r).

(19)

Additionally, the regularity theory for the Laplace equation with
zero Neumann boundary condition, defined on a smooth Rieman-
nian manifold (Taylor, 1996, p. 344), implies the estimate

Y212y < COAT G 2y + 1K 2 ) (20)

We consider now v = gbk as a test function in (8) and integrate it
with respect to time

/ /( ot P+ L5 2| A7 2 +L¢&\(/)"|2\VF¢"\2> doo dt
_ roake oy TP
- /0 /r Ly (2K (@) H—Ho( DHy(9)

P'(¢*) =R(¢* H,K),

— K GIHHo( )P K+
+ KA NH—Ho(@ D39 )~ Hy( @) |V ¢ dov de
b [ L@V Hr @ N HHo @)V H
0o Jr
—KkL(P VKV $* do dt. 21

Using the assumptions on f, k, Hp and k¢, on the right hand side
we obtain the terms of the form

I = K k k2 V[‘ k12
1 /0 /F(M)\HM +0)| V! ¢
+(| ¢8|+ |0 +O| V! ¢ doo dt,

that can be estimated by

t r k2 K k2 k|6
11gc/0 /I‘W | dwdt+C/O /I‘(\(b 24 16%%) doo dt
T 13 2/3
+c/0 (/F(\(/)"|3+\¢k\6)dw> (/F\Vrd>"|3dcu) dt+C
. 12 , , 1/6
I k2 k6
SC/O </F\A "] dw) (/r\(b\ dw)
1/3
x</(\(/>"|3+\¢k\6)dw> dt
r
+C5,/0 /F(\¢k\6+\¢"\3+|qb"\2)dwdt
+or /T/\Ar¢>k|2dwdt+c
<Cosup|\¢ 16 (r)+5/ /\A O doo de +-C, 22)

where 0 =L4,6§ /4 and 6=L4,6§2/2. Here, we have used the
estimate (20) and the Gagliardo-Nirenberg inequality (Aubin,
1998, p. 93), given in the general form by

IV YVl gy < CICVOY™ 0 1011 e 2+ CIV (23)

for velll) and (V)Y"vel'(I'), where (/m)<o<1,1/p=
j/n+a(l/r—m/n)+(1—o)1/q. In our situation, due to the estimate
(20) and the continuous embedding Lé(I") c L*(I") for compact T’
(Hebey, 1999, p. 33), the used Gagliardo-Nirenberg inequality
reads

IV @ i3y < CUATGM1HZ 1 12+ Clpils , for n<3.

(&) 12N L)

Applying the estimates (18) and (22) in Eq. (21) implies
g 1 . N
L[ Gald 7 Ls02 14047 451047 964 ) doode
T
< / /(5|Ar¢k\2+C5)dw dt.
JO r

Then, integrating the first term with respect to time and using the
regularity of the initial data we obtain the estimate

I Ik
1" < 0,112y 14" B N 20 712y =< C-

To show the estimate for (47)? qﬁ we choose v = (AF)Zqﬁk as a test
function in (8). As a basis of W, we can consider the eigenfunc-
tions of (47)? with zero Neumann boundary conditions. Then, due
to smoothness of ', it holds that ¢* e C*(T") (Taylor, 1996, p. 345,
379). Integration by parts and the boundary conditions (6) imply

L (Gadar ¢ P erpo21a 2 ) dooae
_ / / Ly A" RO HK)(AT )2 ¢ doo dt. 24)
0 r

Due to zero-flux boundary conditions and regularity theory for
elliptic operator of forth order (Taylor, 1996, p. 345, 379), we have
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that I(V")*¢* 2.y < COATY2 $ 112y + 1" 2. Then, using the
Gagliardo-Nirenberg inequality (23) we obtain the following
estimates:

1/12 ), 011/12
LA " L8

r ry2,,1/3 2/3
IV vl < Cli(4Y) UHLZ(F)HU”LG(F)+CHU\|LG(F),

r\2,,1/2 r,.1/2
< Cli(4") vHLZ(F)HV UI\LZ(F)+C\IU\\H1(F),
1/20,,,19/20
L2 18

IV Wl < CICATPVIZLS IV WIS+ Cllvl s

r\2. 14/9 r. .5/9
< CIAT VIS IV VIS 4+ Clvly .

forn=3: 1wl <ClA?v 2 w002 4 Clvls .

r
14 vl

. ry2
forn=2: Wl <Cli(4") vl vl +Clvis ),

1A s
(25)

Now, to estimate the right hand side of (24) we have to consider
terms of the form

12:/. /[(‘d)k‘+‘¢k|2+C)‘Vr¢k‘+(|¢k|+‘¢)k‘3)”(Al')2¢k‘dwdt’
0o Jr

I3= / /(|¢)k|+‘¢k‘2+c)(‘vF¢k‘2+‘AF¢’<|)|(AF)2¢I<‘ do dt.
JO JI

Using 19"~ o 15 < G, as well as 1V ¢"ll .« o 1.2y, < C, and the

correspondent estimates in (25) we can estimate the integrals I,
and I3 by

T 23
IZSCJ/ </(‘(j)k|6+‘d)k‘12)dw> ||Vr¢kufs(r) dt

o \Jr

e )
+5/ /‘(AF)Z(z)k‘Z dwdt+c5/ /(‘¢k‘2+|¢k|6)dwdt
0 r o r
Scd/ A", dt+5/ /‘(AF)Z(P"\Z do dt+C
0 o r

Sé/ /\(Ar)2¢k\2dwdt+c
o Jr

and

Is gc5/0 </r(\¢>k|6+\¢k\u+0dw)

(147 QA% IV GEI ) dt

o [ [ 1™ P dwdt<s [ [ (4720 do dt
+o [ [l dodess [ |ane do

T
+C(;/O (H(Ar)z(ka;_z/fr)+C)(H(AF)2¢"HL2(”+H(Ar)ngkl\f{fn—t—C) dt

1/3

sé/ /\(Af)zqs"\zdw dt+Cs.
0 r

Then, from (24), choosing ¢ = L¢&§2 /4, applying the integration
by parts in the first term and the regularity assumption on the
initial data, it follows

/\Ar¢>k(r,x)|2 dw+/ /\(Ar)2<1>"(t,x)|2 dodt<C forall te[0,T].
r o Jr

This estimate and Sobolev embedding theorem (Aubin, 1998;
Hebey, 1999) imply

16 =01y < Co IV M2 g pymryy <€ for dim(N <3.  (26)

We choose now v = 6t¢k as a test function in (8) and obtain after
integration by parts and using the boundary conditions (6)

. )
/ /<at¢’<|2+wat|f¢“) doo dt
JO JI' 2

T
—_ / / Ly VIR  H OV ¢ doo dt
JO r

o
= / / Ly ATR(¢" H K)o doo dt.
0 r

The structure of f, assumptions on x, Hp, K¢, boundedness of gbk in
(0,T) x I', Young inequality and the estimates (25) imply

T L.G
T e G A A N o
0o Jr
SC/ /(‘Vr(/)k|2+‘VF(/)k‘—i—‘Ard)”—O—])af(/)kd(Odl'
0o Jr

T
< C(S/ /<|(AF>2¢"\2+WF¢’<|2+ AT %12 +1) doo dt
0 r

+5/ /\0t¢"\2dwdt.
0o Jr

Then, by integrating with respect to t in the second and third
terms and using the estimates for VF¢>" and AF¢", as well as the
regularity of the initial data, it follows

T
/ /\6[¢k\2dwdt+sup/\Arqs"\zdwsc.
o Jr ©nJr

Passing to the limes as k— oo, using the weak convergence of a
subsequence of {d)"} to the solution of (4)-(6) and the lower
semicontinuity of norms, yield the estimates (16) for ¢. O

Proof of Theorem 3 Uniqueness. Here, we show the detailed
estimates for the last integral in the equality (9). First we write
the considered integral in the explicit form

T
/ / V' R(by)—R )V (y—by) doo dt
0 r
T 1 1 Vi I 2
= [ [0 @@V 1H-Hot)
JO JI'
1
+ 5 )V 1 (H=Ho(1))* = V" 5 (H-Ho($))°)
HO ) (V' by (H=Hol D Hohy)+ 5 V' (H=Ho()?)
+ K (p)(V ¢y (H—Ho(dp1)Hy (1)~ V" o (H—Ho($2))Hp (1))

1
+ 5 ($2)V" (Ho(h1)~Ho(2))(Ho(p1)+Ho(h2)~2H)

+((p1)~ (o) V' (H—Ho (b1 )Hy (b))

+1(2) V! (H—Ho($1)(H(1)—Hp(h)
+(Ho(1)~Ho(dp)Hy () + (1(p1) () V' K
FRUPDV 1=V dpo)K+(15(h1)—K () V' K

+ @OV 1=V o)+ (b))~ (@)Y ] V' (b1 =) dev .

The last two terms can be rewritten as

T
/0 /F F SOV (1 —2)+ (D) —f D)V )V (1 —by) deo dit

9 (T o
3| [GHE-DIV @G-
+3(T—9DV' §, V! (1 —by) do dt.

From the assumptions on k, Hy, K it follows that «, k¥, k”, K¢, K,
Ho, Hy, Hjj are locally Lipschitz-continuous. Thus, the boundedness
of ¢, and ¢, implies the estimate

Ly /0 /F V' Rp)~R(d )V (1 —by) dev dt

<€ [* [Ad1=0al( T 911+ V/ 621V (01—
0 r
+[ VI (1) P dov dt.
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Applying Young inequality, the estimate (19) and the last esti-
mate in (16) we obtain

/; ./r‘(pl_d)z‘(wr‘blH [V )| V! (1~ )| doo dt
S&fé,lg./rw’]"ﬁz‘z d“’,/or (Sl;PIVth |2+SLFIDIVF¢2\2)dt
+52/0 /FIAF(<1>1—¢>2)\2(1@ dt+C52/O /Fw)l_(/)z‘z do dt
<o fgg/r\d’rd)z\z dw+/or/r(52|AF((/>l_¢z)‘2

+Cs, | 1=, | doo dt,
where 0<d; < fand 0< &, <Ly6&%/2. O

Appendix B

In terms of a local parametrization X:U c R"— I of a smooth
Riemannian manifold I" the basis vectors of the tangential space

are given by au,)_() (using a shorter notation a,»>_<>), wherei=1,...,n
and u=(uy,...,u;)eU. Then the tensor (g,-j)}fj 1, with g;=

6,-)_() . 6]-7. defines the first fundamental form or a local represen-
tation of the Riemannian metric on I" and (gl); ;j is the inverse of
the first fundamental form. The second fundamental form (b;);; is

given by b;; = —6,7( . ajﬁ, where 7 is the unit normal vector on I'.
In local coordinates the volume element (surface measure) is
given by dw=./gdu;---du,, where g=det(gy);;; the surface

gradient is defined as V' f = Z,-ng"fajfai)_(); for each @ = z,.aia,Y
the surface divergence is equal to V' .d =g 125 8i(g'ay),
hence the surface Laplacian is A'f=V'.V'f=g"12% 5
(g'/2gl¥4;f). The mean curvature is equal to H = trace(b’), where

bl = >,&"by, and the Gaussian curvature is given by K = det(b)).
Adopting this notations we can rewrite Eq. (3) in local
coordinates as follows:

n = 1
ap=Leg > > o (g”zg”aj (5 K'(@)H—Ho($))> — () (H—Ho($)Hy ()

ij=1

+RPK—6Eg12 N aig'2giop)+6f ()

ij=1
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