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DERIVATION OF A MACROSCOPIC RECEPTOR-BASED MODEL
USING HOMOGENIZATION TECHNIQUES*

ANNA MARCINIAK-CZOCHRAT AND MARIYA PTASHNYK?

Abstract. We study the problem of diffusive transport of biomolecules in the intercellular space,
modeled as porous medium, and of their binding to the receptors located on the surface membranes
of the cells. Cells are distributed periodically in a bounded domain. To describe this process we
introduce a reaction-diffusion equation coupled with nonlinear ordinary differential equations on the
boundary. We prove existence and uniqueness of the solution of this problem. We consider the
limit, when the number of cells tends to infinity and at the same time their size tends to zero,
while the volume fraction of the cells remains fixed. Using the homogenization technique of two-
scale convergence, we show that the sequence of solutions of the original problem converges to the
solution of the so-called macroscopic problem. To show the convergence of the nonlinear terms on
the surfaces we use the unfolding method (periodic modulation). We discuss applicability of the
result to mathematical description of membrane receptors of biological cells and compare the derived
model with those previously considered.
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1. Introduction. Regulatory and signaling molecules (ligands) act by binding
and activating receptor molecules. Receptors are usually located in the cell membrane,
with some exceptions such as lipophilic ligands, which are located in the cytoplasm
[24, 33, 34]. Some receptors interact with surface-bound ligands, such as adhesion
proteins and extracellular matrix components. Other receptors bind soluble ligands,
such as growth factors and cytokines. There are also many ligands which are present
in both forms. As an example, antibodies, which are secreted by B cells as soluble
molecules, become surface-bound ligands for the Fc receptors upon binding to antigens
deposited on the surface [25].

Soluble molecules which are secreted to the intercellular space and transported
via diffusion provide cell-to-cell communication, which results in the activation of
processes in cells at a distance from the original signal. This happens, for example, in
the case of the bystander effect. There is strong evidence that unirradiated bystander
cells respond to signals emitted by irradiated cells [28]. In another case, the interplay
between the spatial transport of virons and interferons results in the formation of
patterns of infected and resistant cells [10]. Intercellular signaling can also lead to
the formation of spatially nonhomogeneous structures, which is especially evident in
developmental processes [33, 34]. The effects of the spatial transport of the soluble
molecules are even visible in experiments in which only spatial averages are measured
in order to understand the time dynamics of a signaling pathway. There is evidence
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that different mixing conditions strongly influence quantitative and also qualitative
results of such experiments [17]. Therefore, there arises a need to explain how the
intercellular transport of the molecules should be described on the macroscopic level.

Models proposed so far are mainly phenomenological and describe all the processes
on the macroscale level represented by a two- or three-dimensional sheet of cells [29,
30, 31, 32, 42, 46]. However, the real geometry is much more complicated, and binding
a soluble ligand to a cell surface receptor requires interaction of molecules diffusing in
three-dimensional space with some molecules attached to a two-dimensional surface.
Since the size of a cell is very small compared to the dimension of the whole tissue,
systems that include cells have to be treated as multiscale systems.

The aim of the present work is to derive a macroscopic model of receptor-ligand
binding, based on a microscopic description, using methods of asymptotic analysis.
Such an approach is called homogenization and it hinges on demonstrating the con-
vergence of solutions of a sequence of microscopic problems to the solution of the
macroscopic problem in properly chosen function spaces. We use here the two-scale
convergence, which was introduced in [2] and [36] for sequences of functions {u®}
bounded in L? or in H! on an e-periodic domain. Then, in [37] and [3], the definition
of two-scale convergence was extended to sequences of functions defined on e-periodic
hypersurfaces, with dependence on parameters. This extension was used to homog-
enize a diffusion-reaction process in a catalyst consisting of distributed bars [37]. A
similar problem with convection was studied in [19] using the standard homogenization
technique, the energy method. A model describing processes of diffusion, convection,
and nonlinear reactions in a periodic array of cells was studied in [20]. In that paper,
the convergence of the nonlinear terms was shown using their monotonicity. Homoge-
nization of models of chemical reactive flows in domains with periodically distributed
reactive solid grains was also recently studied by Conca et al. [9]. They considered
a stationary reaction-diffusion model with nonlinear, fast growing but monotone ki-
netics on the the surface of reactive solid grains and a model of reaction-diffusion
processes both inside and outside of grains. Homogenization of the reaction-diffusion-
convection processes with linear reactions on the surface of microstructures was also
considered by Hornung in [18].

The model presented in this paper includes the dynamics of molecule concen-
trations on the surface of microstructures described by nonlinear ordinary differential
equations. Therefore, we apply the concept of two-scale convergence of functions from
L on e-periodic hypersurfaces. To show convergence of the nonlinear terms on the
surface of microstructures we use the unfolding method (periodic modulation); see
[5, 6, 7].

Our paper is organized as follows. First, we present a precise description of
the considered e-periodic geometry (section 2) and of the equations describing the
microscopic nature of the receptor-ligand binding process (section 3). These equations
are spatially scaled by €. Then we show existence and uniqueness of solutions of the
microscopic model (section 3.2) and a priori estimates (section 3.3). In section 4,
after extension of the solutions from the porous domain to the whole domain, using a
priori estimates, we show the convergence of solutions of the microscopic problem to
the solutions of a macroscopic homogenized model. Effective macroscopic equations
are derived in section 4.2 and formulated in Theorem 4.4. In section 5 we compare a
derived macroscopic model of the receptor-ligand binding on cells surfaces with the
phenomenological models previously discussed in the literature.
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Fic. 1. Geometry of the model. The array of the cells (on the right-hand side) consists of
periodic repetition of the so-called standard cell, Z = [0,1]3 (on the left-hand side), which corresponds
to a single biological cell with the surrounding intercellular space.

2. Problem formulation. We consider a model involving a system of cells,
periodically distributed in a three-dimensional cube Q = [a,b]?, a,b € R, a < b, with
boundary I'V. For the mathematical formulation of the problem we consider the so-
called standard cell, Z = [0, 1]3, periodically repeated over R? with Yy C Z, an open
subset with a smooth boundary I'; Y = Z\Yy; and v, the outer normal of Y (see
Figure 1).

Let ¢ > 0 be a given scale factor such that ¢ = b_Ta, n € N, denoting the
ratio between the size of the cells and the size of the whole domain 2. Then the
geometric structure within the fixed domain 2 is obtained by intersecting the e-
multiple £Z with . We define, for k € Z3, a triple of integers; and e;, unit vectors,
TF =T+ 30 ke, V¢ = Yo+ 30 kiei, Z8 = Z + 320 kyeq, TF = U{TF, k€
73}, Z* = U{Z*, k € Z?}. We further define Qf = U{eYF|eZF C Q, k € Z3},
QF = O\Q§, I =u{elklezk C Q, ke Z3}.

Remark 2.1. The geometry defined above fulfills the assumptions that

1. cells (holes in the domain) do not touch the boundary 9€;

2. cells do not touch each other;

3. cells have smooth boundary.

These assumptions allow for the definition of the functions on the cell boundaries using
periodic repetition, and the definition of extension as proposed in [8]. Therefore, these
assumptions are important for the methods applied in this paper. Homogenization of
the Neumann problem in domains with more complicated geometry was considered
in [1] and [4].

We assume that new ligands and new free receptors are produced on the cell
surface through a combination of recycling (dissociation of bound receptors) and de
novo production within the cell. Free receptors exist only on the surfaces, while
ligands are transported by diffusion within the intercellular space, which is a porous
medium. A ligand reversibly binds to a free receptor, which results in a bound receptor
that can be internalized into the cell. Bound receptors also dissociate. Both ligands
and free receptors undergo natural decay. We denote the concentration of ligands
by ¢ : (0,T) x Q° — R. Bound and free receptor densities are denoted by rj :
(0,7) x I'* — R and 75 : (0,T) x I'* — R, respectively. For simplicity we assume
that all binding processes are governed by the law of mass action without saturation
effects.
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3. Microscopic model.

3.1. Model assumptions. The microscopic model consists of the following
equations:
Diffusion equation for ligands in the intercellular space,

%lg(t,x) =V - (D°(t,x)VIE(t,z)) — pi (¢, )5 (t, ) + pi (¢, z, I5(z,t)) in (0,T) x QF,

VeVt x) =0 on (0,T) x TV,
(1) I°(z,t) =lp(z), t=0, z€Q°.
Binding equation on the surfaces,
(2) =D (t,z)VIe(t,x)-v° = e(b°(t, z)I°(t, x)rp® (¢, ) —d° (¢, x)ry(t,z)) on (0,T)xT*.

Reaction equations for receptors on the surfaces,

arfs(x,t) = —p5(t,2)rp®(x,t) + pr(t,z, 5 (z, 1) — b° (¢, 2)rs " (z, 1)1 (2, 1)
(3) +d6(t7x)rb€(x?t)7
(4) %rbs(x, t) = —pp(t, z)rp (z, t) + b5 (¢, 2)r® (z, t) 15 (z, t) — d°(t, z)rp" (z, t),

with initial conditions
(5) rif(x,t) =rpo(x), t=0, zel*,
(6) Tbe('rat) :TbO(x)v t=0, z€ re.

The following is a list of functional coefficients in these equations:

p(0,T) x Q2 —R rate of decay of ligands,

pf:(0,T) x @ xR—R  production of ligands,

D :(0,T) x Q — R3x3 diffusion coefficient for ligands,

ps:(0,T) x T x R — R production of new free receptors,

1 (0,T) xI'* =R rate of decay of free receptors,

py:(0,7) xI'* - R rate of decay of bound receptors,
de:(0,T)xI'* - R rate of dissociation of bound receptors,
b°:(0,T) xT* - R rate of binding of ligands and free receptors,

where functions on {2 or I'* are defined by Z-periodic function: D; ;(¢,z) = D; ;
pf(t,w,ﬁ) = Pl(ﬁf@)a N’le(taw) = (t, %)7 Nf‘(tax) = H’f(tv %)a ﬂg(tvx) = HMb
be(t,x) = b(t, ), d°(t,x) = d(t, Z), pi(t,z,&) = p(t, £,§), defined on Z* and
respectively.

We assume that decay processes are linear and that binding is a product of the
density of ligands and free receptors. The proposed functions are the simplest func-
tions usually used to describe decay or binding processes (see the models described
in [35]), modeled by the law of mass action. We assume that de novo production of
free receptors, denoted by p,, is regulated by bound receptors. We assume that p,
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is a bounded Lipschitz continuous function in r, and is nonnegative for nonnegative
miTy

values of 7, for example a Michaelis-Menten function p, = e In addition, we
assume that the production of ligands depends on their density. It could be regulated
via some other receptors not considered in our model. Thus, we assume that p; is a
Lipschitz continuous function in [, nonnegative for nonnegative values of [.
Assumption 3.1.
1. D€ L>=((0,T) x 2)>3, 0,D € L*>®((0,T) x Z)3*3, (D(t,x)&,€) > do|&|?* for
some dy > 0, for every ¢ € R? a.a. (t,z) € (0,T) x Z.
2. € L>*((0,T) x Z) and p; > 0 a.e. in (0,T) x Z.
3. p; is measurable in ¢ and z, sublinear, i.e., |p;(t,z,&)| < ¢1 + 2/¢| for a.a.
(t,z) € (0,T) x Z, Lipschitz continuous in &, and p;(t,2,£) > 0 for £ > 0.
. be C([0,T];C%*(T)), b>0,in [0,T] x T, &b € L>((0,T) x I).
. deC(0,T);C%(T)),d>0,in [0,T] x I, &yd € L>=((0,T) x I).
- Mfy b € C([O,T];Co’a(l—‘)), W >0, up >0, in [O,T] x I
. pr(&) € C([0,T]; C%*(T)) for all £ € R, p,.(t,2,€) > 0 for € > 0, p,. is bounded,
e, |pr(t, 2, &) < my forall (¢,2,€) € (0,T)xT' xR and is Lipschitz continuous
in €.
3.2. Existence of the solutions of the microscopic model. We start with
a weak formulation of the microscopic model.
DEFINITION 3.2.  The triple (I°,7%,73) is a solution of problem (1)-(6) if I° €
L2((0,T); HY(9)), 04° € L2((0,T) x Q°), I¢ € L>=((0,T) x Q°), %, 5 € L((0,T) x
%), Opr%, Oprjy € L°((0,T) x I'°) such that

1.
(0el®, 0) 0,1y x0e = —(DVI, V@) (0,1yx0c — (1715, ®)(0,1)x0e
(7) + (d°rg — bg”;ls, ¢)(O,T)><F5 + (pf (%), ¢)(0,T)><Qf

for all ¢ € L2((0,T); H'(52°));
2. ¢ satisfies the initial condition, i.e., I — Iy in L*(Q) as t — 0;

~N O O

3.
a € € € £ £
arf (z,t) = THTF (z,1) +pr(t,$77’b($7t))
) — bref(z, )% (x, t) + d°rp°(z, ),
0
&Tbs(xat) = _,ug’rbs(xat) + bs,rfs(x’t)ls(m, t)
— d°rpe(x,t)
a.e. (0,T) x I'¢;

4. 1¢%, 1,5 satisfy the initial conditions (5)—(6).

T T
Here (u,v)0,1yx0c = Jy Jq- wvdzdt and (u,v)o,r)xre =€ [y [po wvdye dt.
THEOREM 3.3. Let Assumption 3.1 be satisfied and

lo € C¥*(Q), lo € H'(Q), o >0,
T£0,Tb0 € o (Q), rro > 0, ryo > 0.
Then there exists a unique solution (I°,7%,15) of problem (1)—(6), such that
I°€ HY(0,T; L*(Q°)), I € L*(0, T; H'(Q)),
I° € COPI([0,T); COP (X)),
S C([0,T];C%P(T9)), where B € (0,a],

and ¢ 20,7"? >0,r; > 0.
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Proof. Existence. The existence of a solution of the system (1), (3), (4) will be
proved by showing the existence of a fix point of the operator K defined on C([0, T'| x
Q) by 1™ = K(I"1<) with {™€ given by

01" = V- (DVI™) = il 4 pi ("), ¢ 0, 2 € 9,

Vi™e - v =0, t>0, x eV,

(9)
e =y, t=0, z€Q°,
—DeVI™E - vf = (U™ — dErp™), t>0, zel*,

Dyr ™ = —pGr ™ pE(ry™) — b L ey > 0, @ € IF,

(10) Oprp™E = —psrp™ 4 bEr eI — oy t>0,zel®,
T =T, t=0,zel®,
"™ =Ty, t=0zel*.

For a given ["~1< e C([0,T] x @), I"""¢ > 0 on [0,T] x €, there exists a unique
solution of system (10), 7%, 1" € C1([0,T]; C(I'?)), because the right-hand side of
the system of ordinary differential equations (10) is Lipschitz continuous [45]. Since
pr is a nonnegative function for nonnegative values of 7, and "¢ > 0 on [0, 7] x '
and rpo > 0, 1y > 0, we deduce that r?’e >0,r,°>0on[0,T] x I'".

Using the Galerkin method and a priori estimates similar to the estimates in
Lemma 3.4, we obtain the existence of a weak solution of (9), "¢ € L?(0,T; H*(Q¢)),
ol™e € L2(0,T; L*(QF)); see [23]. Since lg € C%(Q), there exists maxge |lo] = M. In
addition, r?’e >0 and |r,"°| < C. Thus, we may apply the result from [26] (Theorem
6.40) stating that for parabolic equations with uniformly elliptic operator, sublinear
terms of lower order, bounded free terms, and bounded coefficients of Robin boundary
conditions, the boundedness of the initial conditions implies the boundedness of the
supremum of a solution. From this, we conclude that sup 1)xqe [I"°| < M7. Then,
since [y € C%*(Q), r7° > 0, and r,"° € C'([0,T]; C(I*)), we conclude also that I"* €
C8/2([0,T]; C%P (7)) (see Theorem II1.10.1 in [23], generalized for Robin boundary
conditions, or [11] and [26]). Using the maximum principle and the continuity of "=,
we obtain that I > 0 in [0,7] x Q" [12].

The space C%#/2([0,T]; C%#(Q")) is compact embedded in C([0,7] x Q). Then,
by virtue of the Schauder theorem, there exists a fixed point of K, a solution of the
microscopic problem [¢, s and r;. In addition, we obtain that [ > 0, ry =0, and
s > 0. Since g, 10 € CO%(Q) and 15 € C%F/2([0,T]; C%P(Q7)), we conclude also
that r5, 75 € C'([0,T]; C%P(T9)).

Uniqueness. Suppose there are two solutions of the problem (I r}’amé’s) and

(lQ’E,T?E, r7%). We denote I° = [V — 12 and choose ¢ = I°. We calculate

1 T T
o [ (o 0w iy i) ot = [ R - i) dede
0 € 0 €

+5/ / ((d°ry® = brp*1e) — (dry® — b re1%)) I dy dt
0 €
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for any 7 € [0,T]. For r§ and rj we obtain

0,1 2 1 2 1 2
a(rfﬁ - Tf’s) = *H?(TfE - vas) + (pi(rbl’g) *pf«(rbz’s)) - bE(Tf7€ll’€ - Tf’slle)

+d(ry* = 1y%),
0
a(rg’s —r%) = (S =) + bs(r}’sll’s - TJ%’EZQ’E) — & (rp" — ).

Integrating by parts with respect to time and summing up side by side the last two
equations, we obtain

.
1, 2, 1, 2, 1, 2,
|TfE_Tf8|+|7°b8_7"bE| §/0 (M}Vfa_rfe

—l—/ (21)1 max \ll’s
0 [0,T]x T

where ¢, is the Lipschitz constant of p,, u} = supp pyxre (45, 5 = supjo ryxr- 1151,
b1 = supjg yxre |6°], di = supjg )y [d°|. The Gronwall lemma implies

I =2+ el — 12t

s

2, 2,871, 2, 1, 2,
_'rf5|+2b1 [Og‘l]iXFE‘rfE”l € _ [4F¢ +2d1|’rb5_rb5|) dt,

(11) I B e

< C’/ I1hE — %€ dt.
0

Using the above estimate and nonnegativity of b° and r}%’s, we obtain

1 T T T
f/ at|16|2dxdt+do/ / |VZ€|2dxdt+/ / JE|IE |2 da dt
2 0 Qe 0 € 0 €
2 1 " ‘ £12 6 " £12 i £12
< el 22 ds dry dt + 2 2 dydt + e ]2 da dt
26 0 £ 0 2 0 FE 0 £

T t T
+Cbie max |11a8|/ / / |I°1? ds dy dt + Cbie max |1175|/ |1°|% dry dt,
[0,T]xT'e 0 e Jo [0,T]xTe 0 Te

where ¢; is the Lipschitz constant of p;. Furthermore, using the estimate

(12) g/ |l5\2dvdt§c/ / |z€|2dxdt+c52/ / |VI¢|? du dt,
0 I'e 0 Qe 0 €

we obtain

1 T T
7/ |l5|2dx+(d0—526)/ / |Vl5|2da:dt+/ / LENi P da dt
2 QE 0 £ O Qe
1 T t T
gcf/ // (|F|2+|v16|2)da:dsdt+q/ / |1°|% d dt.
6 O O € O €

From the Gronwall lemma and pf > 0, taking the supremum over 7 € [0,T], we

conclude that
T
/ |z€\2dx+c/ / |VIe|2dxdt <0
Qs 0 €

and, therefore, [*¢ = (% in (0,T) x Q. Due to (11), also r}’s = TJ%’E and 1, ¢ = rp®
on [0,T] x I'c. O
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3.3. A priori estimates for the microscopic solutions.
LEMMA 3.4. For any solution of problem (1)—(6) from Theorem 3.3 the following
estimates hold:

15207511 (00)) < €, (10l L2(0,7522(0)) < C,
Hrf‘”L""((O,T)XFE) <C, ||T§||L°°((0,T)xre) <C,
10er5 1| 20,7y xre) < €, 10ergll 20,7y x12) < C,
where C is a constant independent on .
Proof. To show the estimates for r¢ and rj we add (3) and (4) side by side and
obtain
O (rs +1y) <my.
Since 7§ and rj are nonnegative (see Theorem 3.3), we conclude that
P31l (0,myxTe) < C and |[|rg [z (0,r)xre) < C.

Now we show the estimates for I°. We choose ¢ = ¢ as a test function in (7) and
calculate

1 T T T
f/ 8t|l€|2dxdt+/ / (DEVle,Vla)dxdt—l-/ / JE|IE P2 da dt
2 0 Qe 0 € 0 €
:5/ / (dory — br3l°) I dvdt—&—/ / pi (I8)1F dx dt
0 € 0 €

for any 7 € [0,T]. Applying the Young inequality we obtain

1 T T
5/ |l5\2daz+/ / do|v18|2dxdt+/ / s |1 da dt
Qe 0 Qe 0 Qe

<€d1
=26

T T 1
—s/ / b5r§|l€|2d7dt+cl/ / \15|2dxdt+§/ |I5|% dx
0 € 0 € Qe

Now we use (12), uf >0, b° > 0, and 75 >0 and obtain

/ \16|2dx+/ / <d0> |VI¢|? da dt
Qe
€ ! €12 ! €12 1 €12
S—/ T2 d’ydt—l—cl/ / 25 dmdt—i—*/ |I§|” dx
25 0 Te 0 Qe 2 Qe

Then, from the Gronwall lemma and the estimate for 77, it follows that

T
/|l€|2dx+/ / |VIe|? de dt < C.
Q 0 €

| b|2d7dt+66/ |15|% dy dt
FE 2 O Fa
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Using the estimates for [°, r, and 75, we conclude from (8) that
10751 L2 0,1y x 1) < C,
10¢r5 |22 ((0,1)xrey < C.

To obtain the estimates for ;1 we choose ¢ = 0;I° as a test function and calculate

T 1 T
/ / 10,152 dz dt + 5/ / (&(DEVZE,VZE) - (atDEVF,VF)) da dt
0 € 0 €

:/ / (pf(lf)—ulsls)ﬁtlsdxdt+e/ / <8t(d€r§ €Y — dEOrElE — ydrs 5)d7dt
0 € 0 €

+g/o /FE(—at(bfr;uEP)+b€atr;|lf|2+atbfr;u€|2)d7dt.

Using the Young inequality we obtain

g d
(1—5)/ / |8tl5\2da;dt+—0/ Ve da
0 € 2 (e
< i/ df\r§|2d'y+D2/ / \VIE | da dt
26 Te 0 Qe

) e [T
T AT / / (2107 |? + |95 ) oy dt
2 FE 2 0 FE

e T
+§/ |lE|2dwdt—a/€bEr§|la|2dw

/ / PO+ pg|e )dxdt+5/ (dimpolo + birgollo]?) dy

€

+D1/ \vzo\24x+s/ /(8tbsrjc+b5|8tr§|)|l€|2d7dt,
Qe 0 I'e

where D1 = sup(y ryxq |Dl, D2 = sup(g r)xq |0:D]. For the estimate of the last
integral we use the embedding for a space of dimension n = 3, i.e., L°(0,T; H'(QF)) C
L*((0,T) x T#),

5//b5|8tr§||la|2d*ydt< //|8trf|2d7dt+—//|ls|4d7dt
o Jre .

b oe
< 16/ / |8trf\2d'ydt+ sup/ |l5|2d:c+—sup/ |VI€|? da.
26 ) 2 0,1 /Jas

Using estimate (12) and the positivity of b° and r§ we obtain

T
//|at16|2dxdt+sup/ |VIe?de <C. O
0 e 0,7 JQs

To obtain a priori estimates for functions defined in the domain independent of ¢, we
extend functions (¢ defined on Q¢ to functions (¢ defined on the whole €.
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3.4. Extension of [°. Since [° is defined only on ¢, we extend it onto £2; see
[8] or [19] for the proof. 3
LEMMA 3.5. 1. Forl € HY(Y) there exists an extension | to Z, such that

il 2z < ellllzzery and || Villzzz) < el Vi L2y
2. For I¢ € HY(QF) there exists an extension I° to Q, such that

1] ) <l e

Remark 3.1. For I € L2(0,T; H'(QF)) we define [¥(-, ) := [*(-, t) for a.a. t. Since
the extension operator is linear, then I° € L2(0,T; H'(f2)).

We identify ¢ with the extension [°. For the extended functions, we obtain a
priori estimate of the supremum norm of [°.

LEMMA 3.6. For any solution of problem (1)—(6), the following estimate holds:

(13) 1% oo 0,y x2) < C,

where C' is a constant independent on €.

Estimate (13) follows from the nonnegativity of I°, %, ry, the boundedness of rj
and lp, and the estimate in Lemma 3.5; see Theorem 6.40 in [26] (for the sketch of
proof see Appendix 6.1).

4. Convergence of solutions of microscopic problem.

4.1. Convergence of [, r;, and rg. To show the convergence results we apply
the method of two-scale convergence, introduced in [2] and [36], and extended further
in [3, 37]. The definition and theorems concerning the two-scale convergence, used in
this section are outlined in Appendix 6.2.

To show the compactness of [° we use the following Hilbert space.

DEFINITION 4.1 (see [47]). Let W52(Q) with 8 € R, 3 > 0 be a Hilbert space
defined as the completion of C*(Q)) with respect to the norm

lellwe ey = Nz + / / |xiy|m(ﬁ

where k = [].
LEMMA 4.2. 1. For a function v¢ € HY(QF) the following estimate holds:

Y o\
) dxdy} ,

e | [P dy. §C/ |v8|2dx+052/ |Vo© |2da,
re Qe Qe

where C' is a constant independent on €.
2. For a function v € W52(QF), where % < B < 1, the following estimate holds:

5 2
v* 2 dv, < C |v€| dx + Ce%° e ley) = v @),
Te & e |:C1 — x2|”+25

where C' is a constant independent on €.
Proof. 1. For the proof see [19, Lemma 3].
2. For a function v € W#2(Y) the trace theorem implies

2
v — v
/|v|2d7y<0/ |v|2dy+c/ W) = o)y

yr — om0
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Changing variables, y = /e, we obtain

/ 0°|2 dvz 70/ |vg|2dﬂc / / [0 (21) — v&(22)]? €n+2ﬁ@@.
T, en— 1 |$1_x2|n+25 en gn

Multiplying the inequality side by side with e™ and summing up over ¢ from 1 to NV
implies the estimate of the lemma. 1]
Using a priori estimates derived in section 3.3 and the concept of the two-scale
convergence, we obtain the following compactness result.
LEMMA 4.3. There exist functions I, vy, and vy such that
1. 15 —1in L*(0,T; HY(Q)), 9,° — 9,1 in L*((0,T)xQ), 15 = 1 in L=°((0,T) x
Q))
1 — 1in L2(0, T; WP2(Q)) for & < 8 <1 andlim._q ||I°—1||2((0,7)x1<) = 0,
15 — 1 two-scale, VI® — V,I+V Iy two-scale, I, € L*((0,T)xQ; H},.(Z)/R),
r$ — 1§, T — Ty two-scale andrf,rbEL ((0,T) x 2 x I,
5. 0ur§ — Ogry, Opry — Opry two-scale, and Oyry, Opry, € L?((0,T) x Q x I).
Proof. From the a priori estimates in Lemma 3.4, we obtain weak convergence
15— 1in L?(0,T; HY(Q)), 0,° — 0;1 in L?((0,T) x Q), and I* = [ in L>((0,T) x Q).
To obtain strong convergence of I° in L2((0,T), W"2(2)), 1 < B < 1, we use
the compact embedding of W#2(Q2) in H'(£2) and apply the Lions-Aubin lemma [27]
with B = W52(Q). Applying Lemma 4.2 we obtain the inequality

= N

1117 < clli®3vs.2 (-

It follows that
HZE*ZHLQ((O,T)XFE) < CHZE*IH%Z((),T;Wﬁﬂ(Qe)) <clli l||i2(o,T;Wﬂ,2(Q)) — 0 fore — 0.

Since ¢ is bounded in L?(0,T; H'(£2)), the compactness theorem (see Theorem 6.3 in
Appendix 6.2) implies the two-scale convergence of ¢ to the same function [ and the
existence of a function Iy € L?((0,T) x Q; H),,.(Z)/R) such that, up to a subsequence,
VI¢ two-scale converges to Vi(x) + V ll( y).

Invoking Theorem 6.5 (see Appendix 6.2) we obtain the two-scale convergence of
7% and rj to functions in L>°((0,7) x Q xT'). Due to ||9;7%||r2((0.1)xrs) < C and [37,

Theorem 2.2], we conclude that 0y — v two-scale and v € L2((0,T) x Q@ xT). Then
T T
/ / v ¢ dx dy, dt = lim / oG ddy, dt
0 Jrxe £=0Jo Jre

T T
= _gh_r%/ / 75 O dyy dt = —/ / T O dx dryy dt.
0 c 0 Jrxe

Consequently, we conclude that v = 0;ry. Analogously we obtain the two-scale con-
vergence of ;1§ to Oyry. O

4.2. Macroscopic equations.

THEOREM 4.4. As e — 0, the sequence of solutions of the microscopic problem
(1)-(6) converges to the weak solution (I,rs, 1), | € H'(0,T;L*(Q)), I € L*(0,T;
HY(Q)), 1€ L*((0,T)xQ), rf, rp € HY(0,T; L>(2xT)), rs, 1y € L((0,T) x Q2 xT),
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of the following macroscopic problem:

(14)
Ol(t,x) = |Y\ Jr (b (& y)l(t, @) — d(t, y)ro(t, @, y))dvyy
+ (V(S(t)Vl( )+ ot Ut x) — ()it ), t>0,z€Q,
Vi(t,z) v =0, t>0,r eV,
U(t,x) = lo(x), t=0,z €,
(15)

Oty y) = pet,y, (L, x,y)) — b(t,y)rp(t, z, y)l(t, )
+d(t,y)re(t,z,y) —ppty)retzy),  yel,ze,
Oro(t,x,y) = b(t,y)rs(t,z, y)l(t, x) — d(t,y)re(t, z,y)
— o (t, y)ro(t, z,y), yel,z e,
re(t 2, y) = reg(z,y), t=0,yel,zeqQ,
ro(t,z,y) = ryo(T,y t=0,ycl,z €,

)
where ﬁl(t = Tfy wi(t,y) dy, p(t, 1) = \Yl Jy p(t,y,1) dy, and the matriz S is defined

as s;; = \Yl 2 L fY i (6, y) + Dix(t, y) Oy, w;) dy with w; being the solutions of the
cell problem

3 3
. dw,
~Vy(D(t,y)Vyw;) =Y 8y Diilt,y) in Y, —D(t,y)—gj = Di(t,y)vx on T.

k=1 k=1
Proof. To derive a limit equation for I° we apply a standard two-scale convergence
method and strong convergence of [°. Using in (7) a test function of the form ¢(¢, z) =
Yo(t,z)+ei(t,z, L), Yo € C((0,T)xQ), ¥y € C=((0,T) xQ; Cpe,.(Z)) and passing
to the two-scale limit applying Lemma 4.3 yields

T T
‘Y|/O /Qatlwo(t,a?) dxdt—‘r|Y‘/0 /Q'al(t)l(tal‘)wo(t,x) do dt
T
+/0 /Q/}/D(tay)(vml(t,x)-I-Vyll(t,x,y))(vmqpo_|_vy¢1)dydxdt

T
- / / / bt ) (b 2 It @) — d(t ) (2, )i 8, @) oy der
0 QJT

T
+|Y\/ /ﬁz(m)wodxdt.
0 Q

To show the convergence of the nonlinear term bsrffla of the boundary integral, we
rewrite this integral as a sum of two integrals,

//Ebersle 1/Jotx)+51/11(tx ))d%dt
—e/ /Eberl wotx)+aw1( ))d%dt
+s/ /b & z/;o(tm)—kswl(th))d%dt
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The first integral converges to fOT Jo Jp ot y)re(t, @, y)l(t, x)bo(t, z) dy, dx dt due to
the two-scale convergence of 5. Since ||l = l|z2((0,r)xrey — 0 as € — 0, we obtain
for the second integral

£ ,.E 8
/ /Eb wo(t ) + ey (tw 8>>d%dt
T 1/2 T 1/2
<e (/ / 675 o 2y dt) (/ F — 12y, dt)
0 JIe 0 Jre
T 1/2 T 1/2
2 (/ 6°r5 1 P dya dt) (/ 15— 12d, dt) —0 as £ —0.
0 Ie 0 e

To determinate the unknown function Iy € L*((0,7) x Q; H},.(Y)/R), we set 19 = 0
and obtain the equation

T
/ D(t,y)(Val(t, ) + Vyli(t, 2, y))Vythr (¢, z,y) dt dedy = 0
QxY

for all ¢;. From this it follows that [; depends linearly on V[, and it can be written
in the form

o
i=1 8.%‘1'

h = " Wi,

where the functions w; are defined as solutions of the cell problem

3

—V(D(ty)Vw:) = Y 0y, Dri(t,y) in Y, —D(t,y)—
k=1

8wz

ZD;“ (t,y) vy on I.

Next, setting 1/, = 0, we obtain

/ // ZDUty ) (0, 1(t, x) —I—Zaylwk@lk (t,2))0z;v0(t, ) dy dx dt
Q

3,7=1

|Y|/ /sta Wo(t, )0y, 1(t, ) dy du dt

7,7=1

Wlth S” = ‘Yl Zk 1fy Zj t y) +D’Lk)(t y)aykwj)dy

The difficulty arises in passing to the limit in nonlinear terms in the ordinary
differential equations on the surface of microstructures. We have to show that p5
(t,z, 5 (t,x)) — pr(t,y, ru(t, z,y)) in the two-scale sense. To cope with this difficulty
we apply the unfolding method (periodic modulation), developed in [7, 5, 6]. Following
[5] and [6], we define a dilation operator.

DEFINITION 4.5. For a given ¢ > 0, we define a dilation operator D¢ mapping
measurable functions on (0,T) x I'® to measurable functions on (0,T) x Q@ x T' by

Deu(t,z,y) =u(t,c(z) +ey), yeT, (t,z)€(0,T) x Q,
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where ¢¢(x) denotes the lattice translation point of the e-cell domain containing x,
c(x) = e[Z]. We eatend D*u from T to J, (T + k) periodically.

Remark 4.1. The dilation operator D¢ is well defined for all (¢,z,y) € (0,T) X
Q x T’ under the assumption on the geometry of domain Q° (cf. Remark 2.1).

To proceed, we have to establish the link between the two-scale convergence and
the weak convergence of the dilated sequences. Following [6], we formulate the lemma

on the convergence of Du® : (0,T) x @ x I' — R. We define L2_ (T') as the space of

functions f € L*(T") defined on I' and periodically extended to I'* = [J, (T + k).
LEMMA 4.6. If D°uf — u* weakly in L*((0,T) x ; L2_,(T)) and u® — u two-
scale, then u* = a.e. in (0,T) x Q x T
Proof. Let u* be a weak limit of D°u®. Then, for a test function (¢, z)h(y),
where ¢ € C§°((0,T) x Q) and h € C3,.(I"), we obtain

per

T
/ / Deuf(t, z, y)Y(t, x)h(y)dy,dzdt
o Jaxr

T
— / / u*(t, z,y)Y(t, x)h(y)dyydedt  as e — 0.
0 QxT

On the other hand, we have

T
/ Deus(t, z, y)Y(t, x)h(y)dy,dzdt
o Jaxr

T
- / / W (1 ey + ¢ (2)0(t, 2)h(y)dyydedt
0 QxID

N T
= ;/0 /E(ZJrk)/Fua(t7€y+CE(I))w(t,I)h(y)d’yyd'xdt'

Changing variables z = €(y + k), where ¢*(z) = ¢[£] = ¢k, and using the periodicity
of h, we obtain

J

T N

25_2/ u®(t, z)h (E) / Y(t,x) dx dy, dt
e(T+k) €7 Je(Z+k)

k=1

T N
z
=¢ E us(t, 2)h (2 ) Y(t, 2)dy.dt + ce?
/ok /s(r+k) ( )<6> 2

=1

. /0 ! /Q /F ult, 2, y)h(y)b(t, @)dv, dedt,

since from the continuity of ¢ we have the estimate
\5—3/ (W(t,z) —p(t,2)) da| < ce for z € (I +k).
e(Z+k)

Therefore, we conclude that uv* = w a.e. in (0,7) x Q x I. d
In analogy to the above lemma and Lemma 2 in [5], we can prove the following
properties of the dilation operator for oscillating surfaces.
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LEMMA 4.7. Foru € L2((0,T) x I'¥)
||DEU||L2(er) = ||u||L2(F€)~
If u € L*(Q x T) is constant in y, then D°u — u as € — 0 strongly in L*(2 x T).

Changing variables, I'* 5 = — ey + *(z), ¢(x) = ek for x € T'®, we obtain
equations on the fixed domain (0,7) x Q x I,

B)
aDerfs(t,my) = —puys(t,y)Drs°(t,z,y) + pr(t,y, D°ri (¢, z,y))

—b(t,y)Dr°(t, x,y) DI (t, x,y) + d(t,y)Drp" (t, z,y),

0
aDerbg(tv z, y) = _ﬂb(tv y)DeTbE (tv z, y)

+b(t,y)Dry®(t,x,y) DI° (t, x,y) — d(t,y) D ry" (L, z, y).

Applying the estimates for r5 and rj, we obtain the estimates for D*rs© and D®ry°
and the weak convergence of Drs® to ry and Dry° to ry, in L*((0,T) x ;L2 (T))
(see Lemma 4.6). Since supjy 71q |I°] < C, we conclude that supjy 7). qxr [D°I°] < C.

Now we prove the strong convergence of Dr ¢ and Dry® in L*((0,T)x€; L2 (T')).
For this we show that D®r;* and D*r,® are Cauchy sequences. We consider the equa-
tions for D*nr ¢ — Dy and Denry®n — Dmry®m  with n > m, multiply them side
by side with D®»r®» — D®my & and D ry*» — D*mry®m | respectively, and integrate
over Q x T

0
&/Q - | D gt — DEmf]"fEdexd’}/ = _/Q Flif(t,y)|DE”7"fE" . DEmTfEm|2dxdfy
8 X
+/ (pr(tay, DE"TbE”) *pr(t,y,D€"L7~Zm))(D€an5n _ ‘DE”LTfET")dxd’Y
QxTI

—/ b(t,y) (D r e DI — DEmyppom DEm [Em ) (D vy e — Dy fm ) dxdry
QxTI

—/ d(t,y) (D — Dy ) (D g — DEmr®m ) dadyy,
QxI

0

&/ | Dy — DEm oy |2 dadry = —/ o (t,y)| Dy — DEm oy |2 dadry
QxT QxT

+ / b(t’ y) (Dan,rfgn DSVL lgn _ Danzrfgm D57n lanz)(DanrbEn _ Danz,r-bgm)dwd,y
QxT

f/ d(t,y)| D"y — D™y |2 dxdy.
Qxr
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Using the Young inequality, we obtain

0
(16) 7/ |D5n,rf€n _ Dsmrfsm\Qdmd’y
ot Qxr
< C’l/ |Derr g — DE’"TfE’"\Zdzd'y
QxT
+ Cg/ | Dy — DEmppsm \ded’y
aQxI
+b sup |Dsnlen / |D5n7.f€n _ DemTfsm 2d$d'y
(0, T)yxQxI’ QxT
+C3 / | D1 — D1 |2 dxdy,
QxT
8 € 5 5 Em |2
(17) R |D n,rb n o __ D mrb m d(l’d’)/
ot QxT
< 04/ |Denrben _ Damrbem zdxd’y
QxI
+b; sup |Dnlfn| |DErp s — DEmppem |*dadry
(0,T)xQxT QxT

+Cs / |DEn 1 — DI |2 dadry.
QxI

Due to Lemma 4.7 and strong convergence of [¢ on I'*, we obtain

T T
/ / |DEI° — DEl|?dydadt = 5/ / 1€ — 1|?dy,dt < Ce.
0 QxT 0 €

Therefore, since D] — [ strongly in L?((0,T) x  x I') (see Lemma 4.7),

T
/ / |DEn 157 — DEm (e |2 drydadt
0 QxI

T
g// (|DE"ZE"—DE"l|2+|D6"l—l|2)d7d:z:dt
0 QxI
T
+/ / (\D5m1—1|2+|D€mz€m—D%u?)dydxdt
0 QxI

T
<eu [ [ we P
0 I'en
T T
sm// |lEM—l|2d%dt+// (\DE"l—l|2+|DEMZ—Z|2)d7dmdt
0 I'em 0 QxT

< C(En + Em)-
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We add (16) and (17) side by side and integrate with respect to time. Using addi-
tionally the boundedness of DI on (0,T) x Q x I', we obtain

D%y = Do P 4[| Dy — DFey e P
T € = € € 2 € 5 £ € 2 1
<O [ (D%t = DErrg= P 4[| D ry™ = DEry ™ [[P)dt + Co—,
0

where C1 = C1(sup(o,7yxa 1], SuPo, 1y« |15 |, SUP(0, 7y |10], SUP(0, 1) <1 [b], SUP(0. 7)1 |d],
sup(o,ryxre |73]). Then the Gronwall lemma yields

1
||D€nrf5n _ Dsmrfem L2(QxT) < Cﬁ’

1
||D5n,,1b5n _ DE”LTbEm||L2(QXF) S C*.
n

Using strong convergence of D®r®, continuity of p,., and weak convergence of p,(t, y,
Der7), which results from the boundedness of p,, we obtain that p,(¢,y, D*r;) weakly
converges to p.(t,y, ry(t, z,y)) in L*((0,T) x Q; L2, (T)).

Now we can take the two-scale limit in the equations on the boundary,

E/T 8trfqp1<tx )d%dt_g/ /Eprtxrb(tx)ﬁm(tx )d%dt

+e / / b (4, @)l (8 @) + d (8, 2)r (1 @) — u;r;(t,x))wl (m%) dry, dt,

T
E/ Ory (L, )y ( E) dry, dt = 6/ A b7 (t, @)1 (¢, )y dy, dt
E 0 &

—|—s/ / dsrb (t,x) uiri(t,w))vﬁl (t,x, g) dry, dt.

The linear terms converge two-scale to their limit functions. The proof of conver-
gence for the nonlinear term b°r%(t,z)I°(t,x) is the same as in the equation for
[*. Due to boundedness of p5 and Lemma 4.6, p5(t,x,r;) converges two-scale to
pr(t,y,rp(t, z,y)). Therefore, we obtain the macroscopic equations for ¢ and . 1]

The uniqueness of the solution of the macroscopic problem can be proved in the
same way as for the microscopic problem.

Remark 4.2. Properties of the macroscopic model: Using the framework of
bounded invariant rectangles (see [44]) we can show that solutions of system (14)—
(15) remain positive for positive initial conditions and that they are also uniformly
bounded. This results from the assumption of the nonnegativity of the model parame-
ters and their boundedness independent of time. Methods outlined in [44, Chapter 14]
can be used without major modifications.

5. Discussion. In this work, using homogenization techniques, we studied the
macroscopic limit of the microscopic model describing receptor-ligand dynamics on
cell membranes and in the intercellular space. We tried to answer the question of how
processes which take place in different “spaces,” such as cells membranes, intercellular
space, and also intracellular space, can be described by macroscopic models operating
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in homogenized space. On one hand, this work provides a justification of previously
proposed models, and on the other hand it is a starting point for further models.

Comparison of the macroscopic model (14)-(15) to the previously considered
receptor-based model of the form

0
%Tf = —psry + pp(ry) — brpl + dry,
0
(18) 577 = —Hry +brgl — dr,
0 1 92
al = ;@l — ,Ull - b'/"fl +pl(l> + d’l"b,

defined on the macroscopic domain €2, shows in which cases the “older” models can
be derived from the microscopic description. Model (14)—(15) is equivalent to model
(18) in the case when neither the model parameters nor the initial conditions for 7
and r, depend on the surface variable y. It means that the processes described are
homogeneous within each cell and that there is no heterogeneity in the dissociation or
binding processes on the cell surfaces. For nonadherent cells one can consider receptor
production, binding, dissociation, or decay to be uniformly distributed on the cell
surface, which results in model coefficients being constant with respect to the surface
variable y. Under such assumptions we obtain a macroscopic model, in which the
integral in the equation for the ligands disappears and the only difference with respect
to model (18) is that the kinetics are multiplied by a coefficient [ dv,/|Y’|. However,
there is now considerable evidence of the existence of lipid raft microdomains, called
membrane rafts, which organize the membrane into specialized functional units [14,
15, 38, 39, 41]. Rafts were described mainly for T-cells and T-cell receptor [15, 39, 40],
but now it is clear that they play an important role for many different receptor classes
[13, 41]. There are observations that the structure of lipid rafts could control cellular
processes such as signaling cascades [40, 43] and receptor synthesis and trafficking
[21] as well as cell adhesion and migration [16]. Some membrane proteins are located
preferentially on the raft domains, whereas others are excluded from them [14]. Such
a situation corresponds to the nonhomogeneous initial distribution of receptors on
the cell surface and also de novo production terms depending on the surface variable.
Our studies show that in such a case the “older” type of receptor-based model is not
relevant.

Another example of cells with nonhomogeneous membrane properties are adherent
cells. In the case of adherent cells there are two types of polarity, top-bottom and
front-back, and it is not easy for the ligand to get in contact with the bottom of the
cell. One can imagine that receptors may be concentrated on the frontal end of the
cell (this determines cell motility in the case of chemotaxis), and, therefore, all the
receptor-ligand processes are nonhomogeneous within the membrane [22].

6. Appendix.

6.1. Supremum estimate for I°. We present here a sketch of the proof of
Lemma 3.6 used in section 4.
LEMMA. For any solution of problem (1)—(6), the following estimate holds:

%] oo (0,myx2) < C + 2k,

where C' is a constant independent on & and k = max{1,supg |lo|}.
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Proof. To show the boundedness of I we use the Moser iteration technique,
described in the proof of [26, Theorem 6.15]. We choose as a test function v =
Y(1°)(I° — k)4, where ¢ > 0 is a bounded C*(R) function and which satisfies for s > k&

0 YOk
Y(s)
Due to the fact that [y < k, we obtain

(19) /Q/()Ei/)(s)(sk)+ dsXde+/OT/Q(DEVZE,1/)(ZE)VZE)XE dadt

+ / (DY, (IF)(I° — k). VIE)XE dadt
Q

// e () (15 — k)4 x"dxdt
-/ ' [ i) = k) o

+5/ / o — b5 (1°) (I° — k)4 dyadt,

where x is a characteristic function of Y periodically extended to Z*, and x*(z) =
X(%). From the properties of 1, we obtain

s 1
/k () (t — k)dt > G klw(s)(s —k) for s>k

The third and fourth terms on the left-hand side of (19) are nonnegative; the third
term on the right-hand side is nonpositive. Using I* > k£ > 1 and Lemma 4.2, we
obtain the estimate

/ Y (IF — k) ydrydt
FE
< C’/ / (15)(IF = k)4 + 2V (1) (I° — k:)+))dxdt
1 T T
<C(1+ 5)(1 + kl)/ / Y1) P xEdxdt + 0525/ /¢(z€)|vz€|2xadxdt.
o Jo 0o Jo
Then boundedness of coefficients and sublinearity of p; yields

w(ls)( I° —k)*x°dx + do/ Ql/l (I19)|VIF|*xE dxdt

C(1+k1)2/7/91/)(lf)l5|2xgdxdt.
0

Choosing ¢(s) = (min{s, Z}(1 — k/s)+)%, where ¢, Z are positive constants, applying
the Gronwall and Young inequalities, and taking Z — oo leads to

T
/ / 15|72 x° dxdt < C(q)|QTEIT?
0 Q
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for any positive g. Thus, for a fixed ¢ > 1 h — 520-2(] — k)(n+2)(a=1)
y positive g. Thus, for a fixed ¢ > 1 we can choose ¥(s) = s (1-2)%

and conclude that

k (n+2)g—n T k (n+2)(g—1)
JAGE (1 - ) ot e(d) [ [ ey (1 - ) VI P\ dadt
Q le + 0 Q ls +
(n+2)(¢—1)
< Cq? / / 1%)? (1— ) x“dxdt.
+

Setting b = (I°)9((1 — £)"297")1/2 gives [VA|> < e(n)g?(1)2772(1 — k{2
|VI€|2. Using the property of extended function of I, i.e., [|I]|g1(q) < C[I¥]| a1 (02,
with a constant C' independent of ¢, yields

(n+2)(a—1)
sup / hzdm+/ /|Vh| dzdt < Cq* / / (15)? <1—> dxdt.
(0,7)

Invoking the Sobolev embedding theorem on (0,7T) x €2, we obtain

T (n+2)g—n—2
/ / h2"dzdt <C’q / / 1%)2 (1—) dxdt,
0 Q +

where k = (n + 2)/n. Iterating the last inequality for ¢ = 1,k,x2,..., as in [26],

implies that
sup |I€|? (1 - ) < C’/ / |I¢|?dxdt.
(0,T)xQ

Considering separately the cases sup(g 7y« (° < 2k and sup 1), (© > 2k results in
the estimate of the lemma. 0

6.2. Two-scale convergence with parameters. We recall here the definition
of two-scale convergence for functions dependent on parameters and several impor-
tant results concerning this notion presented in [37]. The proofs are straightforward
modifications of the proofs for the standard two-scale convergence method presented
in [2].

DEFINITION 6.1. Let (u.) be a sequence in L?(A x ), where ¢ is a sequence of
strictly positive numbers, which tends to zero. (uc) is said to two-scale converge to a
(unique) limit ug € L2(A x Q x Z) iff for any ¢ € D(A x Q,C2.(Z)) we have

per

Eli_r%/A/QuE()\,x)qb (Axg) dxd)\:/A/Q/Zuo()\,x,y)qﬁ()\7x,y)d;vdyd)\.

THEOREM 6.2. From each bounded sequence (u:) in L*(A x Q) we can extract a
subsequence which two-scale converges to ug € L*(A x Q x 7).

THEOREM 6.3. 1. Let (uc) be a bounded sequence in L*(A, H'(S2)), which con-
verges weakly to a limit function u € L*(A, H*(Q)). Then there exists u; € L*(A x
Q,H}..(Z)) such that, up to a subsequence, u. two-scale converges to u and Vue
two-scale converges to Vu(X, z) + Vyui (A, z,y).

2. Let (u.) and (eVu.) be bounded sequences in L*(A x 2)). Then there eists
uy € L*(A x Q,H}.,(Z)) such that, up to a subsequence, uc and eVu. two-scale

converge to ug(\, z,y) and Vyug(\, x,y), respectively.
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Now, we transfer the compactness results to the case of a sequence u. defined on
an (n — 1)-dimensional e-periodic manifold I'* € Q. Let I' € Z be a smooth (n — 1)-
dimensional manifold (in our application a sphere, n = 3). Then I'* is the union of
all el'. For each I'* we consider the space L?(I'?) equipped with the scalar product
(u,v)pe =€ [ u(z)v(z)de.

DEFINITION 6.4 (see [37]). A sequence of functions (we) € L?(A x T'¢) is said to
two-scale converge to a limit w € L*(A x QxT) iff for any ¢ € D(A x Q,C52,.(T)) we
have

lims// wE (N, ) (/\xf) dfymd)\:///w()\,x,y)w()\,x,y)d:cdfyyd)\.
e=0 Ja Jre € AJalJr

THEOREM 6.5. 1. From each bounded sequence (w.) in L?(A x T'¢) we can extract
a subsequence which two-scale converges to w € L*(A x Q x T).

2. If the sequence (w;) is bounded in L*>°(A x I'?), then the limit w belongs to
Le(Ax QxT).

Proof. For the proof of 1, see [37].

2. We know that if w® is bounded in L?((0,7) x I'?), then there exists w €
L2((0,T) x Q x T') such that w® — w two-scale [37]. Now we use the proof of that
theorem and show that if w® is bounded in L°°((0 T) X I‘E) then w® — w two-scale
and w € L=((0,T) x Q x I'). We define p.(¢) = Efo Jpe w® P(t,x,2)dvs dt and
obtain

1
2

:r £
()] < 11120,y / el (@) avide)” < cllolago ey, o

per

Therefore, {y.} is a bounded sequence of functionals on C°([0,T] x Q; Cp,,.(T')). Since
this space is a separable Banach space, there exists a subsequence of u. that converges
weakly™* to . Using the boundedness of w® and a variant of the oscillation lemma [2],

we obtain

. . 4 N2, o\
(@) = lim (@) < Clim ([ [ efo (. 2)] driar)” = eliéllagomnnr

Therefore, i is a bounded functional on L2((0,T) x Q x T'). The Riesz representation
theorem implies the existence of a function w € L%*((0,7) x © x I'). Furthermore,
|[w®[|Lo< ((0,7)xre) < C yields

1(6)] = lim |p2e ()] < C lim / / )| g dt = ell6]]22 0.1y s

e—0
Finally, we conclude

(w, ¢)

H¢||L1((0,T)><Q><F)

HwHLoo((o,T)xer) =

(o) < Cll#ll L1 (0,7 xxT)

- < =C. O
19l L1((0,1) x2xT) ]l (0,7)xxT)

THEOREM 6.6 (see [37]). Let (u:) and (eVue) be bounded sequences in L*(A x
I'¢)). Then there exists ug € L*(A x Q, H:,.(T)) such that, up to a subsequence, u.

per
and eVu,, two-scale converge to uo()\,x y) and Vyuo(A, x,y), respectively.
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