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With methods of potential theory, we develop a representation of a solution of the coupled Stokes–Darcy model in a
Lipschitz domain for boundary data in H�1=2. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Let � � R3 be a bounded domain, that is, a bounded open connected set, with Lipschitz boundary @�, and suppose that �S is a
nonempty subdomain of�with Lipschitz boundary @�S such that�S ¤ �. Then,�D :D �n�S is a bounded open set, not necessarily
connected. We suppose that �D has Lipschitz boundary. Remark that @�S \ @�D \� is always nonempty, and it is locally a graph of
Lipschitz function. Let � be a nonempty closed subset of @�S \ @�D. Then, � might reach @� or not (See Figure 1).

We want to study the following problem

���vS CrqS D 0, div vS D 0 in�S,

vD C krqD D 0, div vD D 0 in�D,

vS D f on @�S n � ,

vD � n D hD on @�D n � ,

vD � n � vS � n D h� , vS
� D f� on � ,

��
�2�D vS C qSI

�
n
�
� n D qD C vD � n � Qg � n on � ,

where I is the identity matrix and

Dv D
1

2
ŒrvC .rv/T �

is the symmetric gradient of v (i.e., also a matrix). Putting qS D �pS and qD D pD=k, we obtain the following coupled
Stokes–Darcy problem:

��vS CrpS D 0, div vS D 0 in�S, (1)
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Figure 1. Representative geometry of�.

vD CrpD D 0, div vD D 0 in�D, (2)

vS D f on @�S n � , (3)

vD � n D hD on @�D n � , (4)

vD � n � vS � n D h� , vS
� D f� on � , (5)

�
�

T
�
vS, pS

�
n
�
� nC pD=kC vD � n D g � n on � . (6)

Here, � and k are positive constants, vD D
�

vD
1 , vD

2 , vD
3

�
denotes the Darcy velocity vector, and vS D

�
vS

1, vS
2, vS

3

�
represents the Stokes

flow, whereas

T.v, p/ D 2Dv � pI,

is the stress tensor. By n D nS, we mean the exterior unit normal vector of �S. If v is a vector function on @�S, then v � n denotes the
scalar product of v and n, that is, v � n is a scalar function. Denote by vn the normal part of v and by v� the tangential part of v, that is,
vn and v� are vectors, v D vn C v� , vn D .v � n/n, v� D v � vn.

If �S � � and @�S D � , then the condition (3) disappears. (For example, if � D fx 2 R3; jxj < 2g, �S D fx 2 R3; jxj < 1g,
�D D fx 2 R3; 1 < jxj < 2g, � D fx 2 R3; jxj D 1g.) If �D � � and @�D D � , then the condition (1) disappears. (For example,
if � D fx 2 R3; jxj < 2g, �D D fx 2 R3; jxj < 1g, �S D fx 2 R3; 1 < jxj < 2g, � D fx 2 R3; jxj D 1g.) In all other cases,
we have all conditions (3)–(6). The interface � might reach the boundary (� D fx 2 R3;�1 < xj < 1g, �S D fx 2 �; x1 < 0g,
�D D fx 2 �; 0 < x1g, � D fx 2 Rm; x1 D 0, jx2j � 1, jx3j � 1g ) or might not reach the boundary (� D fx 2 R3; 1 < jxj < 3g,
�S D fx 2 R3; 2 < jxj < 3g, �D D fx 2 R3; 1 < jxj < 2g, � D fx 2 R3; jxj D 2g, @�D n � D fx 2 R3; jxj D 1g, @�S n � D fx 2

R3; jxj D 3g).
The aforementioned problem arises from the modeling of water flow through a tissue of plant cells [1]. Water flow in plant tissues

takes place in two different physical domains separated by semipermeable membranes, denoted as symplast and apoplast [2]. The
apoplast is composed of cell walls and intercellular spaces, while the symplast is constituted by cell insides, which can be connected
by plasmodesmata. The complex microstructure of the cell walls, composed of polymers and microfibrils, can in simplified form be
represented as a porous medium. The water flow in the cell walls can be modeled by Darcy’s law. The Stokes equations can be used to
describe viscous flow in the cell cytoplasm.

Coupled free fluid and porous media problems have received an increasing attention during the last years both from the
mathematical and the numerical point of view. Well-posedness analysis and numerical algorithms for coupled Stokes–Darcy and
Navier–Stokes–Darcy problems with Beavers–Joseph–Saffman transmission conditions between the free fluid and the porous medium
have been investigated in [3–5] and the references therein. Multiscale analysis for the Stokes–Darcy system modeling water flow in a
vuggy porous media with Beavers–Joseph–Saffman transmission condition was considered in [6].

The main difference of our problem to the well-known models coupling free fluid and porous media [6, 7] is that the free fluid and
the porous media domains do not interact directly, as the membrane separates the domains and controls actively and passively the
fluxes of the water and the solutes. Thus, the continuity of the normal forces and the Beavers–Joseph–Saffman transmission condition
between the free fluid and the porous medium does not apply. The regulation of the water flow from the cell symplast into the cell
wall apoplast is represented via the transmission conditions on the boundary � , comprising the normal component of the Darcy
velocity vD � n and a given function g � n, which corresponds to the difference between the solute concentrations in the symplast
and the apoplast, respectively [1]. The transmission conditions at the cell-membrane-cell wall interface and the coupling between
the flow velocity and the solute concentrations via transmission conditions reflect the osmotic nature of the water flow through a
semipermeable membrane.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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The aim of the paper is to study the solvability of the coupled Stokes–Darcy model problem (1)–(6) and to develop an integral
representation of the solution of this problem. It is important for calculation of a solution using the boundary element method [8, 9].
At first, we determine necessary and sufficient conditions for the existence of a solution vS 2 ŒH1.�S/�

3, pS 2 L2.�S/, pD 2 H1.�D/,
vD 2 ŒL2.�D/�

3 of (1)–(6) for g 2 ŒH�1=2.@�S/�
3, f 2 ŒH1=2.@�S/�

3, and h 2 H�1=2.@�D/. We prove the existence of the problem
(1)–(6) by the integral equation method. We show that the velocity fields and the pressures of a solution of the problem (1)–(6) can be
represented in terms of boundary single layer potentials, such that the Darcy pressure pD D S�D is a harmonic single layer potential
with density  2 H�1=2.@�D/, while the velocity field for the Darcy flow is defined by vD D rS�D . For the Stokes flow, we obtain
that ŒvS, pS� D QE�S‰ is a modified hydrodynamical single layer potential with density‰ 2 ŒH�1=2.@�S/�

3.
To derive integral representations for the solutions of the model (1)–(6), we study two auxiliary problems: the Robin problem for the

Laplace equation and the mixed Navier–Dirichlet problem for the Stokes system. It is a tradition to study the Dirichlet and the Neumann
problems for the Laplace equation in different spaces by the integral equation method [10–12]. Later, a solution of the Robin problem
for the Laplace equation has been looked for in the form of a harmonic single layer potential for boundary conditions given by real
measures [13–15] or p-integrable functions on the boundary [16–18]. The classical result of the theory of partial differential equations
says that the Robin problem for the Laplace equation is uniquely solvable in H1.�/ [19]. It was shown in [20–22] that a solution of the
Neumann problem for the Laplace equation in H1.�/ has the form of a harmonic single layer potential with density from H�1=2.@�/. All
these results enable us to show that each solution of the Robin problem in H1.�/ is representable by a harmonic single layer potential
with density  2 H�1=2.@�/, and the corresponding integral operator is continuously invertible.

The potential theory for the hydrodynamics was first developed to study classical solutions of the Dirichlet and Neumann problems
for the Stokes system [23–27]. Later, solutions of the Dirichlet problem, the Neumann problem, and the transmission problem for the
Stokes system have been looked for in the form of hydrodynamical boundary layers also for p-integrable boundary conditions and
for solutions from Sobolev and Besov spaces [28–34]. We have used this theory to study a solution .v, p/ 2 ŒH1.�/�3 � L2.�/ of the
Navier–Dirichlet problem for the Stokes system. We have proved that the Navier–Dirichlet problem for the Stokes system is uniquely
solvable and the corresponding solution can be represented using a modified hydrodynamic single layer potential with density ‰ 2
ŒH�1=2.@�/�3, and the corresponding integral operator is continuously invertible, too.

2. Single layer potentials

For 0 ¤ x 2 R3 consider the fundamental solution h� of the Laplace equation��u D 0, defined by

h�.x/ D
1

4�jxj
.

Assume that G � R3 is a bounded open set with Lipschitz boundary. Then for 2 H�1=2.@G/, we can define the harmonic single layer
potential with density  as the convolution SG D h� �  . In particular, if  2 L2.@G/, then

.SG /.x/ D

Z
@G

h�.x � y/ .y/ d�y for x 2 G. (7)

If  2 H�1=2.@G/, then u :D SG is a solution of the Dirichlet problem for the Laplace equation

��u D 0 in G ,

u D tr.SG / on @G ,

where tr.SG / 2 H1=2.@G/ denotes the usual trace of SG 2 W1,2.G/ (see, e.g., [9, Lemma 6.6]).
For  2 L2.@G/ and x 2 @G, we set

K�G  .x/ D lim
r#0

Z
@GnB.x;r/

nG.x/ � .x � y/

4�jx � yj3
 .y/ d�y (8)

with nG.x/ as the exterior unit normal vector with respect to G and B.x; r/ as the ball with radius r > 0 and center at x 2 R3. This limit is
defined for almost all x 2 @G, and K�G is a bounded linear operator on L2.@G/, which can be extended to a bounded linear operator on
H�1=2.@G/ (see, e.g., [8, Theorem5.6.2]). For a harmonic function u 2 W1,2.G/ and g 2 H�1=2.@G/, we have that ru � n D g if and only if

Z
G
ru � r' dx D hg, tr.'/iH�1=2,H1=2 8' 2 W1,2.G/.

See [19] for details. Thus, we can conclude that for  2 H�1=2.@G/ it holds

r.SG / � n D
 

2
� K�G  on @G. (9)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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See [9, Lemma 6.8].
Next, we consider the .4 � 3/ fundamental tensor E of the Stokes system, given by

Ej,k.x/ D
1

8�

�
ıjk

1

jxj
C

xjxk

jxj3

�
, E4,k.x/ D

xk

4�jxj3
for 0 ¤ x 2 R3, j, k D 1, 2, 3. (10)

Then for‰ D Œ‰1,‰2,‰3� 2 ŒH�1=2.@G/�3, we can define the hydrodynamical single layer potential with density‰ as the convolution
EG‰ D E �‰. In particular, for‰ 2 ŒL2.@G/�3, we obtain

.EG‰/.x/ D

Z
@G

E.x � y/‰.y/ d�y . (11)

By E�G‰ D Er �‰, we denote the velocity part of this potential, that is, the three components of the velocity field. Here, the 3� 3 matrix
Er.z/ is obtained from E.z/ by eliminating the last row, which corresponds to the pressure part.

If‰ 2 ŒH�1=2.@G/�3, then for v D E�G‰ and p D ŒEG‰�4, we obtain that v 2 ŒW1,2.G/�3, p 2 L2.G/ is a solution of the Stokes system

�v D rp, in G ,
div v D 0 in G ,
v D tr

�
E�G‰

�
on @G .

See [9, §6.8] or [33, Theorem 4.4] for details.
For x,y 2 @G, y ¤ x and j, k D 1, 2, 3 we consider the kernel matrix

KS
jk.x,y/ D

3

4�

.xj � yj/.xk � yk/.x � y/ � n
G.x/

jx � yj5
,

and for‰ 2 ŒL2.@G/�3 and x 2 @G, we set

KS
G‰.x/ D lim

r#0

Z
@GnB.x;r/

KS.x,y/‰.y/ d�y .

The limit in the last equality is well defined for almost all x 2 @G, and KS
G is a bounded linear operator on ŒL2.@G/�3 [29, 33, 35], which

can be extended to a bounded linear operator on ŒH�1=2.@G/�3 [36].
For u 2 ŒW1,2.G/�3, p 2 L2.G/, and g 2 ŒH�1=2.@G/�3, we have that T.u, p/n D g if and only if

2

Z
G

Du : D v dy �

Z
G

p div v dy D hg, viH�1=2,H1=2 8v 2 ŒH1.G/�3,

see [36] for details, where here and in the following we use A : B D
P3

i,jD1 AijBij for 3 � 3 matrices A, B. Thus, using [36, Proposition 4.2],
for‰ 2 ŒH�1=2.@G/�3, we obtain that

T.EG‰/n D
‰

2
� KS

G‰ on @G. (12)

3. The Robin problem for the Laplace equation

We need to study two auxiliary problems and express their solutions in the form of appropriate potentials. The first problem is the
Robin problem for the Laplace equation.

Let G � R3 be a bounded open set with Lipschitz boundary @G. For a given g 2 H�1=2.@G/ and a given positive constant a, we study
the following Robin problem: Find a function u 2 H1.G/with

��u D 0 in G,

@u

@n
C au D g on @G,

(13)

that is, with Z
G
ru � r' dy C

Z
@G

a u' d�y D hg, tr.'/iH�1=2,H1=2 8' 2 H1.G/.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Concerning the solvability of this problem, we find the following propositions:

Proposition 1
For g 2 H�1=2.@G/, there exists a unique solution u 2 H1.G/ of the Robin problem (13).

See [19] for the proof.

Proposition 2
Let u 2 H1.G/ and��u D 0 in G. Then, there exists a unique f 2 H�1=2.@G/ such that u D SGf .

Proof
If f 2 H�1=2.@G/, then SGf 2 H1.G/with the trace tr.SGf / 2 H1=2.@G/. The operator SG : H�1=2.@G/! H1=2.@G/ is a Fredholm operator
with index 0 [37, Theorem 4.1], and the kernel of SG is trivial [38, Chapter VI]. This implies that SG.H�1=2.@G// D H1=2.@G/. Therefore, for
any uj@G 2 H1=2.@G/, there exists a unique f 2 H�1=2.@G/ such that u D tr.SGf / on @G. Because the Dirichlet problem for the Laplace
equation is uniquely solvable in H1.G/ [19], we deduce that u D SGf in G.

Proposition 3
The operator 1

2 I � K�G C aSG is a continuously invertible bounded linear operator on H�1=2.@G/, where I is the identity operator.

Proof
For f , g 2 H�1=2.@G/, we have that SGf is a solution of the Robin problem (13) if and only if Œ1=2 I� K�G C aSG�f D g. On the other hand,
by Proposition 1, for g 2 H�1=2.@G/, there exists a unique solution u 2 H1.G/ of the problem (13). Then, because of Proposition 2, there
exists a unique f 2 H�1=2.@G/ such that u D SGf . Thus, because the operator .1=2/ I� K�G C aSG on H�1=2.@G/ is onto and one-to-one,
it is continuously invertible [39, Theorem 3.8].

4. A mixed Navier–Dirichlet problem for the Stokes system

The second auxiliary problem we consider is a mixed Navier–Dirichlet problem for the Stokes system. Suppose that G � R3 is a bounded
domain with Lipschitz boundary. Let � � @G be a closed part of the boundary. For given f 2 ŒH1=2.@G/�3, g 2 ŒH�1=2.@G/�3, and a
positive constant a, we look for a weak solutions .v, p/ 2 ŒH1.G/�3 � L2.G/ of the problem

�v D rp, div v D 0 in G,

v D f on @G n � ,

v� D f� on � ,

ŒT.v, p/nC av� � n D g � n on � ,

(14)

that is, the boundary conditions v D f on @G n � , v� D f� on � are fulfilled in the sense of traces, and it holds

2

Z
G

Dv : Dˆ dy �

Z
G

p divˆ dy C

Z
@G

a v �ˆ d�y D hg,ˆiH�1=2,H1,2

for allˆ 2 V� .G/, where

V� .G/ D
˚
ˆ 2 ŒH1.G/�3 : ˆ D 0 on @G n � , ˆ� D 0 on �

�
.

If� is a set of the surface measure zero (for example, a set consisting from finitely many points), then the mixed problem (14) reduces
to the Dirichlet problem. To avoid this case, we assume that there exists a function‚ 2 ŒH1.G/�3 with‚ D 0 on @G n � and‚� D 0 on
� satisfying Z

@G
‚ � n d�y D 1. (15)

(Notice that this condition is fulfilled if� contains a smooth surface.) If this condition is not satisfied, then v D .0, 0, 0/ and p D 1 would
be a nontrivial solution of the problem (14) with homogeneous boundary condition f D g D .0, 0, 0/.

In the case @G is connected, we shall look for a solution of (14) in the form of a hydrodynamical single layer potential .v, p/T D EG‰

with an appropriate ‰ 2 ŒH�1=2.@G/�3. If @G is not connected, then solutions of the problem (14) cannot be represented by a pure
hydrodynamical single layer potential. In order to obtain a representation formula for solutions of (14) in this case, we can use some
modifications as follows. We denote by C1, : : : , Ck all bounded connected components of R3 n G and consider for j D 1, : : : , k and fixed
zj 2 Cj the functions

w�j .x/ D
x � zj

jx � zjj3
, wj.x/ D

	
w�j .x/

0



. (16)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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An easy calculation yields that�w�j D 0 with divw�j D 0 in R3 n fzjg. Now, for‰ 2 ŒH�1=2.@G/�3, we define

QEG‰ D EG‰ C

kX
jD1

wjh‰,w�j iH�1=2,H1=2 , (17)

and if @G is connected, we set QEG‰ D EG‰. Because of the definition of EG and wj , in both cases, it is ensured that QEG‰ is a solution of
the Stokes system in G.

Denote by V� .@G/ the space of traces of V� .G/, that is,

V� .@G/ D
n
v 2 ŒH1=2.@G/�3; v D 0 on @G n � , v� D 0 on �

o
,

and by V 0
�
.@G/ the dual space of V� .@G/. According to the Hahn–Banach theorem, the space V 0

�
.@G/ can be interpreted as the space

of restrictions fgnj� ;g 2 ŒH�1=2.@G/�3g. (We use the usual notation gn D .g � n/n for the normal part of g.) Clearly, V 0
�
.@G/ � V 0

�
.G/

(the dual space of V� .G/). In fact, V 0
�
.@G/ is the space of all f 2 V 0

�
.G/ supported on @G.

Denote the space of restrictions

W� .@G/ D
n
Œvj.@Gn� /, v� j� �; v 2 ŒH

1=2.@G/�3
o

equipped with the norm

kvkW� .@G/ D inf
n
kukH1=2.@G/;u 2 ŒH

1=2.@G/�3,u D v on @G n � ,u� D v� on �
o

.

Because W� .@G/ is the factor space ŒH1=2.@G/�3=V� .@G/, it is a Banach space.

The operator

T1‰ D
h
QE
�

G‰j@Gn� ,
�
QE
�

G‰
�
�
j�

i
(18)

is a bounded linear operator from ŒH�1=2.@G/�3 to W� .@G/. We now define a bounded operator T a
2 : ŒH�1=2.@G/�3 ! V 0

�
.G/ as

hT a
2 ‰,ˆi D 2

Z
G

Dˆ � D QE
�

G‰ dy �

Z
G
ŒEG‰�4 divˆ dy C

Z
@G

aˆ � QE
�

G‰ d�y , ˆ 2 V� .G/. (19)

Because QE‰ is a solution of the Stokes system, we have hT a
2 ‰,ˆi D 0 for ˆ 2 ŒC1.G/�3 with compact support in G. So, T a

2 ‰ is
supported on @G. Hence, T a

2 : ŒH�1=2.@G/�3 ! V 0
�
.@G/ is a bounded linear operator.

For‰ 2 ŒH�1=2.@G/�3, we obtain that QEG‰ is a solution of (14) if T1‰ D
�
f j@Gn� ,f� j�

�
and T a

2 ‰ D gnj� .

Proposition 4
We have QE

�

G.ŒH
�1=2.@G/�3/ D ff 2 ŒH1=2.@G/�3 :

R
@G f � n

G d�y D 0g. If v 2 ŒH1.G/�3, p 2 L2.G/, and �v D rp, div v D 0 in G, then
there exists a unique‰ 2 ŒH�1=2.@G/�3 such that Œv, p� D QEG‰ and

k‰kŒH�1=2.@G/�3 � C


kvkŒH1=2.@G/�3 C

ˇ̌̌
ˇ
Z

G
p dy

ˇ̌̌
ˇ
�

,

where a constant C depends only on G.

Proof
We define the space

X �

�
f 2 ŒH1=2.@G/�3 :

Z
@G
f � nG d�y D 0

�
.

The operator E�G : ŒH�1=2.@G/�3 ! ŒH1=2.@G/�3 is a Fredholm operator with index 0 [40]. Because QE
�

G�E�G is a finite dimensional operator,
we obtain that QE

�

G : ŒH�1=2.@G/�3 ! ŒH1=2.@G/�3 is also a Fredholm operator with index 0 [41, § 16, Theorem 16]. For‰ 2 ŒH�1=2.@G/�3,
we have that QEG‰ is a solution of the Stokes system in G and QE

�

G‰ 2 X [42, Chapter IV]. Thus, the codimension of the range of QE
�

G

is at least 1.
We denote by C1, : : : , CkC1 all components of R3 n G, where CkC1 denotes the unbounded component and consider nj D n on @Cj ,

whereas nj D 0 elsewhere. Then, EGn
j D 0 for j D 1, : : : , k and EGn

kC1 D Œ0, 0, 0,�1� in G (see, e.g., [26, §3.2]). Now, we define the space

Y D f‰ 2 ŒH�1=2.@G/�3 :

Z
G
ŒEG‰�4 dy D 0g.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



D. MEDKOVÁ, M. PTASHNYK AND W. VARNHORN

Because ŒEGn
kC1�4 D �1, the space ŒH�1=2.@G/�3 is the direct sum of Y and fcnkC1; c 2 R1g.

Denote

Z D

�
‰ 2

h
H�1=2.@G/

i3
; h‰,w�j i D 0 8j D 1, : : : , k

�
,

that is, Z D f‰ 2 ŒH�1=2.@G/�3; QE
�

G‰ D E�G‰g. Let j, l 2 f1, : : : , kg, j ¤ l. Because divw�l D 0 in R3 n Cl , Green’s formula gives

Z
@G
w�l � n

j d�y D �

Z
@Cj

w�l � n d�y D �

Z
Cj

divw�l dy D 0.

For r > 0 such that B.zl ; r/ � fy ; jy � zlj < rg � Cl , applying easy calculation, we obtain

Z
@G
w�l � n

l d�y D �

Z
@.ClnB.zl ;r//

w�l � n d�y �

Z
@B.zl ;r/

w�l � n d�y

D �

Z
@B.zl ;r/

w�l � n d�y ¤ 0.

Thus, ŒH�1=2.@G/�3 is the direct sum of Z, and the linear hull of fn1, : : : ,nkg. So, ŒH�1=2.@G/�3 is the direct sum of Y \ Z and the linear
hull of fn1, : : : ,nkC1g.

Suppose now that QE
�

G‰ D 0 on @G. Then, we obtain that QE
�

G‰ D 0 in G [42, Chapter IV]. Because div E�‰ D 0 in R3 n @G, we conclude

Z
@G
nj � E�‰ d�y D 0, for j D 1, : : : , kC 1.

See [42, Chapter IV]. If l D 1, : : : , k, then

0 D

Z
@G
nl � QE

�

G‰ d�y D
kX

jD1

h‰,w�j i

Z
@G
w�j � n

l d�y D h‰,w�l i

Z
@G
w�l � n

l d�y .

Because Z
@G
w�l � n

l d�y ¤ 0,

this forces that h‰,w�l i D 0. Thus,‰ 2 Z and QE
�‰

G D E�G‰, and therefore, QEG‰ D EG‰. Because E�G is injective on Y \ Z by [40] and the
codimension of Y is equal to 1, we deduce that the dimension of the kernel of QE

�

G is at most 1. Because QE
�

G is a Fredholm operator with
index 0, the dimension of the kernel of QE

�

G and the codimension of the range of QE
�

G are equal to 1. Because QE
�

G.ŒH
�1=2.@G/�3/ � X , we

infer that QE
�

G.ŒH
�1=2.@G/�3/ D X . Because the dimension of the kernel of QE

�

G is equal to 1, there existsˆ 2 Z n Y such that QE
�

Gˆ D 0, that
is, there existsˆ such that QE

�

Gˆ D Œ0, 0, 0� and Z
G
ŒEGˆ�4 dy ¤ 0.

Because QEGˆ is a solution of the Stokes system in G, we deduce that ŒEGˆ�4 is constant in G. So, we can choose ˆ such that QEGˆ D

Œ0, 0, 0, 1� in G. Therefore,

‰ 7!


QE
�

G‰,

Z
G
ŒEG‰�4 dy

�

is an injective mapping ŒH�1=2.@G/�3 onto X�R. This mapping is continuously invertible by [39], Theorem 3.8. So, there exists a positive
constant C such that

k‰k
ŒH�1=2.@G/�

3 � C


k QE
�

G‰kŒH1=2.@G/�
3 C

ˇ̌̌
ˇ
Z

G
ŒEG‰�4 dy

ˇ̌̌
ˇ
�

.

Let us now assume that v 2 ŒH1.G/�3, p 2 L2.�/ is a solution of the Stokes system in G. Then, we obtain that the trace of v is in X
(see [42], Chapter IV) and there exists ‰ 2 ŒH�1=2.@G/�3 such that QE

�

G‰ D v on @G. Because .v, p/ � QEG‰ is a solution of the Dirichlet
problem for the Stokes system with the zero boundary condition, we have v D QE

�

G‰ in G and p � ŒEG‰�4 is constant in G. Therefore,
there exists a constant c such that .v, p/ D QEG.‰ C cˆ/.
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Proposition 5
Suppose that there exists‚ 2 ŒH1.G/�3 such that‚ D 0 on @G n � ,‚� D 0 on � , and the assumption (15) is satisfied.

	 Then, T : ‰ 7! ŒT1‰,T a
2 ‰� is a continuously invertible bounded linear operator from

�
H�1=2.@G/

�3
onto W� .@G/ � V 0

�
.@G/.

	 If f 2
�

H1=2.@G/
�3

, g 2
�

H�1=2.@G/
�3

, then there exists a unique solution v 2
�

H1.G/
�3

, p 2 L2.G/ of the problem (14). Moreover,
.v, p/ D QEG‰, where‰ is a unique solution of the integral equations T1‰ D

�
f j@Gn� ,f� j�

�
and T a

2 ‰ D gnj� .

Proof

Suppose first that .v, p/ is a solution of the problem (14) with f D g D .0, 0, 0/. Then,

0 D hg, viH�1=2,H1=2 D 2

Z
G
jD vj2 dy C

Z
@G

ajvj2 d�y .

Denote the inner product

.w,u/ D 2

Z
G

Dw � Du dy C

Z
@G

aw � u d�y . (20)

Then, kwk D
p
.w,w/ is an equivalent norm in ŒH1.G/�3 (see, for example, [43, Theorem 5.2]). Thus, v D 0 in G. Hence,rp D �v D 0 in

G and p D c with some constant c [44, Lemma 6.4]. Therefore, T.v, p/nC av D �cn, and using boundary condition in (14), we obtain

0 D h.T.v, p/nC av/ � n,‚i D �c

and c D 0.
We consider now g 2

�
H�1=2.@G/

�3
and f 2

�
H1=2.@G/

�3
and define

˛ D

Z
@G
f � nG d�y .

Then for Qf D f � ˛‚, there exists a solution Qv 2
�

H1,2.G/
�3

, Qp 2 L2.G/ of the Stokes system in G such that Qv D Qf on @G [42, Chapter
IV]. Considering v D Qv C u and p D Qp C q, we can conclude that .v, p/ is a solution of the mixed problem (14) if and only if .u, q/ 2�

H1.G/
�3
� L2.G/ is a solution of the mixed problem

�u D rq, div u D 0 in G,

u D 0 on @G n � ,

u� D 0 on � ,

ŒT.u, q/nC au� � n D Qg � n on � ,

(21)

where Qg D g � ŒT. Qv, Qp/nC a Qv�.

Denote

X� D

�
v 2 V� .@G/;

Z
@G
v � nG d�y D 0

�
.

Clearly, V� .@G/ and X� are closed subspaces of
�

H1=2.@G/
�3

, and V� .@G/ is the direct sum of X� and fc‚; c 2 Rg. We denote also the
spaces

Y� D

�
‰ 2

h
H�1=2.@G/

i3
; QE
�

G‰ 2 X�

�
, Y0

� D

�
‰ 2 Y� ;

Z
G

�
QEG‰

�
4

dy D 0

�
.

For f 2 X� , there exists a unique solution v 2
�

H1.G/
�3

and p 2 L2.G/ of the Stokes system in G such that v D f on @G and

Z
G

p dy D 0.

See, for example, [42, Chapter IV]. Proposition 4 implies that QE
�

G is a bounded continuously invertible operator from Y0
�

onto X� . Thus,

f QE
�

G‰;‰ 2 Y� g D X� .

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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If‰ 2 Y� , then QEG‰ is a solution of the mixed problem (21) if and only if T a
2 ‰ D Qgnj� . Because V 0

�
.@G/ is the dual space of V� .@G/,

we have T a
2 ‰ D Qgnj� if and only if hT a

2 ‰,wi D h Qg,wi for allw 2 V� .@G/ (i.e., forw D ‚ andw D QE
�

Gˆwithˆ 2 Y� ).
Denote

Z� D
n
QE
�

G‰jG;‰ 2 Y�
o

.

Then, Z� is a closed subspace of
�

H1.G/
�3

. Because the inner product . , / given by (20) defines an equivalent norm in ŒH1.G/�3, the
Riesz representation theorem implies that there exists a unique w 2 Z� such that .w, Qw/ D h Qg, Qwi for all Qw 2 Z� . Fix ‰ 2 Y� such
that w D QE

�

G‰. Then, hT a
2 ‰, Qwi D h Qg, Qwi for all Qw D QE

�

Gˆ with ˆ 2 Y� . Denote by ! the unbounded component of R3 n G. Then,
EGn

! D Œ0, 0, 0, 1� in G (see, for example, [26, §3.2]) and QEGn
! D Œ0, 0, 0, 1� in G. If c 2 R, then QE

�

G.‰ C cn!/ D w, and therefore,
hT a

2 .‰ C cn!/ , Qwi D h Qg, Qwi for all Qw D QE
�

Gˆ with ˆ 2 Y� . Now, we choose c 2 R such that hT a
2 .‰ C cn!/ ,‚i D h Qg,‚i. We have

proved that there exists a solution of the problem (14).
If f 2

�
H1=2.@G/

�3
and g 2

�
H�1=2.@G/

�3
, then there exists a unique solution v 2

�
H1.G/

�3
, p 2 L2.�/ of the problem (14).

According to Proposition 4, there exists a unique ‰ 2
�

H�1=2.@G/
�3

such that .v, p/ D QEG‰. Remark that QEG‰ is a solution of the

problem (14) if and only if T ‰ D
�
f j@Gn� ,f� j� ,gnj�

�
. Thus, the operator T is a continuous injective operator from

�
H�1=2.@G/

�3

onto W� .@G/ � V 0
�
.@G/. Therefore, according to [39, Theorem 3.8], the operator T is continuously invertible.

5. Stokes–Darcy problem

Let � � R3 be a bounded domain and suppose that �S is a subdomain of � with Lipschitz boundary such that �D D � n �S has
Lipschitz boundary. Let � be a nonempty closed subset of @�S \ @�D. Let k and � be positive constants. For given g 2

�
H�1=2.@�S/

�3
,

f 2
�

H1=2.@�S/
�3

, and h 2 H�1=2.@�D/, we shall look for a solution .vS, pS/ 2
�

H1.�S/
�3
� L2.�S/ and .vD, pD/ 2

�
L2.�D/

�3
� H1.�D/

of the coupled Stokes–Darcy problem (1)–(6). Here, n D nS on @�S, n D �nD on @�D. We suppose that there exists ‚ 2
�

H1.�S/
�3

such that‚ D 0 on @� n � with‚� D 0 on � and satisfies

Z
�

‚ � n d�y D 1 .

Notice that this condition is fulfilled if � contains a nontrivial smooth surface.
Denote by PH1=2.@�Dn� / the closure of infinitely differentiable functions with compact support in @�Dn� and by H�1=2.@�Dn� / its

dual space. Suppose that hD 2 H�1=2.@�D n � / and h� 2 H�1=2.@�D/ supported in � . Denote by P@�Dn� the orthogonal projection
of H1=2.@�D/ onto H1=2.@�D n � /. Define h D hD ı P@�Dn� C h� . Then, h 2 H�1=2.@�D/. Because h� is supported on � , we have
hj@�Dn� D hD. If ' 2 H1=2.@�D, ' D 0 in @�D n � , then hh,'i D hh� ,'i. Thus, hj� D h� . Let h 2 H�1=2.@�D/. We prove that there
exist hD 2 H�1=2.@�D n � / and h� 2 H�1=2.@�D/ such that h D hD ı P@�Dn� C h� . Define hhD,'i D hh,'i for ' 2 H1=2.@�D n � /.
Then, hD 2 H�1=2.@�D n � /. If we define h� D h � hD ı P@�Dn� , then hD 2 H�1=2.@�D/ is supported on � .

Suppose now that
�
vS, pS

�
2
�

H1.�S/
�3
� L2.�S/,

�
vD, pD

�
2
�

L2.�/
�3
� H1.�D/ is a solution of the problem (1)–(6). We notice that

�pD D divrpD D �div vD D 0 in�D. According to Proposition 2, there exists 2 H�1=2.@�D/ such that pD D S , where S D SG 

and G D �D.
If @�S is connected, we denote QE‰ D EG‰ with G D �S. In the case @�S is not connected, we denote by C1, : : : , Ck all bounded

components of R3 n �S and consider fixed points zj 2 Cj , for j D 1, : : : , k. Then, as in (16) and (17), for ‰ 2
�

H�1=2 .@�S/
�3

, we can

define QE‰ :D QEG‰ with G D �S. According to Proposition 4, there exists a unique ‰ 2
�

H�1=2 .@�S/
�3

such that
�
vS, pS

�
D QE‰. Thus,

for integral representation of the solutions of (1)–(6), we shall look for a solution in that form.
Now, we denote by K� the operator K�G defined by (8) for G D �D. Let W� .@�S/, V� .@�S/ and V 0

�
.@�S/ be spaces from the

Section 4. We consider T1 the bounded linear operator from
�

H�1=2.@�S/
�3

to W� .@�S/ given by (18) for G D �S. For a constant a 2 R,

we denote by T a
2 the bounded operator from

�
H�1=2.@�S/

�3
to V 0

�
.@�S/ defined by (19) with G D �S.

For  2 H�1=2.@�D/ and‰ 2 ŒH�1=2.@�S/�
3, we define

T3. ,‰/ D
h
 =2 � K� � 	� n � QE

�
‰,T1‰, �T 0

2 ‰ C k�1S C  =2 � K� 
i

,

where 	� is the characteristic function of � .

Proposition 6
If  2 H�1=2.@�D/,‰ 2

�
H�1=2.@�S/

�3
, hD D hj@�Dn� , h� D hj� , then

�
vS, pS

�
D QE‰, and pD D S , vD D �rpD is a solution of the

problem (1)–(6) if and only if T3 . ,‰/ D
�

h,f j@�Sn� ,f� j� ,gnj�
�
. The operator T3 : H�1=2.@�D/�

�
H�1=2.@�S/

�3
! H�1=2.@�D/�

W� .@�S/ � V 0
�
.@�S/ is a Fredholm operator with index 0.

Proof
For  2 H�1=2.@�D/ and‰ 2

�
H�1=2.@�S/

�3
, easy calculation ensures that

�
vS, pS

�
D QE‰, and pD D S , vD D �rpD is a solution of

the problem (1)–(6) if and only if T3. ,‰/ D
�

h,f j@�Sn� ,f� j� ,gnj�
�
.
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For  2 H�1=2.@�D/ and‰ 2
�

H�1=2.@�S/
�3

, we define the operator

T4. ,‰/ D
h
 =2 � K� C S ,T1‰, �T 1

2 ‰ C k�1S C  =2 � K� 
i

and shall show that T4 is a continuously invertible bounded linear operator from H�1=2.@�D/ �
�

H�1=2.@�S/
�3

to H�1=2.@�D/ �

W� .@�S/ � V 0
�
.@�S/.

For h 2 H�1=2.@�D/, f 2
�

H1=2.@�S/
�3

, and g 2 ŒH�1=2.@�S/�
3, because of Proposition 3, there exists a unique  2

H�1=2.@�D/ such that K� � 1
2 � S D h. Then, Proposition 5 ensures that there exists a unique ‰ 2

�
H�1=2.@�S/

�3
such

that T1‰ D
�
f j@�Sn� ,f� j�

�
and �T 1

2 ‰ D gn � k�1S � 1
2 C K� . Because T4 is an injective bounded linear operator

from H�1=2.@�D/ �
�

H�1=2.@�S/
�3

onto H�1=2.@�D/ � W� .@�S/ � V 0
�
.@�S/, applying Theorem 3.8 in [39], we obtain that T4 is

continuously invertible.
For  2 H�1=2.@�D/ and‰ 2

�
H�1=2.@�S/

�3
, we have that

ŒT3 � T4� . ,‰/ D
h
�S � 	� n � QE

�
‰, 0,�� QE

�
‰
i

.

S is a bounded linear operator from H�1=2.@�D/ to H1=2.@�D/ (see, for example, [37, Theorem 4.1]), and therefore, a compact operator
on H�1=2.@�D/. Similarly, QE

�
is a bounded linear operator from

�
H�1=2.@�S/

�3
to
�

H1=2.@�S/
�3

[36, Proposition 4.10] and a compact

operator on
�

H�1=2.@�S/
�3

. Thus,	� n� QE
�

is a compact operator from
�

H�1=2.@�S/
�3

to H�1=2.@�D/. Altogether, ŒT3 � T4� is a compact

linear operator from H�1=2.@�D/ �
�

H�1=2.@�S/
�3

to H�1=2.@�D/ � W� .@�S/ � V 0
�
.@�S/. Because T4 is invertible, T3 is a Fredholm

operator with index 0 [41, § 16, Theorem 16].

Proposition 7
Let

�
vS, pS

�
2
�

H1.�S/
�3
� L2.�S/ and

�
vD, pD

�
2
�

L2.�D/
�3
�H1.�D/ be a solution of the problem (1)–(6) with f � 0, hD � 0, h� � 0,

and g � 0. Then, there exists a constant c such that pS D c, vS � 0, vD � 0, and pD D k�c. On the other hand, if pS D c, vS � 0, vD � 0,
pD D k�c for some constant c, then

�
vS, pS, vD, pD

�
is a solution of the problem (1)–(6) with f � 0, hD � 0, h� � 0 and g � 0.

Proof
Because vS � n D vD � n D �@pD=@nS D @pD=@nD, we have, using Green’s formula,

0 D

Z
�

�
vS � n

� ˚
�
�

T.vS, pS/nS
�
� nC pD=kC vD � n

�
d�y

C

Z
�

vS
�

�
�T.vS, pS/nS

�
�

d�y C

Z
@�Sn�

�vS � T
�
vS, pS

�
nS d�y

C

Z
@�Dn�

�
vD � n

� pD

k
d�y D

Z
@�S

�vS � T
�
vS, pS

�
nS d�y C

Z
@�D

pD

k

@pD

@nD
d�y

C

Z
�

jvS � nj2 d�y D

Z
�S

2�jD vSj2 dy C

Z
�D

jrpDj2

k
dy C

Z
�

jvS � nj2 d�y .

(22)

Therefore, vS � n D 0 on � , D vS D 0 in �S, and rpD D 0 in �D. According to (3) and (5), we have vS D 0 on @�S. Because D vS � 0,
we obtain that the functions vS

j , for j D 1, 2, 3 are affine [45, Lemma 6] and therefore harmonic. The maximum principle for harmonic
functions gives that vS

j
� 0, for j D 1, 2, 3. Because rpS D �vS D 0, there exists a constant c such that pS D c. Because rpD D 0 in

�D, the function pS is constant on each component of �D. Therefore, vD D �rpD D 0. Using the boundary conditions 0 D
�ŒT.vS, pS/nS� � nC pD=kC vD � n D ��cC pD=k on � , we can conclude that pD D k�c.

Theorem 1
For g 2

�
H�1=2.@�S/

�3
, f 2

�
H1=2.@�S/

�3
, h 2 H�1=2.@�D/, h� D hj� , and hD D hj@�Dn� , there exists a solution of the problem

(1)–(6) if and only if

hh, 1i D

Z
@�Sn�

nS � f d�y . (23)

Proof
Let .vS, pS/ 2

�
H1.�S/

�3
� L2.�S/ and vD 2

�
L2.�D/

�3
, pD 2 H1.�D/ be a solution of the problem (1)–(6). Because�pD D 0 for ' � 1,

we obtain that

h@pD=@nD, 1i D

Z
�D

rpD � r' dy D 0.

Considering div vS D 0, Green’s theorem gives Z
@�S

nS � vS d�y D 0,
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compare [42, Chapter IV]. Because n D nS on @�S, n D �nD on @�D, and @pD=@nD D �nD � vD D n � vD, we have

0 D h@pD=@nD, 1i D hh, 1i C

Z
�

nS � vS d�y �

Z
@�S

vS � nS d�y

D hh, 1i �

Z
@�Sn�

f � nS d�y .

Now, for  2 H�1=2.@�D/ and ‰ 2
�

H�1=2.@�S/
�3

, we consider
�
vS, pS

�
D QE‰ and pD D S , vD D �rpD. Then by Proposition 6,

.vS, pS/ and
�
vD, pD

�
are the solutions of the problem (1)–(6) if and only if T3 . ,‰/ D

�
h,f j@�Sn� ,f� j� ,gnj�

�
. Suppose now that

T3. ,‰/ D 0. According to Proposition 7, there exists a constant c such that QE‰ D Œ0, 0, 0, c� and S D k�c. This, together with
Propositions 2 and 4, yields that the dimension of the kernel of T3 is at most 1. The condition (23) forces that the codimension of the
range of T3 is at least 1. Because T3 is a Fredholm operator with index 0, we infer that codim T3

�
H�1=2.@�D/ � ŒH�1=2.@�S/�

3
�
D

dim KerT3 D 1. Hence, the Stokes–Darcy problem is solvable if and only if the compatibility condition (23) holds true.
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