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Christian Engwer1, Willi Jäger2, Sven Marnach3, Mariya Ptashnyk2,
and Bernhard Wetterauer4

1 IWR, Universität Heidelberg, INF 368, 69120 Heidelberg, Germany (now at3)
{peter.bastian,christian.engwer}@ipvs.uni-stuttgart.de

2 IAM, Universität Heidelberg, INF 294, 69120 Heidelberg, Germany
{andres.chavarria.krauser,jaeger,
mariya.ptashnyk}@iwr.uni-heidelberg.de

3 IPVS, Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
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Summary. A multiscale approach is presented to model growth of hairy roots.
On the macroscopic scale, a continuous model is derived, which includes growth
and nutrient transport. Water transport is considered on the microscopic scale.
A Discontinuous Galerkin scheme for complex geometries is used to compute the
permeability of root bulks. This permeability constitutes the linkage between micro-
and macroscopic scale. The models are applied then to describe shaker cultures of
hairy roots and simulations are compared to measurements.

1 Introduction

Plants remain a major source of pharmaceuticals and biochemicals. Many of
these commercially valuable phytochemicals are secondary metabolites that
are not essential to plant growth. Hairy roots, obtained from plants through
transformation by Agrobacterium rhizogenes, produce many of the same im-
portant secondary metabolites and can be grown in relatively cheap hormone-
free medium. Thus they may provide an alternative to agricultural processes
to produce phytochemicals on a large scale [9, 11]. Hairy roots can be culti-
vated under sterile conditions either in a bioreactor or in shake flasks. The fast
growing hairy roots are unique in their genetic and biosynthetic stability and
are able to regenerate whole viable plants for further subculturing [6]. The
yield of secondary metabolites is determined by biomass accumulation and
by the level of secondary metabolite produced per unit biomass. Therefore
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Fig. 1. Ophiorrhiza mungos and hairy root of O. mungos

a number of biological studies have focused on the growth process, growth
dynamic, and production of secondary metabolites in bioreactors of different
design [17, 10, 9].

Hairy roots of Ophiorrhiza mungos Linn., the Chinese camptotheca tree,
are currently gaining the interest of pharmacologists, since a secondary
metabolite, camptothecin, can be used to treat cancer diseases [26]. Camptho-
thecin is a modified monoterpene indole alcaloid produced by Camptotheca
acuminata, Nothapodytes foetida, some species of the genus Ophiorrhiza, Er-
vatamia heyneana, and Merrilliodendron megacarpum [24, 27]. In order to
produce camptothecin efficiently, it is necessary to optimize the biological
processes behind its biosynthesis (either in bioreactors or shaker cultures).
However, to achieve this, it is essential to understand metabolism, growth
and transport processes of and in root networks.

The aim of the project was to derive a mathematical model which de-
scribes growth of root networks and nutrient transport through root tissues.
To describe the biological system a multiscale approach was used. The proc-
esses on macroscopic and microscopic scale are linked. Numerical solutions
were compared to experimental data obtained from O. mungos hairy roots
grown as shaker cultures. The model and numerical algorithms are general
enough to describe growth and transport processes in bioreactors.

2 Biological Processes

The processes observed in a bioreactor are water transport, diffusion and
transport of nutrients in medium and roots, and growth of roots. These proc-
esses are taking place on different scales, each of which contributes to the
global system.

On the macroscopic level roots form a dense bulk which resembles a porous
medium. This allows to use well known modeling approaches to describe
porous media. The root bulk is hence treated as a continuous medium of
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varying porosity, and all processes are defined on this continuum. Growth
and nutrient transport are observed on the macroscopic scale and described
through distributions. Growth is assumed to depend on nutrient concentra-
tion in the medium and inside the roots [20, 10, 21]. Three processes are
responsible for changes in the mediums nutrient concentration: uptake on
the root surface, convection due to pressure gradients and diffusion arising
from concentration gradients. The macroscopic diffusion coefficient and the
uptake kinetics depend on the density of the root network and are defined
phenomenologically.

On the microscopic scale the root structure influences flow and trans-
port processes around the root network, which has a complex highly ramified
structure. The surface of a single root is covered with fine hairs, reducing
conductivity [16]. Here it becomes clear that the microscopic structure de-
termines substantially the macroscopic properties, in particular porosity and
permeability.

Nutrient transport inside the roots is also a microscopic process. Since
transport inside the root network is substantially faster in comparison to
growth and branching, it is legitimate to consider only the average internal
nutrient concentration and use a macroscopic internal nutrient concentra-
tion.

3 Macroscopic Model

Two densities are used to describe growth of hairy root networks: the root
volume per unit volume ρ (0 ≤ ρ(x, t) ≤ 1) and the cross section area of
tips per unit volume n (n(x, t) ≥ 0). Growth can then be assumed to occur
due to tip movement (elongation), tip formation (branching), and secondary
thickening. Thus the change of density n is defined by a transport equation
with growth velocity v and a branching term f . A similar approach has been
used to model growth of fungi mycelia [7, 4]. The change of root density ρ
is determined by the root volume produced due to tip movement. Secondary
thickening is defined phenomenologically as a production term in the equation
for ρ. Growth velocity and branching kinetics depend on the concentration of
nutrients in the medium (denoted by c(x, t)) and within the roots (denoted
by s(x, t)).

The transport of nutrients in the medium is defined by a convection-
diffusion equation with a reaction term describing the active and passive
nutrient uptake on the roots surface. Active uptake is assumed to be unidi-
rectional (into the root network) and dependent only on the local medium
nutrient concentration c. Passive uptake depends on the nutrient gradi-
ent between medium and roots, given by the difference c − s. Four pro-
cesses which change the total internal nutrients S = s Vr, where Vr(t)
is the root volume, are considered here: uptake, growth, ramification and
metabolism.
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The precise formulation of the macroscopic model of hairy root growth
reads

∂tn +∇ · (nv) = f in (0, T )× Ω,

∂tρ = n ‖v‖+ q in (0, T )× Ω,

∂t ((1− ρ)c) +∇ · (u c)−∇ · (Dc(1− ρ)∇c) = −g in (0, T )× Ω,

d
dt

S =
R
Ω

g dx − γg
R
Ω

(n ‖v‖+ q) dx − γr
R
Ω

f dx − γm S in (0, T ),

(1)

with
v = Rs (ρmax − ρ) (∇μ + αττ ) ,

∇μ = αc∇c− αρ∇ρ− αn∇n ,
q = χ s ρ (ρmax − ρ) ,
f = β c s ρ (ρmax − ρ) ,

g =
2λn
r

ρ (Km c + P (c− s)) ,

where R is a growth rate, ρmax is the maximal root density, χ is a secondary
thickening rate, β is a branching rate, λ is the characteristic length of the
uptake-active tissue around a tip, Km is a constant describing active uptake
rate, P is a permeability characterizing passive uptake, u is the flow velocity
of the medium, Dc is a diffusion constant, and γg, γr and γm are constants
describing the proportion of metabolites used for growth, ramification and
metabolism, respectively. Since hairy roots are agravitropic [14] growth ve-
locity can be assumed to be independent of gravity. Growth can then be
presumed to occur along nutrient gradients and away from dense tissue. Pure
densification of the root system is modeled by the local rotation τ , which is
a unit vector orthogonal to ∇μ and ∇n. It does not affect the density distri-
bution of tips, although mass is still produced and ρ changes. Here αc, αρ,
αn, and ατ are phenomenological constants, which relate the growth driving
gradients to the resulting growth velocity.

Initial density distributions and nutrient concentrations are prescribed.
For both the bioreactor and the shake flasks the side walls of the reactor
vessel (Γsw) are impermeable to the medium. In the bioreactor we have in-
flow (Γin) and outflow (Γout) boundaries. On Γin the nutrient concentration is
given and Dirichlet boundary condition can be posed. On Γout we have out-
flow boundary condition. In the case of the shaker cultures no-flux boundary
condition can be posed (i.e. ∂Ω = Γsw and Γin = Γout = ∅). Since roots can-
not extend beyond the vessel, the tip density fulfills also the no-flux boundary
conditions.

n(0,x) = n0(x), ρ(0,x) = ρ0(x) in Ω,

c(0,x) = c0, S(0) = S0, in Ω,

nv · ν = 0 on (0, T )× ∂Ω,
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c = cD on (0, T )× Γin,

Dc(1− ρ)∇c− u c) · ν = 0 on (0, T )× Γout,

∇c · ν = 0 on Γsw .

The water velocity u is defined by Darcy’s law. We distinguish between Dirich-
let condition given by pressure values on the boundary ΓD and Neuman con-
ditions defined by flux through the boundary ΓN . Depending on the experi-
mental setup, either Neumann or Dirichlet conditions are posed on Γin and
Γout. For a shake flask and on the sidewalls (Γsw) of a bioreactor, no-flux (i.e.
homogeneous Neumann) conditions need to be posed.

∇ · u = 0 in Ω,

u = −K∇p in Ω,

p = p0 on ΓD ⊂ ∂Ω,

u · ν = j on ΓN = ∂Ω \ ΓD .

(2)

Here K is the permeability function of the root network. On the macroscopic
scale K changes with density, but derivation of the relation is cumbersome if
not impossible for general geometries. It must be computed hence for a certain
structure on the microscopic scale.

The effective permeability K is assumed to be of the form

K = K0 ·Krel, (3)

where K0 is the average coefficient relating the flow velocity u to the pressure
gradient ∇p in an empty reactor (ρ = 0). Krel(ρ) a dimensionless relative
permeability which reflects the local root structure. K0 can be obtained by
determining the Hagen–Poiseuille flow in the reactor, while Krel is computed
using simulations of the microscopic model.

4 Microscopic Model

On the microscopic scale we consider water flow between single root branches.
To simplify the problem, we assume an incompressible potential flow:

∇ · u = 0 in Ω,

u = −∇p in Ω,

p = p0 on ΓD ⊂ ∂Ω,

∇p · ν = j on ΓN = ∂Ω \ ΓD .

(4)

The domain Ω has a complex geometry, given by the root structure. Water
uptake by the roots (growth) is small compared to the water flow, therefore
Neumann boundary conditions with j = 0 can be assumed on the root sur-
faces.
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4.1 Numerical Methods for Microscale Simulations

The root structure on the microscopic scale exhibits a complex shape. Classical
numerical methods require a grid resolving such complex geometries. Creat-
ing these grids is a very sophisticated process and generates a high number
of unknowns. We developed a discretization scheme for complex geometries,
based on a Discontinuous Galerkin (DG) discretization on a structured grid
and a structured grid for the construction of trial and test functions [8]. This
method offers a discretization where the number of unknowns is not directly
determined by the possibly very complicated geometrical shapes, but still al-
lows the provision of fine structures, even if their size is significantly smaller
than the grid cell size.

Let Ω ⊆ Rd be a domain. On a sub-domain Ω∗ ⊆ Ω we want to
solve Eqn. (4). The shape of Ω∗ is usually based on geometrical prop-
erties retrieved from experiments, like micro-CT images, or from compu-
tations. T (Ω) = {E0, . . . , EM−1} is a partitioning, where the mesh size
h = min {diam(Ei) | Ei ∈ T } is not directly determined by the geometri-
cal properties. Nevertheless error control on solution of the partial differential
equation might require a smaller h due to the shape of ∂Ω. For Ω∗ a triangu-
lation based on T (Ω) is defined T (Ω∗) = {E∗

n| E∗
n = Ω∗ ∩En ∧E∗

n �= ∅}, see
Fig. 2. As E∗

n is always a subset of En we will call En fundamental element of
E∗

n. The internal skeleton Γint and external skeleton Γext of the partitioning
are denoted by

Γint =
{
γe,f = ∂E∗

e ∩ ∂E∗
f

∣∣∣ E∗
e , E

∗
f ⊂ Ω∗ and E∗

e �= E∗
f and |γe,f | > 0

}
,

Γext = {γe = ∂E∗
e ∩ ∂Ω∗ | E∗

e ⊂ Ω∗ and |γe,f | > 0} .

In the finite element mesh T (Ω∗) each element E∗
n can be shaped arbitrarily.

Using DG, unlike conforming methods, the shape functions can be chosen in-

Fig. 2. Construction of the partitions T (Ω∗) from the partitions G and T of the
domain Ω and of E∗ from its fundamental element and Ω∗. The local triangulation
of E∗

i and ∂E∗
i
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dependently from the shape of the element. Note that certain DG formulations
are especially attractive, because they are element wise mass conservative and
therefore able to accurately describe fluxes over element boundaries. We use
a DG formulation with local base functions ϕ∗

n,j being polynomial functions
ϕn,j ∈ Pk defined on the fundamental element En, with their support re-
stricted to E∗

n:

ϕ∗
n,j =

{
ϕn,j inside of E∗

n

0 outside of E∗
n

, (5)

Pk = {ϕ : Rd → R | ϕ(x) =
∑

|α|≤k cαx
α} is the space of polynomial functions

of degree k and α a multi–index. The resulting finite element space is defined
by

V ∗
k =

{
v ∈ L2(Ω∗)

∣∣ v|E∗
n
∈ Pk

}
(6)

and is discontinuous on the internal skeleton Γint. With each γe,f ∈ Γint we
associate a unit normal n. The orientation can be chosen arbitrarily, in this
implementation we have chosen n oriented outwards E∗

e for e > f and inwards
otherwise. With every γe ∈ Γext we associate n oriented outwards Ω∗. The
jump [ . ] and the average 〈 . 〉 of a function v ∈ V ∗

k at x ∈ γ ∈ Γint are defined
as

[ v ] = v|E∗
e
− v|E∗

f
and 〈 v 〉 =

1
2

(
v|E∗

e
+ v|E∗

f

)
.

Assembling the local stiffness matrix in DG requires integration over the vol-
ume of each element E∗

n and its surface ∂E∗
n. Integration is done using a local

triangulation of E∗
n. E∗

n is subdivided into a disjoint set {E∗
n,k} of simple ge-

ometric objects, i.e. simplices and hypercubes, with Ē∗
n =

⋃
k

Ē∗
n,k, see Fig. 2.

The integral over a function f on E∗
n can then be evaluated as∫

E∗
n

f(x) dx =
∑

k

∫
E∗

n,k

f(x) dx,

where
∫

E∗
n,k

f dx is evaluated using standard quadrature rules.

4.2 Numerical Estimation of Macroscopic Parameters
from Microscopic Simulations

Following the approach described in the previous subsection and applying
this method to the microscopic problem in (4), the relative permeability, as
introduced in (3), can be computed from direct simulation of flow through
a root bulk:

Krel =

⎛⎝ ∫
Γin

udx

⎞⎠ ·
⎛⎝ ∫

Γin

p2 − p1

h
dx

⎞⎠−1

, (7)
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Fig. 3. The Marching Cube algorithm in R2 distinguishes six basic cases, depending
on the value of a function Φ in the corners. The pictures show these six different
cases, together with their key in the look-up table

Fig. 4. (a) shows the scalar function describing the geometry, the marching simplex
algorithm yields the geometry visible in (b). Pressure and velocity are computed on
the given domain, using direct simulations with a Discontinuous Galerkin scheme.
The resulting velocity can be seen in (b). (c) shows a closeup

where Γin ⊂ ΓD describes the inflow boundary. Dirichlet boundary conditions
are posed both on the inflow and the outflow boundary.

The domain Ω∗ is implicitly given by a scalar function Φ. This scalar
function will usually be obtained through post processing of image data, i.e.
from CT images. In these calculations we use artificially generated structures
(Fig. 4.2a), based on structural parameters (using the PlantVR software [5]).
The sub-domain boundary ∂Ω∗ is given as an iso-surface Φ = 0.

The local triangulation is based on the Marching Cube/Simplex Algo-
rithm [13]. These algorithms give a surface reconstruction for an iso-surface.
Each vertex of an element can be below or above the value of the iso-
surface, read inside or outside the sub-domain. For a cube element in R2

this gives 16 different cases. Each of these cases corresponds to one of six
basic cases and can be transformed using simple geometric operations (see
Fig. 3). A look-up table maps each case to the appropriate surface recon-
struction. The key for the look-up table is given by assigning the state
of each corner (inside → 1, outside → 0) to one bit of an integer. The
look-up table was extended to provide a surface and a volume reconstruc-
tion.

Using the formulation described in [18, 19], (4) reads: Find p ∈ V ∗
k such

that
aε(p, v) + Jσβ(p, v) = lεσβ(v) ∀v ∈ V ∗

k .
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Fig. 5. Estimation of macroscale parameters from microscale simulations. Direct
simulation of (4) for different root bulks with different densities yields correlation
of Krel and ρ. Model assumed: Krel = 1− ρb, where b = 0.82± 0.02

The bilinear form

aε(p, v) =
∑

E∗
e∈T ∗

∫
E∗

e

(K∇p) · ∇v dV

+
∑

γef∈Γint

∫
γef

ε 〈 (K∇v) · n 〉[ p ]− 〈 (K∇p) · n 〉[ v ] ds

+
∑

γe∈ΓD

∫
γe

ε (K∇v) · n p− (K∇p) · n v ds

is parametrized by ε = ±1. Choosing ε = 1 we get a non–symmetric scheme
introduced by Oden, Babušky and Baumann in [15]. For ε = −1 we obtain the
Symmetric Interior Penalty method which needs an additional stabilization
term added to the bilinear form:

Jσβ(p, v) =
∑

γef∈Γint

σ

|γef |β
∫

γef

[ p ][ v ]ds +
∑

γe∈ΓD

σ

|γe|β
∫
γe

pv ds

with σ > 0 and β, where β depends on the dimension of Ω (β = 1 when
dim = 2). Choosing ε = 1 and σ > 0 results in the Non–Symmetric Interior
Penalty method.

The right hand side is a linear form

lεσβ(v) =
∑

E∗
e∈T ∗

∫
E∗

e

f v dV +
∑

γe∈ΓN

∫
γe

J v ds

+
∑

γe∈ΓD

∫
γe

ε (K∇v) · n g ds +
∑

γe∈ΓD

σ

|γef |β
∫
γe

v g ds.
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Direct simulation of Eq. (4) for different realizations of root bulks, yields
Krel and ρ. Krel is assumed to be of the form Krel(ρ) = 1 − ρb and b is
determined using a mean square fit.

Fig. 5 shows the dependence of Krel on ρ and the fitted function Krel(ρ),
where b = 0.82± 0.02.

5 Application of the Macroscopic Model

There are two common ways of cultivating hairy roots, either in shake flasks
or in bioreactors. Shaker cultures are used more often because of their
simple assembly and usage in experiments and biological research. How-
ever, experiments in shaker cultures do not provide information about the
spatial structure and distribution of roots. Bioreactors have rather indus-
trial applications and are more complex to operate and to use as experi-
mental set-ups. In the work presented here both cultivation methods were
considered. In fact, equations (1) are able to describe both situations, as
these differ only slightly in the method used to guarantee nutrient supply.
While the principle of shake flask is based on permanent shaking of medium
and culture, bioreactors use medium fluxes to ensure nutrient and oxygen
supply.

5.1 Simulation of Shaker Cultures

For numerical simulation Eqs. (1) can be simplified to reduce the amount of
free parameters. Uptake of nutrients can be considered to be purely of active
nature, neglecting the passive transport (P = 0). Moreover, the energy cost for
branching of new tips can be neglected (γr = 0). Since the root branches are
very thin and variation in radius is small, root thickening can be neglected
as well (χ = 0). The main purpose of shaking is to supply oxygen and to
ensure a homogeneous distribution of nutrients. This means that transport
in the medium is non-limiting to uptake and growth. In the simulation this
homogeneous distribution can be achieved via large diffusion. Active water
transport is neglected.

A personal computer was used to simulate the macroscopic model (1),
using a implementation of the numerical schemes based on the DUNE frame-
work [3, 1]. For spatial discretization of the first and third equation in (1) a cell
centered finite volume scheme on a structured grid was used [12]. The diffusive
and convective/reactive part of the third equation in (1) were decoupled for
discretization in time (second order operator splitting [23]). To prevent both
instabilities in the transport term and effects from strong numerical diffusion,
the convection equation was solved using an explicit second order Godunov
upwind scheme with a minmod slope limiter [25, 12]. The diffusive part of
the equation was solved implicitly. The ordinary differential equations for the
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Fig. 6a,b. Comparison of simulation and experimental data from hairy roots grown
as shaker cultures. The evolution in time of root mass (a) and concentration of
sucrose in the medium (b) are compared to measurements. At 336 hours cultures
were transferred into fresh medium

root density and the inner nutrient concentration S [second and fourth Eq.
in (1)] were solved with Euler’s method [22].

The parameters in the model are chosen such that the numerical results fit
experimental data obtained from O. mungos hairy roots (Fig. 6). Gradients
of nutrients and tip density, with moderate tissue compaction (local rota-
tion), were chosen here as the driving force of growth. Very good agreement is
found between measurements and simulation (mass increase: R2 = 0.85, nu-
trient uptake: R2 = 0.93). The model delivers spatial information on growth
patterns as well. A simulation of a two dimensional flask is found in Fig. 7.
The distributions are assumed to be constant in one of the the three dimen-
sions. Simulation in three dimensions could however be easily implemented.
Measurements deliver at the moment only data describing the kinetics of mass
increase and nutrient uptake (compare Fig. 6), which do not include quanti-
tative information on spatial patterns. Therefore, verification of the patterns
in Fig. 7 is at the moment not possible. It is hence not clear which growth
process dominates in the growth force ∇μ+ατ τ . Do hairy roots follow rather
nutrient gradients than space gradients, or is diffusion of root tips more im-
portant? Or is mass increase a consequence of tissue compaction (local rota-
tion)? It will probably be a mixture of all and other processes not accounted
for. A detailed discussion regarding this issue can be found in Bastian et al.
(2007b).

5.2 Hairy Roots Bioreactor

Root growth in bioreactors can be described by the full macroscopic model
(1). Active water transport has to be considered. The flow velocity u can be
calculated using Darcy’s-Law (2), which requires the permeability K(ρ). The
relation between K and the root volume density ρ is determined by the mi-
croscopic model (compare Fig. 5). The model and numerical algorithms are
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Fig. 7a–d. Simulated two dimensional spatial growth patterns of hairy roots grown
as shaker cultures. (a) root volume density, (b) root tip density, (c) nutrient con-
centration in medium, and (d) local mass increase (all after 380 h of growth)

elaborated sufficiently to calculate and optimize the transport and growth
processes in bioreactors. For meaningful simulation, parameters related to
the three dimensional structure are required for (1). However these are not
available from shaker culture experiments.

In order to study three dimensional growth patterns, a small experimen-
tal bioreactor (WEWA I ) for root cultures was constructed in the group of
Prof. Wink (IPMB, Universität Heidelberg) to deliver the information needed.
“WEWA I”s construction is based on the Low Cost Mist Bioreactor (LCMB)
of the company ROOTec GmbH (Heidelberg, Germany; Patentnumber: US
2003/0129743A1 / EP 1268743B1). The bioreactor system consists of a 3 l
reactor reservoir (Fig. 8), a medium reservoir, a gas reservoir, and a mist
chamber for the distribution of medium over the fixed root bed. Every 15
min the root inoculum is sprayed with 20 ml medium. Due to spraying,
a pressure difference of 0.3 bar arises, which is used to return the surplus
medium into the medium reservoir. The pressure in the reactor is controlled
by a pneumatic relief valve (0.5 bar opening pressure). Instead of the B5
medium (1% sucrose; ROOTec GmbH, Heidelberg, Germany) used in shaker
cultures, a modified version with 0.5% sucrose is used to obtain an optimal
medium osmolarity. In order to prevent contaminations in the reactors a bac-
teriostatic (0.5 g/l Claforan) and a fungicide (40 mg/l Nystain) were added
to the medium.
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Fig. 8a–c. Scheme of the WEWA I mist chamber: injection valve of medium (a),
mesh on which cultures are fixed (b), drain for surplus medium (c)

“WEWA I” is being put into operation at the moment. Several test runs
have been done so far. However, these test measurements have not supplied
reliable enough experimental data to identify the model parameters. Therefore
meaningful simulations of the processes in bioreactors were not possible until
now.

6 Conclusion

The work presented here has a general interest for modeling and simulation
of complex growing networks like root systems and growth processes in biore-
actors. A macroscopic model describing water and nutrient transport through
a growing root network was derived. The growth of roots in a water solu-
tion and the dense growth habit of hairy roots give the possibility to define
growth as a change of tissue volume density. This allows further to expand
a one dimensional growth model, namely pure elongation of single roots, to
a continuous three dimensional model, which delivers information on spatial
growth patterns. Linkage of the microscopic and the macroscopic scale is ac-
complished by the elaborate and novel numerical algorithms developed for
solution of elliptic equations on complex shaped domains. Comparison of nu-
merical solutions and measurements of hairy roots shaker cultures, showed
that the model is able to describe very well the kinetics of growth and nutri-
ent uptake. Moreover, model and numerical algorithms are general enough to
describe growth in bioreactors. Optimization of camptothecin production is
still an open task due to the lack of experimental data. The model presented
here is a good step forward towards achieving this and represents a sound base
for further research. The numerical methods developed for microscale simula-
tions are of interest for a wide range of applications, ranging from pore scale
problems for water resources to cell biology. In future work these methods will
be extended to time-dependent problems.
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