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to show the existence of a solution of the nonlinear degenerate pseudoparabolic
variational inequality defined in a domain with microscopic perforations, as well as

é{:glﬁ%?:;abohc inequalities to derive a priori estimates for solutions of the microscopic problem. The main
Obstacle problems challenge is the derivation of a priori estimates for solutions of the variational
Degenerate nonlinear PDEs inequality, uniformly with respect to the regularisation parameter and to the
Homogenization small parameter defining the scale of the microstructure. The method of two-scale
Two-scale convergence convergence is used to derive the corresponding macroscopic obstacle problem.
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1. Introduction

In this paper we consider multiscale analysis of a nonlinear degenerate pseudoparabolic variational in-
equality modelling unsaturated flow with dynamic capillary pressure in a perforated porous medium. Models
for two-phase flow with dynamical capillary pressure, originally proposed by [16,38], consider Darcy’s law
for the flux of the moisture content u given by

J = —Ak(u)(Vp +eyn),

and assume that the pressure p in the wetting phase is a function of the moisture content v and its time
derivative O;u, i.e. in a simplified form,

p= _Pc(u) + Tatuv
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where the permeability function k(u) depends on the moisture content, the vector e, = (0,...,0,1) de-
termines the direction of flow due to gravity, and A and 7 are positive constants. Then for the moisture
content u we obtain a pseudoparabolic equation of the form

Ou =V - (Ak(u)[Pe(u)Vu+ 7Vu + e,]), (1)

where P.(u) = —P'(u).
If considering a two-phase flow problem in a perforated porous medium with Signorini’s type conditions
on the surfaces of perforations

uw>0, Ak(u)(P.(uw)Vu+71Vou+e,) v>—f(tz,u),

(2)
u[Ak(u)(Pe(u)Vu+ 7Vu+ e,) - v+ f(t,x,u)] =0,
then a weak formulation of equation (1) together with conditions (2) results in a pseudoparabolic variational
inequality of the form

(Opu, v —u)ge + (Ak(u)[Pe(u)Vu + 70, Vu + e,], V(v — u)) e + (f(t, 2, u),v —u)p- >0, (3)

where G° C R", with n = 2, 3, denotes the perforated domain and I'® defines the boundaries of perforations.

As an example of a porous medium with microscopic perforations we can consider a part of the soil
perforated by a root network, where conditions (2) model water (solute) uptake by plant roots.

In our analysis of the obstacle problem (1) and (2), or equivalently variational inequality (3), defined in a
heterogeneous perforated domain G¢, where ¢ denotes a characteristic size of perforations, we shall consider
a function A(x) describing the heterogeneity of the medium, instead of a constant A, and a more general
convection term, describing flow transport by a given velocity field.

Along with models for two-phase flow with dynamic capillary pressure [12,16,38], pseudoparabolic equa-
tions are also used to model fluid filtration in fissured porous media [3], heat transfer in a heterogeneous
medium [43], or to regularise ill-posed transport problems [4,36]. Pseudoparabolic variational inequalities are
considered to describe obstacle [45] and free boundary problems [13]. The well-posedness for non-degenerate
pseudoparabolic equations and variational inequalities was studied by many authors [6,8,13,22,31,40,41,45,
48]. Global existence results for degenerate pseudoparabolic equations are obtained in [8,31]. The multiscale
analysis for non-degenerate pseudoparabolic equations was considered in [39] and the method of two-scale
convergence was applied to derive the corresponding macroscopic equations. To the best of our knowledge,
there are no results on homogenization of pseudoparabolic variational inequalities. Several results are known
on multiscale analysis of elliptic [9,19,20,37,44,50] and parabolic [18,29,42,46] variational inequalities. In [9]
the periodic unfolding method was used to derive macroscopic variational inequality for the microscopic
Signorini—Tresca problem. The method of two-scale convergence was applied to derive macroscopic prob-
lems for microscopic linear elasticity equations with boundary conditions of Signorini types [19], elliptic
variational inequalities for obstacle problems [44], and evolutionary variational inequalities [29]. Weak con-
vergence and construction of a corrector were considered in [20,46,50] to derive macroscopic problems for
microscopic elliptic and parabolic variational inequalities under certain conditions on the relation between
the period and the size of the microstructure. In [42] the multiscale analysis of a parabolic variation inequality
corresponding to the Stefan problem was performed using the H-convergence method [33]. Homogenization
of variational inequalities in domains with thick junctions, for which standard extension results do not hold,
was studied in [28,27,26] using the method of monotone operators and construction of appropriate auxiliary
functions.

To prove existence of a solution of the microscopic problem, considered here, the regularisation of de-
generate coefficients in the pseudoparabolic variational inequality together with a proper choice of test
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functions, similar to those proposed in [8,31] for pseudoparabolic equations, is considered. In the case of
variational inequalities additional care is required due to the fact that admissible test functions have to
belong to a convex subset of the corresponding function space. The penalty operator method is applied to
show existence of a solution of the pseudoparabolic variational inequality with regularised coefficients. To
pass to the limit in the nonlinear penalty operator we prove strong convergence of approximations of solu-
tions of the corresponding nonlinear pseudoparabolic equation. The main step in the analysis and derivation
of the macroscopic variational inequality, for the microscopic problem considered here, is to derive a priori
estimates uniformly with respect to small parameter €. The main idea in the derivation of a priori estimates
for the time derivative of the gradient of a solution of variational inequality, similar to [31], is to use the
specific structure of the degenerate coefficients which allows to prove that some negative power of a solution
of the variational inequality is a LP-function with 1 < p < 2. The uniqueness result is obtained in the
case when the coefficient k(u) in front of the pseudoparabolic term is non-degenerate and under additional
regularity assumptions on solutions of the pseudoparabolic variational inequality.

The paper is organised as follows. In Section 2 we formulate the microscopic obstacle problem defined in
a perforated domain G*. In Section 3 we prove existence and uniqueness results for the regularised prob-
lem, derive a priori estimates, and show existence of a solution of the original degenerate pseudoparabolic
variational inequality defined in the perforated domain G¢. In Section 4 we prove convergence results as
¢ — 0 and derive macroscopic problem defined in a homogeneous domain G with the constraint u(¢,z) > 0
in (0,7) x G. In Appendix we summarise the main compactness results for the two-scale convergence used
in the derivation of the macroscopic pseudoparabolic variational inequality.

2. Formulation of mathematical problem

A general obstacle problem can be formulated as a variational inequality

u € K(t),

(Oub(u),v — u) + (A(x, Vu, 0 Vu), V(v —u)) > (R(t,z,u),v — u) @
for v € L?(0,T;K(t)), where K(t) is a closed convex set in H!(G). We shall consider variational inequality
(4) defined in a perforated domain G° with a periodic distribution of perforations.

To define the domain G¢, where £ denotes the characteristic size of perforations, we consider a bounded
domain G C R, for n = 2,3, where G is quasi-convex or G C C*® for some 0 < o < 1, a ‘unit cell’
Y C R, a subset Y°, with Y° € ¥ and Lipschitz boundary T' = 9Y°, and denote Y* =Y \ Y°. Then

5= (v +9), —IntU Y +¢),
geae

where 25 = {£ € Z" : (YO +¢) C G}, and G° = G\ G5. The boundaries of perforations are defined by

re = U e(T'+¢).

§eke
For the nonlinear function A in the variational inequality in (4) we consider
Az, Vu®, 0, Vu®) = A%(2)k(u®)(Pe(u®)Vu® + 8, Vu®) — Fe(t, z,u®),

and assume that R(t,z,u®) = 0, where the functions b, A°, k, P., and F* are specified below. On the
microscopic boundaries I'* we specify the following Signorini type conditions
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Oa
(A% (2)k(u®)[Pe(u®)Vu® + 0, Vu'] — FE(t,z,u®)) - v+ ef*(t, @, u’) >0,
u® [(A°(2)k(u®)[P.(u®)Vus + 9, Vus] — F*(t,z,u%)) - v+ ef(t, z,u%)] =0

where function f¢ is specified below. Then the closed convex set K¢ is defined as
Ke={ve HY(G®) : v=rkp on G, v >0 on T}, (5)
with some constant 0 < kp < 1, and the corresponding variational inequality reads
(Opb(u®), v — u)gs. + (A% (2)k(u®)[Pe(u®) Vus 4 0 Vur], V(v — u€)>G5T
— (F(t,z,u%), V(v —u))gs, + (ef(t,,u),v —u)rs, >0,
for v — kp € L2(0,T;V) and v(t) € K¢ for t € (0,T), where
V={veHY(G?): v=0 on dG}.

Here we use notation Gp = (0,T)x G, G5 = (0,T) x G, I'r = (0,T)xI', T5. = (0,T) xTI'¢, Yr = (0,T) xY,
Y) =(0,T) xY*, and

T

(6, s = / / g dedt, for ¢ € IP(0,T; LI(G7)), v € LP (0,T; L7 (G°)),
0 Ge
T

(6, 9)rs. = / / pdydt, for € IP(0,T; LY(T9)), o € LY (0,T; L9 (T°)),
FE

0

where 1 < p,p',q,¢ <oowith 1/p+1/p’=1and 1/g+1/¢ = 1.

Remark. Notice that (-,-)gs. and (-, -)rs. are used as short notation for an integral of a product of two
functions. In most cases we will consider a product of two L2-functions, however we shall use the same
notation for the integral of a product of LP- and L -functions, which is well defined.

We shall consider the following assumptions on functions A%, b, k, P., F¢, and f¢.

Assumption 2.1.

1) k:R — R is Lipschitz continuous, nondecreasing, with k(z) > 0 for z > 0 and k(0) = 0, e.g.

(Z) k fOI’ some 19 0 and /3 >1
1+ ’Ykzﬂ ks Yk > - &
P, (Z) = 7>\ fOI' 19 A >0 nonnegative Y. S C (R) and |]€(Z)P (Z)‘ < C < 0 fOI’ z>0.
c 1 ( ) By P 9 P 0 9 c = -

2) A € L*>®(Y) is extended Y-periodically to R™, and A(y) > ap > 0 for y € Y, with A%(x) = A(x/e) for
z € R".

3) b: R — R is continuous, nondecreasing, and twice continuously differentiable for z > 0, with b(z) > 0
for z > 0, b(0) = 0, and |V/(2)] < 7p(1 + 2?) for z > 1 and v, > 0, e.g. b(z) = Vp2%, with 0 < o < 3 and
¥y > 0.
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4) F¢ : RT x R® x R — R" is Lipschitz continuous, F¢(t,z,z) = Q°(t,z)H(z) + k(z)g, where
|H'(z)(V(2))"2] < C < oo for z > 0, g € R is a constant vector, V, - Q°(t,z) = 0 for
(t,x) € G7, Q°(t,z) -v = 0 on IS, Q° € L™(G%), and Q°(t,x) — Q(t,z,y) strongly two-scale,
Q € L2(Gr, Hyw(Y*) N L¥(Gr x Y*), where Ha(Y*) = {v € L2(Y*)", V, v = 0in Y*,
and v is Y-periodic}.

5) fe(t,x,€) = fo(t,x/e)f1(E), where fo € C'([0,T]; Chep(T)), with fo(t,y) > 0 for (t,y) € T, and
fi € CH(R), with ££1(€) > 0, f1(0) = 0, and

KD

’f1(£)/%‘ <C for 0<¢<kp.
3

6) Initial condition ug € K and

Uo 3
, d
Jre [ 5 e e
where K ={w¢c H'(G): w=rp on G and w >0 in G}. (7)

Remark. Notice that assumptions 1) and 4) in Assumption 2.1 are similar to the corresponding assump-
tions in [8,31], however for the vector field Q° additional assumptions are required due to the perforated
microstructure of domain G¢. Function F© describes the directed flow due to a given velocity field Q¢ and
gravity ¢g. As an example of a function (¢ satisfying assumption 4) we can consider a solution of the Stokes
problem

—pe?AQF+Vp =0 in G°, divQ*=0 in G°, -
Q°*=0 on I Q*=v on 0G,

for t € (0,T) and a given velocity v € L>(0,T; H*(G))"™ with divu(t,z) = 0 for x € G and t € (0,T). The
regularity theory for Stokes equations, see e.g. [7,14,32,51], implies that for each fixed e there exists a solution
(Q%,p°) € L>=(0,T; WHP(G#)) x L>(0,T; LP(G?)/R), with 2 < p < n + §; and some §; > 0, of system
(8). Then using the Sobolev embedding theorem we obtain Q¢ € L*°(0,T; L*°(G*)). The multiscale analysis
results for the Stokes system, see e.g. [17], imply existence of a velocity field Q € L>(0,T; L*(G; Hécr(Y*))),
pressure p € L>(0,T; L?(G)/R), and m € L>(0,T; L*(G x Y*)/R), such that Q° — Q two-scale, p° — p
weakly-* in L>°(0,T; L*(G)), and @ is a solution of

—pAQ+Vyr+Vp=0 in Y,

(9)
div, Q=0 in Y*, Q=0 on T,

and div [y, Q(t,z,y)dy = 0 for (t,z) € G, with
div(K'Vp) =01in G, KVp-v=v-v on0G,

for t € [0,7] and constant permeability tensor K determined by the corresponding ‘unit cell’ problems.
Using the regularity theory for elliptic equations with Neumann boundary conditions, together with the
assumptions on G and v, we obtain Vp € L>(0,T; L>®(G))™, see e.g. [5,15,21]. Then applying the regularity
results for the Stokes system, see e.g. [7,14,32], to problem (9) yields Q € L*(Gr; L>°(Y™*)). Notice that
in (9) variables ¢ and x play the role of parameters in the Stokes operator with respect to the microscopic
variable y.
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To show strong two-scale convergence of Q° we consider Q° — R5-..(v), where RS (v)(z) = Ry~ (vg)(z /),
with vg(y) = v(ey) for y € e(Y + &) and € € E°, and Ry~ : WHP(Y)" — WEP(Y*)™, for 1 < p < oo, is a
restriction operator, see e.g. [30,49], as a test function in (8) and obtain

IV, QU2 ey < pliminf eV Q7 6y < plimsup eV () = lim 2(VQ", VRS- (v)ce (10)

for ¢ € [0, T]. Here WP (Y*)" = {w € W'P(Y*)" : w = 0 on T'}. Notice that R§.(v) = v in G\ G and
the construction of the restriction operator ensures

[T Ry (v) = Tom Ry (v) |22 (o v =) + [V (T Ry (v) = T5m Ry (0)) | 22 (o v+
< O[HTE”U - TE"L’UHLz(GXy) + HvyT’E”U - VyTgmvHLz(GXy)] —0
as n,m — oo and for ¢ € [0, T, where 7¢ is the periodic unfolding operator, see e.g. [11]. Hence R5..(v) —

Ry~ (v) and eVR5.. (v) — V, Ry (v) strongly two-scale as & — 0, with Ry« (v) € L®(Gr; H](Y*)). Then
using the two-scale convergence of Q¢ we obtain

gi_r}gf?uWQE» VRS (v)ae = p{VyQ, Vy Ry« (0)) 2(Gxv+) (11)

for t € [0,T)]. Taking Q — Ry (v) as a test function in (9) and using the fact that Ry (v)(t,z,-) is Y-periodic,
Ry-(v)=0onT, divyRy-(v) =0, and div [,.. Ry~ (v)(t,2,y)dy = 0, yield

/‘L <va7 va - vyRY* ('U)>G><Y* = 0

for t € [0,T]. Combining the last equality with inequality (10) and convergence in (11) implies
;i_% HEVQEHLQ(GE) = ”VyQHL2(G><Y*)

for t € [0,T], and we have the strong two-scale convergence of eVQ* and strong convergence of unfolded
sequence V, T¢Q¢ in L?(G7 xY*). Using zero Dirichlet boundary conditions on I'* and applying the Poincaré
inequality we obtain

||T8WLQ€7TL _ T‘Eann HLZ(GTXY*) S CHvy(TEnLQEm _ TE?LQEH)||L2(GT><Y*) — 0

as n,m — 0o. Thus we have strong convergence of 7°Q¢ in L?(Gr x Y*) and strong two-scale convergence

of Q¢ to Q.
As next we give the definition of a solution of the microscopic inequality (6).
Definition 2.2. A solution of inequality (6) is a function u® such that u® — kp € L?(0,T;V), 0;b(uf) €

L2(0,T; L"(G#)), with 6/5 < r < 4/3, \/k(u®)Vow® € L*(G%), and w®(t) € K¢ for t € [0,T], and u®
satisfies variational inequality (6) for v € L?(0,T;K?) and initial condition u®(t) — ug in L*(G*) as t — 0.

3. A priori estimates and existence result
Similar to [31], in order to prove the existence result for variational inequality (6), we first consider

regularisation of functions b, k, and P,, given by bs(v) = (vt +§), with bs(v) = b(v) if b(v) = Jyv for some
constant ¥, > 0, ks(v) = k(vT + ), and P, 5(v) = P.(v" + §), where 6 > 0 and v+ = max{v, 0}.
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Then the corresponding regularised problem reads

(0:bs (ug), v — ug)ag + (A% (@)ks (uf) [Pe,s (uf) Vug + 0:Vug), V(v — uf))cs,
— (F=(t,2,u5), V(v = ug))as. + (€7 (L, ,u5), v — ug)rs, > 0, (12)
and u§(t) € K¢, for v € L*(0,T;K°),

and u5(0) = ug in L*-sense.
To show the existence of a solution of problem (12) we apply the penalty operator method [23,24] and
consider

Btbg(uau) -V (As(x)k(;(uau)[Pc75(u§7H)Vu§7M + @VUEM]) + V. Fe(t,x, ufm)
1
+=B(uj, —kp) =0 in G7, (13)
[ :

(A% (2)ks(u5 ,)[Pe,s(u5 ) Vus, + 0, Vus ] — F*(t,x,u5 ) - v = —ef*(t,z,u5,) onI%,

where ;1 > 0 and a penalty operator B : L(0,7;V) — L?(0,T; V") is monotone, bounded, hemicontinuous,
and B(v — kp) = 0 for v(t) € K°.

Lemma 3.1. Under Assumption 2.1 there exists a solution u§ € L*(0,T;K?) of (12) completed with initial
condition u$(0) = ug in G¢, with dyus € L*(0,T; H(G?)) and 0;bs(u) € L*(G%). Under additional regu-
larity assumption Oyus € L?(0,T; WHP(G?)) and ug € WHP(G®) for p > n, orif k(€) = const, P. is Lipschitz
continuous for &€ > 0, and Vu§ € L?(0,T; LP(G?)), variational inequality (12) has a unique solution.

Proof. First we shall apply the Rothe and Galerkin methods to show existence of a weak solution of (13).
Then by letting i — 0 we will obtain the existence result for variational inequality (12). The discretisation
in time of equations in (13) yields the following elliptic problem for ué’j (z) :==uj ,(tj,2), for x € G7,

1 £, £ £,J € £,j—
b(;(u(; M)h(uai - u[si 1) V- (A (x)k(s(u(;,ib)[Pc 6(U5M)VU I+ v(ugﬂ ua,i 1)])

+V - F (b, m,u50 ) + B(uéuan) 0 inGF,
> €,J €,J g,7—1 5 e,j—1 (14)
(A (2)ks(us?) [Pos(ul?)Vusd + V(uéu e | A Rt )).y
= —cf(t;,x, ué’j Y onTe,

u(m =kp on J0G,
where h = T/N and t; = jh, for j =1,...,N and N € N, and ugg(x) = wup(x) for x € G*. Since in this
proof we assume that § and e are fixed, for the clarity of presentation we shall omit indices § and ¢ in the
calculations below. Now applying the Galerkin method to (14), we consider the orthogonal system of basis
functions {#;};en of the space V' and are looking for functions

(@) = kp + Y ol abi(x)

i=1

in the subspace V,,, = span{ty, ..., ¥} such that
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G I 2)s Qe + (AT (@) ks (), 1) [P (], ) VU, 1 + 7V (W — wl ) Ve

1 (15)
<Fa(t {177U# m) VC>G5 ;<B<uim - RD)7C>V’,V = _<5f (t xvui nly,) C>F5

for all functions ¢ € V,,,. Here uﬂjm, with uﬂ m — kp € Vi, and u“ m € K, is a finite-dimensional approxi-
mation of ug. Thus we have a system of algebraic equations for unknown coefficients o = (a?,;,...,a?,,.)
and
T(@)a = (B(u -+ 0) 30+ 5 — ). 0+ k) 6. — (B5(0+ k) 10+ K — b))
o) = s\U HDhU KD uum v KD s\U HDhU KD uum KD Qs

+ <A6 Yks(v + kD) [PW;(U +kp)Vu + EV(U — qu ,}L)] ,Vu)ge — (F°(t, x,uu -5, Vv>

+;<B(v),v>v,7 + (ef (¢, x,uunﬁ) v)re,

where v = >""" | o .1;(x). Assumptions on the nonlinear functions and monotonicity of B ensure

Ch Co Cs .
J(a)a > E”(U + HD)X{U+I€D>0}H%2(GE) + 75BHVU||%2(GE) - 7||%,%X{v+m>o}”%2(cs)

i Cs 16
— SV ey — O 1 2 ) ey + <ot ] = oy (10)

> Cr[ll(v + ED)X{U+HD>0}||%2(GE) + [ Vollzge] — Cs.

Thus for sufficiently large || we obtain that J(a)a > 0 and there exists a zero of J(«) and hence there is a

m € kD + Vi, satisfying (15), see e.g. [47]. Notice that if bs(w) = Ypw, we have ||v + HDH%z(GE), instead
of H(v + I{D)X{U+KD>O}||L2(GE) in the last estimate.
Considering v, ,, — uj,, L as a test function in (15) and summing over j = 1,...,[, with 1 <1 < N, yield

l
Z<A£(x)k5(uft,7n)[Pcyis(ui,m)vui,m + _v(ui,m - uiL ’I}L)} V(Ui m uiL rrlL)>G5

. h
Jj=1
l 1 l
+) 3 05 (W) (W = W) W = W) e — D F (), V() = uwlaae (17)
j=1 j=1
l l
1 i
+ ;<B(Uﬁ = KD Wy = ) = = > (Tt @ )l gy — e
j=1 j=1

For penalty operator B given by B = J(I — Px:), with Pce : V — K¢ — kp being the projection operator
on K¢ —kp and J : V — V' a dual mapping, which can be chosen as

<J(u),v>vl,v:/(UU+VUV’U)CL’E, (18)

Ge

considering that u?hm € K¢ and using the property of the projection operator
(J(u — Pxeu), Pcew — v)yr v >0 for v e K® —kp, (19)

we obtain the following estimate
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l
Z <B(U‘L’m - ’{D) uit m uj 1>V’ v

Jj=1 ,
o (I — Pre ) Prce B, — Pty |
1
> 5 [ (= Pl )P+ 190 — P )Pl > 0,
Gs

where qu m = uu m — kp. Then using in (17) the monotonicity of b, Lipschitz continuity of F'¢ and f¢,
regularity of initial data, and the uniform boundedness from below of ks, ensures

! ; i l
h v(ufumfufw}l) o2 =112 i—112
Z — e Z IV mll 2oy + Ul mll T2 (ae +8||uu,mHL2(FE))
j=1 i=1
l 4_1 ._
v(ui‘m_ufj,m) 2 p,m_ w,m 2
DL e el WS “282’4\ [
j=1
l J i i—1 1
v(up,m — U, m) - ,um) 2
SCthZhH h ‘L2 Ge) UZhH ‘L?(Gf)+02'
j=1 =1

In the last estimate we also used the trace and Poincaré inequalities. Choosing ¢ > 0 sufficiently small and
applying the discrete Gronwall inequality we obtain

2

¢ (20)

—ul7h)
‘L2(GE) B

EhHV(u{L’ o

=1

with 1 <! < N and a constant C independent of h, m, and u. Estimate (20) together with the Poincaré
inequality implies

2

—u! =
e s PR 2
Z L2(G*) =1 Z L2(Ge) - ( )
Considering now uft m — KD as a test function in (15) yields
! . . _ 1 .
Z(As(g;)k(;(ufhm)[Pq(;(uf%m)VuL’m + EV(uiL,m — uJ 1)] Vuj e
j=1
Ly ' 4 !
+Z E(bg(ufhm)(u#m —uft 1y ud U,y — KD)Ge — Z (e (t, =, u] 1) Vu] m)Ge (22)
j=1 j=1
1< . _ l ,
+ m Z(B(uf”n = KD), W, — KD)VV = — Z(afs(t, x,uf;l) uL m — KD)Te-
j=1 j=1

Then assumptions on A, k, P., b, F© and f¢, together with the trace and Poincaré inequalities, monotonicity
of B, and estimates (20) and (21), ensure
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=

l l
) ) 1 .
S R[IV, 32y + 10 3 o] + = D B, ,, — £p), 1, — ED)vrv < C, (23)
j=1 j=1

with a constant C independent of i, m, and h. The second term in (22) is estimated, using the assumptions
on b and the continuous embedding H'(G®) C L°(G?) for n < 3, in the following way

(UZL m uit n]%) qu m "{D>GE

D“I)—‘

1
Z b’ u’

l

+ 02 Zh(\|ui7m||(ze(gs) + 1)
j=1

o+ [ [P )

oSt w\

L2(G#)

2

< Cg,ZhH Ui~ Yiam

3
} + Cs.
L2(G*=)

To show that a subsequence of approximate solutions {uitm} converges to a solution of problem (13) we
define piecewise linear and piecewise constant interpolations with respect to the time variable

uj m(x - Uj_n}L T
(1) = T 0) + (0= 1y ) D i)

(t,x) ==l , (x) for ¢ € (tj_1,t;].

wym

for t € (tjfl,tj],
=N
pm

Then a priori estimates in (20), (21), and (23) and the boundedness of the penalty operator B ensure

@) 2z + IV w2 sy + 100 w2 sy + 110:Vup 2 sy < C

g (24)
; /<B(aﬁm )@, — Kp)yrydt + / 1B@,, — kp)|3dt < C,
0 0
with a constant C' independent of N, m, and p. Integrating problem (15) over (0,7 yields
(O () ) Dstty s Q5.+ (AT (@) () 1) [Pes () ) VUL + 0V ), Vi,
T
€ 1 € h (25)
— (P (), V00 + - [B(@ = k). vt = (e (b ). O
0
for ¢ € L*(0,T; Vin), where uy) Nh(t ) = ﬂfy (t — h,z) for t € [h,T] and ufy,},ﬁ(t x) = u), ,,(x) for t € [0, 7]

and = € G°.
A priori estimates (24) imply that there exist u,, € H*(0,T; H(G)) and A € L*(0,T; V") such that, up
to a subsequence,

al = w,  weakly in L*(0,T; H'(G%)), strongly in L?(0,T; H?(G)), 1/2 < o < 1,
ul =y, weakly-* in L°°(0,T; H'(G?)), strongly in L*(0,T; H°(G*)),
[“)tuﬁ{m — Oyu, weakly in L*(0,T; H'(G%)),
B(ﬁfxm —Kkp) — A weakly in L*(0,T; V"),

as N,m — oo, and
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=N ~N,h
”up,m - uu,m”LQ(O,T:Hl(GE)) < \/N
Using a priori estimates (24) we also obtain

T
165 (T, ) ety |72 G2y < Ca / (@R mllTe ey + 1+ 8 @) |00l 176 eyt @)
0
< Co (V) 10 (0.7502(G0y) + Co) 106V 1726z < C-

Taking in (25) the limit as N, m — oo and using convergence results in (26), together with the continuity

of nonlinear functions, we obtain

(0 (1) Dpus C>GET + (A% () ks (up)[Pe,s (up) Vuy + 0: V], VQGET
i (28)

- <F6(t7xau,u)7VC>G§~ + % /<A7C>V’,th = 7€<f6(t7xau,u)7<>11§~7
0

N
for ¢ € L*(0,T; V). To show strong convergence of @)\, to u, in L?(0, T; H'(G*)) we consider [ ,%1(5) d¢
? Up

as a test function in (25) and obtain

(A% @)V (@) = 1) (), V(i) (8)) g + (A°(@) Pes (W) V(0 — 1), V(10 , = 1))

1 s ,Lm
+—/<B(’[Lﬁm—l€D) / k
0

I

(AT = 1), T4 = 1)) — (A0 T T, )

Fos () m) [
e =N N _ -N
~ (AP T+ O] [ = )T ) = (000 (i), / 5%
— (A%(x)P, 5( m)Vu Vu —Vu,)ag: +<F (t,z,a:"h), 1 aly —;VU >
c 3 nlGe s Ypum kts(ﬂ,{y,m) w,m ké(up,) © G
1 [ Vi Vi
—— [ (B(uy — ——d dt — t, ) / ——d
uo/ (=m0 [ i), - e{reanit. [ g,
for s € (0,T]. Then using the following estimate for the penalty operator B
/<B(aNm — kp) — B(u, — kp), / S > dt >0, (29)
. ks (&)

0
for s € (0,T], shown below, the strong convergence of w), in L*(G5) and weak convergence in
HY0,T; HY(G®)) as m, N — oo, together with the contlnulty of nonlinear functions and assumptions
on A® and P, imply

sup ||V( — )2y 0 as m, N — oc.
(0,T)
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To show (29) we consider

=N

T Uiim
1 e 1
Ha/KBWWn—Mﬂ—BWu—Mﬁ%W)/’Egﬁwaﬁ
0 Uy
T
1
= / (BN = kD) = By = k), (@, = Pree (@) — ) = (1, — P (uy — HD))>V/7vdt
0
. T
W/ —I{D)—B(u#—lﬁ)D),P;Ca(ﬂiXm—KJD)—P)CE(’LL;L—KJD)
0
wym dg
where k() > 0. The monotonicity of B ensures
T
/<B(a,§{m — kip) — Bluy — kp), (@, — Pee (@Y, — 1)) — ( — Pre= (1, — KD))>V/ Lt >0
0

For the second term due to the properties of the projection operator we have

T

1
/<B(afﬁm — kD), P (Y, — kp) — | Pee (wy — p) + (@, — up) — k(0) / dg} >V/ >0
0 Uy,

ks (&) :
and
T Uy
1
[ (B = w0 Pes (= ) = [Pee (@l = vp) + 16 [ e @), 20,
0 Uy

if Prce (ty, — )+ (] — ) — K(8) [ k(€)' d€ € K# —mp and Pee (i) ,, —p) +k(8) [ ks(€) = dé ~
(@}, —uyu) € K€ —kp, respectively. Notice that if u,, < 0and @}, <0, then k(4) fﬁg’" ks(&)~tdE = ay),, —
wp I @y, > uy, then (@), —u,) —k(9) fu o ks(€)~'d¢ > 0 and if @), < w, and w, > 0, then for @), , <0
we have k(§) foﬂﬁ,’m ks(¢)~'d¢ = al),, and hence u}),, — k(d) f o k;(;(f) 'd¢ > 0 and also Pr:(u, — kp) =
uy, — kp. Thus combining these considerations ylelds Prce (uy, — KD) + (@, —uy) — k(9) fi‘l‘v”" ks(&)~1dé €
K¢ —kp. For the second term, if u, > uf,, then k(5) f:;*m ks(&)~tdE—(u),, —u,) > 0 and if u, < @), and
)y, > 0, then since for u,, < 0 we have k(9) ffﬂ ks(£)~1d¢ = —u,, and hence k(6) fZ'N" ks (&)~ dE+uy >0,

we obtain P]Cs<_N — kp) + k(9) fﬂj“vm ks(¢)~tde — (@), —u,) € K — kp. Notice that for @y, > 0 we
have Pg-(a),, — kp) = quVm — IiD Thus inequality (29) follows.

The strong convergence of u Lm0 L?(0,T; H'(G?)) implies B(wlY Uy.m — kD) = B(uy, — kp) in L2(0,T; V")
as m, N — oo, and hence A = B(u, — kp). Therefore we obtain that u, is a weak solution of problem (13).
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To prove the existence of a solution of variational inequality (12) we need to take in (13) the limit as g — 0.
Notice that a priori estimates (24) and (27) are uniform in p. Hence taking the limit as N, m — oo and using
lower semicontinuity of a norm we obtain the corresponding estimates for u, in H'(0,7; H'(G¢)) and that
there exists uw € H'(0,T; H'(G?)) such that, up to a subsequence, u, — u in H*(0,T; H*(G?)) as u — 0.
Assumptions on b, k, and P, and strong convergence of u, — u in L™ (G%), for 1 < ry < 6, ensure strong
convergence bs(u,) — bs(u) in L™(G%), for 1 < ry < 2, ks(u,) — ks(u), ks(uu)Pes(u,) — ks(u) P, s5(u) in
L1(G%), for 1 < g < 0o, as . — 0, and d;bs(u) € L*(G%). From equation (28) follows

T T
/ — kp), vy ydt = ,u/ *(t,x,uy) — A% (2) ks (up) [Pes(w) Vg, + 0,Vu,], Vo) .
0 0

(5t @, un), v)re — (b (), v) e | dt
for all v € L?(0,T; V). Then boundedness of u, in H'(0,T; H'(G?)) yields
B(u, — kp) = 0 weakly in L*(0,T;V') as u— 0. (30)

The monotonicity of B ensures

T T
/<B( u,uiﬁva v, Vd S / *HD uw — KD 7U>Vlyvdt
0 0

for v € L2(0,T; V). Considering y — 0 and using weak convergence of u,, — u in L?(0,T; H'(G?)) as u — 0,
convergence of B(u, — kp), see (30), and the fact that

T
/ uw— kD), Uy — Kp)yr vdt < Cp
0
imply
T
/(B(v),u — Kp — ’U>V/,th § 0.
0

Taking v = u — kp — Aw for A > 0 and w € L?(0,T;V), passing to the limit as A — 0, and using
hemicontinuity of B we obtain

T
/ ’U,—IiD >V17th§0
0

for all w € L?(0,T;V) and hence B(u — kp) = 0 and u(t) € K¢ for a.a. t € (0,T).

To show that u is a solution of variational inequality (12) we consider ( = v —u — k() [ LS as a

test function in (28) and obtain
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<8tb,;(uu)7v —u— k(0) %é)>€% - <F8(t,x, uu), V(v —u) — kék((ji)VuM + %VU>G%
(Ao, [P0,V + 0150, D0 =10 = O+ vy (31)
Up T Uy,
© —u— _1 —KD),U @ __ v
+ 5<f (t,z,up),v k(8) ' FE p 0/ p),u+k(0) | s (€) >V',vdt

for v € L2(0,T;K?). In order to pass to the limit as 1 — 0 we need to show that

Up

T
O/ u—&-k((S)/%é) —v>V/’thzo

u

for v € L?(0,T;K?). Since B(v — kp) = 0 we can rewrite the left had side in the last inequality as

B(uy — £p) — B(v — kp), (uy — p) — (v — HD)>V, th

O\H

(32)

Uy

T
+/ — D), Pr=(uy — kip) — [P’CE(“# ~ k) + (U —u) = k(é)/ kjé)} >vgvdt
0

u

The first term in (32) is nonnegative due to the monotonicity of B, whereas the second term is nonnegative
if qu = Pce(uy — kp) + (uy — u) — k(8) [} ks(&) " dé € K° — kp. First notice that © € K¢ and hence
u >0 on I'*. If u, > u then due to assumptions on k we have (u, —u) — k(6) [ ks(£)~'d¢ > 0 and hence
g € Kf—rp. fu=u, =0onI*orifu=0andu, <0onl* we obtaln u# —k(8) [ ks(&)~'dé = 0 and
qu = Pre(uy,—kp) € Kf—kp. Ifu > 0and u, < wonT®, then, since u, — win L?(I'5) as u — 0, there exists
such 1 > 0 that 0 < u, <wand |u—wu,| < u, a.e. on (0,7)xTI¢, and thus ¢, > u, —kp — (u—u,) > —kp
and g, € K* — kp.

Considering the limit as y — 0 in (31) and integration by parts in (A°(x)9;Vu,, Vu,)cs,, combined with
strong convergence of u,, in LP((0,T) x G%) for any 1 < p < 6, positivity of functions ks and P, s, continuity
of nonlinear functions and lower semicontinuity of a norm, yield

(0¢bs(u),v — u>GET + (A (2)ks (w)[Pe,s5(u)Vu + 8, Vu], V(v — u)>G6T —(F*(t,z,u),V(v—u))

+ €<f5(t,x,u),v — u>P€T > 0.

Ts3)

Thus we obtain that u§ = u is a solution of variational inequality (12).

To show the uniqueness of a solution of variational inequality (12) we assume that there are two solutions
ug 1 and ug 5 and consider v = u§ 5 and v = ug ; as test functions in variational inequalities for ug 1 and ug o,
respectively,

(A= (@) (s (51 [Pe.s (u50) V5 1 + 0V U5 1] — ks (U5 ) [Pes (15 5) Vs 5 + 0/ V5 51), V(51— u55))

+ <8t(b5(u§71) - bJ(Ug,z)), Ug,l - U§,2>Gi - <F€(tv z, Ugl) — Fe(t,z, u§,2), V(U(Es,l - U§,2)>Gi (34)

+ 5<f€(tv €T, ug,l) - fg(tv z, u§,2)7 ual - ug,2>p7s_ <0,
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for 7 € (0,T]. Rearranging terms in (34) implies
1

- / A5 ()0, (ks (1) [V, — VG o) derdt — % A (2)eks (u§1) [V, — Vo vl
Ge Gs

U§,2>Gi + <A8(x ks(usq) —

Ué 1 PC,5(u§,1)v(u§,1 - Ug,z)a V (uj 5,1 — uj 2)>Gi

(“ ,2))VU6 29 (Ugl - u§2)>Gs

— Fe(t, 2, u5 ), V(ug, _u§,2)>Ga +e(fo(t,z,u5,) —

+ <3t(bzi U5 1) — bs(u§ 2)),U§,1 - ké(ufm))atVUg,zv V(u§,1 - U§,2)>G
+ (A%(z)
—+ <A€ xT k(j u5 1)Pc,5(u§,1) - k(ué 2)
<F€ (t,x U5 1) fs(t7xaug,2)au§,1 - u§,2>1“E <0,
(35)

for 7 € (0,T]. Using regularity assumptions on Orug 1, the Lipschitz continuity of k and boundedness of A°
the second term in (35) can be estimated as

1
\/m@MMMﬂN@vV@JMM<cgyw@vV@ﬂ;@www@ummm@w
0,7
Ge

The third term in (35) is estimated as

- U§,2>Gi = <bg(u§71)8t(u§71 -

b%(ugz)) atug,za Ufm — uj 2>G

(O (bs (ug,l) - bé(ug,z))a Ug,l

ug,z)v ug,l - U§,2>Gi
+ (05 (u1) —

1 1
2 50sllu5 (7) — 5o (1)1 22y — C172 sup ||V (uf; —

0,7

u§ o)1 72(e-

Here we used the fact that the continuous embedding H*(G¢) C L%(G?) for n < 3 and regularity Opus
L?(0,T; L°(G#)) and uj ; € L>(0,T; LS(G?)), for j =1

/@%()WM—%ﬂWﬁ+/W
Gs

GE

2, together with assumptions on b, ensure

— b (u§ ) [|00u§ o ||u§ y — ufo|dodt

sc(/ﬂ%w&n+ww&n

I 0050l + 0z ) ot ([ fusy — usolPdoar)”
G

37
8 o (37)
1 e 5 €
72 ([IVu§ | L 0,7502(Ge)) + VU5 ol Lo 0,1:02(Ge)) + 1) (1005 1112 (G2

+ ||8tU52HL2(G )) (S(}lp [V (5, u%,z)”%?(cfy

Notice that u§; and uj , satisfy Dirichlet boundary condition on dG. Lipschitz continuity of k and regularity
assumptions on dyuf , ensure

| (A=) (ks (u51) = ks (u5,2)) 0 Vg o, V(uf 1 — 155))

Us 2

(ULES,l - U§,2)||2L2(G§)

+ Cor2 |0,V U5 01720 0 () (501}3 llugy — us o L2 (G
1

u§o)2(gey + 72 (SUP IV (u51 —

\T

< CT||V(U§,1 - U§,2)||2L2(Gf)a

for p > n. Using assumptions on k and P, we also obtain



M. Ptashnyk / J. Math. Anal. Appl. 469 (2019) 4475 59

’ <AE(x)<k5(u§,1)Pc,5(ug,1) - k(ug,Q)Pc,fs(ug,Q))vug,Q? V(Ug,l - u§’2)>Gi
< CIVU§ ol oo 0,510 (con IV (U1 = w5 ) 1722y + V(U5 — 45 2) 17262

for p > n. The last two terms in (35) are estimated using Lipschitz continuity of F¢ and f¢ and the trace
estimate. Then integrating by parts in the first term in (35), using the fact that ks(u§,) > § > 0, choosing
a sufficiently small 7 > 0 and applying the Gronwall inequality we obtain

sup ||V (ug, — U§,2)||%2(Gs) <0.
(0,7)
Using the Poincaré inequality and iterating over 7 > 0, which depends on the coefficients in the variational
inequality and is independent of a solution of (12), yield u§, (t,z) = u§ 5(t, ) a.e. in (0,7) x G, and hence
the uniqueness of a solution of variational inequality (12).
If k(§) = const, for two solutions u§,; and uj, of (12) we have

1 S € ) € e € €
5 [ A @IV~ a5 (Pd+ [ 45 Pesluf ) 905, — )P
Ge Gs
1
b [ s 5 (1) = oo+ [ (B(u50) = By50)) 055, — 5 )
Ge Ge (38)
1
~ 5 / 8tb:;(uf;,1)|u§71 - U§,2|2d$dt + <A5(x)(P075(u§,1) - PQé(U;EQ))VU%,Q, V(Ufs,l - u§,2)>Gi
a=

< <F6(t7x7u<a$,1) - Fe(tvxvug,Z)ﬂv(ug,l - u§,2)>Gi - 5<f6(t7$7u§,1> - fa(tvxﬂu§,2)7u§,1 - u§,2>ri'

The fourth and fifth terms on the left-hand side in (38) are estimates as in (37). For the sixth term on the
left-hand side, using Lipschitz continuity of P, s and regularity assumption on ug o we have

<A€(:c)(Pc75(u§,1) - Pc,é(ug,z))vug,zy V(Ug,l - u§’2)>0i

1
< Cy72 sup luf; — ufsz”ip?%

| Vs
(0,7) 2(G#) o2

|%2(0,T;LP(GE)) + Co, ||V (uf; — ug,2)”%2(6‘i)

1 2 2
<72 sup IV(u51 — uso)llzz(cey + CrllV(u5 ) — us2)llz2(ae)-
s T
Lipschitz continuity of F¢ and f¢ ensures the corresponding estimates for the terms on the right-hands side of
(38). Combining these estimates, applying Gronwall inequality, and iterating over 7 > 0 yield uniqueness of
a solution of variational inequality (12) if & = const. Notice that if both k and P, are constant the uniqueness
result is obtained without additional regularity assumptions on solutions of variational inequality (12). O

Remark. By extending the LP-theory for parabolic equations to pseudoparabolic equations and variational
inequalities it may be possible to prove higher regularity for solutions of variational inequality (12). However
this nontrivial analysis will not be considered here and will be the topic of future research.

To prove existence of a solution of the original problem (6) and to derive macroscopic variational inequality
we first derive a priori estimates for solutions of regularised problem (12) uniformly in § and e.

Lemma 3.2. Under Assumption 2.1 and if 3> A>4+a forn=3 and 5> A >3+a+4/(q—2) forn=2
and any q > 2, solutions of variational inequality (12) are non-negative and satisfy the following a priori
estimates
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1§ + 6)' TNl Lo o,z (o)) + 1/ Pes(u§) Vsl L2 0,1y x 6oy < C,
IVu§ll oo 0,522 (G2)) + 165 (u§) || Lo 0,7;22(c<)) < C, (30)
1/ s (u§)0e Vsl L2 0,1y <o) + [14/05(u§)Ocusll 20,y x o) < C,

10:bs (u5)l| L2 (0,757 (Ge)) + IV OUG| Lo (0, 1yx o) < C,

for 1 < p <2 defined in (50), 1 <r <3/2 forn=3 and 1 <r < 4/3 for n =2, and the constant C' > 0 is
independent of € and §.

Proof. To show that solutions of (12) are non-negative we consider vj = u§ — E((ug)_) as a test function in
(12), where v~ = min{u, 0} and

w

- 1
h(w)zo/mdg.

Notice that v5(t,z) = kp > 0 on 9G and v§(t,z) > 0 on I'® for t € (0,T"). The definition of P implies that
h((ué) ) =0if u§ > 0 and h((u $)7) < 0 for u§ < 0, and hence h((u5) ) = (u5)~ /ks(d). Thus we obtain

(Oubs(u5), h((u§) ")) @ + (A% (2)(Pe,s(u5)Vu§ + 8, Vus), V(u5) " )ae

- (40)
— (F=(t, 2, u5), VR((u5)"))as + (f*(t, 2,u5), h((u§) " ))re <0,

for 7 € (0,T]. Using the definition of h and properties of f¢, for the boundary integral we have

<€f5(t,x,u§),/~1((u§)_)>p5 = <5f5(tax’ug)a%((ug)_)xuiﬁo>ri = 0.

Assumptions on ¢ and the boundary conditions on dG¢ imply

(P t0,05), VR((05) e, = (0, (05) e + [ [V Bt (05) ) dndt =0,
0 G=

where P~I§(t, z,v) = Q(t,x) fov H(&)/ks(€) d¢. Assumptions on b, the definition of E, and the non-negativity
of initial data ensure

(ug(7))™ 13
(Oebs(u5), h((u5)7))as = (Qebs((u§) ™), h((u5)))as = / / b5 (€) / kj(’;)dgdxzo,
0

for 7 € (0,T]. Then the non-negativity of initial conditions, i.e. ug(x) > 0 in G, and assumptions on A yield

sup [|V(u§)~ |l2(ge) = 0,
(0,1)

and using the non-negativity of u§ on (0,7) x dG* we conclude u§(t,z) > 0 a.e. in (0,T) x G=.

) >
To derive a priori estimates in (39), we first consider v§ = u§ — hs(u§) as a test function in (12), where

v

h(;(v)ﬁ/ké(g)dg and 6 = min k(z) > 0,

Z>2KD
KD
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and obtain

(Obs (uz), hs(ug)) e + O(A" (2)(Pe,s (u5) Vus + 0 Vug), Vug) g

41
- <F8(t7x,u§)7Vh5(u§)>G§ + <€fs(t7m’u(s$)’ h5<u§)>ri <0 ( )

for s € (0, T]. Notice that hs(v) < 0 for v < kp, hs(kp) =0, and 0 < hs(v) < v for v > kp. Thus we obtain
that v§(t) € K= for u§(t) € K¢, since v5(t) > 0 on I'® if u5(¢) > 0 on I'* and v5(¢t) = kp on OG if u5(t) = kp
on 0G.

We shall estimate each term in (41) separately. The boundary integral can be written as

(ef*(t, @, u5), hs(u5))rs = (ef°(t, x, u5), hs(ug)Xus<np)re + (€ (t, T, u5), hs(U5)Xus>rp)re -
Assumptions on f¢ imply

(ef(t, @, u5), hs(u§)Xus=rp)rs > 0,
‘(fsfg(t,a;uf;),h(;(ug)xu§<,m>rg <C,

where the constant C' is independent of § and e. To estimate the third term in (41) we use the properties
of Q° and H and obtain

S

(Fe(t,2,u5), Vhs(ug))gs = 0(g, Vus)ae +//V - H5(t, x, ug)dxdt,
0 Ge

where H5(t, z,v) =0 Q°(¢, x) f:D H(&)[ks(€)]71dE. Using Q°(¢,x) -v =0 on I'* and H§(t,z, kp) = 0 yields

S S

//V CH5(t, x, us)dedt = / / H5(t, x,uf) - vdygdt = 0.

0 Ge 0 aGe
The first term in (41) can be written as

€

(Orbs (uS), his (u5)) s = / ) / by () ha(€) dédudt

G‘; KD

u§(s) uz(O)
=[] wemsedeas— [ [ iemate) deas.
Ge kD Ge Kp

The definition of hs and properties of function b ensure that for u§ < xp

us(s)

/ b / b d £ o—
/ / ()5 (€) dede = / / by(€) / o deda > € / i + 6|+ dz — G,
G¢ kD Ge ug(s) 13 G=

for s € (0,7] and positive constants Cq and Cs, which are independent of § and e. For u§ > kp, the
monotonicity of b and nonnegativity of k ensure

ug(s) ug(s)

|| wems@azas=o [ [ 0 i Fdndds >0

Ge Kp Ge Kp KD
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for s € (0,T]. Then integrating in (41) by parts with respect to time variable yields

ug(s) ug(s)
J1 [ th@ms(@dexuscn + [ 5Ohs(Odxugzn, do+ [ 1Vui(s)Pds
Ge KD KD Ge
u(0)
+ [ Pos(us)|Vus|?dedt < Cy + Co Vs(€)hs(&) dédx + Cs | |Vu§(0)|*dx
/ /] /

Ge G¢ kD

for s € (0,T], where the constants C;, with j = 1,2, 3, are independent of ¢ and §. Hence assumptions on
ug ensure

(souig/u + 5|t Bxuqudx—k s()ujp)/|Vu5| d:v—l—// 5 (u$)|Vus|?dedt < C, (43)
0 Ge

with a positive constant C' independent of ¢ and §.
To derive an estimate for \/ks(u$)0;Vu5 we need to use the equation with the penalty operator (13).
Testing equation (13) by v® = dyu§ , yields

(0ubs (ug ,,), O ) ae + (AT (w)ks (ug ) [Pe,s (uf ) Vg, + 00V U5 ] 0V UG ) as — (F2(E @, 05 ,), VOus ) e

S

1
+ <€f€(t,x,u§)u), atug’,)pi + ; /(B(ug)u — kD), atuf;)u)vgvdt =0, (44)

for s € (0,T]. Using the property of the projection operator (19) for the difference quotient of Pgeu with
respect to the time variable we obtain

OS <J(U_PKEU)7P]CEU_P]CEU<'_h>>V/V

==

Then, the last inequality, together with the regularity d,uj , € L?(0,T;V) and the fact that ug,kp € K¢,
yields

s N
/(B(ﬂg#),atu(;# vr,vdt = lim Z )5 (t5) = 05 (t1)) oy
J =
N t
fiy 3 (T8, = Preef, ) ), @ = Pz, |, ),
(I (@ = Pe5 ) (1), Preeig () = e u(t5-1)) oy |
1 ~€ ~€ ~& ~€
> 5 [ (1@ = P )P + 93, — P ) () o > 0
GE
where ﬂg,u = u5, — kp and t; = jh for j=1,...,N,and N € N, with t;y = Nh = s. Using assumptions

on the functions k and P, and applying the Holder inequality yield

<A€(x)k‘5(u§,p,)PC,5(ug,u)vug,uﬂ atvug,,u,>G§ < U” ké(ug,p)atvug,#||L2(G§)

+ Co ks (u 1) Pe,s (u§ 1) | Lo (G2 1/ Pe,s (u5,,,) VUGl 2 (Ge),
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for some 0 < o < ap/8. The boundary term can be written as

(ef*(t,2,u5,), Oyl )rs = / o / St 2, €) dedndt — / / B, 1 (t, 2, €) dednyt.
Ie KD

€
T's kD

Hence assumptions on f¢ imply

(e etz s ), Ol ) | < aa[/|u§’u(s)|2d’y+/\ug’u\%hdt} +C,,
e Ie

with some constant C, independent of u, € and §, and an arbitrary fixed o > 0. Then the trace estimate

2 2 2 2
elvllizrey < ClIvlIT2 ey + 2 1VOlZ261))
which follows from the definition of G¢ and I'®, the standard trace estimate for v € H!(Y*), and a scaling
argument, combined with the properties of an extension of uj u from G° into G, see Remark 3.3, and the
Dirichlet boundary condition on 0G, ensures

[(ef= (b, w,05,,), 0005 )rs | < 01 [1V05 ()72 gy + V5 12 6] + €

with s € (0, 7]. The assumptions on F*® and k and the fact that dyug ,(t,2) = 0 on (0,7) x G yield
(Fe(t,x,ug’u), vatu§7H>G§
= (g ks (u§ ), V5 ez — (QF () H' (uf ) (b (u§ )] 2 Vg /b5 (65, )00 )

Applying the Holder inequality and using assumptions on H and Q¢ we obtain

(F(t,2,u5,), VO ) e | < oilly/ks(uf,) Vs |72 2
+ 0ol /U5 (u5,) 005 |2 (o) + Crll VU5 ll72(ae) + Co,

for 0 < o1 < /8, 0 < 03 < 1/4 and constants Cy,Cy > 0 are independent of u, €, and 4.
Using the estimate for Vus , in L>(0,T; L*(G®)) and /P, s(u5 ,)Vus , in L*((0,T) x G*), which can

be derived in a similar way as the corresponding estimates for Vu§ and /P, 5(u5)Vu§ in (43), by deriving
estimates for the penalty operator BB similar to those obtained in the derivation of inequality (29), we obtain

|L2(G§) + ||\/matvuf§’“”L2(G§) <C,

for any s € (0,7] and a constant C independent of p, € and é. Notice that assumptions on k and definition of

Il4/05(u5,,)Deu,

¢ imply that uf§ , —rp—0 f:ﬁ“ [ks(€)]1d¢ > 0. Considering  — 0 and using continuity and strict positivity
of ks and bj5, together with the strong convergence of ug, i L?*(G%), as u — 0, and lower-semicontinuity
of a norm, we obtain the third estimate in (39).

If b is Lipschitz continuous we also have

10:bs (u§) 172G,y < LS |5 (u5)14/b5(u5) 0w 72y < C-
©)€GE

s
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Otherwise, we can consider

10tbs (us)[ L2 (0,77 (Ge)) = ||b:$(U§)atu§HL2(0 T;L™(G?))
< sup |[4/b5(us) || ||\/b' u5) s |2 (6.
(0,T7)

for some 1 < r < 2. Then the first estimate in (39) for 0 < u5(¢,2) <1 and if 0 < a < 1, and assumptions
on b’ for u§(t,x) > 1, combined with the uniform boundedness of ||u§|| Lo (0, 7;11 (<)), ensure

2—r
b (ue TT < C,
0.1 ISl 2 o) <

where 1 <r <3/2forn=3and 1 <r <4/3 for n=2.

From assumptions on b and the estimate for u§ in L>°(0,7; H'(G®)), we also obtain the boundedness of
bs(us) in L>°(0,T; L?(G*)), uniformly in € and 6.

To derive the estimate for Vo,us in LP((0,7") x G¢), with some p > 1, we follow the same ideas as in [31].
Using assumptions on P, together with u5 > 0 we can rewrite

Pp(;(ué Vué /1/ 05 df

where

7;\/ P.5(&)ds = Cy [(Ug + o)1 - 517/\/2} + O,
0

with some constants C; and Cs independent of ¢ and §. Then the estimate for P. s(u$)|Vu§|?, together
with the Dirichlet boundary condition on 0G, implies that (u§ + 6)'=*/2 € L2(0,T; H'(G*?)). Considering

- 12
an extension (u§ +96) * of (u§ + §)12 from G¢ into G, see Remark 3.3 applied to v° = (u§ + 82, we
obtain

——1-)/2 R _

[V (u5 +6) 22 (0myx) < CallV(us +6)' (| 20,1y x ey < Co,
_ ——1-)/2
[ (us + 0)" >\/2||L2((O,T)><G€) < |[(u§ + ) llz2 (0.1 x @)
——1-)/2
< Cs]|V(u§ +9) 20,1y xc) + Cs < Cs,
— 1A
where the constants C;, with j = 1,...,5, are independent of § and €. Notice that the extension (u§ + 5)1 2
satisfies the same Dirichlet boundary condition on OG as the original function (u§+d)*~*/2. Then the Sobolev
embedding theorem ensures

a2
(| (u§ +d) 20,1500 (a)) < C, q1 € (2,+00) forn=2,
1-2/2 2n (45)

20,1292 () < Cs 7@ =

[(u5 + 0) for n > 3,

n—2
with a constant C' > 0 independent of € and 9.

For 0 and 6; such that (1 — A/2)0 4+ (1 + a — 8)0; = —v3, where v > 1 and § is as in the assumption
on k, we obtain
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/ (s + 8)"Pdz — / (S + §) 1N (s 4 5)(1+a=B01 g
G= Ge

0/p 1/p1
<( / (w5 +8) D) / (w5 +8) (TP ) (46)

G= Ge

< (f@Fnrrmean) ™ ( [+ o).

G Ge

For n = 3 we have p = 6 and p; = 6/(6 — 6). Then the estimate for (u + )+~ in L1((0,T) x G?) yields

—1-)/2
61 =1 —0/6 and the integrability of (u§ + 9) /% With respect to the time variable implies § = 2. Hence
B =2-X+ %(1 + a — ) and in order to ensure that v > 1 we require

1/8 2 2 8 2 B
——(24+Za-r-2 1 S+ la4+ S < 47
ﬁ<3+30[ 35>> = 3+3a+3< (47)

If n = 2 the Holder exponents in (46) are p = ¢1/6 and 1/p1 = 1 — 6/q1, for any g; > 2. Thus we obtain
0=20,=1-2/¢; and

—=2-N+1Q+a-08)1-2/¢1) and 7>1 < 3—qz+a(l—%)+q%ﬁ<)\. (48)
1

Then, combining (45), third estimate in (39), and (46), we obtain the following estimate

T T
//|V8tu§|pdmdt://|k5(u§)%Vatu§|p|k5(u§)|_%dxdt

0 G= 0 G=
T T
€ €12 3 e\|— 52— 1-3
< (//kg(u5)|vatu5| da:dt) (//|k5(u5)| 2—pdxdt> (49)
0 G= 0 Gs
T
__p_ 1-%
écl(//\kg(ugﬂ 2—vdxdt)
0 Gs¢

for some 1 < p < 2. Assumptions on k£ and conditions on «, 8 and A, specified in the formulation of the
lemma, together with the first estimate in (39), ensure that there exists such p = p(8, A\, a,n) > 1 that

ks (u5)| == 1 (0,1yx ) < Co,
where C5 is independent of € and § and the exponent p is defined as

23\ +28—2a—8)
3\ +56—-20—38
22(14+a—-B)+a(A+B8—-3—a)]

= f =2 >2, and B>)A>3 4 - 2),
P 204+a—-pF)+qa(A+26-3-a) orn any qi and j +a+4/(q1 —2)

forn=3and 8>\ >4+ «,
(50)

and additionally inequalities in (47) and (48) are satisfied. This implies the last estimate in (39). O

Remark 3.3. To ensure that in the derivation of a priori estimates the embedding and Poincaré constants
are independent of ¢, we considered an extension of u§ and of (u§+ 5)1_’\/ 2 from G°¢ to G with the following
properties: There exists an extension v° of v¢ from LP(0,T; WP(G?)) into LP(0,T; W1P(G)) such that
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10%[|Le(ary < CllollLr(esy,  IVUllLe(ar) < ClIVVE||Lr(as.)s (51)

where 1 < p < oo and the constant C' > 0 is independent of . The existence of an extension T° satisfying
estimates (51) follows from the assumptions on the geometry of G and a standard extension operator, see
e.g. [1,10].

A priori estimates (39) ensure the following convergence results for a subsequence of {u§} as § — 0:

Lemma 3.4. Under assumptions in Lemma 5.2, there exists a function u® € L*(0,T; H*(G?)), with Oyu® €
LP(0,T; WYHP(G#)), such that, up to a subsequence,

uy — u° strongly in L*(0,T; H°(G®)) and L™ ((0,T) x G¥) for 1 < ry <6,

bs(us) — b(u®)  strongly in L™ ((0,T) x G%) for 1 <re <2,

ks(us) — k(u®)  strongly in LI((0,T) x G%) for 1< q < oo, (52)
bs(u§) — b(u®)  weakly-+ in L>=(0,T; L*(G*)),

uy — u® weakly-+ in L>(0,T; H*(G)),

where 1/2 < 0 < 1, and

Opbs (us) — Opb(u®) weakly in L?(0,T; L"(G*)),
opu§ — Opu’ weakly in LP(0,T; WP(G?)),

\/ ks (u5)VOrusg = /k(u®)Vou® weakly in L?((0,T) x G%),
\ ks (u) Pe s (u$) Vs — /k(ue)P.(uf)Vu®  weakly in L*((0,T) x G°),

as § — 0, where 1 < p < 2 is defined in (50), 1 <r < 3/2 forn =3 and 1 <r < 4/3 for n =2. Due to the
lower semicontinuity of a norm we also have

V|| Lo 0,752 (Go)) + IV E(u) 0 VU| L2 (s + [VOu®| Lo (as.)

(54)
+ 10(u) [ Lo (0,3 12(G)) + 10eb(w)[| 20,7517 (G2)) < C,

with a constant C > 0 independent of €, and u®(t,x) > 0 in (0,T) x G*=.

Proof. Weak-+ convergence of u§ in L*>(0,7; H*(G?)) and weak convergence of dyu§ in LP(0,T; WP (G))
follow directly from the a priori estimates (39), combined with the Dirichlet boundary condition on G and
the Poincaré inequality. Then using Lions—Aubin compactness lemma [24] and the fact that the embeddings
HY(G?) C H°(G®) and HY(G®) C L™ (G*), for 1 <7y < 6 and 1/2 < o < 1, are compact, we obtain the
strong convergence of u§ in L™ ((0,T) x G¥) and L?(0,T; H° (G?)).

Continuity of bs, P. 5 and ks and the strong convergence of u§ imply point-wise convergence bs(u§) —
b(u®), ks(uf) — k(u®), ks(u§)Pes(u§) — k(u®)P.(u®) a.e. in (0,T) x G* as § — 0. Assumptions on b yield
165 (u§)| r2 sy < Cr(1+ [[u§]3sr, (GET))’ where 3 < 37y < 6. Then the strong convergence of uj§ together
with the Lebesgue dominated convergence theorem implies the strong convergence of b(u§) in L™ (G%) for
1 < ry < 2. Assumptions on functions k and P, stated in Assumption 2.1, ensure that |ks(u5)| < C' and
|ks(u$)Pes(uf)| < C a.e. in G5 independently of 6. Then applying the Lebesgue dominated convergence
theorem implies strong convergence of ks(u5) and ks(u$)Pe,s(us) in L1((0,T) x G¢) for any 1 < ¢ < co.

Estimates for 0;bs(u§) together with the convergence bs(u§) — b(u®) in L™(G%) ensure weak conver-
gence of O;bs(us) — 9:b(u®) in L?(0,T; L"(G*)). Weak convergence dyu§ in LP(0,T; WHP(G?)) and strong
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convergence and boundedness of ks(u5) ensure weak convergence of \/ks(u5)0;Vus — /k(u®)0;Vu® in
LP (G%) for 1 < p1 < p, as § — 0. A priori estimates (39) imply /ks(u5)0;Vus — w in L*(G%). Hence
w = /k(u)0;Vu® € L*(G%). Similar arguments imply the last convergence in (53). O

Theorem 3.5. Under assumptions in Lemma 5.2, for every fixed € > 0 there exists a nonnegative solution
of variational inequality (6). If k(£) is non-degenerate, Oyu® € L?(0,T; WHP2(G?)) and ug € WHP2(G®) for
pa > n, or if k(&) = const, P.(€) is Lipschitz continuous for & > 0 and u® € L?(0,T; W'P2(G*?)), then
solution of (6) is unique.

Proof. Using the convergence results in Lemma 3.4, together with assumptions on k, P, b, H, fy, and fi,
stated in Assumption 2.1, and taking 6 — 0 in the regularised problem (12), we obtain that u® satisfies
variational inequality (6). The regularity of u® implies u® € C([0,T]; L*(G%)) and u®(t) — ug in L?(G®)
as t — 0. The weak convergence of u§ in L(0,T; H'(G?)) and non-negativity of u§ in G%., together with
u§ € K¢, ensure that v®(¢,z) > 0in (0,7) x G° and on (0,T) x I'*, as well as u®(t,z) = kp on (0,T) x 0G.
Hence u®(t) € K¢ for t € [0,T].

The proof of the uniqueness result in the case k is nondegenerate or k(§) = const for £ > 0 follows the
same steps as the corresponding proof for the regularised problem (12) in Lemma 3.1. O

4. Derivation of macroscopic obstacle problem

Using estimates (54) and compactness theorems for the two-scale convergence, see e.g. [2,34,35] or Ap-
pendix for more details, we obtain the following convergence results for a subsequence of the sequence {u}
of solutions of the microscopic problem (6), as € — 0.

Lemma 4.1. Under assumptions in Lemma 3.2, there exist functions u € L?(0,T; H*(G)) and w €
L*(Gp; Hy o (Y*)/R), with dyu € LP(0,T; WHP(G)) and dyw € LP(Gp; Wo2(Y™*)/R), such that, up to a

per
subsequence,

u® —u strongly in L™ ((0,T) x G) for1<r; <6,

b(u®) — b(u) strongly in L™((0,T) x G) for 1 <rg <2,

k(u®) — Ek(u) strongly in LY((0,T) x G)  for1 < g < oo, (55)
b(u®) — b(u) weakly-+ in L>(0,T; L*(Q)),

Opb(u) — Oyb(u)  weakly in L*(0,T; L"(Q)),

forl<r<3/2 forn=3and 1l <r <4/3 for n =2, where u® is equated with its extension from G¢ into
G, as in Remark 3.3, and

Vuf = Vu+ Vyw two-scale,
Vou® = Vou + V, 0w two-scale,
kE(u®)Vou® — k(u)(Vou + V,0w) two-scale, (56)

k(u®)P.(u®)Vu® — k(u)P:(u)(Vu + Vyw) two-scale,

ellulZ20,myxre) = YT el 22 0,0y x oxT):

as € — 0, where exponent p is defined in (50).
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Proof. The estimate for VO,u® in (54), combined with the Dirichlet boundary condition on OG and the
Poincaré and Sobolev inequalities, ensures that 0;u® and its extension 0;u°, see Remark 3.3, satisfy the
following estimate

10cu® | e 0, mswr (o)) + 10 o0, swr v(c)) + [100% ([ Lo (0,73192 (Go)) + 107 (| Lo (0,13L92 (6)) < €,

for 1 < p < 2asin (50), g2 = np/(n — p), and a constant C' > 0 independent of €. Then using Lions—Aubin
compactness lemma [24] we obtain strong convergence of u¢ in L™ ((0,T) x G), for 1 < r; < 6. Strong
convergence of u®, continuity of k& and b, boundedness of k(u®), and estimates for b(u®) and 0;b(u®) ensure
the strong convergence of {k(u®)} and {b(u®)} and weak convergence of {O;b(u®)}. A priori estimates (54),
the strong convergence of u®, continuity and boundedness of k(£) and k(&) P.(£) for £ > 0, together with
the compactness theorems for the two-scale convergence, see e.g. [2,34,35], imply the first four convergence
results in (56). The last convergence in (56) follows from the compactness of the embedding H*(G) C H°(G)
for 1/2 < 0 < 1 and the estimate

elvlZarey < Clvllie s for o>1/2,
with a constant C' > 0 independent of ¢, see e.g. [25] for the proof. O

Theorem 4.2. Under assumptions in Lemma 3.2, a subsequence of {u®}, denoted again by {u®}, where u® are
solutions of problem (6), convergences to a function u € kp+L?(0,T; Hi(Q)), with Oyu € LP(0, T; WP (Q)),
VEw)oVu € L*(Gr), 0ib(u) € L?(0,T; L™(G)), where 1 <r < 3/2 forn =3 and 1 <r < 4/3 forn =2,
and p > 1 is defined in (50), and u(t) € K for t € [0,T], satisfying macroscopic variational inequality

(0¢b(u), v — u)ar + (Anomk(w)[Pe(u)Vu + 0, Vu], V(v — u))

“r (57)
- <Fhom(t7xau)vv(v - u)>GT + <fh0m(tvu)7v - U>GT 2 0

forv—rp € L*(0,T; H}(G)), with v(t) € K, where K is defined in (7),

ﬂmw%m=fQ@%w®Hw+MM%
J
ﬁmmwzfmww@mm
J

and matriz Apom 1s defined in (63).

If k(€) = const, P.(¢) is Lipschitz continuous for € > 0, and u € L?(0,T; WYP2(Q)) for ps > n or if
k(u) > 6 >0 foru >0, dwu € L*(0,T; WHP2(G)) and ug € WHP2(G), then variational inequality (57) has
a unique solution and the whole sequence of microscopic solutions {u®} converges to the solution of (57).

Proof. To derive macroscopic inequality (57) we consider
V¥ (t, ) = ut(t, z) + P(t,x) + o(e)p(t, x) + ep(t, x, z/e)

as a test function in (6), where ¢ € C§(Gr, Ch..(Y)), ¢, € Hj((0,T) x G), with ¢(t, z) + u(t,z) > 0 and
o(t,z) > 0in (0,T) x G, and o(g) — 0 as € — 0. Notice that since u® — u strongly two-scale on (0,7") x I'®
as ¢ — 0, there exist such functions ¢ and o(g) > 0 that v*(¢,2) > 0 on (0,T) x I'® for sufficiently small
e > 0. We also have that v°(¢t,z) = kp on (0,T) x dG. Then using the convergence results in (55) and (56)

and taking in (6) the limit as ¢ — 0 yield
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Y™ / Ob(u) o dxdt + / / )[0:(Vu + Vyw) + Pe(u)(Vu + Vyw)| (Vo + Vo) dydadt
Gr Yy~
// (t,z,y,u) (Vo + Vyo)dydedt + / /f (t,y,u) ¢ dy,dxdt > 0.
Gry*

Assumptions on ¢, i.e. V-Q°(t,x) = 0in G5 and Q°(t,z)-v = 0 on I'},, which imply that V,-Q(t,z,y) =0
in Gr xY™*, Q(t,z,y) - v=0o0n Gy xT', and Q is Y-periodic, and the fact that  is independent of y ensure

/ /F(t, z,y,u)Vy dydzdt = 0.
GrY*

By choosing ¢ = 0 and ¢ = 0, respectively, we obtain

/ / ) [0:(Vu + Vyw) + Pa(u)(Vu + Vyw)] Vo dydzdt > 0 (58)
Gr Y™
and
/ O;b(u) ¢ dxdt + / ][ ) [0:(Vu + Vyw) + Pe(u)(Vu + Vyw)| Vo dydzdt
G (59)
/][ (t,z,y,u )dyV¢dxdt+/ v /f (t,y,u) dyy ¢ dadt > 0.
GrY*

Considering £ in (58) yields

/ / ) [0:(Vu + Vyw) + Pe(u)(Vu + Vyw)] Vi dydedt = 0,
GrY*

for all ¥ € Cj(Gp;Cle(Y)). For a given u € L*(0,T; H'(G)), the last equation is a pseudoparabolic

equation for w with respect to microscopic variables y:

Vy - (A(y)k(u)[0:(Vu + Vyw) + Pe(u)(Vu+ Vyw)]) =0 in Y,
A(y)k(w)[0y(Vu + Vyw) + Pe(u)(Vu+ Vyw)] - v =0 on Iy, (60)

w Y -periodic,

for x € G, where Y3 = (0,T) x Y*. Using a regularisation of k and P, in a similar way as for (6), we can
show the existence of a solution of problem (60), see also the existence proof for (66) in Lemma 4.3. To
prove the existence of a solution of (60), with regularized k and P., we apply the Rothe method, use the
Lax-Milgram theorem for the resulting linear elliptic problem, and consider w [k(u + 0)]~! and dyw as test
functions to derive the corresponding a priori estimates. We also use the fact that Vu € L*((0,7) x G),
k(u)0,Vu € L?((0,T) x G), and k(u)P.(u) is bounded. Considering the equation for the difference of two
solutions wy and wy of (60), taking v = (w; — we) [k(u + 0)]7%, with § > 0, as a test function, using
assumptions on A, and letting 6 — 0, yield

V(w1 — w2)l| 10,1502 (Gxv+)) = 0.

Hence a solution of (60) is defined uniquely up to an additive function independent of y. The structure of
(60) suggests that w is of the form
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w(t, z,y) Z@x]u (t, ) W (y) +w(t, ), (61)

where w?, for j = 1,...,n, satisfy the following ‘unit cell’ problems

divy (ATl + ) =0 Y, [ Wy =o.
T (62)
A(y)(Vyw’ +e;)-v =0 onT, w/ Y-periodic,

with {e;};=1,..» being the standard basis of R™. Notice that the well-posedness of (62) follows directly from
the assumptions on A in Assumption 2.1.
Substituting expression (61) for w into (59) determines the matrix Anom = (A}, )ij=1,...,n, With

A ][ Aly) (% + ‘2“; ) dy. (63)

Y*
For any ¢ € Co(Gr, Cper(I')), with ¢(¢,z,y) > 01in (0,7) x G x I, using the non-negativity and two-scale
convergence of u® on I'°, we obtain

0 < lim e(u®(t, z), ¥ (t, 2, x/€)>FET = |Y|_1<u(t, z), ¥t 2, y))Grxr = (ult, $)7@<t7 Z))Grs

e—0

where

Bta) = g [, 20 i 0.1)xG.

Y]
T

Hence u(t,z) > 0 in (0,7) x G. The weak convergence in L?(0,T; H'(G)) of the extension u° of u®, see
Remark 3.3, ensures that u(t,z) = kp on (0,7) x OG. Thus we have that u(t) € K for t € [0,T].
Considering ¢ = v — u, for any v € kp + L?(0,T; H}(GQ)) with v(t,z) > 01in (0,T) X G, as a test function
in (59) yields the macroscopic variational inequality (57).
The proof of the uniqueness result follows the same steps as the proof of the uniqueness result for the
regularised problem (12) in Lemma 3.1. O

Remark. Notice that if in pseudoparabolic and elliptic terms we have two different functions depending on

microscopic variables y, i.e. A(y)k(u)VOou and B(y)k(u)P.(u)Vu, with 0 < ag < A(y) < Ap < oo and
0 < by < B(y) < By < 00, we need to consider a modified form for function w, i.e.

wlta) = 30 240 i) 1y / O] 5y 5 0, y)ds + (). (64)

: 838%
Jj=1 Jj=1 0
instead of (61), where 9/ and x7 satisfy the following ‘unit cell’ problems:

divy (BT, ) =0 wy', [ Pdy=o.
v+ (65)
By) (V¥ +e;)-v=0 on T ¥ Y-periodic,

and
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div, (k(u(t + 9)) [AW)V, 00 + BO)Pel(ult + )V, 7)) =0 in Y7,
k(u(t + 5))[A(W)V, 000 + B(y)Pulult + )V, -v=0  onTr_,,

x’ Y -periodic, (66)
P (0,2,y) = () — 9 (y) in Y™, / (2, y)dy =0,
Y*

for s € [0,T), x € G, and j = 1,...,n, with w’ satisfying (62).

The well-posedness of (62) and (65) follows from the strict positivity and boundedness of functions A
and B. To show the well-posedness of (66) we first consider the regularised problem

divy (K(u+9) [A@W)V,00x + By) Pe(u+ )V, ) =0 in Yi_,,

k(u + 0)[A(y)Vy0ixh + B(y)Pe(u+ 8)Vyxi] - v =0 on I'p_g,
xé Y -periodic, (67)
X(0,2,9) = () — 9 (y) Y, [ xittspdy=o

Y*

Lemma 4.3. Under assumptions on A and B and on nonlinear functions k and P,., see Assumption 2.1,

there exists a unique solution x? € L>((0,T —s) x G; H},.(Y™)) of (66), with \/k(u) dyx? € L*((0,T —s) x
. 1 * g

G; Hyo (Y?)), for each j=1,...,n and s € [0,T).

Proof. First we consider the regularised problem (67). To show existence of a solution of (67) we consider

the discretisation in time of (67) and obtain

1 ) ) )
div, (k(u(tm +5)+0) | AW)5 Vo O = Xhmot) + BO)Polultn + 5) + 6)%%,4) =0 Y,

E(u(tm + s) + 5)[A(y)%vy(x§,m ~ X} mo1) + BW) Pe(ultm + 5) + 0)Vyx3,,] - v =0 onT, (68)

/Xg m(@,y)dy =0, xf; m Y -periodic,
Y*

where ngo(x,y) = wi(y) — ¥ (y) in Y*, with ngo(xf) € H for z € G, and t,,, = hm for h = (T — s)/N,
s€[0,T),m=1,...,N,and N € N. Here H = {v € H,,(Y*) : [,.. v(y)dy = 0}.
A weak solution of problem (68) is a function xj},, € H satisfying

*

<k:(u(tm +5)+0) A(y)%vyxf;’m + B(y) Pe(ultm + 5) + 5)vy><§,m] ,Vy<p>y
(69)

<k<u(tm +5) + 5)A(y)VyX§,m,17 vy@>y*

| =

forx € G, p € Hécr(Y*), and a given X§7m_1 € H. Assumptions on A, B, k, and P. ensure that problem
(68) is uniformly elliptic and the bilinear map a : H x H — R defined as

, 1 , ,
60 109) = [ blalton +5)+ ) | AWV T+ BWPultn + ) + 8V, | Vo dy
Y*
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is coercive and bounded, F € (H} . (Y*))" given by

per

(F,¢)

per

1 .
rytttvy = g [ bt +5) 4 0)AWT 0 Voo
J

is bounded, and (F, 1) H1 (Y*) Hl, (Y*) = 0. Thus applying the Lax—Milgram theorem yields existence of
a unique solution xj,, € H of (68) for € G and s € [0,T).

Considering first Xf{m - Xg,m—l and then Xfim as test functions in (69), summing over m = 1,...,, for
1 <1 < N, and using assumptions on functions A, B k, and P, yield the following a priori estimates

ZhH Xsm X§m 1)‘

for € G. Here we used discrete Gronwall and Hoélder inequalities and the fact that

2 ! 2
WVl

<
L2(Y™)

l

Zthng,m”%2 <CZhZhH X5L Xéz 1)‘2

2 *
1 L2(Y™*)

Vx5 oll 720

Then for piecewise linear and piecewise constant interpolations given by

J J
i j X5.m (T Y) = X5m_1(T,Y)
X% N(tv ‘T7y) = X% m—l(‘r7y) + (t o tm_l) = h = for t e (tm—latmL

X5N(t x,y) = X m(@,y) for t € (tmo1,tm], m=1,...,N,
for x € G and y € Y™, using the zero-mean value of st',m and the Poincaré inequality, we obtain

105 M2y ) T 10V X5 pllLzov_ ) + NG Nll2ve_ ) F IVeXs a2z < C

for x € G and a constant C independent of NV and z € GG. Last estimates ensure that there exists a function
X} € H, with 9;x} € H, such that

X = X§  weakly” in L*(0,T — s L™(G; H' (Y™))),
Oiksn — Ohxg  weakly® in L*(0,T — 53 L(G; H'(Y™))),

as N — oo. Using continuity of u with respect to time variable, integrating (69) with respect to ¢ and x,
and taking the limit as N — oo yield that Xg is a weak solution of the regularised ‘unit cell’ problem (67).
The linearity of the problem and properties of A, B, k, and P, ensure the uniqueness of a solution of (67).

Now we shall derive a priori estimates for Xg, uniformly in 0. Considering Xg /k(u 4+ 6) and 8tX§ as test
functions in the weak formulation of (67) we obtain

VXt zoe 0.0—sip2(v+y) + IV Pe(u + 8)Voyxtl z2(o.0—syxy+) + 1VEW@ + 8)Vydixtl L2 (0.7 —s)xy+) < C,
(70)

for x € G and a constant C' > 0 independent of 6 and = € G. Assumptions on k and P, in Assumption 2.1,
together with the additional assumption that & is continuously differentiable for z > 0, combined with the
regularity d;u € LP(0,T; L% (G)), where g1 = pn/(n —p) and 1 < p < 2, imply

(k(u+ )V, Vv = — (K (u+ 80V, X Vo) vy | — (k(u+ )V, xh V0t vy

—s
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for ¢ € C3(Gr—s x Y*) and x € G. Taking in the last equality the limit as § — 0 and considering estimates
in (70) yield

VE(u+0)V,0:xh = VE@)V,9,x’  weakly in L*(Gr_s x V™).

Then, using the continuity of k and P,, regularity of d;u and the estimate for Vyxg in L>®(Gr_s; L*(Y™)),
we can pass to the limit as 6 — 0 in the weak formulation of (67) and obtain that the limit function
X € L®(Gp_g; H) o (Y™)), with \/k(u)dyx? € L*(Gr_s; H)..(Y™)), is a solution of (66).

To prove the uniqueness result for (66) we assume that there are two solutions xJ and xJ of (66) and
consider [k(u+6)]"1(x} — xJ) as a test function in the weak formulation of the equations for the difference
(x] — x3) to obtain

/ [ e s (A2, 0d = D0~ xd) + BO)P(ute-+ IV, 0 = )P )duead: =
Gr_s Y™

for 7 € (s,T)]. Using the properties of functions k, P., A, B, and the nonnegativity of u, considering the
nonnegativity of the second term, integrating by parts in the first term, and taking § — 0 imply

sup ||V, ( X2)||L2(G><Y - < 0.
(0,T—s)

Then Poincaré inequality and the fact that the mean value of x{ , for I = 1,2, is zero ensure X]i = X% a.e. in
GxYj . forse0,T)and j=1,...,n. O

Considering the expression (64) for w in (59) and choosing ¢ = v —wu yield the corresponding macroscopic
variational inequality

(8tb(u), v — U>GT + <k( Ahomatvu + Bhom ( )VU] (U - u)>GT

+ </Khom(t —5,2)0sVuds, V(v — u)>GT — (Fhom(t, 2, u), V(v — ) Gr + (from(t, u),v — u)g, > 0,

for v € L?(0,T;K), where Anom, Fhom and fuhom are defined in Theorem 4.2, and matrices Bpom = (B]i]om)
and Kyom(t,2) = (K2 (t,x)) are determined by

Z 997
Bl = § B (8 + 5 )
Y*

Kl (t,2) = ][’f(U(f +5,2))[A(Y)0:dy, X7 + B(y) Pe(u(t + 5,2))0y,x"]dy.
T

Appendix A

Definition A.1. [2,35] A sequence {u®} C LP(G) converges two-scale to u, with u € LP(G x Y'), iff for any
¢ € LG, Cper(Y)) we have

e—0
G

lim [ w®(x)¢p (m, g) dr = /][u(x,y)gb(x, y)dxdy,
G Y

where 1/p+1/q = 1.



74 M. Ptashnyk / J. Math. Anal. Appl. 469 (2019) 4475

Definition A.2. [2,34] A sequence {u®} C L2(I'¥) converges two-scale to u, with u € L?(G x T), iff for
1 € Co(G, L?.(T)) there holds

time [u)i(e.2)dv = G/ F/ u(e,y) (@, y) dads,.

Te

Theorem A.3 (Compactness). [2,55] Let {uf} be a bounded sequence in H(G), which converges weakly to
u € HY(G). Then there exists u; € L*(G, H},.(Y)) such that, up to a subsequence, u° two-scale converges

per
to u and Vu® two-scale converges to Vu + Vyu;.

Let {u.} and {Vu} be bounded sequences in L*(G). Then there exists ug € L*(G, H}..(Y)) such that,
up to a subsequence, u® and eVu® two-scale converge to ug and Vyug, respectively.

Let {\/eu:} be a bounded sequence in L?(I'¢). Then there exists ug € L?*(G x T') such that, up to a
subsequence, u® two-scale converge to ug.
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