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MULTISCALE ANALYSIS AND SIMULATION OF A SIGNALING
PROCESS WITH SURFACE DIFFUSION∗
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Abstract. We present and analyze a model for cell signaling processes in biological tissues.
The model includes diffusion and nonlinear reactions on the cell surfaces and both inter- and intra-
cellular signaling. Using techniques from the theory of two-scale convergence as well the unfolding
method, we show convergence of the solutions to the model to solutions of a two-scale macroscopic
problem. We also present a two-scale bulk-surface finite element method for the approximation of
the macroscopic model. We report on some benchmarking results as well as numerical simulations in
a biologically relevant regime that illustrate the influence of cell-scale heterogeneities on macroscopic
concentrations.
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1. Introduction. Interactions between cells and the response of cells to external
stimuli are largely regulated by intracellular signaling processes which are themselves
activated by interactions between cell membrane receptors and signaling molecules
(ligands) diffusing in the extracellular space. Consequently, receptor-ligand interac-
tions and the activation of intracellular signaling pathways are involved in many im-
portant biological processes such as the immune response, cell movement and division,
tissue development, and homeostasis or repair; see e.g., [1, 28, 42]. The complexity of
the biochemistry involved in signaling networks necessitates an integrated approach
combining theoretical and computational studies with experimental and modeling ef-
forts to further our understanding of cell signaling. Motivated by this need, in this
work, we consider the modeling and analysis of signaling processes in biological tis-
sues. Specifically, we are interested in modeling both the cell-scale phenomena of
receptor binding and cell signaling along with the tissue level dynamics of the ligands.

Mathematical modeling and analysis of signaling processes involving receptor-
ligand interactions and GTPase (protein) molecules for a single cell was considered
in a number of recent works, for example, [7, 14, 46]. The majority of modeling
studies to date in the literature focus only on phenomena at the scale of a single cell
or simply naively “average out” the cell-scale dependence for tissue level modeling
[37, 41, 47, 52]. However, the spatial separation between ligands diffusing in the
intercellular space and receptors restricted to the cell membrane could be important
even in tissue level models as shown, for example, in [25, 40] where it is crucial
to ensuring robust branching in models for morphogenesis in organogenesis (e.g., in
the formation of the lungs or the kidney). The heterogeneity in the interactions
between ligands and receptors on the cell membrane given by receptor clustering
on cell membranes [21, 50, 53] and/or lipid rafts [6, 19, 49] is also important for
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intercellular signaling processes. Similarly, in the mathematical and computational
modeling of chemotaxis, cell polarization through the clustering of receptors at the
leading edge and gradients in the macroscopic ligand field generated by the binding of
these receptors appear crucial to successful migration [15, 34, 35]. Thus microscopic
modeling of receptor-ligand-based intercellular signaling processes in which both cell-
and tissue-scale phenomena are accounted for is essential for a better understanding
of biological systems.

In this work we consider the multiscale modeling and analysis of signaling pro-
cesses in biological tissues. Starting from a microscopic description consisting of cou-
pled bulk-surface systems of partial differential equations (PDEs) posed in a domain
consisting of cells and the extracellular space, we will derive a macroscopic two-scale
model as the number of cells tends to infinity. In contrast to previous models for
receptor-based signaling processes in biological tissues [38], we consider diffusion of
membrane resident species on the cell surface and we also extend previous models
by considering interactions between receptors and coreceptors on the cell membrane
leading to activation of intracellular signaling processes. Furthermore, we propose
a robust and efficient numerical method for the approximation of the macroscopic
two-scale problem and apply it in a biologically relevant parameter regime.

The main difficulty in the multiscale analysis of the microscopic problem consid-
ered here is the strong nonlinearity of reaction terms coupled with surface diffusion
and the dependence on a small parameter, corresponding to the size of the microstruc-
ture. This requires a rather delicate analysis and a new approach in the derivation
of a priori estimates. We employ the trace and Gagliardo–Nirenberg inequalities
together with an iteration processes to show the a priori estimates and bounded-
ness of the solutions of the model equations. Similar ideas were used in [7] to show
the well-posedness of a system describing nonlinear ligand-receptor interactions for
a single cell whose shape is evolving in time. However, due to the multiscale nature
and the corresponding scaling in the microscopic equations, the techniques from [7]
cannot be applied directly to obtain uniform a priori estimates for the solutions of our
microscopic model. To overcome this difficulty we use the structure of the nonlinear
reaction terms and the periodic unfolding operator [9, 10, 20].

The bulk-surface coupling in the homogenized model induces some challenges
in the design of a two-scale numerical scheme. For the numerical approximation of
the macroscopic two-scale system we employ a two-scale bulk-surface finite element
method. Bulk-surface finite element methods have been used in a number of recent
studies for the approximation of coupled bulk-surface systems of elliptic and parabolic
equations, including those modeling receptor-ligand interactions [13, 33, 36, 46]; how-
ever, to the best of the authors’ knowledge all such works have focused on interactions
at the scale of a single cell. Coupling the bulk-surface finite element approach with
a two-scale finite element method [43], we are able to treat the approximation of the
full macroscopic two-scale system and hence provide, as far as we are aware, the first
work in which tissue level models for receptor-ligand interaction are simulated where
receptor binding, unbinding, and transport as well as cell signaling are taken into
account at the cell scale. In order to validate the method we perform some bench-
mark tests to investigate the convergence of the method. We then propose and sim-
ulate a macroscopic two-scale cell signaling model in a biologically relevant regime.
Our results illustrate the influence of the cell shape on the transport of macroscopic
species as well as spatial heterogeneities at the cell scale and their influence on tissue
level behavior. We focus on incorporating the single cell model within a generic cell
signaling process outlined in [18] into our multiscale modeling framework. However,
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we note that the majority of signaling pathways that are described in the litera-
ture lie within the general model framework considered in this work, for example,
GTPase (e.g., Rho) and G-protein coupled receptors related signaling pathways [30],
uPAR-mediated signaling processes in human tissue [29], and Brassinosteroid hormone
mediated signaling in plant cells [12].

The remainder of this paper is organized as follows. In section 2 we derive our
microscopic model for cell signaling processes consisting of coupled bulk-surface sys-
tems of PDEs. In section 3 we prove existence and uniqueness results and derive
some a priori estimates for solutions of the microscopic model. Convergence results in
the limit as the number of cells tends to infinity, and the resultant macroscopic two-
scale model equations satisfied by the limiting solutions are presented in section 4. In
section 5 we formulate a numerical scheme for the approximation of the macroscopic
two-scale model. We benchmark the convergence of the scheme in section 6, and in
section 7 we apply the numerical method to the approximation of a biological example
of a GTPase signaling network taking parameter values from previous studies. The
definitions and main properties of two-scale convergence and the unfolding method
as well as some technical calculations used in the proof of boundedness of solutions
of the microscopic model are summarized in the appendix.

2. Microscopic model. In this section we present a derivation of a microscopic
mathematical model for signaling processes in biological tissues. We consider a Lip-
schitz domain Ω ⊂ Rd with d = 2, 3 representing a part of a biological tissue and
assume a periodic distribution of cells in the tissue. To describe the microscopic
structure of the tissue, given by extra- and intracellular spaces separated by cell
membranes, we consider a “unit cell” Y = [0, 1]d and the subdomains Y i ⊂ Y and
Ye = Y \Yi, together with the boundary Γ = ∂Yi. The domain occupied by the intra-
cellular space is given by Ωεi =

⋃
ξ∈Ξε ε(Yi + ξ), where Ξε = {ξ ∈ Zd, ε(Yi + ξ) ⊂ Ω},

and the extracellular space is denoted by Ωεe = Ω \ Ω
ε

i . The surfaces that describe
cell membranes are denoted by Γε =

⋃
ξ∈Ξε ε(Γ + ξ); see Figure 1 for a sketch of the

geometry.
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Figure 1. Left shows the ‘unit cell’ that describes the microstructure consisting of a
single cell with the intra- and extracellular spaces denoted by Yi and Ye respectively
and the cell membrane by �. Right is a sketch of the tissue consisting of a periodic
distribution of identically shaped cells surrounded by the extracellular space.
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where �� denotes the Laplace-Beltrami operator on surfaces �" and the binding/disassociation reac-
tions for r"b , p"d, and p"a are defined by
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describes the transduction of the signal into the cell inside by activated proteins on the cell membrane
(GTPase molecules) or activated intracellular domains of enzyme-linked receptors. The functions Fr

and Fp model production of new free receptors and inactive proteins, respectively.

Fig. 1. The left-hand subfigure shows the “unit cell” that describes the microstructure consisting
of a single cell with the intra- and extracellular spaces denoted by Yi and Ye, respectively, and the
cell membrane by Γ. The right-hand subfigure is a sketch of the tissue consisting of a periodic
distribution of identically shaped cells surrounded by the extracellular space.
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In modeling intercellular signaling processes, we assume that the signaling mole-
cules (ligands) cεe diffuse in the extracellular space and interact with cell membrane
receptors. We distinguish between free receptors rεf (or extracellular domains of the
free receptors) and bound receptors rεb (free receptor-ligand complexes). The model
for the evolution of the ligand concentration cεe in the extracellular space Ωεe reads

∂tc
ε
e −∇ · (Dε

e(x)∇cεe) = Fe(c
ε
e) in Ωεe, t > 0,

Dε
e(x)∇cεe · ν = −εGe(cεe, rεf , rεb) on Γε, t > 0.

(2.1)

Here the nonlinear Robin boundary condition Ge(c
ε
e, r

ε
f , r

ε
b) defined by

Ge(u, v, w) := aεe(x)u v − bεe(x)w

describes the binding of ligands to free receptors located on the cell membranes, i.e.,
the creation of receptor-ligand complexes, with binding rate aεe and spontaneous dis-
sociation of the complexes back into free receptors and ligands, with dissociation rate
bεe. The function Fe models the production and/or decay of ligands in the extracellular
space.

The signal from the extracellular domain is transduced into the cell through
the activation by bound receptors rεb of either membrane proteins, as is the case
in signaling processes mediated by G-protein-coupled receptors or the intracellular
domains of enzyme-linked membrane receptors or coreceptors, as observed in plant
hormone signaling processes. Thus we shall distinguish between active pεa and inactive
pεd proteins (coreceptors) or active and inactive intracellular domains of receptors. We
also consider spontaneous deactivation of proteins (or intracellular domains of recep-
tors) with the deactivation rate bεi , as well as natural decay of all molecules with decay
rates dj for j = f, e, d, a. Hence for the receptors and proteins on the cell membrane
we obtain the following reaction-diffusion equations:

∂tr
ε
f − ε2Df∆Γr

ε
f = Ff (rεf , r

ε
b)−Ge(cεe, rεf , rεb)− df rεf on Γε, t > 0,

∂tr
ε
b − ε2Db∆Γr

ε
b = Ge(c

ε
e, r

ε
f , r

ε
b)−Gd(rεb , pεd, pεa)− db rεb on Γε, t > 0,

∂tp
ε
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ε
d = Fd(p

ε
d)−Gd(rεb , pεd, pεa)− dd pεd on Γε, t > 0,

∂tp
ε
a − ε2Da∆Γp

ε
a = Gd(r

ε
b , p

ε
d, p

ε
a)−Gi(pεa, cεi )− da pεa on Γε, t > 0,

(2.2)

where ∆Γ denotes the Laplace–Beltrami operator on the surfaces Γε and the activa-
tion/deactivation reactions are defined by

Gd(u, v, w) := aεi (x)u v − bεi (x)w

with an activation (binding) rate aεi . The function

Gi(w, v) := γεi (x)w − κεi (x)v

describes the transduction of the signal into the cell interior by activated proteins on
the cell membrane (GTPase molecules) or activated intracellular domains of enzyme-
linked receptors. The functions Ff and Fd model the production of new free receptors
and inactive proteins, respectively.

For the molecules involved in the intracellular part of the signaling pathway, we
consider

∂tc
ε
i − ε2∇ · (Dε

i (x)∇cεi ) = Fi(c
ε
i ) in Ωεi , t > 0,

ε2Dε
i (x)∇cεi · ν = εGi(p

ε
a, c

ε
i ) on Γε, t > 0,

(2.3)



MULTISCALE CELL SIGNALING 855

where the function Fi models production and/or decay of the intracellular signaling
molecules cεi .

We complete the microscopic model with the initial conditions

cεe(0, x) = ce,0(x) for x ∈ Ωεe,

cεi (0, x) = cεi,0(x), cεi,0(x) = ci,1(x)ci,2(x/ε) for x ∈ Ωεi ,

rεj (0, x) = rεj,0(x), rεj,0(x) = rj,1(x)rj,2(x/ε) for x ∈ Γε,

pεs(0, x) = pεs,0(x), pεs,0(x) = ps,1(x)ps,2(x/ε) for x ∈ Γε,

(2.4)

where j = f, b and s = d, a and the boundary condition for cεe on the external boundary
∂Ω is given by

Dε
e(x)∇cεe · ν = 0 on ∂Ω, t > 0.(2.5)

Remark 2.1 (modeling generalizations). For simplicity of presentation we consider
constant diffusion coefficients in the equations on Γε; however, both the mathemat-
ical analysis and the numerical implementation allow for general space dependence
(x and/or x/ε) in the surface diffusion coefficients.

The ε-dependent scaling in the microscopic model (2.1)–(2.5) yields nontrivial
equations in the limit and indeed is consistent with biological estimates of the param-
eter values; cf. section 7.

The structure of the space-dependent initial conditions ensures uniform in ε
boundedness and the strong two-scale convergence of the initial data cεi,0, rεj,0, and pεs,0
as ε → 0, where j = f, b and s = d, a. It is possible to consider more general initial
conditions, i.e., cεi,0(x) = ci,0(x, x/ε), rεj,0(x) = rj,0(x, x/ε), and pεs,0(x) = ps,0(x, x/ε)
if one assumes continuity of ci,0, rj,0, and ps,0 with respect to at least one of the
spatial variables, i.e., macroscopic (x ∈ Ω) or microscopic (y ∈ Yi or y ∈ Γ).

Remark 2.2 (binding kinetics). For reasons of clarity of exposition in the micro-
scopic model we consider linear or quadratic reactions for interactions between sig-
naling molecules, receptors, and proteins. Such reactions capture the main features
of biologically relevant interactions. The extension of the analysis and numerical sim-
ulations considered here to more general binding models such as cooperative binding
or Michaelis–Menten terms and the addition of general Lipschitz functions in the re-
action terms modeling additional phenomena should be a relatively straightforward
task and is not anticipated to induce any major technical complications.

To ease readability, we introduce the following notation for τ ∈ (0, T ] and any
T > 0, Ωεl,τ := (0, τ) × Ωεl , for l = e, i, Γετ := (0, τ) × Γε, Ωτ := Ω × (0, τ), Γτ :=
Γ× (0, τ):

〈φ, ψ〉Ωεl,τ :=

∫ τ

0

∫
Ωεl

φψ dxdt, for l = e, i, 〈φ, ψ〉Γετ :=

∫ τ

0

∫
Γε
φψ dσεdt,

〈φ, ψ〉Yl×Ωτ :=

∫ τ

0

∫
Ω

∫
Yl

φψ dydxdt, for l = e, i, 〈φ, ψ〉Ωτ :=

∫ τ

0

∫
Ω

φψ dxdt,

〈φ, ψ〉Γ×Ωτ :=

∫ τ

0

∫
Ω

∫
Γ

φψ dσydxdt, 〈φ, ψ〉Γτ :=

∫ τ

0

∫
Γ

φψ dσydt.

By 〈·, ·〉 we denote the time integral of the dual product in H1(Ωεl ), with l = i, e, or
in H1(Γε) where it is clear from the arguments which of the three is meant.
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3. Well-posedness and a priori estimates for the microscopic model.
In this section, we prove existence and uniqueness of a solution to the microscopic
problem (2.1)–(2.5). We also derive a priori estimates that allow us to pass to the
limit as the number of cells tends to infinity.

We use a Galerkin method together with fixed point arguments to show the
existence of a weak solution of (2.1)–(2.5). The main difficulty in the analysis is
to show a priori estimates for solutions of the microscopic problem, which are global
in time and independent of ε. This is technically challenging due to the quadratic
nonlinearities in the reaction terms and the scaling of the diffusion of the microscopic
species. The tools we use to derive the estimates are the periodic unfolding method
and Gagliardo–Nirenberg inequalities, and in the proof of boundedness of the species,
we employ an Alikakos iteration technique [3]. Uniqueness of the solution to (2.1)–
(2.5) follows from the boundedness result and the local Lipschitz continuity of the
nonlinear terms.

We find it convenient to use the periodic unfolding method described in Appendix
B; see also [9, 10]. There are two main advantages in using unfolding methods in
relation to the present study:

• Unfolding operators map functions defined on the oscillating ε-dependent
domains to functions defined on fixed domains which now depend on both
macroscopic and microscopic variables; i.e., we can study functions on fixed
domains whose geometry is independent of ε but in exchange must double
the spatial dimension.

• The unfolding results in a separation between microscopic and macroscopic
variables in the unfolded functions. This allows us to take advantage of the
fact that under the action of the unfolding operator the differential operator
(the Laplace–Beltrami operator) in the equations defined on the oscillating
surfaces is transformed into a differential operator with respect to the mi-
croscopic variables only. Thus we are able to utilize the higher regularity
with respect to microscopic variables of the species defined on the oscillating
surfaces, and this appears to be crucial in establishing boundedness of the
species uniformly in ε.

We make the following biologically reasonable assumptions on the coefficients in
the model equations and on the initial data.

Assumption 3.1 (assumptions on the problem data for (2.1)–(2.5)).
• We assume the usual ellipticity and boundedness conditions on the diffusiv-

ities of the different species, i.e., De ∈ C(Ω;L∞(Ye)) with De(x, y) ≥ αe >
0 for a.a. y ∈ Ye and x ∈ Ω, Di ∈ L∞(Yi) with Di(y) ≥ αi > 0 for a.a. y ∈
Yi, and Dj > 0 for j = f, b, d, a.

• For the reaction kinetic coefficients, for l = e, i, we assume

al, bl, γi, κi ∈ L∞(Γ) and al, bl, γi, κi are nonnegative.

Moreover, we assume for l = e, i

aεl (x) = al(x/ε), b
ε
l (x) = bl(x/ε) and γεi (x) = γi(x/ε), κ

ε
i (x) = κi(x/ε).

• We assume boundedness of the initial conditions, i.e.,

ce,0, ci,1 ∈ L∞(Ω) and ci,2 ∈ L∞(Y ),

and that for j = f, b and s = a, d,

rj,1, ps,1 ∈ L∞(Ω) and rj,2, ps,2 ∈ L∞(Γ).
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• We further assume that the production/decay terms satisfy Fl : R → R for
l = e, i, d and Ff : R2 → R are locally Lipschitz continuous in (−µ,∞) and
(−µ,∞)2, respectively, for some µ > 0.
Moreover, we assume the following growth bounds for l = e, i, d:

Fl(ξ)ξ− ≤ |ξ−|2 and Ff (ξ, η)ξ− ≤ C(|ξ−|2 + |η−|2),

for ξ− = min{ξ, 0} and η− = min{η, 0}, and for l = e, i, d,

|Fl(ξ)| ≤ C(1 + ξ) and |Ff (ξ, η)| ≤ C(1 + ξ + η) for ξ, η ∈ R+.

We define Dε
i (x) := D̃i(x/ε) and Dε

e(x) := D̃e(x, x/ε) for x ∈ Ωεi and x ∈ Ωεe,
respectively, where D̃i and D̃e are Y -periodic extensions of Di and of De(x, ·) for
x ∈ Ω, respectively.

We now introduce our notion of weak solutions of the microscopic problem (2.1)–
(2.5).

Definition 3.2 (weak solution of the microscopic problem). A weak solution of
the microscopic model (2.1)–(2.5) is functions cεl ∈ L2(0, T ;H1(Ωεl )) and rεj , p

ε
s ∈

L2(0, T ;H1(Γε)) with ∂tc
ε
l ∈ L2(0, T ;H1(Ωεl )

′) and ∂tr
ε
j , ∂tp

ε
s ∈ L2(0, T ;H1(Γε)′), for

l = e, i, s = a, d, and j = f, b, satisfying

〈∂tcεe, φ〉+ 〈Dε
e(x)∇cεe,∇φ〉Ωεe,T = 〈Fe(cεe), φ〉Ωεe,T − ε〈Ge(c

ε
e, r

ε
f , r

ε
b), φ〉ΓεT ,

〈∂tcεi , ψ〉+ 〈ε2Dε
i (x)∇cεi ,∇ψ〉Ωεi,T = 〈Fi(cεi ), ψ〉Ωεi,T + ε〈Gi(pεa, cεi ), ψ〉ΓεT

(3.1)

and

〈∂trεf , ϕ〉+ 〈ε2Df∇Γr
ε
f ,∇Γϕ〉ΓεT = 〈Ff (rεf , r

ε
b)−Ge(cεe, rεf , rεb)− dfrεf , ϕ〉ΓεT ,

〈∂trεb , ϕ〉+ 〈ε2Db∇Γr
ε
b ,∇Γϕ〉ΓεT = 〈Ge(cεe, rεf , rεb)−Gd(rεb , pεd, pεa), ϕ〉ΓεT

− 〈db rεb , ϕ〉ΓεT ,
〈∂tpεd, ϕ〉+ 〈ε2Dd∇Γp

ε
d,∇Γϕ〉ΓεT = 〈Fd(pεd)−Gd(rεb , pεd, pεa)− ddpεd, ϕ〉ΓεT ,

〈∂tpεa, ϕ〉+ 〈ε2Da∇Γp
ε
a,∇Γϕ〉ΓεT = 〈Gd(rεb , pεd, pεa)−Gi(pεa, cεi )− dapεa, ϕ〉ΓεT

(3.2)

for all φ ∈ L2(0, T ;H1(Ωεe)), ψ ∈ L2(0, T ;H1(Ωεi )), and ϕ ∈ L2(0, T ;H1(Γε)), with
the initial conditions (2.4) satisfied in the L2-sense.

In the subsequent analysis we shall make repeated use of the the following scaled
trace inequality.

Remark 3.3 (scaled trace inequality). Using the assumptions on the microscopic
geometry of Ωεl and applying the standard trace inequality for functions v ∈ H1(Yl)
(see, e.g., (A.1)), together with a scaling argument, we obtain the following trace
inequality for the L2-norm on Γε:

ε‖v‖2L2(Γε) ≤ µδ‖v‖2L2(Ωεl )
+ ε2δ‖∇v‖2L2(Ωεl )

with l = e, i,(3.3)

for any fixed δ > 0, where the constant µδ > 0 depends only on δ, Y , Yi, and Γ, and is
independent of ε; see, e.g., [23, 38]. Notice that the natural ε-scaling in the L2-norm
on the oscillating boundaries (surfaces of the microstructure) reflects the difference
between volume and surface dimensions.

Remark 3.4 (H1 extension). The assumptions on the structure of the micro-
scopic domain Ωεe ensure that for v ∈ W p(Ωεe) with 1 ≤ p < ∞, there exists an
extension v̄ from Ωεe into Ω such that

‖v̄‖Lp(Ω) ≤ µ‖v‖Lp(Ωεe)
, ‖∇v̄‖Lp(Ω) ≤ µ‖∇v‖Lp(Ωεe)

,(3.4)

where the constant µ is independent of ε; see, e.g., [2, 11, 23].
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We now state our main result of this section, specifically the existence and unique-
ness of a weak solution of microscopic model (2.1)–(2.5) together with uniform (in ε)
estimates.

Theorem 3.5. Under Assumption 3.1, for every fixed ε > 0, there exists a unique
nonnegative weak solution of the microscopic problem (2.1)–(2.5), which satisfies the
a priori estimates

‖cεe‖L∞(0,T ;L2(Ωεe))
+ ‖∇cεe‖L2(Ωεe,T ) +

√
ε‖cεe‖L2(ΓεT ) ≤ C,

‖cεi‖L∞(0,T ;L2(Ωεi ))
+ ‖ε∇cεi‖L2(Ωεi,T ) +

√
ε‖cεi‖L2(ΓεT ) ≤ C,

√
ε‖rεj‖L∞(0,T ;L2(Γε)) +

√
ε‖ε∇Γr

ε
j‖L2(ΓεT ) ≤ C,√

ε‖pεs‖L∞(0,T ;L2(Γε)) +
√
ε‖ε∇Γp

ε
s‖L2(ΓεT ) ≤ C,

(3.5)

and for l = e, i, s = a, d, and j = f, b

‖cεl ‖L∞(0,T ;L∞(Ωεl ))
+ ‖rεj‖L∞(0,T ;L∞(Γε)) + ‖pεs‖L∞(0,T ;L∞(Γε)) ≤ C,(3.6)

where the constant C is independent of ε.

To aid readability, we split the proof of Theorem 3.5 into a series of lemmata.
Namely, in Lemmata 3.6, 3.7, 3.8, 3.9, and 3.10 we show existence, nonnegativity,
the a priori estimates (3.5), boundedness, and uniqueness of solutions to (2.1)–(2.5),
respectively.

Lemma 3.6. There exists a weak solution to the microscopic problem (2.1)–(2.5).

Proof. Existence of a weak solution to problem (2.1)–(2.5) is demonstrated by
showing the existence of a fixed point of the operator equation K : A → A with

A = {(u, v) ∈ L2(0, T ;L4(Γε))2 with u ≥ 0 and v ≥ 0 on (0, T )× Γε},

defined such that for given (gε, hε) ∈ A we consider (rεf , r
ε
b) = K(gε, hε), where the

functions rεf and rεb are solutions of the following coupled problem:

∂tc
ε
e −∇ · (Dε

e(x)∇cεe) = Fe(c
ε
e) in Ωεe,T ,

Dε
e(x)∇cεe · ν = −εGe(cεe, gε, hε) on ΓεT ,

Dε
e(x)∇cεe · ν = 0 on (∂Ω)T ,

∂tc
ε
i − ε2∇ · (Dε

i (x)∇cεi ) = Fi(c
ε
i ) in Ωεi,T ,

Dε
i (x)∇cεi · ν = εGi(p

ε
a, c

ε
i ) on ΓεT

(3.7)

and

∂tr
ε
f − ε2∇Γ · (Df∇Γr

ε
f ) = Ff (rεf , h

ε)−Ge(cεe, gε, rεb)− df rεf ,
∂tr

ε
b − ε2∇Γ · (Db∇Γr

ε
b) = Ge(c

ε
e, g

ε, rεb)−Gd(hε, pεd, pεa)− db rεb ,
∂tp

ε
d − ε2∇Γ · (Dd∇Γp

ε
d) = Fd(p

ε
d)−Gd(hε, pεd, pεa)− dd pεd,

∂tp
ε
a − ε2∇Γ · (Da∇Γp

ε
a) = Gd(h

ε, pεd, p
ε
a)−Gi(pεa, cεi )− da pεa,

(3.8)

together with the initial conditions (2.4).
To prove the nonnegativity of solutions of problem (3.7), (3.8), and (2.4) we start

by taking cε,−e = min{cεe, 0} as a test function in the equation for cεe in (3.7). Using the
nonnegativity of gε and hε, the assumptions on Fe, and the structure of function Ge
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we obtain that ‖cε,−e ‖L∞(0,T ;L2(Ωεe))
≤ 0. Hence cε,−e = 0 a.e. in (0, T )×Ωεe and cεe ≥ 0

a.e. in (0, T )×Ωεe. Then using the nonnegativity of cεe, g
ε, and hε, and choosing cε,−i ,

rε,−l , pε,−s , with l = f, b and s = a, d, as test functions in the equation for cεi in (3.7)
and in equations in (3.8), respectively, and using the assumptions on the functions
Ff , Fd, Fi, Gi, and Gd we obtain nonnegativity of cεi , r

ε
l , and pεs, where l = f, b and

s = a, d.
The existence of a solution of problem (3.7), (3.8), and (2.4) for given (gε, hε) ∈ A

can be shown using a Galerkin method and a priori estimates, equivalent to those
stated in (3.5) (where we now consider estimates for the solutions of problem (3.7),
(3.8), and (2.4)). As is standard the necessary estimates are derived for Galerkin
approximation sequences and passing to the limit yields the estimates for the problem
(3.7), (3.8), and (2.4). We note that the derivation of the estimates (3.5) for solutions
of problem (3.7), (3.8), and (2.4) follows exactly the same argument as in the proof
of Lemma 3.8 with ε‖hε‖2L2(0,τ ;Lq(Γε)) in place of ε‖rεb‖2L2(0,τ ;Lq(Γε)) for q = 2, 4.

The a priori estimates in (3.5), together with standard arguments for parabolic
equations, ensure that for any fixed ε > 0 we have ∂tc

ε
l ∈ L2(0, T ;H1(Ωεl )

′) for l = e, i
and ∂tr

ε
j , ∂tp

ε
s ∈ L2(0, T ;H1(Γε)′) for j = f, b, s = a, d.

Now using the compact embedding of [H1(0, T ;H1(Γε)′) ∩ L2(0, T ;H1(Γε))]2 in
L2(0, T ;L4(Γε))2 and the fact that A is a convex subset of L2(0, T ;L4(Γε))2 and
applying the Schauder fixed-point theorem yields the existence of a weak solution to
the microscopic problem (2.1)–(2.5) for each fixed ε.

To show nonnegativity of solutions, the a priori estimates (3.5), and boundedness
of solutions of the microscopic problem (2.1)–(2.5), we first consider a truncated model
obtained by taking rεf,M instead of rεf in function Ge and rεb,M instead of rεb in function
Gd in (2.1)–(2.5), where

rεj,M := min{M, rεj}+ max{−M, rεj} − rεj for j = f, b and some M > 0.

Then we show that all solutions of the truncated model are nonnegative. For non-
negative solutions in Lemmata 3.8 and 3.9 we prove the a priori estimates (3.5) and
boundedness, independent of the truncation constant M . Thus passing to the limit
as M → ∞ yields the nonnegativity, a priori estimates (3.5), and boundedness of
solutions of the original problem (2.1)–(2.5).

For simplicity of presentation we derive the a priori estimates and boundedness
of nonnegative solutions of original problem (2.1)–(2.5); clearly the same arguments
apply for the corresponding truncated model.

Lemma 3.7. Under Assumption 3.1 solutions of problem (2.1)–(2.5) are non-
negative.

Proof. We first consider the truncated model with rεf,M instead of rεf in function

Ge and rεb,M instead of rεb in function Gd in (2.1)–(2.5). Then considering cε,−l , rε,−j ,

and pε,−s as test functions in (3.1) and (3.2) with Ge(c
ε
e, r

ε
f,M , r

ε
b) and Gd(r

ε
b,M , p

ε
d, p

ε
a)

instead of Ge(c
ε
e, r

ε
f , r

ε
b) and Gd(r

ε
b , p

ε
d, p

ε
a), respectively, using the trace and Gronwall

inequalities we obtain

‖cε,−l ‖L∞(0,T ;L2(Ωεl ))
+ ‖rε,−j ‖L∞(0,T ;L2(Γε)) + ‖pε,−s ‖L∞(0,T ;L2(Γε)) ≤ 0

for l = e, i, j = f, b, and s = a, d, and hence solutions of the truncated problem cεl ,
rεj , and pεs are nonnegative. Since for nonnegative solutions we have a priori estimates
and boundedness uniformly with respect to M (see Lemmata 3.8 and 3.9), we can pass
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to the limit as M →∞ and obtain that solutions of the original problem (2.1)–(2.5)
are nonnegative.

Next we derive the a priori estimates (3.5) for solutions of problem (2.1)–(2.5).

Lemma 3.8. Under Assumption 3.1 nonnegative solutions of the microscopic prob-
lem (2.1)–(2.5) satisfy the a priori estimates (3.5).

Proof. Considering cεe and cεi as test functions in the weak formulation (3.1) of
the equations for cεe and cεi yields

1

2
‖cεe(τ)‖2L2(Ωεe)

+ αe‖∇cεe‖2L2(Ωεe,τ ) ≤
1

2
‖cεe(0)‖L2(Ωεe)

+ 〈Fe(cεe), cεe〉Ωεe,τ
− ε〈Ge(cεe, rεf , rεb), cεe〉Γετ ,

1

2
‖cεi (τ)‖2L2(Ωεi )

+ αi‖ε∇cεi‖2L2(Ωεi,τ ) ≤
1

2
‖cεi (0)‖L2(Ωεi )

+ 〈Fi(cεi ), cεi 〉Ωεi,τ
+ ε〈Gi(pεa, cεi ), cεi 〉Γετ

(3.9)

for τ ∈ (0, T ]. Using the structure of Ge and Gi, the nonnegativity of solutions,
and the assumptions on the coefficients in Assumption 3.1, together with the trace
inequality (3.3), we obtain

‖cεe(τ)‖2L2(Ωεe)
+ ‖∇cεe‖2L2(Ωεe,τ ) ≤ C

[
1 + ε‖rεb‖2L2(Γετ ) + ‖cεe‖2L2(Ωεe,τ )

]
,

‖cεi (τ)‖2L2(Ωεi )
+ ‖ε∇cεi‖2L2(Ωεi,τ ) ≤ C

[
1 + ε‖pεa‖2L2(Γετ ) + ‖cεi‖2L2(Ωεi,τ )

]
.

(3.10)

Taking rεf as a test function in the equation for rεf , and using the nonnegativity of cεe,
rεf , and rεb , the structure of Ge, and the assumptions on Ff we have

ε‖rεf (τ)‖2L2(Γε) + ε‖ε∇Γr
ε
f‖2L2(Γετ ) ≤ C

[
1 + ε‖rεb‖2L2(Γετ ) + ε‖rεf‖2L2(Γετ )

]
(3.11)

for τ ∈ (0, T ]. Considering the equation for the sum of rεb and rεf , taking rεb + rεf
as a test function, and using the structure of the function Gd, together with the
nonnegativity of rεf , rεb , and pεd and the estimate (3.11), yields

ε‖rεf (τ) + rεb(τ)‖2L2(Γε) + ε‖ε∇Γr
ε
b‖2L2(Γετ )

≤ C1

[
1 + ε‖ε∇Γr

ε
f‖2L2(Γετ ) + ε‖rεf‖2L2(Γετ ) + ε‖rεb‖2L2(Γετ ) + ε‖pεa‖2L2(Γετ )

]
≤ C2

[
1 + ε‖rεb‖2L2(Γετ ) + ε‖rεf‖2L2(Γετ ) + ε‖pεa‖2L2(Γετ )

](3.12)

for τ ∈ (0, T ]. In a similar way as for rεf , using the structure of Gd, the assumptions
on Fd, and the nonnegativity of rεb , p

ε
d and pεa, we obtain

ε‖pεd(τ)‖2L2(Γε) + ε‖ε∇Γp
ε
d‖2L2(Γετ ) ≤ C

[
1 + ε‖pεa‖2L2(Γετ ) + ε‖pεd‖2L2(Γετ )

]
(3.13)

for τ ∈ (0, T ]. Considering the equation for the sum of pεd and pεa and taking pεd + pεa
as a test function yields

ε‖pεd(τ) + pεa(τ)‖2L2(Γε) + ε‖ε∇Γp
ε
a‖2L2(Γετ )

≤ C1

[
1 + ε‖ε∇Γp

ε
d‖2L2(Γετ ) + ε‖pεa‖2L2(Γετ ) + ε‖pεd‖2L2(Γετ ) + ε‖cεi‖2L2(Γετ )

]
≤ C2

[
1 + ε‖pεa‖2L2(Γετ ) + ε‖pεd‖2L2(Γετ ) + ε‖cεi‖2L2(Γετ )

](3.14)
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for τ ∈ (0, T ]. Combining estimates (3.10)–(3.14) and using the Gronwall inequality
and trace inequality (3.3) imply the a priori estimates stated in (3.5).

The main technical result of this section is the following uniform boundedness
result. A number of the more laborious calculations are given in the Appendix C in
order to aid readability of the manuscript.

Lemma 3.9. Under Assumption 3.1 nonnegative solutions of problem (2.1)–(2.5)
are bounded uniformly in ε.

Proof. To show boundedness of solutions to the microscopic model (2.1)–(2.5)
we introduce the periodic unfolding operator T εYl : Lp(Ωεl,T ) → Lp(ΩT × Yl), with
l = i, e, and the boundary unfolding operator T εΓ : Lp(ΓεT ) → Lp(ΩT × Γ), where
1 ≤ p ≤ ∞; see Appendix B or, e.g., [9, 10] for the definition and properties of the
periodic unfolding operator. For simplification of the presentation we use the same
notation T ε for the unfolding operator T εYl for l = e, i and the boundary unfolding
operator T εΓ as it is clear from the context which operator is applied.

Integrating by parts in time of the terms in (3.1) and (3.2) that involve time deriv-
atives, applying the unfolding operator, and using the nonnegativity of the solutions,
we obtain the following estimates for x ∈ Ω, (to aid readability of the manuscript the
details of the derivation of the estimates are given in Appendix C):

‖T ε(rεf )(τ)‖2L2(Γ) + ‖∇Γ,yT ε(rεf )‖2L2(Γτ ) + ‖T ε(rεb)(τ)‖2L2(Γ) + ‖∇Γ,yT ε(rεb)‖2L2(Γτ )

≤ C
[
1 + ‖T ε(rεb)‖2L2(Γτ ) + ‖T ε(rεf )‖2L2(Γτ ) + ‖T ε(pεa)‖2L2(Γτ )

]
,

‖T ε(pεd)(τ)‖2L2(Γ) + ‖∇Γ,yT ε(pεd)‖2L2(Γτ ) + ‖T ε(pεa)(τ)‖2L2(Γ) + ‖∇Γ,yT ε(pεa)‖2L2(Γτ )

≤ C1

[
1 + ‖T ε(pεa)‖2L2(Γτ ) + ‖T ε(pεd)‖2L2(Γτ ) + ‖T ε(cεi )‖2L2(Γτ )

]
,

‖T ε(cεi )(τ)‖2L2(Yi)
+ ‖∇yT ε(cεi )‖2L2(Yi,τ )

≤ C3

[
1 + ‖T ε(cεi )‖2L2(Γτ )

]
+ C4

[
‖T ε(cεi )‖2L2(Yi,τ ) + ‖T ε(pεa)‖2L2(Γτ )

]
.

(3.15)

Gronwall’s inequality and a trace estimate for cεi , similar to (3.3), yields for x ∈ Ω,

‖T ε(rεl )‖L∞(0,T ;L2(Γ)) + ‖∇Γ,yT ε(rεl )‖L2(ΓT ) ≤ C for l = f, b,

‖T ε(pεs)‖L∞(0,T ;L2(Γ)) + ‖∇Γ,yT ε(pεs)‖L2(ΓT ) ≤ C for s = d, a,

‖T ε(cεi )‖L∞(0,T ;L2(Yi)) + ‖∇yT ε(cεi )‖L2(Yi,T ) ≤ C.
(3.16)

Applying the Gagliardo–Nirenberg and trace inequalities and using the fact that
dim(Γ) ≤ 2 we obtain for l = f, b and s = d, a and for x ∈ Ω and τ ∈ (0, T ],

‖T ε(rεl )‖L4(Γτ ) ≤ C1‖∇Γ,yT ε(rεl )‖1/2L2(Γτ )‖T ε(rεl )‖
1/2
L∞(0,τ ;L2(Γ)) ≤ C,

‖T ε(pεs)‖L4(Γτ ) ≤ C2‖∇Γ,yT ε(pεs)‖1/2L2(Γτ )‖T ε(pεs)‖
1/2
L∞(0,τ ;L2(Γ)) ≤ C,

‖T ε(cεi )‖L2(Γτ ) ≤ C3

[
‖∇yT ε(cεi )‖L2(Yi,τ ) + ‖T ε(cεi )‖L2(Yi,τ )

]
≤ C,

‖T ε(cεi )‖L2(0,τ ;L4(Γ)) ≤ C4

[
‖∇yT ε(cεi )‖L2(Yi,τ ) + ‖T ε(cεi )‖L2(Yi,τ )

]
≤ C,

(3.17)

where the constant C is independent of ε and x. We also make use of the inequality

‖T ε(rεb)‖L2(Γ) ≤ µ‖∇Γ,yT ε(rεb)‖1/2L2(Γ)‖T ε(rεb)‖
1/2
L1(Γ),

‖T ε(rεb)‖L4(Γ) ≤ µ‖∇Γ,yT ε(rεb)‖1/2L2(Γ)‖T ε(rεb)‖
1/2
L2(Γ)

(3.18)

for x ∈ Ω, t ∈ (0, T ], and a constant µ > 0 independent of ε.
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The a priori estimates (3.5) and the properties of the unfolding operator (see
Appendix B or [9] for more details) imply

‖∇yT ε(cεe)‖L2(ΩT×Ye) = ‖εT ε(∇cεe)‖L2(ΩT×Ye) ≤ C1‖ε∇cεe‖L2(Ωεe,T ) ≤ C2ε,

‖∇yT ε(cεi )‖L2(ΩT×Yi) = ‖εT ε(∇cεi )‖L2(ΩT×Yi) ≤ C3‖ε∇cεi‖L2(Ωεi,T ) ≤ C4.
(3.19)

Using the Sobolev embedding theorem, where dim(Yl) ≤ 3 for l = e, i, and the trace
inequality, we obtain

‖T ε(cεl )‖L2(ΩT×Γ) + ‖T ε(cεl )‖L2(ΩT ;L4(Γ)) + ‖T ε(cεl )‖L2(ΩT ;L4(Yl))

≤ µ
[
‖T ε(cεl )‖L2(ΩT×Yl) + ‖∇yT ε(cεl )‖L2(ΩT×Yl)

]
≤ C

(3.20)

for l = e, i, where the constants µ > 0 and C > 0 are independent of ε.
We now use an Alikakos iteration method [3] to prove the boundedness of solutions

to (2.1)–(2.5). Considering first |T ε(rεf )|p−1 for p ≥ 4 as a test function in the equation
for T ε(rεf ) (see (C.2) in Appendix C), using the assumptions on the function Ff , the
nonnegativity of rεf , rεb and cεe, and the Gagliardo-Nirenberg inequality we obtain the
following estimate for x ∈ Ω and τ ∈ (0, T ], (see Appendix C for the details)

‖T ε(rεf )(τ)‖pLp(Γ) + ‖∇Γ,y|T ε(rεf )| p2 ‖2L2(Γτ )

≤ C1‖T ε(rεb)‖pL4(Γτ ) + C2p
4

(
sup
(0,τ)

‖|T ε(rεf )| p2 ‖2L1(Γ) + 1

)
.

(3.21)

Then, the Alikakos iteration lemma [3] ensures that for x ∈ Ω

‖T ε(rεf )‖L∞(0,T ;L∞(Γ)) ≤ C1

[
1 + ‖T ε(rεb)‖L4(ΓT )

]
≤ C2.(3.22)

The definition of the unfolding operator and the fact that C2 is independent of x ∈ Ω
yields the boundedness of rεf in (0, T )×Γε. Due to the structure of the reaction terms,
in the same way as for T ε(rεf ) we obtain

‖T ε(pεd)‖L∞(0,T ;L∞(Γ)) ≤ C1

[
1 + ‖T ε(pεa)‖L4(ΓT )

]
≤ C2(3.23)

for x ∈ Ω. To show the boundedness of cεe we consider |cεe|p−1 for p ≥ 4 as a test
function in the first equation of (3.1) and, using the assumptions on Fe and the
nonnegativity of rεf and cεe, we obtain

‖cεe(τ)‖pLp(Ωεe)
+ 4

p− 1

p
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) ≤ C1p

[
1 + ‖cεe‖pLp(Ωεe,τ )

]
+ Cδp

3‖cεe‖pLp(Ωεe,τ ) + δ
p− 1

p
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) +

∫
Ωτ

‖T ε(rεb)‖pL4(Γ)dxdt.
(3.24)

Using the boundedness of T ε(rεf ) and taking |T ε(rεb)|3 as a test function in the equa-
tion for T ε(rεb) (see (C.2) in Appendix C) yields

‖T ε(rεb)(τ)‖L4(Γ) + ‖∇Γ,y|T ε(rεb)|2‖
1
2

L2(Γτ ) ≤ C
[
1 + ‖T ε(cεe)‖Lp(Γτ )

]
(3.25)
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for τ ∈ (0, T ] and x ∈ Ω. Combining the estimates (3.24) and (3.25) with a trace
inequality and the Gagliardo–Nirenberg inequality, applied to the extension of cεe from
Ωεe into Ω, (see Appendix C for more details), yields

‖|cεe(τ)| p2 ‖2L2(Ωεe)
+ ‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) ≤ Cδp8

[
sup
(0,τ)

‖|cεe|
p
2 ‖2L1(Ωεe)

+ 1

]
.(3.26)

An iteration over p, similar to [3], yields the boundedness of cεe in Ωεe,T . Since cεe ∈
L2(0, T ;H1(Ωεe)) we also have the boundedness of cεe on (0, T )× Γε; see, e.g., [16].

To show boundedness of rεb we consider |T ε(rεb)|p−1 as a test function in the
equation for T ε(rεb) ((C.2) in Appendix C), and using the boundedness of T ε(rεf ) we
obtain

‖T ε(rεb(τ))‖pLp(Γ) + ‖∇Γ,y|T ε(rεb)|
p
2 ‖2L2(Γτ ) ≤ C1p

4

[
1 + sup

(0,τ)

‖|T ε(rεb)|
p
2 ‖2L1(Γ)

]
+ C2

[
‖T ε(cεe)‖pL4(Γτ ) + ‖T ε(pεa)‖pL4(Γτ )

]
for x ∈ Ω and τ ∈ (0, T ]. The iteration over p, boundedness of cεe, and estimate (3.17)
for T ε(pεa) ensure boundedness of T ε(rεb) in ΩT × Γ and hence the boundedness of rεb
in (0, T )× Γε.

Taking |T ε(pεa)|p−1 as a test function in the equation for T ε(pεa) ((C.2) in Appen-
dix C) and using the boundedness of T ε(pεd) yield

‖T ε(pεa(τ))‖pLp(Γ) + ‖∇Γ,y|T ε(pεa)| p2 ‖2L2(Γτ ) ≤ C1p
4

[
1 + sup

(0,τ)

‖|T ε(pεa)| p2 ‖2L1(Γ)

]
+ C2 sup

(0,τ)

‖|T ε(cεi )|
p
2 ‖2L1(Yi)

+ δ‖∇y|T ε(cεi )|
p
2 ‖2L2(Yi,τ ) + C3‖T ε(rεb)‖pL4(Γτ )

for x ∈ Ω and τ ∈ (0, T ]. Similarly considering |T ε(cεi )|p−1 as a test function in the
equation for T ε(cεi ) ((C.1) in Appendix C) gives

‖T ε(cεi (τ))‖pLp(Yi)
+‖∇y|T ε(cεi )|

p
2 ‖2L2(Yi,τ ) ≤ Cδp4

[
1+ sup

(0,τ)

‖|T ε(cεi )|
p
2 ‖2L1(Yi)

]
+ δ‖∇y|T ε(cεi )|

p
2 ‖2L2(Yi,τ ) + Cδ sup

(0,τ)

‖|T ε(pεa)| p2 ‖2L1(Γ) + δ‖∇Γ,y|T ε(pεa)| p2 ‖2L2(Γτ )

for x ∈ Ω and τ ∈ (0, T ]. Adding the last two inequalities, using the boundedness
of ‖T ε(rεb)‖L4(Γτ ) ≤ C for x ∈ Ω and τ ∈ (0, T ], and iterating over p we obtain the
boundedness of T ε(pεa) in ΩT × Γ and of T ε(cεi ) in ΩT × Yi. This also ensures the
boundedness of pεa in (0, T )× Γε and of cεi in (0, T )× Ωεi and (0, T )× Γε.

Lemma 3.10. The solution to the microscopic problem (2.1)–(2.5) is unique.

Proof. Uniqueness follows from standard arguments by taking the difference of
two solutions and using the boundedness of solutions, shown in Lemma 3.9, together
with the local Lipschitz continuity of the nonlinear reaction terms.

4. Convergence results and derivation of macroscopic equations. In this
section, we use the a priori estimates of Theorem 3.5 to deduce the convergence up
to a subsequence of solutions of the microscopic problem (2.1)–(2.5) to solutions of a
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limiting two-scale problem. We make use of the theory of two-scale convergence to
pass to the limit, the necessary definitions and results are stated in Appendix B.

In the convergence results stated below we consider the H1-extension of cεe from
Ωεe into Ω, which is well defined due to the assumptions on the geometry of Ωεe (see,
e.g., Remark 3.4 or [2, 11]), and we identify cεe with this extension. By [cεe]

∼ we
will denote the extension of cεe by zero from Ωεe into Ω and by χYe the characteristic
function of Ye. The space H1

per(Y ) is defined as the closure of C1
per(Y ) with respect

to the H1-norm.

Lemma 4.1. There exist functions ce ∈ L2(0, T ;H1(Ω)), c1e ∈ L2(ΩT ;H1
per(Y )),

ci ∈ L2(ΩT ;H1(Yi)), and rl, ps ∈ L2(ΩT ;H1(Γ)) with l = f, b and s = a, d such that,
up to a subsequence,

cεe ⇀ ce weakly in L2(0, T ;H1(Ω)),

∇cεe ⇀ ∇ce +∇yc1e two-scale,

[cεe]
∼ ⇀ ceχYe , [∇cεe]∼ ⇀ (∇ce +∇yc1e)χYe two-scale,

cεi ⇀ ci, ε∇cεi ⇀ ∇yci two-scale,

rεl ⇀ rl, ε∇Γr
ε
l ⇀ ∇Γ,yrl two-scale, l = f, b,

pεs ⇀ ps, ε∇Γp
ε
s ⇀ ∇Γ,yps two-scale, s = a, d.

(4.1)

Proof. The convergence results in (4.1) follow directly from the a priori estimates
(3.5), the extension of cεe from Ωεe into Ω, and compactness theorems for the weak
convergence and for the two-scale convergence; see, e.g., [4, 5, 44, 45] and Appendix
B. Notice that since the extension of cεe and [cεe]

∼ coincide in Ωεe, we obtain the same
function ce in the two-scale limit for both sequences {cεe} and {[cεe]∼}.

In order to pass to the limit in nonlinear reaction terms we prove strong conver-
gence up to a subsequence of solutions of the microscopic problem (2.1)–(2.5).

Lemma 4.2. For a subsequence of a sequence of solutions of microscopic model
(2.1)–(2.5), i.e., {cεe}, {T ε(cεi )}, {T ε(rεl )}, and {T ε(pεs)}, where l = f, b and s = a, d,
we have the following convergence results:

cεe → ce strongly in L2(ΩT ), ε‖cεe − ce‖2L2(ΓεT ) → 0,

T ε(cεe)→ ce strongly in L2(ΩT × Ye) and L2(ΩT × Γ),

T ε(cεi )→ ci strongly in L2(ΩT × Yi),
T ε(rεl )→ rl strongly in L2(ΩT × Γ), l = f, b

T ε(pεs)→ ps strongly in L2(ΩT × Γ), s = a, d,

(4.2)

as ε→ 0.

Proof. We first show the equicontinuity of cεe with respect to the time variable.
The a priori estimates in (3.5) and the boundedness of rεf yield

‖ϑδcεe − cεe‖2L2(Ωεe,τ ) ≤ C1

∫
Ωεe,τ

∫ t+δ

t

|∇cεe|ds|∇(ϑδc
ε
e − cεe)|dxdt

+ C2

∫
Ωεe,τ

∫ t+δ

t

(1 + |cεe|)ds|(ϑδcεe − cεe)|dxdt

+ εC3

∫
Γετ

∫ t+δ

t

(
|cεerεf |+ |rεb |

)
ds|ϑδcεe − cεe|dσεdt ≤ Cδ
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for τ ∈ (0, T − δ] and δ > 0, where ϑδv(t, x) = v(t+ δ, x) for x ∈ Ω and t ∈ [0, T − δ].
Then the properties of an extension of cεe from Ωεe into Ω together with the uniform
in ε estimate for ∇cεe and a Kolmogorov compactness result [8] ensure the strong
convergence of cεe in L2((0, T )×Ω). Applying the Simon compactness theorem [48] and
the compact embedding of H1(Ω) into Hβ(Ω) for 1/2 < β < 1, together with the trace
inequality and a scaling argument, similar to [38], we also obtain ε‖cεe−ce‖2L2(ΓεT ) → 0

as ε→ 0.
The properties of the unfolding operator (see [9] and Appendix B) imply

‖T ε(cεe)‖L2(ΩT×Ye) ≤ |Y |
1
2 ‖cεe‖L2(Ωεe,T ), ‖T ε(cεe)‖L2(ΩT×Γ) ≤ |Y |

1
2 ε

1
2 ‖cεe‖L2(ΓεT ),

and for ce ∈ L2(ΩT ), considered as constant with respect to y ∈ Ye or y ∈ Γ, respec-
tively, we have T ε(ce) → ce strongly in L2(ΩT × Ye) and in L2(ΩT × Γ) as ε → 0.
Then we obtain

‖T ε(cεe)− ce‖L2(ΩT×Ye) ≤ ‖T ε(cεe)− T ε(ce)‖L2(ΩT×Ye) + ‖T ε(ce)− ce‖L2(ΩT×Ye)

≤ |Y | 12 ‖cεe − ce‖L2(Ωεe,T ) + ‖T ε(ce)− ce‖L2(ΩT×Ye),

‖T ε(cεe)− ce‖L2(ΩT×Γ) ≤ ε
1
2 |Y | 12 ‖cεe − ce‖L2(ΓεT ) + ‖T ε(ce)− ce‖L2(ΩT×Γ).

Hence the strong convergence of {cεe} in L2(ΩT ) and the convergence result for
ε‖cεe − ce‖2L2(ΓεT ) in (4.2) ensure the strong convergence of {T ε(cεe)} in L2(ΩT × Ye)
and in L2(ΩT × Γ), respectively.

To obtain the strong convergence of T ε(cεi ), T ε(rεl ), and T ε(pεs) with l = f, b and
s = a, d, we show the Cauchy property for the corresponding sequences. Considering
the difference of equations for εm and εk and using the boundedness of cεe, r

ε
f , and rεb

yield∑
l=f,b

‖T εm(rεml (τ))− T εk (rεkl (τ))‖2L2(Ω×Γ) + ‖∇Γ,y(T εm(rεml )− T εk (rεkl ))‖2L2(Ωτ×Γ)

≤ C1

‖T εm(cεme )− T εk (cεke )‖2L2(Ωτ×Γ) +
∑
l=f,b

‖T εm(rεml )− T εk (rεkl )‖2L2(Ωτ×Γ)


+ C2

 ∑
j=a,d

‖T εm(pεmj )− T εk (pεkj )‖2L2(Ωτ×Γ)+
∑
l=f,b

‖T εm(rεml,0 )− T εk (rεkl,0)‖
2
L2(Ω×Γ)


for τ ∈ (0, T ]. Similarly, the boundedness of pεd yields∑
j=a,d

‖T εm(pεmj (τ))− T εk(pεkj (τ))‖2L2(Ω×Γ) + ‖∇Γ,y(T εm(pεmj )− T εk(pεkj ))‖2L2(Ωτ×Γ)

≤ C1

∑
j=a,d

[
‖T εm(pεmj )− T εk(pεkj )‖2L2(Ωτ×Γ) + ‖T εm(pεmj,0 )− T εk(pεkj,0)‖2L2(Ω×Γ)

]
+ C2

[
‖T εm(rεmb )− T εk(rεkb )‖2L2(Ωτ×Γ) + ‖T εm(cεmi )− T εk(cεki )‖2L2(Ωτ×Γ)

]
.

For T ε(cεi ) the trace inequality implies

‖T εm(cεmi (τ))− T εk(cεki (τ))‖2L2(Ω×Yi) + ‖∇y(T εm(cεmi )− T εk(cεki ))‖2L2(Ωτ×Yi)

≤ Cδ‖T εm(cεmi )− T εk(cεki )‖2L2(Ωτ×Yi) + δ‖∇y(T εm(cεmi )− T εk(cεki ))‖2L2(Ωτ×Yi)

+ C1

[
‖T εm(pεma )− T εk(pεka )‖2L2(Ωτ×Γ) + ‖T εm(cεmi,0 )− T εk(cεki,0)‖2L2(Ω×Yi)

]
.
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Using the three estimates above, the strong convergence of the initial conditions, and
the strong convergence of {T ε(cεe)} in L2(ΩT ×Γ) we obtain the Cauchy property and
hence the strong convergence up to subsequences of {T ε(cεi )}, {T ε(rεl )}, and {T ε(pεs)}
with l = f, b and s = a, d.

The convergence results in Lemmata 4.1 and 4.2 allow us to derive the corre-
sponding macroscopic equations obtained in the limit as ε→ 0 from the microscopic
model (2.1)–(2.5).

Theorem 4.3. A sequence {cεe, cεi , rεf , rεb , pεa, pεd} of solutions of (2.1)–(2.5) con-

verge as ε → 0 to functions ce ∈ L2(0, T ;H1(Ω)), ci ∈ L2(0, T ;L2(Ω;H1(Yi))) and
rl, ps ∈ L2(0, T ;L2(Ω;H1(Γ))), for l = f, b, s = a, d, that satisfy the following macro-
scopic equations:

θe∂tce −∇ · (Dhom
e (x)∇ce) = θeFe(ce)−

1

|Y |

∫
Γ

Ge(ce, rf , rb)dσy in Ω,

Dhom
e (x)∇ce · ν = 0 on ∂Ω,

∂tci −∇y · (Di(y)∇yci) = Fi(ci) in Ω× Yi,
Di(y)∇yci · ν = Gi(pa, ci) on Ω× Γ,

(4.3)

where θe = |Ye|/|Y |, and

Dhom
e,ij (x) =

1

|Y |

∫
Ye

[
De,ij(x, y) +

(
De(x, y)∇ywj(y)

)
i

]
dy

with the wj’s being solutions of the unit cell problems

divy(De(x, y)(∇ywj + ej)) = 0 in Ye × Ω,

∫
Ye

wj(x, y)dy = 0,

De(x, y)(∇ywj + ej) · ν = 0 on Γ× Ω, wj(x, ·) Y − periodic,

for x ∈ Ω, where {ej}j=1,...,d is the standard basis in Rd, together with the dynamics
of receptors and proteins on the cell membrane Ω× Γ

∂trf −∇Γ,y · (Df∇Γ,yrf ) = Ff (rf , rb)−Ge(ce, rf , rb)− dfrf ,
∂trb −∇Γ,y · (Db∇Γ,yrb) = Ge(ce, rf , rb)−Gd(rb, pd, pa)− dbrb,
∂tpd −∇Γ,y · (Dd∇Γ,ypd) = Fd(pd)−Gd(rb, pd, pa)− ddpd,
∂tpa −∇Γ,y · (Da∇Γ,ypa) = Gd(rb, pd, pa)−Gi(pa, ci)− dapa

(4.4)

and initial conditions

ce(0, x) = ce,0(x) for x ∈ Ω, ci(0, x, y) = ci,1(x)ci,2(y) for x ∈ Ω, y ∈ Yi,
rj(0, x, y) = rj,1(x)rj,2(y), ps(0, x, y) = ps,1(x)ps,2(y) for x ∈ Ω, y ∈ Γ,

(4.5)

where j = f, b and s = a, d.

Proof. To derive the macroscopic problem take φε(t, x) = φ1(t, x)+εφ2(t, x, x/ε),
where φ1 ∈ H1(ΩT ) and φ2 ∈ C1

0 (ΩT ;Cper(Y )), and ψε(t, x) = ψ1(t, x, x/ε), with
ψ1 ∈ C1([0, T ];C1

0 (Ω;H1(Yi))), as test functions in (3.1) and ϕε(t, x) = ϕ1(t, x, x/ε),
with ϕ1 ∈ C1([0, T ];C1

0 (Ω;H1(Γ))), as a test function in (3.2), respectively, where ψ1

and ϕ1 are Y -periodically extended to Rd. Then we obtain

〈∂tcεe, φ1 + εφ2〉+ 〈Dε
e(x)∇cεe,∇(φ1 + εφ2) +∇yφ2〉Ωεe,T

= 〈Fe(cεe), φ1 + εφ2〉Ωεe,T − ε〈Ge(c
ε
e, r

ε
f , r

ε
b), φ1 + εφ2〉ΓεT ,(4.6)

〈∂tcεi , ψ1〉+ 〈εDε
i (x)∇cεi , ε∇ψ1 +∇yψ1〉Ωεi,T = 〈Fi(cεi ), ψ1〉Ωεi,T + ε〈Gi(pεa, cεi ), ψ1〉ΓεT
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and

ε〈∂trεf , ϕ1〉+ ε〈εDf∇Γr
ε
f , ε∇Γϕ1 +∇Γ,yϕ1〉ΓεT

= ε〈Ff (rεf , r
ε
b)−Ge(cεe, rεf , rεb)− dfrεf , ϕ1〉ΓεT ,

ε〈∂trεb , ϕ1〉+ ε〈εDb∇Γr
ε
b , ε∇Γϕ+∇Γ,yϕ1〉ΓεT

= ε〈Ge(cεe, rεf , rεb)−Gd(rεb , pεd, pεa)− dbrεb , ϕ1〉ΓεT ,
ε〈∂tpεd, ϕ1〉+ ε〈εDd∇Γp

ε
d, ε∇Γϕ1 +∇Γ,yϕ1〉ΓεT

= ε〈Fd(pεd)−Gd(rεb , pεd, pεa)− ddpεd, ϕ1〉ΓεT ,
ε〈∂tpεa, ϕ1〉+ ε〈εDa∇Γp

ε
a, ε∇Γϕ1 +∇Γ,yϕ1〉ΓεT

= ε〈Gd(rεb , pεd, pεa)−Gi(pεa, cεi )− dapεa, ϕ1〉ΓεT .

(4.7)

Considering first φ1 ∈ H1(ΩT ) with φ1(0, x) = 0 and φ1(T, x) = 0 for x ∈ Ω and
using integration by parts and the two-scale converge results (see Lemma 4.1) yield

lim
ε→0
〈∂tcεe, φ1 + εφ2〉 = − lim

ε→0
〈cεe, ∂tφ1 + ε∂tφ2〉Ωεe,T = −|Y |−1〈ce, ∂tφ1〉Ye×ΩT .

Similar calculations ensure convergence of 〈∂tcεi , ψ1〉, ε〈∂trεl , ϕ1〉, and ε〈∂tpεs, ϕ1〉 with
l = f, b and s = a, d. The two-scale convergence results (see Lemma 4.1), directly
imply

lim
ε→0
〈Dε

e(x)∇cεe,∇(φ1 + εφ2) +∇yφ2〉Ωεe,T

=
1

|Y | 〈De(x, y)(∇ce +∇yc1e),∇φ1 +∇yφ2〉Ye×ΩT ,

lim
ε→0
〈εDε

i (x)∇cεi , ε∇ψ1 +∇yψ1〉Ωεi,T =
1

|Y | 〈Di(y)∇yci,∇yψ1〉Yi×ΩT ,

lim
ε→0

ε〈εDf∇Γr
ε
f , ε∇Γϕ1 +∇Γ,yϕ1〉ΓεT =

1

|Y | 〈Df∇Γ,yrf , ∇Γ,yϕ1〉Γ×ΩT ,

and convergence of the linear term ε〈dfrεf , ϕ1〉ΓεT → |Y |−1〈dfrf , ϕ1〉Γ×ΩT as ε → 0.
The convergence of the corresponding terms in equations for rεb , p

ε
a, and pεd is obtained

in the same way.
To pass to the limit in the nonlinear reaction terms we use the strong convergence

results proven in Lemma 4.2. The definition and properties of the unfolding operator
(cf. Appendix B), together with the assumptions on functions Fl and Gj for l =
e, i, f, d and j = e, d, i and the boundedness of solutions of the microscopic problem
(2.1)–(2.5), imply

‖Fl(T ε(cεl ))‖L2(ΩT×Yl) ≤ |Y |
1
2 ‖Fl(cεl )‖L2(Ωεl,T ) ≤ C1(1 + ‖cεl ‖L2(Ωεl,T )) ≤ C2,

‖Ge(T ε(cεe), T ε(rεf ), T ε(rεb))‖L2(ΩT×Γ) ≤ ε
1
2 |Y | 12 ‖Ge(cεe, rεf , rεb)‖L2(ΓεT ) ≤ C.

Here we used the fact that T ε(Fl(cεl )) = Fl(T ε(cεl )) for l = e, i, T ε(Ge(cεe, rεf , rεb)) =
Ge(T ε(cεe), T ε(rεf ), T ε(rεb)).

Similar estimates hold for Ff , Fd, Gd, and Gi. Then the strong convergence
of {T ε(cεl )}, {T ε(rεj )}, and {T ε(pεs)} with l = e, i, s = a, d, and j = f, b ensures

the following convergence results: T ε(Fl(cεl )) ⇀ Fl(cl) in L2(ΩT × Yl) for l = e, i
and T ε(Ge(cεe, rεf , rεb)) ⇀ Ge(ce, rf , rb), T ε(Ff (rεf , r

ε
b)) ⇀ Ff (rf , rb), T ε(Fd(pεd)) ⇀

Fd(pd), T ε(Gd(rεb , pεd, pεa)) ⇀ Gd(rb, pd, pa), T ε(Gi(pεa, cεi )) ⇀ Gi(pa, ci) in L2(ΩT× Γ).
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These convergence results together with the properties of the unfolding operator
(cf. Appendix B) imply the convergence of the nonlinear terms in the microscopic
problem.

To complete the proof, we note that standard results for parabolic equations imply

∂tce ∈ L2(0, T ;H1(Ω)′), ∂tci ∈ L2((0, T )× Ω;H1(Yi)
′),

∂trl, ∂tps ∈ L2((0, T )× Ω;H1(Γ)′) for l = f, b and s = d, a.

Thus ce ∈ C([0, T ];L2(Ω)), ci ∈ C([0, T ];L2(Ω×Yi)), and rj , ps ∈ C([0, T ];L2(Ω×Γ))
for j = f, b and s = d, a. Taking φ1, ψ1, and ϕ1 such that φ1(T, x) = 0, ψ1(T, x, y) = 0,
and ϕ1(T, x, z) = 0 for x ∈ Ω, y ∈ Yi, z ∈ Γ and using the strong two-scale convergence
of cεi,0(x) to ci,1(x)ci,2(y), of rεj,0(x) to rj,1(x)rj,2(y), and of pεs,0(x) to ps,1(x)ps,2(y)
for j = f, b and s = a, d, we deduce that the initial conditions (4.5) are satisfied.

To design a multiscale numerical scheme for the macroscopic two-scale problem
(4.3)–(4.5) we define our notion of weak solutions to the problem.

Definition 4.4. Weak solutions of the macroscopic problem (4.3)–(4.5) are func-
tions

ce ∈ L2(0, T ;H1(Ω)) with ∂tce ∈ L2(0, T ;H1(Ω)′),

ci ∈ L2
(
0, T ;L2

(
Ω;H1(Yi)

))
with ∂tce ∈ L2(ΩT ;H1(Yi)

′),

rl ∈ L2
(
0, T ;L2

(
Ω;H1(Γ)

))
with ∂trl ∈ L2(ΩT ;H1(Γ)′), l = f, b,

ps ∈ L2
(
0, T ;L2

(
Ω;H1(Γ)

))
with ∂tps ∈ L2(ΩT ;H1(Γ)′), s = a, d,

such that

〈θe∂tce, φ〉+
〈
Dhom
e (x)∇ce,∇φ

〉
ΩT

= 〈θeFe(ce), φ〉ΩT

−
〈

1

|Y |

∫
Γ

Ge(ce, rf , rb) dσy, φ

〉
ΩT

,

〈∂tci, ψ〉+ 〈Di(y)∇yci,∇yψ〉Yi×ΩT
= 〈Fi(ci), ψ〉Yi×ΩT

+ 〈Gi(pa, ci), ψ〉Γ×ΩT
,

(4.8)

and

〈∂trf , χ〉+ 〈Df∇y,Γrf ,∇y,Γχ〉Γ×ΩT

= 〈Ff (rf , rb)−Ge(ce, rf , rb)− dfrf , χ〉Γ×ΩT
,

〈∂trb, χ〉+ 〈Db∇y,Γrb,∇y,Γχ〉Γ×ΩT

= 〈Ge(ce, rf , rb)−Gd(rb, pa, pd)− dbrb, χ〉Γ×ΩT
,

〈∂tpd, χ〉+ 〈Dd∇y,Γpd,∇y,Γχ〉Γ×ΩT

= 〈Fd(pd)−Gd(rb, pa, pd)− ddpd, χ〉Γ×ΩT
,

〈∂tpa, χ〉+ 〈Da∇y,Γpa,∇y,Γχ〉Γ×ΩT

= 〈Gd(rb, pa, pd)−Gi(pa, ci)− dapa, χ〉Γ×ΩT

(4.9)

for all φ ∈ L2(0, T ;H1(Ω)), ψ ∈ L2
(
ΩT ;H1(Yi)

)
, and χ ∈ L2

(
ΩT ;H1(Γ)

)
, where the

initial conditions (4.5) are satisfied in the L2-sense.

Notice that the coupling between macroscopic and microscopic scales is given
through ce in the equations for rf and rb and through the reaction term in the equation
for ce.
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5. Numerical scheme for the homogenized problem. In this section we
present a robust numerical method for the simulation of the homogenized macroscopic
model of section 4, i.e., (4.3) and (4.4). We employ a tensor product finite element
approach for the discretization of the two-scale systems [39]. For the bulk-surface
systems, we employ a piecewise linear bulk-surface finite element method. The method
is based on the coupled bulk-surface finite element method proposed and analyzed (for
linear elliptic systems) in [13].

We define computational domains Ωh, Yh,e, Yh,i, and Γh by requiring that Ωh,
Yh,e, and Yh,i are polyhedral approximations to Ω, Ye, and Yi, respectively, and we set
Γh = ∂Yh,i, i.e., Γh is the boundary of the polyhedral domain Yh,i. We assume that
Ωh, Yh,e, and Yh,i consist of the union of d dimensional simplices (triangles for d = 2
and tetrahedra for d = 3) and hence the faces of Γh are d− 1 dimensional simplices.

We define Sh,Ω,Sh,i,Sh,e to be triangulations of Ωh, Yh,i, and Yh,e, respectively,
and assume that each consists of closed nondegenerate simplices. We denote by
hΩ, hY,i, hY,e, and hΓ the maximum diameter of the simplices in Sh,Ω,Sh,i,Sh,e, and
Γh, respectively. Furthermore, we assume the triangulation is such that for every
k ∈ Sh,i, k ∩ Γh consists of at most one face of k. We define bulk and surface finite
element spaces as follows:

Vh,Ω =
{

Φ ∈ C(Ωh) : Φ|k ∈ P1 for all k ∈ Sh,Ω
}
,

Vh,i =
{

Φ ∈ C(Yh,i) : Φ|k ∈ P1 for all k ∈ Sh,i
}
,

Vh,e =
{

Φ ∈ C(Yh,e) : Φ|k ∈ P1 for all k ∈ Sh,e
}
,

V#
h,e =

{
Φ ∈ H1

per(Yh,e) ∩ C(Yh,e) : Φ|k ∈ P1 for all k ∈ Sh,e
}
,

Vh,Γ =
{

Φ ∈ C(Γh) : Φ|k ∈ P1 for all r ∈ Sh,i with k = r ∩ Γh 6= ∅
}
,

where H1
per(Yh,e) denotes the subspace of Y -periodic functions in H1(Yh,e). For the

discretization of the two-scale systems we define the tensor product spaces

Wh,i = Vh,i ⊗ Vh,Ω,
Wh,e = Vh,e ⊗ Vh,Ω,

W#
h,e = V#

h,e ⊗ Vh,Ω,

Wh,Γ = Vh,Γ ⊗ Vh,Ω.

The scheme for the solution of the cell problems to obtain the diffusion tensor
Dhom is, for j = 1, . . . , n+ 1, to find W j ∈W#

h,e such that〈
De(x, y)(∇yW j + ej),∇yΦ

〉
Yh,e×Ωh

= 0

for all Φ ∈Wh,e.
In order to propose a fully discrete scheme, we divide the time interval [0, T ] into

N subintervals, 0 = t0 < · · · < tN = T , and denote by τ := tn − tn−1 the time-
step; for simplicity we assume a uniform time-step. We consistently use the following
shorthand for a function of time: fn := f(tn); we denote by ∂̄τf

n := τ−1
(
fn − fn−1

)
.

We propose an implicit-explicit (IMEX) time-stepping method in which the reactions
are treated explicitly and the diffusive terms implicitly. The fully discrete scheme
may be written as follows: for i = 1, . . . , N , given

Cn−1
e ∈ Vh,Ω, Cn−1

i ∈Wh,i, Rn−1
f , Rn−1

b , Pn−1
d , Pn−1

a ∈Wh,Γ,
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find
Cne ∈ Vh,Ω, Cni ∈Wh,i, Rnf , R

n
b , P

n
d , P

n
a ∈Wh,Γ

such that, for all Φ ∈ Vh,Ω and Ψ ∈Wh,i,〈
θe∂̄τC

n
e ,Φ

〉
Ωh

+
〈
Dhom
h,e (x)∇Cne ,∇Φ

〉
Ωh

=

〈
θeFe(C

n−1
e )− 1

|Y |

∫
Γh

Ge(C
n−1
e , Rn−1

f , Rn−1
b ) dσy,Φ

〉
Ωh

,〈
∂̄τC

n
i ,Ψ

〉
Yh,i×Ωh

+ 〈Di(y)∇yCni ,∇yΨ〉Yh,i×Ωh

=
〈
Fi(C

n−1
i ),Ψ

〉
Yh,i×Ωh

+
〈
Gi(P

n−1
a , Cn−1

i ),Ψ
〉

Γh×Ωh
,

(5.1)

and for all Ξ ∈Wh,Γ,〈
∂̄τR

n
f ,Ξ

〉
Γh×Ωh

+
〈
Df∇ΓhR

n
f ,∇ΓhΞ

〉
Γh×Ωh

=
〈
Ff (Rn−1

f , Rn−1
b )−Ge(Cn−1

e , Rn−1
f , Rn−1

b )− dfRnf ,Ξ
〉

Γh×Ωh
,〈

∂̄τR
n
b ,Ξ

〉
Γh×Ωh

+ 〈Db∇ΓhR
n
b ,∇ΓhΞ〉Γh×Ωh

=
〈
Ge(C

n−1
e , Rn−1

f , Rn−1
b )−Gd(Rn−1

b , Pn−1
d , Pn−1

a )− dbRnb ,Ξ
〉

Γh×Ωh
,〈

∂̄τP
n
d ,Ξ

〉
Γh×Ωh

+ 〈Dd∇ΓhP
n
d ,∇ΓhΞ〉Γh×Ωh

=
〈
Fd(P

n−1
d )−Gd(Rn−1

b , Pn−1
d , Pn−1

a )− ddPnd ,Ξ
〉

Γh×Ωh
,〈

∂̄τP
n
a ,Ξ

〉
Γh×Ωh

+ 〈Da∇ΓhP
n
a ,∇ΓhΞ〉Γh×Ωh

=
〈
Gd(R

n−1
b , Pn−1

d , Pn−1
a )−Gi(Pn−1

a , Cn−1
i )− daPna ,Ξ

〉
Γh×Ωh

.

(5.2)

Remark 5.1 (comments on the implementation). The explicit treatment of the
reaction terms results in fully decoupled systems of linear equations to be solved at
each time-step. Moreover, we use mass lumping for the approximation; this has two
main advantages in the context of the present study. Firstly, lumping is equivalent
to employing a nodal quadrature rule [51]; this allows us to interpret the two-scale
systems as parameterized systems with the macroscopic variable playing the role of a
parameter that may be solved independently and in parallel at each node of the macro-
scopic triangulation Sh,Ω. Secondly, the use of lumping and the fact that the system
matrices do not change during the time evolution allows an efficient implementation
in which virtually no assembly needs to be carried out on each time-step.

6. Benchmark computations. We now carry out some benchmark simulations
to illustrate the observed convergence rate of the numerical scheme proposed in sec-
tion 5. We set Ω = [−0.5, 0.5]2 and Yi to be a disc of radius 1. For benchmarking we
consider the following system:

∂tce −∆ce = −
∫

Γ

Ge(ce, rf , pa) dσy + f1 in ΩT ,

∇ce · ν = 0 on (∂Ω)T ,

∂tci −∆yci = f2 in ΩT × Yi,
∇yci · ν = Gi(pa, ci) on ΩT × Γ,

∂trf −∆Γ,yrf = −Ge(ce, rf , pa) + f3 on ΩT × Γ,

∂tpa −∆Γ,ypa = Ge(ce, rf , pa)−Gi(pa, ci) + f4 on ΩT × Γ

(6.1)
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Table 1
Mesh sizes for the benchmarking study of section 6.

hΓ 0.765 0.390 0.196 0.098 0.049
hY,i 1.000 0.571 0.305 0.157 0.080
hΩ 1.000 0.500 0.250 0.125 0.063

with
Ge(ce, rf , pa) = cerf − pa and Gi(pa, ci) = pa − ci.

The source terms f1(x, t), f2(x, y, t), f3(x, z, t), and f4(x, z, t) for x ∈ Ω, y ∈ Yi, z ∈ Γ,
and t ∈ [0, T ] are determined such that the exact solution to (6.1) is

ce(x, t) = cos(πt)e−10|x|2 , ci(x, y, t) =
(

1 + |x|2
)
e−4t(y1y2)2 for x ∈ Ω, y ∈ Yi

and
rf (x, z, t) = pa(x, z, t) =

(
5 + 5 |x|2

)
e−4t(z1z2)2 for x ∈ Ω, z ∈ Γ,

and we set as the end time T = 0.25.
In the numerical method we use the interpolant of the source terms into the

appropriate finite element space. We consider a series of refinements of the meshes
with τ ∼ h2 where h := max{hΓ, hY,i, hΩ}. In particular we consider a series of
uniform refinements of the bulk and surface meshes with mesh sizes as given in Table 1.

We denote by ece , eci , er, and ep the errors in the approximation of ce, ci, rf , and
pa, respectively. In order to investigate the behavior of the scheme we report on the
experimental order of convergence (EOC) which provides a numerical measure of the
convergence rate. For a series of uniform refinements of a triangulation {Sh,i}i=0,...,N ,
denoting by {hi}i=0...,N , {ei}i=0...,N the corresponding maximum mesh-size and the
corresponding error, respectively, the EOC is given by

EOCi(ei,i+1, hi,i+1) := ln(ei+1/ei)/ ln(hi+1/hi).

Figure 2 shows the errors and the corresponding EOCs. The convergence rates appear
optimal with first order convergence in the energy norm and second order convergence
(as τ ∼ h2) in the L2 norm.

An analysis of the numerical method is beyond the scope of the present work.
We believe that by combining the techniques developed in [13] for the analysis of
finite element schemes for bulk-surface equations, [22] which deals with multiscale
finite element methods, and [27] which proves error bounds for IMEX approximations
of semilinear systems, it should be possible to prove optimal error bounds for our
method that reflect the rates observed numerically in Figure 2.

7. Parameterization and numerical solutions for a biologically relevant
model. We now present and simulate a biologically relevant model; the model con-
sidered in this section is related to the Langmuir–Hinshelwood mechanism for sig-
naling processes at the level of a single cell considered in [18], and in particular
we take the majority of our parameters from said work. We make the assump-
tion that all the parameters are independent of the microscopic variable and state
the parameter values we use in the microscopic model (2.1)–(2.5) along with the
source of the parameter value in Table 2. In order to keep the model as simple as
possible while still illustrating the key phenomena captured by the model, we as-
sume there is no production or linear degradation of any of the species, i.e., we set
Fe(ce) = Fi(ci) = Ff (rf , rb) = Fd(pd) = 0 and dk = 0 for k = b, f, a, d.
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Fig. 2. Errors in the L2(H1) and L∞(L2) norms for a series of mesh refinements (cf. Table
1) with τ ∼ h2 and EOC. The observed convergence rates appear optimal.

Table 2
Parameters used for the microscopic model and sources for the parameter estimates.

Parameter Value Source

ae 103(mol/m3)−1 s−1 [18]
be 5 · 10−3s−1 [18]

ai 10−2( molecules
µm2 )−1 s−1 = 6 · 109 (mol/m2)−1 s−1 [18]

bi 10−2 s−1 [18]
γi 2 · 10−3 s−1 [18]
κi 10−8 m s−1 [18]
De 10−9 m2 s−1 [31]
Di 10−11 m2 s−1 [24]
Dk, k = b, f, a, d 10−15 m2 s−1 [31]

The dependent and independent variables of the microscopic model and their
associated units are as given in Table 3. Finally, in order to ensure there is some
ligand present in the system, we set ∂ΩD to be a Dirichlet boundary such that the
boundary condition (2.5) becomes

cεe = ĉe on ∂ΩD, t ≥ 0,

Dε
e(x)∇cεe · ν = 0 on ∂Ω \ ∂ΩD, t > 0,

where we set ĉe = 10−4mol/m3; cf. [18]. Taking ε = 10−3 we introduce the charac-
teristic scales
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Table 3
Variables of microscopic model and associated units.

x t ce ci rf , rb pd, pa

m s mol/m3 mol/m3 mol/m2 mol/m2

t̂ = 103 s, x̂ = 10−2 m, r̂ = r̂l = p̂k = 10−9 mol

m2
,

ĉ = ĉe = ĉi =
r̂

ε x̂
= 10−4 mol

m3
,

(7.1)

where l = f, b and k = a, d, and then the dimensionless parameters are given by

D∗e = Det̂/(x̂)2 = 10−2, ε2D∗i = Dit̂/(x̂)2 = 10−5, D∗i = 10,

ε2D∗l = Dlt̂/(x̂)2 = 10−8, D∗l = 10−2, l = f, b, d, a,

εb∗e =
t̂

x̂

r̂b
ĉ
be = 5 · 10−3, εa∗e =

t̂r̂f
x̂
ae = 0.1, b∗e = 5, a∗e = 100,

εγ∗i =
t̂

x̂

p̂a
ĉi
γi = 2 · 10−3, εκ∗i =

t̂

x̂
κi = 10−3, γ∗i = 2, κ∗i = 1,

a∗i = aip̂dt̂ = 6 · 103, b∗i = bit̂ = 10.

(7.2)

Notice that we also have a∗e = aeĉt̂ = 100, b∗e = bet̂ = 5, and γ∗i = γit̂ = 2, κ∗i =
t̂ĉi
p̂d
κi = 1, which is consistent with scaling above. Following the derivation of the two-

scale macroscopic model outlined in section 4 we obtain the following dimensionless
homogenized system:

θe∂tce −∇ · (Dhom
e ∇ce) =

1

|Y |

∫
Γ

(b∗e rb − a∗ecerf )dσy in Ω,

ce = 1 on ∂ΩD,

Dhom
e ∇ce · ν = 0 on ∂Ω/∂ΩD,

∂tci −∇y · (D∗i∇yci) = 0 in Ω× Yi,
D∗i∇yci · ν = γ∗i pa − κ∗i ci in Ω× Γ,

(7.3)

where θe = |Ye|/|Y |, and Dhom
e,ij = |Y |−1

∫
Ye

[
D∗e,ij + (D∗e∇ywj(y))i

]
dy and wj are

solutions of the unit cell problems

divy(D∗e(∇ywj + ej)) = 0 in Ye,

∫
Ye

wj(y)dy = 0,

D∗e(∇ywj + ej) · ν = 0 on Γ, wj Y − periodic,

(7.4)

together with the dynamics of receptors on the cell membrane Ω× Γ

∂trf −∇Γ,y · (D∗f∇Γ,y rf ) = −a∗ecerf + b∗e rb,

∂trb −∇Γ,y · (D∗b∇Γ,y rb) = a∗ecerf − b∗e rb − a∗i rbpd + b∗i pa,

∂tpd −∇Γ,y · (D∗d∇Γ,y pd) = −a∗i rbpd + b∗i pa,

∂tpa −∇Γ,y · (D∗a∇Γ,y pa) = a∗i rbpd − b∗i pa − γ∗i pa + κ∗i ci.

(7.5)
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The dimensionless parameter values are

D∗e = 10−2, D∗i = 10, D∗f = D∗b = D∗d = D∗a = 10−2,

a∗e = 100, b∗e = 5, a∗i = 6 · 103, b∗i = 10, γ∗i = 2, κ∗i = 1.
(7.6)

Scaling the initial conditions appropriately yields the nondimensional initial values

c∗i0(x, y) = 1 + ci,1(x)ci,2(y),

r∗f0(x, z) = 0.17(1 + rf,1(x)rf,2(z)), p∗d0(x, z) = 0.065(1 + pd,1(x)pd,2(z))
(7.7)

for x ∈ Ω, y ∈ Yi, and z ∈ Γ, with all the remaining initial conditions taken to be
zero. The functions c∗i0, r

∗
f0, and p∗d0 correspond to scaled, nonnegative perturbations

of the initial conditions

ci0 = 10−7 M = 10−4 mol

m3
, rf0 = 17 · 10−11 mol

m2
, pd0 = 6.5 · 10−11 mol

m2
,(7.8)

considered in [18].

7.1. Simulations of macroscopic model in biologically relevant regimes.
We illustrate the influence that the geometry of the periodic cell in which we solve for
the effective homogenized diffusion tensor Dhom as well as the associated geometry
of the (biological) cells Yi and membranes Γ have on the macroscopic dynamics of
signaling molecules (ligands). To this end we consider two different geometries for
the microstructure; specifically we let Y = [−2, 2]2 and consider either elliptical cells
with

Yi =
{
x ∈ Y | 0.26x2

1 + 5x2
2 < 1

}
,

i.e., an ellipse centered at (0, 0) with major and minor axes of approximate length
1.96 and 0.45, respectively, or cells whose shape is defined by

Yi =
{
x ∈ Y | (x1 + 0.2− x2

2)2 + x2
2 < 1

}
.(7.9)

To obtain the homogenized diffusion tensor we solve the cell problems corresponding
to (7.4) on Ye = [−2, 2]2 \ Yi for the two different cell geometries. For the elliptical
cell geometry we used a mesh with 1039514 DOFs, and for the other cell geometry
we used a mesh with 1008834 DOFs. Figure 3 shows the numerical simulation results
for the solution w2 of the “unit cell” problems (7.4) on the two different geometries.
The resulting homogenized diffusion tensor is given by

Dhom
h,e =

[
8.167 · 10−3 0

0 1.841 · 10−3

]
for the case of the ellipse and

Dhom
h,e =

[
6.556 · 10−3 0

0 6.149 · 10−3

]
for the geometry specified in (7.9). As expected due to the large aspect ratio of the
ellipse the resulting homogenized diffusion tensor exhibits stronger anisotropy than
for the other cell shape. For the tissue we set Ω = [0, 0.1]2 and take

∂ΩD = {x ∈ ∂Ω | max{x1, x2} < 5 · 10−2},
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Fig. 3. Solutions w2 of the cell problem (7.4) for the two different Ye domains considered.

MULTISCALE ANALYSIS AND SIMULATION OF A SIGNALLING PROCESS WITH DIFFUSION 21

(a) t = 10

(b) t = 100

Figure 4. Results of the simulation of Section 7 with the elliptical cell geometry. The
inset in each subfigure show the microscopic solutions at the corresponding macroscopic
DOF (grey line). The macroscopic domain is shaded by Ce whilst in each inset the cell
interior is shaded by Ci and reading from top to to bottom, the membrane is shaded
by Rf , Rb, Pd and Pa respectively. For further details see text.

domain. Focusing on the di↵erences between the two sets of results, we see that the strongly anisotropic
homogenised di↵usion tensor associated with the elliptical cell geometry leads to faster transport in
the horizontal direction and slower vertical transport. As a result for t = 200, see Figure 5a, there
are very few bound receptors present on the cell at the macroscopic point (0.1, 0.1) and it is only by
t = 250 that bound receptors are clearly visible on this cell. On the other hand the almost isotropic
homogenised di↵usion tensor associated with the cell geometry specified in (57) leads to equally fast
vertical and horizontal transport and by t = 200 there are clearly a large number of bound receptors
present on the cell membrane at the macroscopic point (0.1, 0.1). More generally, in both cases we
see significant heterogeneity at the microscopic level in the concentrations of the di↵erent membrane
resident species at di↵erent times during the simulation motivating the multiscale modelling approach
we employ.

8. Conclusion

In this work we consider microscopic modelling and multiscale analysis of ligand-receptor based
intercellular signalling processes in a biological tissues, assuming periodic distribution of cell in a
tissue. Generalisation of our results to a locally-periodic or random distribution of cells in a tissue
will be considered in future studies.
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Figure 4. Results of the simulation of Section 7 with the elliptical cell geometry. The
inset in each subfigure show the microscopic solutions at the corresponding macroscopic
DOF (grey line). The macroscopic domain is shaded by Ce whilst in each inset the cell
interior is shaded by Ci and reading from top to to bottom, the membrane is shaded
by Rf , Rb, Pd and Pa respectively. For further details see text.
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are very few bound receptors present on the cell at the macroscopic point (0.1, 0.1) and it is only by
t = 250 that bound receptors are clearly visible on this cell. On the other hand the almost isotropic
homogenised di↵usion tensor associated with the cell geometry specified in (57) leads to equally fast
vertical and horizontal transport and by t = 200 there are clearly a large number of bound receptors
present on the cell membrane at the macroscopic point (0.1, 0.1). More generally, in both cases we
see significant heterogeneity at the microscopic level in the concentrations of the di↵erent membrane
resident species at di↵erent times during the simulation motivating the multiscale modelling approach
we employ.

8. Conclusion

In this work we consider microscopic modelling and multiscale analysis of ligand-receptor based
intercellular signalling processes in a biological tissues, assuming periodic distribution of cell in a
tissue. Generalisation of our results to a locally-periodic or random distribution of cells in a tissue
will be considered in future studies.

(b) t = 100

Fig. 4. Results of the simulation of section 7 with the elliptical cell geometry. The insets in
each subfigure show the microscopic solutions at the corresponding macroscopic DOF (grey line).
The macroscopic domain is shaded by Ce while in each inset the cell interior is shaded by Ci, and
reading from top to bottom, the membrane is shaded by Rf , Rb, Pd, and Pa, respectively. For further
details see text.
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modeling a constant source of ligands from the southwest corner of the domain. As
mentioned above on the remainder of the boundary ∂Ω we consider zero-flux boundary
condition for ce. For the initial data we set the perturbations (cf. (7.7)) to be of the
form

ci,1(x)ci,2(y) = fci0(x, y) = 0.95 sin
(
π
(

2y1 +
y2

2

))
sin (5π|x|) ,

rf,1(x)rf,2(y) = frf0(x, y) = 0.95 cos (π (y1 + 4y2)) cos (30π|x|) ,
pd,1(x)pd,2(y) = fpd0(x, y) = 0.95 cos

(
π
(

2y1 +
y2

2

))
cos (10π|x|)

for x ∈ Ω and y ∈ Y . For the approximation we used a triangulation Ωh with 1089
DOFs; the triangulation Yh,i of the ellipse had 81 DOFs, and the triangulation Yh,i
of the domain given by (7.9) had 89 DOFs; the induced surface triangulations Γh had
32 and 33 DOFs, respectively. For the time-step we used a value of 2 · 10−3.

Figures 4 and 5 show results of the simulation at t = 10, 100, 200, and 250 with the
elliptical cell geometry while Figure 6 shows results of the simulation at the same times
with the cell geometry given by (7.9). In each figure we also include the microscopic
solutions at the DOFs with macroscopic coordinates (0, 0), (0.05, 0.05), and (0.1, 0.1)
with the macroscopic DOF associated with each set of microscopic results indicated
by a grey line in the figure to the corresponding point in the macroscopic domain.
Focusing on the differences between the two sets of results, we see that the strongly
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(a) t = 200

(b) t = 250

Figure 5. Results of the simulation of §7 with the elliptical cell geometry. he inset in
each subfigure show the microscopic solutions at the corresponding macroscopic DOF
(grey line). The macroscopic domain is shaded by Ce whilst in each inset the cell
interior is shaded by Ci and reading from top to to bottom, the membrane is shaded
by Rf , Rb, Pd and Pa respectively. For further details see text.
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(b) t = 250

Fig. 5. Results of the simulation of section 7 with the elliptical cell geometry. The insets in
each subfigure show the microscopic solutions at the corresponding macroscopic DOF (grey line).
The macroscopic domain is shaded by Ce while in each inset the cell interior is shaded by Ci, and
reading from top to bottom, the membrane is shaded by Rf , Rb, Pd, and Pa, respectively. For further
details see text.
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(d) t = 250

Fig. 6. Results of the simulation of section 7 with the cell geometry given by (7.9). The insets
in each subfigure show the microscopic solutions at the corresponding macroscopic DOF (grey line).
The macroscopic domain is shaded by Ce while in each inset the cell interior is shaded by Ci, and
reading from left to right, the membrane is shaded by Rf , Rb, Pd, and Pa, respectively. For further
details see text.

anisotropic homogenized diffusion tensor associated with the elliptical cell geometry
leads to faster transport in the horizontal direction and slower vertical transport. As a
result for t = 200 (see Figure 5(a)), there are very few bound receptors present on the
cell at the macroscopic point (0.1, 0.1), and it is only by t = 250 that bound receptors
are clearly visible on this cell. On the other hand the almost isotropic homogenized
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diffusion tensor associated with the cell geometry specified in (7.9) leads to equally
fast vertical and horizontal transport, and by t = 200 there are clearly a large number
of bound receptors present on the cell membrane at the macroscopic point (0.1, 0.1);
cf. Figure 6(c). More generally, in both cases we see significant heterogeneity at the
microscopic level in the concentrations of the different membrane resident species at
different times during the simulation motivating the multiscale modeling approach we
employ.

Appendix A. Generalized trace inequality. The trace inequality for v ∈
W 1,q(Yl), with 1 < q <∞ and l = e, i, reads

‖v‖Lr(Γ) ≤ µ
[
‖v‖1−λLq(Yl)

‖v‖λW 1,q(Yl)
+ ‖v‖(1−1/r)(1−λ)

Lq(Yl)
‖v‖1/r+λ(1−1/r)

W 1,q(Yl)

]
(A.1)

for λ = dim(Yl)(r−q)
q(r−1) and µ = µ(r, q, Yl) > 0; see, e.g., [17].

Appendix B. Two-scale convergence and periodic unfolding operator.
We recall the definition and some properties of two-scale convergence and the

unfolding operator.

Definition B.1 (two-scale convergence [4, 32, 45]). A sequence {uε} in Lp(Ω)
with 1 < p <∞ is two-scale convergent to u ∈ Lp(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x)φ

(
x,
x

ε

)
dx =

∫
Ω×Y

u(x, y)φ(x, y)dydx

for any φ ∈ Lq(Ω;Cper(Y )), with 1/p+ 1/q = 1.

Theorem B.2 (see [5, 44]). Let {vε} ⊂ L2(Γε) satisfy ε‖vε‖2L2(Γε) ≤ C; then

there exists a two-scale limit v ∈ L2(Ω;L2(Γ)) such that, up to a subsequence, vε

two-scale converge to v in the sense that

lim
ε→0

ε

∫
Γε
vε(x)φ

(
x,
x

ε

)
dσε =

∫
Ω×Γ

v(x, y)φ(x, y)dσydx

for any φ ∈ C0(Ω;Cper(Y )).

Lemma B.3 (two-scale compactness [4, 5, 45]).
i. If {uε} is bounded in L2(Ω), there exists a subsequence (not relabeled) such

that uε ⇀ u two-scale as ε→ 0 for some function u ∈ L2(Ω× Y ).
ii. If uε ⇀ u weakly in H1(Ω), then uε ⇀ u and ∇uε ⇀ ∇u +∇yu1 two-scale,

where u1 ∈ L2(Ω;H1
per(Y )/R).

iii. If ‖uε‖H1(Ωεe)
≤ C and [uε]∼ and [∇uε]∼ are extensions by zero from Ωεe into

Ω of uε and ∇uε, respectively, then, up to a subsequence, [uε]∼ and [∇uε]∼
converge two-scale to uχ and [∇u+∇yu1]χ, respectively, where χ = χ(y) is
the characteristic function of Ye, u ∈ H1(Ω) and u1 ∈ L2(Ω;H1

per(Ye)/R).
iv. Let {wε} ⊂ H1(Γε) satisfy

ε‖wε‖2L2(Γε) + ε‖ε∇Γw
ε‖2L2(Γε) ≤ C;

then there exists a function w ∈ L2(Ω;H1(Γ)) such that, up to a subsequence,
wε and ε∇Γw

ε two-scale converge to w and ∇Γ,yw, respectively.

To define the unfolding operator, let [z] for any z ∈ Rd denote the unique com-

bination
∑d
i=1 kiei with k ∈ Zd such that z − [z] ∈ Y , where ei is the ith canonical

basis vector of Rd.
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Definition B.4 (unfolding operator [9]). Let p ∈ [1,∞] and φ ∈ Lp(Ω). The
unfolding operator T ε is defined by T ε(φ) ∈ Lp(Ω× Y ), where

T ε(φ)(x, y) =

φ
(
ε

[
x

ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̃ε × Y,

0 for a.e. x ∈ Ω \ Ω̃ε, y ∈ Y,

with Ω̃ε =
⋃
ξ∈Ξε ε(Y + ξ).

For ψ ∈ Lp(Ωεl ) with l = e, i the unfolding operator T εYl is defined by

T εYl(ψ)(x, y) =

ψ
(
ε

[
x

ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̃ε × Yl,

0 for a.e. x ∈ Ω \ Ω̃ε, y ∈ Yl,

and T εYl(ψ) ∈ Lp(Ω× Yl).
For ψ ∈ Lp(Γε) the boundary unfolding operator T εΓ is defined by

T εΓ (ψ)(x, y) =

ψ
(
ε

[
x

ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̃ε × Γ,

0 for a.e. x ∈ Ω \ Ω̃ε, y ∈ Γ,

and T εΓ (ψ) ∈ Lp(Ω× Γ).

For any function ψ defined on Ωεl , for l = e, i, we have T εYl(ψ) = T ε([ψ]∼)|Ω×Yl ,
with [ψ]∼ denoting extension of ψ by zero into Ω \Ωεl , whereas for φ defined on Ω, it
holds that T εYl(φ|Ωεl ) = T ε(φ)|Ω×Yl .

The following result relates two-scale convergence and weak convergence involving
the unfolding operator.

Proposition B.5 (see [10]). Let {ψε} be a bounded sequence in Lp(Ω) for some
1 < p <∞. Then the following assertions are equivalent:

i. {T ε(ψε)} converges weakly to ψ in Lp(Ω× Y ).
ii. {ψε} converges two-scale to ψ, ψ ∈ Lp(Ω× Y ).

We have the following properties of the periodic unfolding operator and the
boundary unfolding operator:

T εYl(F (u, v)) = F (T εYl(u), T εYl(v)), T εYl(v(t, x/ε)) = v(t, y), x ∈ Ωεl , y ∈ Yl,
T εΓ (F (u, v)) = F (T εΓ (u), T εΓ (v)), T εΓ (v(t, x/ε)) = v(t, y), x ∈ Ωεl , y ∈ Γ, t > 0,

|Y |〈v, u〉Ωεi,T = 〈T εYi(v), T εYi(u)〉Yi×ΩT , |Y | ε 〈v, u〉ΓεT = 〈T εΓ (v), T εΓ (u)〉Γ×ΩT ,

〈T εYe(v), T εYe(u)〉Ye×ΩT = |Y |〈v, u〉Ωεe,T − |Y |〈v, u〉(Ωεe\Ω̃ε)T ,

‖T εYl(φ)‖Lp(ΩT×Yl) ≤ |Y |
1
p ‖φ‖Lp(Ωεl,T ),

T εYl : Lp(0, T ;W 1,p(Ωεl ))→ Lp(ΩT ;W 1,p(Yl)),

T εΓ : Lp(0, T ;W 1,p(Γε))→ Lp(ΩT ;W 1,p(Γ)),

εT εYl(∇u) = ∇yT εYl(u), |Y |〈ε2∇v,∇u〉Ωεi,T = 〈∇yT εYi(v),∇yT εYi(u)〉Yi×ΩT ,

|Y | ε 〈ε2∇Γv,∇Γu〉ΓεT = 〈∇Γ,yT εΓ (v),∇Γ,yT εΓ (u)〉Γ×ΩT ,

‖T εΓ (ψ)‖Lp(ΩT×Γ) ≤ ε
1
p |Y | 1p ‖ψ‖Lp(ΓεT ) ≤ C(‖ψ‖Lp(Ωεl,T ) + ε‖∇ψ‖Lp(Ωεl,T ))

(B.1)

for u, v ∈ L2(0, T ;H1(Ωεl )), where l = e, i, or u, v ∈ L2(0, T ;H1(Γε)), φ ∈ Lp(Ωεl,T ),

ψ ∈ Lp(0, T ;W 1,p(Ωεl )), and F is any linear or nonlinear function; see, e.g., [9, 10, 20].



880 MARIYA PTASHNYK AND CHANDRASEKHAR VENKATARAMAN

We now collect some results on the convergence of the unfolding of sequences of
functions.

Lemma B.6 (see [10]). Let 1 ≤ p <∞.
i. If φ ∈ Lp(Ω), then T ε(φ)→ φ strongly in Lp(Ω× Y ).

ii. Let {ψε} ⊂ Lp(Ω) with ψε → ψ strongly in Lp(Ω); then T ε(ψε)→ ψ strongly
in Lp(Ω× Y ).

Theorem B.7 (see [9, 20]).
i. Let {ψε} be a bounded sequence in W 1,p(Ωεe) for some 1 < p < ∞. Then

there exist functions ψ ∈ W 1,p(Ω) and ψ1 ∈ Lp(Ω;W 1,p
per(Ye)/R) such that as

ε→ 0, up to a subsequence,

T εYe(ψε) ⇀ ψ weakly in Lp(Ω;W 1,p(Ye)),

T εYe(ψε)→ ψ strongly in Lploc(Ω;W 1,p(Ye)),

T εYe(∇ψε) ⇀ ∇ψ +∇yψ1 weakly in Lp(Ω× Ye).
ii. Let {φε} ⊂W 1,p(Ωεi ) for some 1 < p <∞ satisfy

‖φε‖Lp(Ωεi )
+ ε‖∇φε‖Lp(Ωεi )

≤ C.
Then there exists φ ∈ Lp(Ω;W 1,p(Yi)) such that as ε → 0, up to a subse-
quence,

T εYi(φε) ⇀ φ weakly in Lp(Ω× Yi),
εT εYi(∇φε) ⇀ ∇yφ weakly in Lp(Ω× Yi).

iii. Let {wε} ⊂ H1(Γε) satisfy

ε‖wε‖2L2(Γε) + ε‖ε∇Γw
ε‖2L2(Γε) ≤ C;

then there exists w ∈ L2(Ω;H1(Γ)) such that as ε→ 0, up to a subsequence,

T εΓ (wε) ⇀ w weakly in L2(Ω;H1(Γ)),

εT εΓ (∇Γw
ε) ⇀ ∇Γ,yw weakly in L2(Ω× Γ).

Appendix C. Some details on the proof of Lemma 3.9. In the second
equation in (3.1) and in (3.2), integrating by parts with respect to the time variable
in the terms involving time derivatives, applying the periodic unfolding operator and
the boundary unfolding operator, and using the properties of the unfolding operator
(see, e.g., (B.1)) yields for x ∈ Ω, τ ∈ (0, T ]

− 〈T ε(cεi ), ∂tT ε(ψ)〉Yi,τ + 〈Di(y)∇yT ε(cεi ),∇yT ε(ψ)〉Yi,τ
+ 〈T ε(cεi (τ)), T ε(ψ(τ))〉Yi = 〈T ε(cεi,0), T ε(ψ(0))〉Yi
+ 〈Fi(T ε(cεi )), T ε(ψ)〉Yi,τ + 〈Gi(T ε(cεi ), T ε(pεa)), T ε(ψ)〉Γτ ,

(C.1)

− 〈T ε(rεf ), ∂tT ε(ϕ)〉Γτ + 〈Df∇Γ,yT ε(rεf ),∇Γ,yT ε(ϕ)〉Γτ
+ 〈T ε(rεf (τ)), T ε(ϕ(τ))〉Γ = 〈T ε(rεf,0), T ε(ϕ(0))〉Γ − df 〈T ε(rεf ), T ε(ϕ)〉Γτ
+ 〈Ff (T ε(rεf ), T ε(rεb))−Ge(T ε(cεe), T ε(rεf ), T ε(rεb)), T ε(ϕ)〉Γτ ,

− 〈T ε(rεb), ∂tT ε(ϕ)〉Γτ + 〈Db∇Γ,yT ε(rεb),∇Γ,yT ε(ϕ)〉Γτ
+ 〈T (rεb(τ)), T ε(ϕ(τ))〉Γ = 〈T (rεb,0), T ε(ϕ(0))〉Γ − db〈T ε(rεb), T ε(ϕ)〉Γτ
+ 〈Ge(T ε(cεe), T ε(rεf ), T ε(rεb))−Gd(T ε(rεb), T ε(pεd), T ε(pεa)), T ε(ϕ)〉Γτ ,

(C.2)
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and

− 〈T ε(pεd), ∂tT ε(ϕ)〉Γτ + 〈Dd∇Γ,yT ε(pεd),∇Γ,yT ε(ϕ)〉Γτ
+ 〈T ε(pεd(τ)), T ε(ϕ(τ))〉Γ = 〈T ε(pεd,0), T ε(ϕ)(0)〉Γ − dd〈T ε(pεd), T ε(ϕ)〉Γτ
+ 〈Fd(T ε(pεd))−Gd(T ε(rεb), T ε(pεd), T ε(pεa)), T ε(ϕ)〉Γτ ,

− 〈T ε(pεa), ∂tT ε(ϕ)〉Γτ + 〈Da∇Γ,yT ε(pεa),∇Γ,yT ε(ϕ)〉Γτ
+ 〈T ε(pεa(τ)), T ε(ϕ(τ))〉Γ = 〈T ε(pεa,0), T ε(ϕ(0))〉Γ − da〈T ε(pεa), T ε(ϕ)〉Γτ
+ 〈Gd(T ε(rεb), T ε(pεd), T ε(pεa))−Gi(T ε(pεa), T ε(cεi )), T ε(ϕ)〉Γτ ,

(C.3)

where ψ ∈ L2(0, T ;H1(Ωεi )) with ∂tψ ∈ L2(Ωεi,T ) and ϕ ∈ L2(0, T ;H1(Γε)) with

∂tϕ ∈ L2(ΓεT ). Notice that the regularity of solutions of the microscopic problem
implies cεi ∈ C([0, T ];L2(Ωεi )) and rεj , p

ε
s ∈ C([0, T ];L2(Γε)) for j = f, b and s = a, d.

Considering the sum of (C.1)–(C.3) with test functions ψ(t, x) = 1 in Ωεi,T and
ϕ(t, x) = 1 on ΓεT , respectively, and using the nonnegativity of solutions, the structure
of the reaction terms, and the assumptions on the initial data yields

‖T ε(rεf )(τ, x, ·)‖L1(Γ) + ‖T ε(rεb)(τ, x, ·)‖L1(Γ) + ‖T ε(pεd)(τ, x, ·)‖L1(Γ)

+ 2‖T ε(pεa)(τ, x, ·)‖L1(Γ) + 2‖T ε(cεi )(τ, x, ·)‖L1(Yi) ≤ C1‖T ε(rεf,0)(x, ·)‖L1(Γ)

+ ‖T ε(rεb,0)(x, ·)‖L1(Γ) + ‖T ε(pεd,0)(x, ·)‖L1(Γ) + 2‖T ε(pεa,0)(x, ·)‖L1(Γ)

+ C2‖T ε(cεi,0)(x, ·)‖L1(Yi) + C3 ≤ C

(C.4)

for τ ∈ (0, T ] and a.a. x ∈ Ω.
The estimates in (3.15) are obtained by considering T ε(cεi ) as a test function in

(C.1), T ε(rεf ) as a test function in the equation for T ε(rεf ) and T ε(rεb) + T ε(rεf ) as
a test function in the sum of equations for T ε(rεb) and T ε(rεf ) in (C.2), T ε(pεd) as a
test function in the equation for T ε(pεd) and T ε(pεd) + T ε(pεa) as a test function in
the sum of equations for T ε(pεd) and T ε(pεa) in (C.3), and by using the nonnegativity
of solutions of the microscopic problem. To ensure that the time derivative is well-
defined, we consider a standard approximation, using the Steklov average, of rεl , p

ε
s,

cεi , for l = f, b and s = d, a, i.e.,

vζ(t, x) =
1

ζ

∫ t

t−ζ

1

ζ

∫ s+ζ

s

v(σ, x)dσκ(s)ds

with κ(s) = 1 for s ∈ (0, T − ζ) and κ(s) = 0 for s ∈ [−ζ, 0] ∪ [T − ζ, T ], and then
take ζ → 0; see, e.g., [26] for more details.

To show boundedness of solutions of the microscopic problem we first consider
|T ε(rεf )|p−1 for p ≥ 4 as a test function in the first equation in (C.2), and using the
nonnegativity of cεe and rεf and assumptions on the nonlinear function Ff we obtain

‖T ε(rεf )(τ)‖pLp(Γ) + 4
p− 1

p
‖∇Γ,y|T ε(rεf )| p2 ‖2L2(Γτ )

≤ C1p
[
1 + ‖T ε(rεf )‖pLp(Γτ )

]
+ C2p〈T ε(rεb), |T ε(rεf )|p−1〉Γτ .

(C.5)
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Applying the Hölder inequality and inequalities in (3.18), the last term in (C.5) is
estimated in the following way:

〈T ε(rεb), |T ε(rεf )|p−1〉Γτ

(C.6)

≤ 1

p
‖T ε(rεb)‖pL4(Γτ ) + C1

p− 1

p
‖∇Γ,y|T ε(rεf )| p2 ‖L2(Γτ )‖|T ε(rεf )| p2 ‖L4(0,τ ;L2(Γ))

≤ 1

p
‖T ε(rεb)‖pL4(Γτ ) + C2

p− 1

p
‖∇Γ,y|T ε(rεf )| p2 ‖L2(Γτ )×

×
[∫ τ

0

‖∇Γ,y|T ε(rεf )| p2 ‖2L2(Γ)‖T ε(rεf )
p
2 ‖2L1(Γ) dt

] 1
4

≤ 1

p
‖T ε(rεb)‖pL4(Γτ ) + C2

p− 1

p
‖∇Γ,y|T ε(rεf )| p2 ‖

3
2

L2(Γτ ) sup
(0,τ)

‖|T ε(rεf )| p2 ‖
1
2

L1(Γ)

≤ 1

p
‖T ε(rεb)‖pL4(Γτ ) + δ

p− 1

p2
‖∇Γ,y|T ε(rεf )| p2 ‖2L2(Γτ ) + Cδp

3 sup
(0,τ)

‖T ε(rεf )
p
2 ‖2L1(Γ)

for τ ∈ (0, T ] and x ∈ Ω. Using the Gagliardo–Nirenberg inequality (see (3.18)), we
also obtain

‖T ε(rεf )‖pLp(Γτ ) ≤ δ
p− 1

p2
‖∇Γ,y|T ε(rεf )| p2 ‖2L2(Γτ ) + Cδ p sup

(0,τ)

‖|T ε(rεf )| p2 ‖2L1(Γ)(C.7)

for τ ∈ (0, T ] and x ∈ Ω. Then using estimates (C.6) and (C.7) in (C.5) yields
inequality (3.21).

To show boundedness of cεe we consider |cεe|p−1 for p ≥ 4 as a test function in the
first equation in (3.1), and, using the assumptions on Fe and the nonnegativity of rεf
and cεe, we obtain

‖cεe(τ)‖pLp(Ωεe)
+ 4

p− 1

p
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) ≤ C1p

[
1 + ‖cεe‖pLp(Ωεe,τ )

]
+ C2p ε 〈rεb , |cεe|p−1〉Γετ .

(C.8)

The last term in (C.8) can be estimated in the following way:

ε |Y | 〈rεb , |cεe|p−1〉Γετ = 〈T ε(rεb), |T ε(cεe)|p−1〉Ωτ×Γ

≤
∫

Ωτ

[∫
Γ

|T ε(cεe)|
4(p−1)

3 dσy

] 3
4

‖T ε(rεb)‖L4(Γ)dxdt

≤ p− 1

p

∫
Ωτ

[∫
Γ

(
|T ε(cεe)|

p
2

) 8
3 dσy

] 3
4

dxdt+
1

p

∫
Ωτ

‖T ε(rεb)‖pL4(Γ)dxdt.

(C.9)

Applying the trace inequality (A.1) to |T ε(cεe)|
p
2 and using the properties of the un-

folding operator T ε (see, e.g., (B.1)), the first term on the right-hand side of (C.9) is
estimated as

‖|T ε(cεe)|
p
2 ‖2L2(Ωτ ;L8/3(Γ)) ≤

δ

p
‖∇y|T ε(cεe)|

p
2 ‖2L2(Ωτ ;L2(Ye))

+ Cδ p
3 ‖|T ε(cεe)|

p
2 ‖2L2(Ωτ ;L2(Ye))

≤ |Y |
[
Cδ p

3 ‖cεe‖pLp(Ωεe,τ ) +
δ

p
ε2 ‖∇|cεe|

p
2 ‖2L2(Ωεe,τ )

]
.
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To estimate ‖T ε(rεb)‖Lp(ΩT ;L4(Γ)) we consider |T ε(rεb)|3 as a test function in the second
equation in (C.2) and obtain

‖T ε(rεb)(τ)‖4L4(Γ) + ‖∇Γ,y|T ε(rεb)|2‖2L2(Γτ ) ≤ ‖T ε(rεb0)‖4L4(Γτ )

+ C1〈T ε(pεa), |T ε(rεb)|3〉Γτ + C2〈T ε(rεf )T ε(cεe), |T ε(rεb)|3〉Γτ
(C.10)

for x ∈ Ω and τ ∈ (0, T ]. Applying the Gagliardo–Nirenberg inequality

‖v‖L3(Γ) ≤ C1‖∇Γ,yv‖2/3L2(Γ)‖v‖
1/3
L1(Γ)

to |T ε(rεb)|2 and using the estimates in (3.16) yield

|〈T ε(pεa), |T ε(rεb)|3〉Γτ | ≤ δ‖∇Γ,y|T ε(rεb)|2‖2L2(Γτ ) sup
(0,τ)

‖T ε(rεb)‖L2(Γ)

+ ‖T ε(rεb)‖6L6(0,τ,L2(Γ)) + Cδ‖T ε(pεa)‖2L2(Γτ ) ≤ C1δ‖∇Γ,y|T ε(rεb)|2‖2L2(Γτ ) + C2

for τ ∈ (0, T ] and x ∈ Ω. The boundedness of T ε(rεf ) (see (3.22)), ensures∣∣〈T ε(rεf )T ε(cεe), |T ε(rεb)|3〉Γτ
∣∣ ≤ C1‖T ε(cεe)‖Lp(Γτ )‖T ε(rεb)‖3

L
3p
p−1 (Γτ )

≤ C2

[
‖T ε(cεe)‖4Lp(Γτ ) + ‖T ε(rεb)‖4L4(Γτ )

]
for p ≥ 4. Then combining the estimates above and using Gronwall’s inequality in
(C.10) imply

‖T ε(rεb)(τ)‖L4(Γ) + ‖∇Γ,y|T ε(rεb)|2‖
1
2

L2(Γτ ) ≤ C1[1 + ‖T ε(cεe)‖Lp(Γτ )](C.11)

for τ ∈ (0, T ], x ∈ Ω, and p ≥ 4. Hence using (C.11) in (C.9) and applying the relations
between the original and unfolded sequences (see (B.1)), estimate (C.8) yields

‖|cεe(τ)| p2 ‖2L2(Ωεe)
+ 4

p− 1

p
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) ≤ δ1

p− 1

p
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ )

+ Cδp
3
(

1 + ‖cεe‖pLp(Ωεe,τ )

)
+ C1

(
1 + ε‖cεe‖pLp(Γετ )

)
.

(C.12)

Notice that the Gagliardo–Nirenberg inequality and the properties of an extension
|c̄εe|

p
2 of |cεe|

p
2 from Ωεe into Ω (see (3.4)), ensure

‖cεe‖pLp(Ωεe,τ ) ≤ ‖|c̄εe|
p
2 ‖2L2(Ωτ ) ≤ µ1

∫ τ

0

‖|c̄εe|
p
2 ‖4/5L1(Ω)‖∇|c̄εe|

p
2 ‖6/5L2(Ω)dt

≤ δ1
p3
‖∇|c̄εe|

p
2 ‖2L2(Ωτ ) + Cδ,1p

9
2 sup

(0,τ)

‖|c̄εe|
p
2 ‖2L1(Ω)

≤ δ

p3
‖∇|cεe|

p
2 ‖2L2(Ωεe,τ ) + Cδp

9
2 sup

(0,τ)

‖|cεe|
p
2 ‖2L1(Ωεe)

.

(C.13)

Then applying trace inequality (3.3) in the last term in (C.12) and using the estimate
(C.13) yield (3.26).
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