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Abstract. The Alber equation is a moment equation for the nonlinear
Schrödinger equation, formally used in ocean engineering to investigate the

stability of stationary and homogeneous sea states in terms of their power
spectra. In this work we present the first well-posedness theory for the Alber

equation with the help of an appropriate equivalent reformulation. Moreover,
we show linear Landau damping in the sense that, under a stability condition
on the homogeneous background, any inhomogeneities disperse and decay in
time. The proof exploits novel L2 space-time estimates to control the inhomo-

geneity and our result applies to any regular initial data (without a mean-zero
restriction). Finally, the sufficient condition for stability is resolved, and the

physical implications for ocean waves are discussed. Using a standard refer-
ence dataset (the “North Atlantic Scatter Diagram”) it is found that the vast
majority of sea states are stable, but modulationally unstable sea states do
appear, with likelihood Op1{1000q; these would be the prime breeding ground

for rogue waves.
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1. Introduction. The Alber equation

Btw � 2πpkBxw

�qi
»

λ,yPRd

e�2πiλy
�
npx� y

2
, tq � npx� y

2
, tq

�
dy P pk � λqdλ

�εqi
»

λ,yPRd

e�2πiλy
�
npx� y

2
, tq � npx� y

2
, tq

�
dy wpx, k � λ, tqdλ � 0,

npx, tq �
»
ξPRd

wpx, ξ, tqdξ, wpx, k, 0q � w0px, kq,

(1)

see e.g. [1, 4, 13, 23, 28, 29, 32, 36], is a second moment of the cubic NLS equation

iBtu� p

2
∆u� q

2
|u|2u � 0 (2)

governing the complex envelope of ocean waves, upx, tq. It is derived by taking the
stochastic second moment of equation 2 and then using a Gaussian moment closure.
Then, passing to Wigner transform coordinates, the initial data is assumed to be
close to a stationary and homogeneous background solution P pkq,

W px, k, tq � P pkq � εwpx, k, tq, ε ! 1.

Observe that the unknown wpx, k, tq in equation 1 is the inhomogeneity wpx, k, tq.
The heuristic derivation of the Alber equation 1 from the NLS equation 2 is well-

known, but for completeness it is outlined in Appendix B. The Gaussian closure
means this is not an exact equation for the second stochastic moment. However, in
the ocean waves context q � op1q, 1{p � op1q, i.e. the problem is inherently weakly
non-linear. This is a factor behind the empirical fact that the Gaussian closure is a
meaningful one in this context [18, 22].

The power spectrum P pkq represents the distribution of wave energy over wave-
numbers in a homogeneous sea state. Typically one would expect that inhomo-
geneities disperse, thus preserving the leading-order stationary and homogeneous
character of the wavefield; indeed, this is what we find for the vast majority of
plausible sea states in Section 8. This would be the “Landau damping” / stable
regime. However, in those exceptional cases where the inhomogeneity wpx, k, tq
is allowed to feed on the (infinite) energy of the power spectrum and grow sig-
nificantly, then localized extreme events such as Rogue Waves become possible
[4, 8, 10, 11, 13, 14, 23, 25, 29]. This would be the “modulation instability” (MI) /
unstable regime, and it can be thought of as a generalization of the standard MI of
the NLS [7, 37, 38] to continuous spectra.

The criterion for (in)stability involves only the power spectrum P pkq, and is
related to the “eigenvalue relation” which appeared in [1] as a sufficient condition
for instability. Some refinements are required, and the relation between the different
kinds of (in)stability conditions is the object of Theorem 3.5 (see also Remark 3.1).
A key fact here is that the bifurcation from Landau damping to MI involves only the
shape of the power spectrum P pkq, and is not sensitive to the initial inhomogeneity,
w0px, kq. Determining whether a power spectrum is stable or unstable is a crucial
question in the oceanographic context, and presents certain challenges [13, 29, 32].
This is discussed in some detail in Section 8, where Theorem 3.5 is used in a novel,
straightforward way to check the stability of a given spectrum P pkq.



ALBER EQUATION AND STABILITY OF SPECTRA 705

While the Alber equation has been used formally for some time, there are still
many open questions related to it. It has only been recently that some works for
well-posedness and stability of related nonlinear equations have appeared. In [20, 19]
the authors work in operator formalism, for a defocusing problem pp � q   0q with a
regular interaction kernel1. The authors exploited the defocusing character of the
problem by defining a relative entropy which controls the solution in an appropriate
sense; this is a key ingredient of their proof. In [9] a similar argument is used for
the defocusing problem with a δ interaction kernel and with a single background
spectrum. Another related work is [34], where the stability of a fully stochastic
problem (no Gaussian closure) is studied, but only in the defocusing case, d ¥ 4
and with a smooth interaction kernel.

More broadly, there are analogies between the classical Landau damping problem
for the Vlasov equation [21, 26] and the stability of the Alber equation. The most
closely related work from that context seems to be [6] where the Vlasov equation
is studied in d � 3 and with mean-zero initial data, as opposed to d � 1 (leading
to weaker dispersion) and general initial data, which is the natural setting for the
Alber equation.

This paper is organized as follows: in Section 2 some definitions and notations are
summarized. The main results are formulated in Section 3. We show well-posedness
and regularity of solutions for any dimension in Theorems 3.1, 3.2, 3.3 below. In
Theorem 3.4 we consider the one-dimensional case and show for the first time that
the inhomogeneities decay in time under a stability condition, using novel L2 space-
time estimates (cf. Lemmata 5.4 and 6.3). In Theorem 3.5 we derive the stability
condition, and show it is complementary to the sufficient condition for instability,
the“eigenvalue relation” mentioned earlier. Using Theorem 3.5 we investigate the
stability of sea states in the North Atlantic in Section 8. The proofs of main results
are given in Sections 4-7 and in Section 8 we discuss applications.

2. Mathematical preliminaries. We shall start with summarizing main nota-
tions and definitions used in the statement and proofs of main results.

2.1. Definitions and notations. The normalization we use for the Fourier trans-
form is

pupXq � FxÑX rus �
»

xPRd
e�2πix�Xupxqdx, qupXq � F�1

xÑX rus �
»

xPRd
e2πix�Xupxqdx

for X P Rd.
Definition 2.1 (Spaces of bounded derivatives and moments). Consider a function
on phase-space fpx, kq, s P N, p P r1,8s. The Σs,p norm will be defined as

}f}Σs,p �
¸

0¤|a�b�c�d|¤s
}xakbBcxBdkf}LppR2dq.

We will also use the standard Sobolev spaces

}f}W s,p �
¸

0¤|c�d|¤s
}BcxBdkf}Lp , }f}Hs � }f}W s,2 .

One readily checks the following

1That is, Kpxq � npx, tq appears in the equation instead of npx, tq. Whenever npx, tq appears

directly, as in equation 1, this is also called a δ interaction kernel, since npx, tq � δpxq � npx, tq.
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Lemma 2.2 (Embeddings of the Σs,p). By virtue of the Sobolev embeddings,

@q, p P r1,8s, s P N Ds0 P N, C ¡ 0 }f}Σs,p ¤ C}f}Σs�s0,q . (3)

Denoting SpR2dq the Schwarz class of test-functions on phase-space, observe that
for any q P r1,8s £

sPN
Σs,qpR2dq � SpR2dq.

Moreover, the spaces Σs,2 are closed under Fourier transforms in the sense that

Fpx,kqÑpX,KqΣs,2 � FkÑKΣs,2 � FxÑXΣs,2 � Σs,2

and similarly for inverse Fourier transforms. Combined with equation 3, this means
that

@q, p P r1,8s, s P N Ds0 P N, C ¡ 0 such that }f}Σs,q ¤ C}Ff}Σs�s0,p

where F denotes a forward or inverse Fourier transform in the x, k, or px, kq vari-
ables.

We will also use the Laplace transform, denoted as

rupωq :� LtÑωrf s �
» �8

t�0

e�ωtuptqdt,

and the Hilbert transform H and the signal transform S

Hruspxq � 1

π
p.v.

»
tPR

uptq
x� tdt, Sruspxq � Hruspxq � iupxq, (4)

respectively.
In the context of the inverse Laplace transform we will also use an alternate

“Fourier transform in time”,

FtÑsruptqs :�
»
tPR

e�istuptqdt, F�1
sÑtrvpsqs �

1

2π

»
sPR

eistvpsqds.

Obviously

}Frus}L2 �
?

2π}u}L2 , }F�1rvs}L2 � 1?
2π
}v}L2 , Frtuptqs � iBsFrus.

In the statement and proof of the main results we will also use the following

Definition 2.3 (DXP ). For a function P : RÑ R we will use the notation

DXP pkq �
#

P pk�X
2 q�P pk�X

2 q
X , X � 0

P 1pkq, X � 0.

By abuse of notation all constants will be denoted by C,C 1, C2. To keep track of
dependence on important parameters we will use e.g. C � Cpt, p, qq.
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2.2. Reformulation of the problem and heuristics. To study problem 1 it is
helpful to use equivalent reformulations. If we take the inverse Fourier transform in
x of the original Alber equation we pass to the Alber-Fourier equation

Btf�4π2ipk �Xf � qi
�
P
�
k � X

2

	
� P

�
k � X

2

	� qnpX, tq�
� εqi

»
Rd

qnpy, tq �f�X � y, k � y

2

	
� f

�
X � y, k � y

2

	�
dy � 0,

qnpX, tq � »
Rd
fpX, ξ, tqdξ � F�1

xÑX rnpx, tqs,

fpX, k, 0q � f0pX, kq � F�1
xÑX rw0s,

(5)

where

fpX, k, tq :� F�1
xÑX rwpx, k, tqs �

»
Rd

e2πix�Xwpx, k, tqdx.

To motivate linear stability, let us start from the linearized problem,

Btf�4π2ipk �Xf � qi
�
P
�
k � X

2

	
� P

�
k � X

2

	�qnpX, tq � 0,

qnpX, tq � »
Rd
fpX, ξ, tqdξ � F�1

xÑX rnpx, tqs,

fpX, k, 0q � f0pX, kq � F�1
xÑX rw0s.

(6)

By recasting in mild form we have

fpX, k, tq�e4π2ipk�Xtf0pX, kq �

� �qi
t»

0

e4π2ipk�Xpt�τq
�
P
�
k � X

2

	
� P

�
k � X

2

	�qnpX, τqdτ, (7)

and by integrating in k we obtain a closed problem for qnpX, tq,
qnpX, tq � qnf pX, tq � » t

τ�0

hpX, t� τqqnpX, τqdτ � 0,

hpX, tq � 2q sinp2π2pX2tq qP p2πpXtq, (8)

where nf px, tq is the known “free-space position density”,

nf px, tq :�
»
Rd

w0px� 2πpkt, kqdk ñ

ñ qnf pX, tq � F�1
xÑX rnf px, tqs �

»
Rd

e4π2ipk�Xtf0 dk.

(9)

Now denote for brevityrnpX,ωq :� LrqnpX, tqs, rnf pX,ωq :� Lrqnf pX, tqs, rhpX,ωq :� LrhpX, tqs; (10)

by taking the Laplace transform of equation 8 and rearranging terms we obtainrnpX,ωq �rnf pX,ωq � rhpX,ωqrnpX,ωq ñ

ñ XrnpX,ωq �Xrnf pX,ωq � rhpX,ωq
1� rhpX,ωqXrnf pX,ωq. (11)
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This last equation will be the starting point for the proof of Theorem 3.4 in Section
6 (where the Laplace transforms will also be justified). For now it should clearly
motivate the following

Definition 2.4 (Stability condition). We will say that a spectrum P P SpRq with
compact support is stable if there is some κ ¡ 0 such that

inf
Reω¡0,
XPR

|1� rhpX,ωq| ¥ κ ¡ 0. (12)

3. Main results. Here we state the main results of the paper.

Theorem 3.1 (Local well-posedness in L1 for the Alber-Fourier equation). Let
f0 P L1pR2dq, P P L1pRdq. Then there exists a maximal time

T � T p}f0}L1pR2dq, q, ε, }P }L1pRdqq ¡ 0

such that there exists a unique mild solution fptq P Cpr0, T q, L1pR2dqq of equation
5.

Moreover, the blowup alternative holds, i.e.

either T � �8 or lim
tÑT�

}fptq}L1pR2dq � �8.
The proof can be found in Section 4.1.

Theorem 3.2 (Higher regularity for solutions of the nonlinear problem). Denote
fptq the solution of equation 5 with initial data f0 P SpR2dq, and T as in Theorem
3.1. Assume moreover that P P SpRdq. Then

fptq P SpR2dq @t P r0, T q. (13)

Moreover,
f P C8pr0, T q,Σs,1q @s P N. (14)

Theorem 3.2 is proved in Section 4.2. Combined with Lemma 2.2 it yields local-
in-time well-posedness and regularity of solutions for the Alber equation 1.

Theorem 3.3 (Global well-posedness and exponential bounds for the linearized
problem). Denote fptq the solution of the linearized Alber-Fourier equation 6 with
initial data f0 P SpR2dq. Assume moreover P P SpRdq. Then the maximal time is
T � �8 for all initial data and for each s P N there exists some C � Cps, d, q, P q ¡
0 so that

}fptq}Σs,1 ¤ }f0}Σs,1CeCt. (15)

Moreover, there exist some s2 � s2pdq and C � Cps2, d, q, P q so that

}qnptq}L8X � }Btqnptq}L8X � }Btfptq}L8X,k ¤ }f0}Σs2,1CeCt. (16)

The proof can be found in Section 4.2.

Theorem 3.4 (Landau damping for the Alber equation in d � 1). Let P P SpRq be
a background spectrum of compact support which is stable in the sense of Definition
2.4. Consider the linearized Alber equation

Btw�2πpk � Bxw

� q i
»
λ,yPR

e�2πiλy
�
n
�
x� y

2
, t
�� n�x� y

2
, t
��
dy P pk � λq dλ � 0,

npx, tq �
»
ξPR

wpx, ξ, tqdξ, wpx, k, 0q � w0px, kq P SpR2q.

(17)
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Then there exists r P N large enough so that the force Bxnpx, tq decays in time in
the sense that

}Bxn}L2
x,t
¤ C

κ� 1

κ2
}w0}Σr,8 . (18)

Furthermore, denoting Eptq : w0px, kq ÞÑ w0px�2πpkt, kq the free-space propagator,
there exists a wave operator W so that

lim
tÑ8 }wptq � EptqWpw0q}L8pR2q � 0. (19)

The proof is given in Section 6.

Theorem 3.5 (Equivalent formulations of the stability condition). Let P pkq P SpRq
be the background spectrum. Assume moreover that P is of compact support. Then
the following statements are equivalent:

(A). inf
Reω¡0,
XPR

|1 � rhpX,ωq| � 0, i.e. the spectrum is not stable in the sense of Defi-

nition 2.4.
(B).

D X� P R, Ω� P CzR such that HrDX�P spΩ�q � HrDX�P spΩ�q � 4πp

q
or

D X�,Ω� P R such that HrDX�P spΩ�q � 4πp

q
and DX�P pΩ�q � 0.

(C). dpΓ, 4πp{qq � 0, where

ΓX :� tSrDXP p�qsptq, t P Ru Y t0u,
�
ΓX �tz P C|z enclosed by ΓXu, Γ :�

¤
XPR

�
ΓX .

(20)

Moreover, we have the following sufficient condition for stability: if

@t� such that DXP pt�q � 0 the condition HrDXP spt�q   4πp

q
holds

then P is stable in the sense of Definition 2.4.

The proof can be found in Section 7. An implementation of the criterion (C)
above in the context of ocean engineering is visualized in Figures 3 and 4 and
discussed in Section 8.

Remark 3.1 (Stability condition and Alber’s nonlinear eigenvalue relation). In [1]
a two-dimensional setup is used, but the spectrum is integrated in the transverse
direction, leading to an effective one-dimensional spectrum and a condition on that.
This one-dimensional “eigenvalue relation” in our notation and scalings becomes

DX� P R, Repω�q ¡ 0 such that qi

»
R

P pk � X�
2 q � P pk � X�

2 q
ω� � 4π2ipk X�

dk � 1. (21)

If it is satisfied then linear instability follows. To see the relationship between
this condition and (B) of Theorem 3.5 above observe that for X� � 0, Ω� :�
ω�{p4πpiX�q equation 21 becomes

D0 � X� P R, Ω� P C with signpX�q � ImpΩ�q   0 such that

HrDX�P spΩ�q � 4πp

q
.
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The form (B) in Theorem 3.5 appropriately takes into account the case X� � 0 as
well (equation 21 by construction has no solutions for X� � 0, but stability may still
fail due to what could be called renormalized solutions corresponding to X� � 0).

Remark 3.2 (Compact support assumption for P pkq in the main results). In The-
orem 3.4 the assumption that P pkq has compact support is made. This allows for
Theorem A.3 to be invoked in Section 6 in order to guarantee the integrability re-
quirement of equation 66 in Theorem C.3, itself a central ingredient of the proof.
The same assumption is also needed for Lemma A.2, which is invoked in the proof
of Theorem 3.5. So it seems that in the current version of the proofs the compact
support requirement cannot be removed, although this might eventually be possible
with other techniques.

What does this mean in terms of the physical application in Section 8? Many
widely used ocean power spectra involve power decay at infinity, P pkq � Op|k|�aq
for |k| Ñ 8 [22], which technically is not of compact support. Even so, waves with
wavenumber |k| " 1 would carry very little energy – and their physics would be
predominantly surface tension and molecular effects, not hydrodynamics. So, from
an ocean engineering point of view, applying a smooth cut-off to wavenumbers
|k| ¡ KM makes very little difference. Note furthermore that all the results would
be uniform in KM .

4. Strong solutions for the Alber equation. To simplify notations we can
rewrite equation 5 as

Btf � 4π2ipk �Xf � Brm, f s � 0,

mpX, tq �
»
Rd
fpX, k, tqdk, fpX, k, 0q � f0pX, kq,

(22)

where

Brm, f s � iq
�
P
�
k � X

2

	
� P

�
k � X

2

	�
mpX, tq�

� εiq
»
Rd
mpy, tq

�
f
�
X � y, k � y

2
, t
	
� f

�
X � y, k � y

2
, t
	�
dy.

(23)

Lemma 4.1 (Bounds on Brm, f s). Let f, g, h P L1pR2dq, m P L1pRdq and consider
Brm, f s as defined in equation 23. Then

}Brm, f s}L1pR2dq ¤ 2|q| }P }L1pRdq}m}L1pRdq � 2|εq| }m}L1pRdq}f}L1pR2dq (24)

and ���B� »
Rd
fdk, f

����
L1pR2dq

¤ 2|q| }P }L1pRdq}f}L1pR2dq � 2|εq| }f}2L1pR2dq. (25)

Moreover,���B� »
Rd
gdk, g

�
� B

� »
Rd
hdk, h

����
L1pR2dq

¤

¤ 2|q|
�
}P }L1pRdq � |ε| }g}L1pR2dq � |ε| }h}L1pR2dq

	
}g � h}L1pR2dq.

(26)
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Proof. For inequality 24 observe that

}Brm, f s}L1pR2dq ¤ |q|
�����P�k � X

2

	
� P

�
k � X

2

	�
mpX, yq

����
L1pR2dq

�

� |εq|
����»

Rd
mpy, tq

�
f
�
X � y, k � y

2
, t
	
� f

�
X � y, k � y

2
, t
	�
dy

����
L1pR2dq

.

We will treat each term separately. Firstly,����P�k � X

2

	
� P

�
k � X

2

	�
mpX, tq

���
L1pR2dq

�

�
»
R2d

���P�k � X

2

	
� P

�
k � X

2

	��� |mpX, yq|dXdk
¤

»
R2d

����P�k � X

2

	���� |mpX, tq|dXdk � »
R2d

����P�k � X

2

	���� |mpXq|dXdk
�

»
R2d

����P�k � X

2

	���� dk|mpX, tq|dX � »
R2d

����P�k � X

2

	���� dk|mpX, tq|dX
� 2}P }L1pRdq}m}L1pRdq.

Moreover��� »
Rd
mpy, tq

�
f
�
X � y, k � y

2
, t
	
� f

�
X � y, k � y

2
, t
	�
dy
���
L1pR2dq

�
»
R3d

|mpy, tq|
���f�X � y, k � y

2
, t
	
� f

�
X � y, k � y

2
, t
	��� dy dX dk

¤
»
R3d

���f�X � y, k � y

2
, t
	��� dX dk |mpy, tq| dy�

�
»
R3d

���f�X � y, k � y

2
, t
	��� dX dk |mpy, tq| dy

� 2}fptq}L1pR2dq}mptq}L1pRdq.

Combining the above inequality 24 follows. Inequality 25 follows by virtue of the
elementary observation

}
»
Rd
fdk}L1pRdq �

»
Rd

����»
Rd
fpX, k, tqdk

���� dX ¤
»
R2d

|fpX, k, tq| dkdX � }f}L1pR2dq.

For inequality 26 we expand

Br
»
Rd
gdk, gs � Br

»
Rd
hdk, hs �

� iq
�
P
�
k � X

2

	
� P

�
k � X

2

	�� »
Rd
gpX, kqdk �

»
k

hpX, kqdk
	

� εiq
»
Rd

»
Rd
gpy, kqdk

�
g
�
X � y, k � y

2

	
� g

�
X � y, k � y

2

	�
dy

� εiq
»
Rd

»
Rd
gpy, kqdk

�
h
�
X � y, k � y

2

	
� h

�
X � y, k � y

2

	�
dy

� εiq
»
Rd

� »
Rd
gpy, kqdk �

»
Rd
hpy, kqdk

	�
h
�
X � y, k � y

2

	
� h

�
X � y, k � y

2

	�
dy.

The result follows by treating each term as before.
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Moreover, consider some s P N and the multi-indices |α� β � γ � δ| ¤ s. Let us
denote

fα,β,γ,δ :� XαkβBγXBδkf.
By direct computation one obtains

Btfα,β,γ,δ � 4π2ipk �Xfα,β,γ,δ � Bpα,β,γ,δqrf s,
fα,β,γ,δpX, k, 0q � fα,β,γ,δ0 pX, kq :� XαkβBγXBδkf0pX, kq.

(27)

The detailed expression for Bpα,β,γ,δqrf s can be found in Appendix D, and it contains

terms of the form fα
1,β1,γ1,δ1 , Xα1Bγ1XmpX, tq, for α1 � β1 � γ1 � δ1 ¤ α � β � γ � δ.

Furthermore, one can directly – if somewhat tediously – obtain the following

Lemma 4.2 (Bound on the nonlinearity Bpα,β,γ,δqrf s). Let 1 ¤ s P N, and consider
multi-indices

|α� β � γ � δ| ¤ s,

and Bpα,β,γ,δqrf s as in Appendix D. Assume also that P P SpRdq. Then there exists
a C � Cps, d, q, P q ¡ 0 such that

}Bpα,β,γ,δqrf s}L1pR2dq ¤ C
�
1� ε}f}Σs�1,1

�
}f}Σs,1 .

4.1. Proof of Theorem 3.1. Denote

Uptq : gpX, kq ÞÑ e4π2ipk�XtgpX, kq, (28)

the free-space propagator for the Alber-Fourier equation, i.e. gptq � Uptqg0 means
that Btg � 4π2ipk �Xg � 0 and gp0q � g0. Observe that, by construction,
}Uptqg}L1

X,k
� }g}L1

X,k
. Equation 22 can now be written in mild form as

fpX, k, tq � Uptqf0 �
» t

0

Upt� τqB
� »

Rd
fpτqdk, fpτq

�
dτ. (29)

Define

E :�  
g P L8p0, T0;L1pR2dqq so that }g}L8p0,T0;L1pR2dqq ¤M

(
for some M,T0 ¡ 0, to be determined below. Moreover denote

G : E Q g ÞÑ Uptqf0 �
» t

0

Upt� τqB
� »

Rd
gpτqdk, gpτq

�
dτ.

We will show that the operator G is a strict contraction on E. First we need to
show that GE � E. Direct application of inequality 25 from Lemma 4.1 yields

}Gg}L8p0,T0;L1pRdqq ¤ }f0}L1 � T0

���B� »
Rd
gpτqdk, gpτq

����
L8L1

¤ }f0}L1 � T0|q|
�
2}P }L1}g}L8L1 � 2|ε|}g}2L8L1

�
¤ }f0}L1 � T0|q|p2}P }L1M � 2|ε|M2q.

A (non-sharp) way to guarantee that }Gg}L8t L1
X,k
¤M is to consider

M � 2}f0}L1pR2dq and T0   1

|q| maxt4}P }L1pRdq, 4|ε|u pM � 1q . (30)
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Now using inequality 26 from Lemma 4.1, for any g, h P E we obtain

}Gg �Gh}L8L1 ¤ T0}Br
»
k

gpτqdk, gpτqs �Br
»
k

hpτqdk, hpτqs}L8τ L1

¤ 2T0|q|
�
}P }L1pRdq � |ε| }g}L1pR2dq � |ε| }h}L1pR2dq

	
}g � h}L1pR2dq

¤ 2T0|q|p}P }L1pRdq � 2εMq}g � h}L1pR2dq.

For T0 satisfying condition 30 the Lipschitz constant L ¤ T0|q|p}P }L1 � 2εMq of
the mapping is strictly smaller than 1. Therefore, by virtue of the Banach Fixed
Point Theorem, there exists a unique fixed point f P E, f � Gf, i.e. a unique mild
solution of 22 for t P p0, T s. Observe that by construction Gg is continuous in time
as a mapping with values in L1pR2dq.

Since }fpT0q}L1pR2dq   8, we can repeat the argument and extend the solution
in time. Thus the blowup alternative follows, i.e. either the solution exists for all
times, or there exists a finite blow-up time T   8 so that lim

tÑT�
}fptq}L1pR2dq � �8.

Whether T is finite or infinite, it will be called the maximal time for which fpX, k, tq
exists.

To show continuous dependence of solutions of 22 on initial data we consider
fpX, k, tq as above and gpX, k, tq being a solution of 22 with initial data g0pX, kq.
Take some T1 smaller than both the maximal times of f and g; then there exists
some M1 so that

}fptq}L8p0,T1;L1pR2dqq, }gptq}L8p0,T1;L1pR2dqq ¤M1.

Now denote h :� f � g; by subtracting the equations for f, g and using the same
ideas as above, it follows that for all t P r0, T1s

}hptq}L1pR2dq ¤}f0 � g0}L1pR2dq � 2

» t
0

}hpτq}L1

�}P }L1pRdq � ε}fpτq}L1pR2dq

�ε}gpτq}L1pR2dq
�
dτ

¤}f0 � g0}L1pR2dq � 2p}P }L1pRdq � 2εM1q
» t

0

}hpτq}L1pR2dqdτ.

(31)

Applying the the Gronwall inequality yields

}hptq}L1 ¤ }f0 � g0}L1

�
1� t2p}P }L1 � 2εM1qet2p}P }L1�2εM1q

	
@t P r0, T1s,

and hence the continuous dependence of solutions on initial data.

4.2. Propagation of regularity and Proof of Theorems 3.2 & 3.3.

Theorem 4.3 (Local well-posedness for the nonlinear Alber-Fourier-I equation
on Σs,1). Denote fpX, k, tq the solution of 22 with initial data f0pX, kq P Σs,1,
T � T p}f0}L1 , q, ε, }P }L1q the maximal time for which fptq P L1pR2dq and M0ptq :�
}fptq}L1pR2dq P Cr0, T q. Moreover, for each 1 ¤ s ¤ a0 denote Msptq :� }fptq}Σs,1 .
Then there exists a constant C ¡ 0 depending on s, d, q, ε, P and the background
spectrum P such that

Msptq ¤Msp0q � Cpsq
» t

0

Ms�1pτqMspτqdτ @t P r0, T q, (32)

and therefore, for all s P N,
Msptq   8 @t P r0, T q, fptq P Cpr0, T q,Σs,1q. (33)
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Proof. Consider multi-indices |α � β � γ � δ| ¤ s; as was seen earlier, fα,β,γ,δ :�
XαkβBγXBδkf satisfies equation 27. By passing to mild form we have

fα,β,γ,δptq � Uptqfα,β,γ,δ0 �
» t

0

Upt� τqBpα,β,γ,δqrfpτqsdτ.

Taking L1 norms and using Lemmata 4.1 and 4.2 we have

}fα,β,γ,δptq}L1 ¤ }fα,β,γ,δ0 }L1 � C
» t

0

}fpτq}Σs�1,1}fpτq}Σs,1dτ. (34)

Equation 32 follows by summing over all |α � β � γ � δ| ¤ s. The first part of
equation 33 follows by applying recursively Gronwall’s inequality to equation 32.
The second part of equation 33 follows automatically from the mild form 34 since
the time integrals now are known to exist.

Proof of Theorem 3.2: For the proof of equation 13 it suffices to observe that the�
sPN

Σs,1pR2dq regularity is propagated in time by virtue of Theorem 4.3, and that it

implies Schwarz-class regularity by virtue of Lemma 2.2.
For the proof of smoothness with respect to the time variable stated in equation

14, observe that upon applying the operator Blt to equation 22, one obtains the
problem

BtpBltfq � 4π2ipk �XpBltfq � Brm, Bltf s � Bplqrf s, mpX, tq �
»
Rd
fpX, k, tqdk,

Bltfp0q � 4π2ipk �XpBl�1
t fq � Brm, Bl�1

t f s � Bpl�1qrf s,
where Bp0qrf s � 0 and

i

εq
Bplqrf s �

�
¸

0¤l1 l

�
l

l1


»
Rd
Bl�l1t mpy, tq

�
Bl1t f

�
X � y, k � y

2
, t
	
� Bl1t f

�
X � y, k � y

2
, t
	�
dy.

By working recursively in l as in the proof of Theorem 4.3, the result follows.

Proof of Theorem 3.3: We start by recasting equation 27 in mild form and taking
the L1 norm. Using the fact that ε � 0 and Lemma 4.2 we obtain

}fα,β,γ,δptq}L1pR2dq ¤ }fα,β,γ,δ0 }L1pR2dq � C
» t

0

}fpτq}Σs,1pR2dqdτ.

Summing over all |α� β � γ � δ| ¤ s yields

}fptq}Σs,1pR2dq ¤ }f0}Σs,1pR2dq � C
» t

0

}fpτq}Σs,1pR2dqdτ.

Then estimate 15 follows by Gronwall’s inequality.
By virtue of Lemma 2.2, for any r and for s1 large enough we have }fptq}Σr,8 ¤

C}fptq}Σs1,1 ¤ CeCt}f0}Σs1,1 .
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Now for the position density observe that

}qnptq}L8pRdq � sup
XPRd

|
»
Rd
fpX, ξ, tqdξ|

¤
»
Rd

dξ

sup
XPR

p1� |ξ|d�1q sup
X,ξPRd

|p1� |ξ|d�1qfpX, ξ, tq|

¤ C}fptq}Σd�1,8 ¤ C 1eC
1t}f0}Σs1,1 .

Moreover, considering equation 6 and using assumptions on P we obtain

}Btfptq}L8pR2dq ¤ }k �Xfptq}L8pR2dq � C}qnptq}L8pRdq ¤ C}fptq}Σs1,1pR2dq,

for some s1 P N large enough. Similarly

Btqn � »
Rd
BtfpX, k, tqdk

� 4π2ip

»
Rd
k �Xfdk � iq

»
Rd

�
P
�
k � X

2

	
� P

�
k � X

2

	�
dk

»
Rd
fpX, ξ, tqdξ

implies

}Btqnptq}L8pRdq ¤ C}|k|d�2|X|fptq}L8pR2dq � C}qnptq}L8pRdq ¤ C}fptq}
Σs
1
1,1pR2dq,

for some s11 P N large enough. Thus estimate 16 follows by selecting
s2 � maxts1, s1, s

1
1u.

5. The free-space position density. In this Section we will establish some prop-
erties of the free-space position density nf px, tq, defined in equation 9, that we will
use for the proof of Theorem 3.4.

Lemma 5.1 (Alternative expression for qnf .).qnf pX, tq :� F�1
xÑX rnf px, tqs � qw0pX, 2πptXq, (35)

where qw0pA,Bq � F�1
px,kqÑpA,Bqrw0px, kqs.

Proof. Simple calculations yield

qnf pX, tq � »
R
e2πixXnf px, tqdx �

»
R2

e2πixXw0px� 2πpkt, kqdkdx

�
»
R4

e2πixX�2πirA px�2πpktq�B ks qw0pA,BqdkdxdAdB

�
»
R2

»
R2

e2πix rX�Ase2πik r2πptA�Bsdxdk qw0pA,BqdAdB � qw0pX, 2πptXq.

Lemma 5.2 (Uniform bound for Xrnf .). Assume that there exists some D ¡ 0 such
that

| qw0pX,Kq| ¤ D

1� |X|2 � |K|2
and rnf pX,ωq as in equation 10. Then, there exists a constant C ¡ 0 such that for
all X P R

sup
Reω¡0

|Xrnf pX,ωq| ¤ C D.
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Proof. Using Lemma 5.1 one readily checks that

sup
Reω¡0

|Xrnf pX,ωq| � sup
Reω¡0

» 8

0

|e�ωtXqnf pX, tq|dt ¤ » 8

0

|Xqnf pX, tq|dt
�

» 8

0

|X qw0pX, 2πptXq|dt

¤
» 8

0

���X D

1� |X|2 � |2πptX|2
���dt ¤ » 8

0

CD

1� |2πpt|2 dt.

Observation 5.3. We will use assumptions of the form

| qw0pX,Kq| ¤ Dr

1� |X|r � |K|r

in the sequel, which are weaker versions of qw0 P Σr,8pR2dq. By virtue of Lemma
2.2 it follows that, for some r1 large enough

Dr ¤ } qw0}Σr,8pR2dq ¤ C}w0}Σr1,8pR2dq.

Lemma 5.4 (Space-time L2 estimates for the free-space position density). Let

| qw0pX,Kq| ¤ Dr

1� |X|r � |K|r

for some large enough r and constant Dr ¡ 0. Assume moreover r� 1
2 ¡ a ¡ b ¥ 0

(a, b, r don’t have to be integer.) Then�� »
X,t

|Xatbqnf pX, tq|2dXdt
�
1

2

¤ Cpa, bqDr.

Proof. We will break up the norm as follows:

Figure 1. The domains of integration for the integrals Ij , j � 1, . . . , 6.
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}Xatbqnf pX, tq}L2
X,t
�

»
t,X

|Xatb qw0pX, 2πptXq|2dXdt

�I1 � I2 � I3 � I4 � I5 � I6
�

»
|X| 1,0 t 1

�
»

|X| 1,1 t 1{|X|

�
»

|X|¡1,0 t 1{|X|

�
»

|X|¡1,1 t

�
»

1{t |X| 1,1 t

�
»

|X|¡1,1{|X| t 1

,

see Figure 1. One readily observes that

I1 �
»
|X| 1

»
|t| 1

|Xatb qw0pX, 2πptXq|2dtdX ¤ CD2
r ,

I2 �
»
|X| 1

» 1{|X|

1

|Xatb qw0pX, 2πptXq|2dtdX ¤ D2
rC

»
|X| 1

|X|2a
» 1{|X|

1

t2bdtdX

¤ D2
rC

»
|X| 1

|X|2a�2b�1dX ¤ D2
rC,

I3 �
»
|X|¡1

» 1{|X|

0

|Xatb qw0pX, 2πptXq|2dtdX

¤ D2
r

»
|X|¡1

» 1

0

|X|2a
|X|2r dtdX � CD2

r

» 8

1

X2pa�rqdX ¤ CD2
r .

By using the elementary observation that x2at2b

p1�xr�pxtqrq2 ¤ x2at2b

pxtq2r � x2pa�rqt2pb�rq

for t ¥ 0, x ¥ 0, we have

I4 �
» 8

1

»
|X|¥1

|Xatb qw0pX, 2πptXq|2dtdX

¤ CD2
r

» 8

1

»
|X|¥1

|X|2pa�rqt2pb�rqdtdX ¤ CD2
r

and

I5 �
» 8

1

» 1

|X|�1{t
|Xatb qw0pX, 2πptXq|2dXdt

¤ CD2
r

» 8

1

» 1

|X|�1{t
|X|2pa�rqt2pb�rqdXdt

� CD2
r

» 8

1

t2pb�rq
» 1

|X|�1{t
|X|2pa�rqdXdt ¤ C 1D2

r

» 8

1

t2pb�rqp1� t�2pa�rq�1qdt

¤ C 1D2
r

� » 8

1

t2pb�aq�1dt�
» 8

1

t2pb�rqdt
	
¤ CD2

r .

Finally, by using the elementary observation that x2at2b

p1�xr�pxtqrq2 ¤ x2at2b

x2r � x2pa�rqt2b

we have

I6 �
» 8

1

» 1

1{|X|
|Xatb qw0pX, 2πptXq|2dtdX ¤ CD2

r

» 8

1

» 1

0

t2b|X|2pa�rqdtdX

� CD2
r

» 8

1

|X|2pa�rqdX
» 1

0

t2bdt ¤ C 1D2
r .
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Collecting all above estimates yield the result stated in the lemma.

We will see that, in the stable case, the position density for the linearized problem
inherits these estimates in an appropriate sense.

6. Proof of Theorem 3.4.

6.1. The Laplace transform picture. Theorem 3.3 implies that the Laplace

transforms rnpX,ωq, rfpX, k, ωq are well-defined and analytic for Repωq large enough.
Moreover we can apply Fubini to the effect that rn � Lr ³

Rd
fdks � ³

Rd
Lrf sdk, for

Repωq large enough. The same follows for rnf pX,ωq by setting P pkq � 0.
Thus if we first take the Laplace transform of equation 6,

ω rf � f0pX, kq � 4π2ipk �X rf � qi�P�k � X

2

	
� P

�
k � X

2

	�rnpX,ωq � 0,

re-arrange terms

fpX, k, ωq � f0pX, kq � qi
�
P pk � X

2 q � P pk � X
2 q

� rnpX,ωq
ω � 4π2ipk �X ,

and integrate in k we obtain

rnpX,ωq � »
Rd

f0pX, kq
ω � 4π2ipk �Xdk � qi

»
Rd

P pk � X
2 q � P pk � X

2 q
ω � 4π2ipk �X dk � rnpX,ωq. (36)

This is exactly the first expression in equation 11. From this alternative derivation
we obtain that for X � 0 and d � 1

rnf pX,ωq � »
R

f0pX, kq
ω � 4π2ipk �Xdk � 1

4πipX
Hrf0pX, �qs

� ω

4π2ipX

	
(37)

and

rhpX,ωq � qi

»
R

P pk � X
2 q � P pk � X

2 q
ω � 4π2ipk X

dk � q

4πp
HrDXP p�qs

� ω

4π2ipX

	
. (38)

Observation 6.1 (Case X � 0). For X � 0 we have rhp0, ωq � 0, and rnf p0, ωq �
1
ω

³
R f0p0, kqdk, which is of course consistent with Lemma 5.1 and its consequenceqnf p0, tq � qw0p0, 0q. Thus it follows that qnp0, tq � qnf p0, tq � qw0p0, 0q for all t.

Observation 6.2 (Domain of analyticity & Sokhotski-Plemelj). From the above

explicit expressions it follows that, for each X P R, the Laplace transforms rhpX,ωq,rnpX,ωq, rnf pX,ωq are analytic in ω for all Repωq ¡ 0.
Moreover, for X � 0, we haverHpX, sq :� lim

ηÑ0

rhpX, η � isq
� lim
ηÑ0

q

4πp
HrDXP s

� η � is
4π2ipX

	
� q

4πp
SrDXP s

� s

4π2pX

	 (39)

andrNf pX, sq : � lim
ηÑ0

rnf pX, η � isq
� lim
ηÑ0

1

4πipX
Hrf0pX, �qsp η � is

4π2ipX
q � 1

4πipX
Srf0pX, �qsp s

4π2pX
q

(40)
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by virtue of the Sokhotski-Plemelj formula, cf. Theorem C.2 in the Appendix. More-
over, observe that

|1�rhpX,ωq| ¥ κ @X P R, Repωq ¡ 0 ñ |1� rHpX, sq| ¥ κ @X, s P R. (41)

6.2. Inverting the Laplace transform. Recalling now equation 11, we set

rIpX,ωq :�
rhpX,ωq

1� rhpX,ωqXrnf pX,ωq;
then

XqnpX, tq �Xqnf pX, tq � L�1
ωÑtrrIpX,ωqs.

Observe also that equations 39 and 40 imply

IpX, sq :� lim
ηÑ0�

rIpX, η � isq � rHpX, sq
1� rHpX, sqX rNf pX, sq.

We will use Theorem C.3 from the Appendix to compute L�1
ωÑtrrIpX,ωqs for each

0 � X P R. To that end, we will need to check that its assumptions are satisfied,

namely that rIpX,ωq is bounded and analytic on tRepω ¡ 0uq; that |rIpX,ωq| decays
uniformly as |ω| Ñ 8; and that IpX, �q P L1pRq X C0pRq for all X P R;

First of all, Observation 6.2 directly implies that rIpX,ωq is bounded and analytic
on the open half-plane tRepω ¡ 0uq. Moreover,

lim
ρÑ8 sup

Repωq¡0
|ω|¡ρ

|rIpX,ωq| ¤ sup
Repω1q¡0

|Xrnf pX,ω1q| � lim
ρÑ8 sup

Repωq¡0
|ω|¡ρ

|rhpX,ωq| � 0

where in the last step we used Lemma A.2 from the Appendix.
Finally, the expression for IpX, sq implies that it is continuous in s. To show that

IpX, �q P L1pRq uniformly in X observe that»
R
|IpX, sq|ds ¤ 1

κ
sup
s1PR

|X rNf pX, s1q| »
R
| rHpX, sq|ds ¤ C,

where we used property 41, Lemma 5.2 for X rNf , and Theorem A.3 for rH (observe
in particular that, by construction, DXP is a function of compact support with
integral

³
RDXP pkqdk � 0 for all 0 � X P R, hence Theorem A.3 indeed applies).

So all the assumptions of Theorem C.3 are satisfied, and we can apply it to the
effect that

XqnpX, tq �Xqnf pX, tq � » 8

�8
ei s t

rHpX, sq
1� rHpX, sqX rNf pX, sqds. (42)

Remark 6.1. If one tries to use Theorem C.3 directly on XrnpX,ωq then the only
way to guarantee the L1-property required in equation 66 seems to be requiring³
kPR f0pX, kqdk � 0 for all X P R. Here instead we only require that the limit as

η Ñ 0� of the difference XrnpX, s � iηq �Xrnf pX, s � iηq is in L1
spRq uniformly in

X, avoiding any extra assumptions on the initial data.

6.3. Space-time estimates for the force. First we use equation 42 to prove the
following estimate

Lemma 6.3. Let a ¡ 1, b ¡ 0, and moreover recall that, since f0 P SpR2q,

| qw0pX,Kq| ¤ }w0}Σr1,8
1� |X|r � |K|r
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for any r, in particular for r ¡ maxta� 1
2 , b� 1

2u. Then there exists a C � Cpa, b, P q
so that

}t|X|aqn}L2
X,t
� }|X|bqn}L2

X,t
¤ Cpa, b, P qDr

κ

for all 0 � X P R. Note that, by virtue of Observation 5.3, Dr ¤ C}w0}Σr1,8 for
some r1 sufficiently large.

Proof. First we will bound Xatbqn norms from appropriate quantities involving qnf .
Using the alternate Fourier transform F, introduced in Section 2.1, on 42 it follows
that

XqnpX, tq �Xqnf pX, tq � F�1
sÑt

�
X rNf pX, sq rHpX, sq

1� rHpX, sq
�
.

Thus

}Xbqn�Xbqnf }L2
X,t
�

���F�1
sÑt

�
Xb rNf pX, sq rHpX, sq

1� rHpX, sq
� ���

L2
X,t

� C
���Xb rNf pX, sq rHpX, sq

1� rHpX, sq
���
L2
X,s

¤ C
�

sup
X,s

��� 1

1� rHpX, sq
���	 � sup

X,s
| rHpX, sq|	 }Xb rNf }L2

X,s
.

For the first factor we use equation 41. For the second factor observe that, by virtue
of Theorem C.1, we have

sup
X,s

| rHpX, sq| � | q
4πp

| sup
ζ,t
|SrDζP sptq|

¤ C sup
ζ
}SrDζP s}H1 ¤ C 1 sup

ζ
}DζP }H1 ¤ C2,

(43)

so finally

}Xbqn}L2
X,t
¤ C}Xb rNf }L2

X,s
� C 1}Xbqnf }L2

X,t
(44)

since qnf � F�1r rNf s. Now working similarly and using equation 42 we have

Xat
�qnpX, tq � qnf pX, tq� � i

» 8

�8
eistBsX

a rNf pX, sq rHpX, sq
1� rHpX, sq ds,

which implies

}XatpqnpX, tq � qnf pX, tqq}L2
X,t
� C

���BsXa rNf pX, sq rHpX, sq
1� rHpX, sq

���
L2
X,s

¤ C}BsXa rNf }L2
X,s

sup
X,s

��� rHpX, sq
1� rHpX, sq

���
� C

�»
R2

|Xa rNf pX, sq|2� sup
s1

��� Bs rHpX, s1q
p1� rHpX, s1qq2

����2

dsdX

� 1
2

.

(45)

Now, observe that

}BsXa rNf }L2
X,s
� }tXaqnf }L2

X,t
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by virtue of a Fourier transform; | rHpX, sq{p1� rHpX, sqq| ¤ C3{κ2 by virtue of 41
and 43; and��� Bs rHpX, sq
p1� rHpX, sqq2

��� ¤ C

κ2

���Bs rHpX, sq���
� C 1

κ2

���BsSrDXP s
� s

4π2pX

	��� � C2

κ2

1

|X|
���SrDXP

1s
� s

4π2pX

	��� (46)

so that by collecting all this and inserting it back in 45 we get

}XatpqnpX, tq � qnf pX, tqq}L2
X,t
¤ C

κ
}tXaqnf }L2

X,t

� C

κ2
sup
s1

���SrDXP
1sp s1

4π2pX
q
���}Xa�1qnf }L2

X,t
.

Using our assumptions on P we have

sup
s1PR

|SrDXP
1s
� s1

4π2pX

	
| ¤ sup

ζ,τ
|SrDζP

1spτq| ¤ sup
ζPR

}DζP
1}H1pRq ¤ C,

and therefore

}tXaqn}L2
X,t
¤ C

�
1

κ
� 1

κ2


�
}tXaqnf }L2

X,t
� }Xa�1qnf }L2

X,t

	
(47)

Then the result of the lemma follows by combining estimates 44 and 47 together
with Lemma 5.4.

Applying now Lemma 6.3 we obtain estimate 18 stated in Theorem 3.4.

6.4. Construction of the wave operator. Equation 7 implies

e�4π2ipk�XtfpX, k, tq � f0pX, kq � JpX, k, tq,

JpX, k, tq :�qi
» t

0

e�4π2ipk�Xτ
P
�
k � X

2

	
� P

�
k � X

2

	
X

XqnpX, τqdτ (48)

For any 0   θ   1{2 and γ ¡ 1 using the Cauchy-Schwarz inequality we have»
R
|Jpk,X, tq|dX ¤ C sup

ζ,s
|DζP psq|

»
R

» t
0

|XqnpX, τq|dτdX
¤ C 1

» �8

0

» t
0

a
1� p|X|θτq2 � |X|2γa
1� p|X|θτq2 � |X|2γ |XqnpX, τq|dτdX

¤ C2
d»

R

» t
0

�
1� p|X|θτq2 � |X|2γ

�
|X|2|qnpX, τq|2dτdX

�
d» �8

0

» t
0

1

1� p|X|θτq2 � |X|2γ dτdX.

The first factor in the last estimates is estimated byd» �8

0

» t
0

�
1� p|X|θτq2 � |X|2γ

�
|XqnpX, τq|2dτdX ¤ }p1� |X|θt� |X|γqXqn}L2

X,t

¤ }Xqn}L2
X,t
� }t|X|1�θqn}L2

X,t
� }|X|1�γqn}L2

X,t
¤ Cpθ, γ, P q}w0}Σr1,8
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for some r1 large enough by virtue of Lemma 6.3. For the other factor we break the
integral up over the contributions from different regions,» �8

0

» t
0

1

1� p|X|θτq2 � |X|2γ dτdX � I1 � I2 � I3 � I4 � I5 � I6,

where we use the same breakdown as in Figure 1. Without loss of generality we
assume t ¡ 1. Then the first integral is estimated as

I1 ¤
» 1

0

» 1

0

dτdX � 1.

For the second integral we have

I2 ¤
» 8

1

» 1{t

0

1

x2θτ2
dτdx �

» 8

1

τ�2

1{t»
x�0

x�2θdτdx

�C
» 8

1

τ�2�2θ�1dτ � Cp1� t�2�2θq ¤ C 1.

Here we used �2θ ¡ �1 ðñ θ   1{2 for the integral with respect to x to exist
and �3� 2θ   �1 ðñ θ   1 for the integral with respect to τ to exist. Moreover

I3 ¤
» 8

1

» 1{x

0

x�2γdtdx �
» 8

1

x�2γ�1dx � C,

where we used �2γ � 1   �1 ðñ γ ¡ 0. For I4 we refer to Lemma A.1 in the
Appendix, where setting ζ � 3{4 leads to

1

pxθτq2 � x2γ
¤ 1

pxθτq 3
2x

γ
2

� τ�
3
2x�

γ
2� 3

2 θ.

Thus

I4 ¤ C

» 8

1

» t
1

τ�
3
2x�

γ
2� 3

2 θdτdx � C

�
τ�

1
2

���t
1


 �
x1� γ

2� 3
2 θ
���8
1



� C 1p1� t� 1

2 q,

where we used the fact that, by assumption, γ{2�3θ{2 ¡ 5{4 ¡ 1. The next integral
is estimated as

I5 ¤ C

» 1

0

» 8

1{x

1

x2θt2
dtdx � C

» 1

0

x�2θ

» 8

1{x
τ�2dτdx

� C

» 1

0

x�2θ

�
τ�1

���8
1{x



dx � C

» 1

0

x1�2θdx � C 1,

since 1� 2θ ¡ �1 ðñ θ   1{2. Finally,

I6 ¤ C

» 8

1

» 1

1{x
x�2γdτdx ¤

» 8

1

x�2γ�1dx ¤ C.

So we showed that »
R
|Jpk,X, tq|dX ¤ C}w0}Σr1,8 .
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Since JpX, k, tq is an absolutely convergent integral in t, the uniform-in-t bound
automatically implies the existence of

J8pX, kq :� lim
tÑ8 JpX, k, tq

�qi
» 8

0

e�4π2ipk�Xτ
P
�
k � X

2

	
� P

�
k � X

2

	
X

XqnpX, τqdτ P L8pR;L1pRqq.

Now equation 48 can be recast as

Up�tqfptq � f0 � Jptq ñ lim
tÑ8

�
Up�tqfptq � f0

� � J8.

By setting Wpw0q :� FXÑxrf0 � J8s, we have

}wptq � EptqWpw0q}L8pR2q ¤}fptq � Uptq
�
f0 � J8

�}L8pR;L1pRqq
�}Up�tqfptq � f0 � J8}L8pR;L1pRqq,

hence equation 19 follows.

Remark 6.2. Observe that by collecting the above it follows that

}Wpw0q}L8x,k ¤ }w0}L8x,k � }J8}L8k L1
X
¤ C 1}w0}Σr1,8 .

7. Proof of Theorem 3.5. In this section we present the proof of the last main
theorem. We split the proof into four parts.

7.1. Elaboration and symmetry of (A). Assuming condition (A) holds, there
exists a sequence pXn, ωnq � pXn, an � ibnq P R� tRepzq ¡ 0u such that

lim
nÑ8

rhpXn, ωnq � 1.

Without loss of generality we can assume Xn � 0 for all n P N (it suffices to observe

that rhp0, ωq � 0 for all ω). Note that X� can still be zero.

Symmetry: The expression for h̃pX,ωq in 38, namely

rhpX,ωq � qi

»
R

P pk � X
2 q � P pk � X

2 q
ω � 4π2ipk X

dk,

yields that, for Xn, an, bn P R as above, we have the following equivalence

lim
nÑ8

rhpXn, an � ibnq � 1 ðñ lim
nÑ8

rhpXn,�an � ibnq � 1,

i.e.

DXn P R, ωn P C : rhpXn, ωnq Ñ 1 ðñ DXn P R, Repωnq ¥ 0 : rhpXn, ωnq Ñ 1.

Indeed all the conditions pAq, pBq and pCq have this symmetry.
Claim I: The sequence pXn, ωnq is bounded.

Proof. If |Xn| � |ωn| Ñ 8, then

lim
nÑ8

rhpXn, ωnq � qi lim
nÑ8

»
R

P pk � Xn
2 q � P pk � Xn

2 q
ωn � 4π2ipk Xn

dk � 0 � 1.
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Thus pXn, ωnq has accumulation points in R� tRepzq ¥ 0u and from now on we
will denote

pX�, a� � ib�q � pX�, ω�q :� lim
nÑ8pXn, ωnq, (49)

up to extraction of a subsequence.
Claim II: Denote

Ωn :� ωn
4πpiXn

� bn � ian
4πpXn

. (50)

Then Ωn is bounded.

Proof. First of all observe that Ωn is well-defined since, as we saw above, Xn � 0.
By virtue of equation 38,rhpXn, ωnq � q

4πp
HrDXnP spΩnq. (51)

Clearly, if |Ωn| Ñ 8 then pq{4πpqHrDXnP spΩnq Ñ 0 � 1. Thus, by extracting yet
another subsequence if necessary, we have pXn,Ωnq Ñ pX�,Ω�q P R� C.

7.2. Proof of pAq ðñ pBq. We will examine separately the following two cases:

Case 1: If ImpΩ�q � 0 then, by continuity,

rhpXn, ωnq Ñ 1 ðñ q

4πp
HrDX�P spΩ�q � 1.

Case 2: If ImpΩ�q � 0 then, by the Sokhotski-Plemelj formula (cf. Theorem C.2),
for X� ¡ 0 we have

rhpXn, ωnq Ñ 1 ðñ q

4πp
SrDX�P spΩ�q � 1 ðñ

" q
4πpHrDX�P spΩ�q � 1,

i q
4πpDX�P pΩ�q � 0,

*
while for X�   0 we have SrDX�P spΩ�q � 1, leading to the same end result. For
X� � 0 observe that both one-sided limits ImpΩnq Ñ 0�, yield the same result as
well.

Checking that (B) implies (A) is obvious.

7.3. Proof of pBq ðñ pCq. Denote FXpΩq :� HrDXP spΩq. Like before, if
�X� ¡ 0 we have � ImpΩ�q   0, and for X� � 0 we should take each one-sided
limit separately. All these cases follow the same steps, so without loss of generality
we only present the case X� ¡ 0.

Assume Case 1 of (B) above holds, i.e. DX� ¡ 0, ImpΩ�q � 0 such that
HrDX�P spΩ�q � 4πp{q.

Then by virtue of the argument principle [26], for any contour γ within the lower
half-plane containing Ω�, its image FX�pγq :� tz|Dw P γ : z � FXpwqu is enclosing
4πp{q. Let us select γη the closed contour comprised by parts of the horizontal

line R � iη and the semicircle t eiθη , θ P p�π, 0qu. Clearly, Ω� will eventually be

enclosed by γη for η small enough, thus FX�pγηq is enclosing 4πp{q for η small
enough. Using the decay properties of FX�pωq as |ω| Ñ 8 (cf. Lemma A.2 in the
Appendix) and the Sokhotski-Plemelj formula, it follows that lim

ηÑ0
FX�pγηq � ΓX

as defined in equation 20, i.e. 4πp{q P
�
ΓX� .
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If Case 2 of (B) above holds, denote Ωn a sequence of points on Γηn such that
Ωn Ñ Ω�; then by construction lim

nÑ8FX�pΩnq � 4πp{q and therefore 4πp{q P
lim
ηÑ0

FX�pγηq � ΓX� .

To prove that pCq ùñ pBq, first we need to observe that, since lim
|X|Ñ8

}DXP }H1 �
0, there exists M ¡ 0 such that for |X| ¡M all points of ΓX are inside tz P C| |z|  
2πp{qu. Thus 4πp{q P Γ implies DX� P r�M,M s such that dp4πp{q,

�
ΓX�q. One now

readily checks that there exists Ω� with ImpΩ�q ¤ 0 such that lim
ΩÑΩ�

ImpΩq 0

FX�pΩq �

4πp{q.
7.4. Sufficient condition for stability. This follows from the elementary obser-
vation that, for the curve ΓX on the complex plane, which starts and ends at 0,
to be winding around the real number 4πp{q, it is necessary to intersect the real
axis somewhere on the right of 4πp{q. The argument can be easily adapted for the
limiting case 4πp{q P ΓX . See also Figures 3, 4 for a visualization of this point.

The proof is completed by observing that, according to equation 20, ΓX �
tSrDXP sptq, t P Ru intersects the real axis only for those t� that are quasi-critical
points, DXP pt�q � 0.

8. Applications.

8.1. The question: Are realistic sea states modulationally (un)stable?
Landau damping for the Alber equation (i.e. dispersion of inhomogeneities in the
presence of a homogeneous background) has been conjectured at least since [23], but
no precise results existed before the one presented here. In this paper we establish
rigorously the decay of inhomogeneities in the stable case, but for ocean engineers
the most immediate question is a practical and reliable way to investigate whether
a given spectrum is stable or not.

Alber’s “eigenvalue relation” is a system of two (real valued) nonlinear equa-
tions in three (real) unknowns, which in general has one-dimensional manifolds of
solutions. Determining whether such a system has solutions or not is not straight-
forward, and has attracted a lot of attention in the ocean waves community [13,
23, 29, 32]. In [13] a state-of-the-art investigation of this question is presented,
describing the challenges. We will show that criterion (C) of Theorem 3.5 provides
a reliable and more straightforward way to investigate the modulational stability
of any given spectrum. But first let us go over how we choose the spectra to be
investigated.

8.2. JONSWAP spectra and the North Atlantic Scatter Diagram. While
the power spectrum of a sea state can in principle be directly measured, in practice
often parametric spectra are used. A widely used such parametric spectrum is
the so-called JONSWAP spectrum (the initials stand for “Joint North Sea Wave
Project”, and some typical profiles can be found in Figure 2),

Sα,γ,k0pkq � Spkq � α

2k3
e�

5
4 p
k0
k q2γexpr�p1�

?
k{k0q2{2δ2s,

δ �δpkq �
"

0.07, k ¤ k0,
0.09, k ¡ k0.

(52)

This was introduced in [16] following extensive study of measured nonparametric
spectra, and it incorporates several physical insights: it is effectively zero in a
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neighbourhood of k � 0, it has a power-law decay for k " 1, and it is unimodal.
The free parameters are α ¡ 0, which increases with the power of the sea state (i.e.
larger α leads to larger significant wave height Hs), γ ¡ 1 which increases with
the “peakiness” of the spectrum (i.e. larger γ leads to more peaked spectra, with
larger Hs as well), and k0 stands for the peak wavenumber. Very often a JONSWAP
spectrum is fitted to a time-series of point measurements for the frequency ω (instead
of the wavenumber k) but, assuming unidirectional propagation, the conversion
between a wavenumber-resolved and frequency-resolved spectra is standard [22]. It

Figure 2. Some common profiles of JONSWAP spectra.

is widely used in the study of realistic sea states, e.g. [13, 29, 10, 39], as it offers an
intuitive and plausible parametrization of spectra in terms of power, peakiness and
carrier wavenumber.

Now the question becomes, what are some realistic values for α, γ and k0 cor-
responding to various plausible scenarios in the ocean? A canonical data set has
been created precisely in this context; it is called the North Atlantic Scatter Di-
agram [39, p. 244], and it includes measured statistics from 100000 sea states
in the North Atlantic, along with the likelihood for each sea state. A JONSWAP
spectrum (i.e. α, γ and k0 values) can then be fitted to each sea state using state
of the art engineering practice [39, Section 3.5.5]. The fact that parameter values
are fitted and not measured directly has a few implications: for example, several
sea states end up having γ � 1 (smallest allowed value) or γ � 5 (largest allowed
value). More importantly, it is a priori possible that we could end up with some
modulationally unstable spectra through this route. In contrast, if power spectra
were measured directly, it doesn’t seem likely that an “unstable spectrum” could
be robustly measured at all.

So now it should be clear how we choose the spectra to investigate: we will work
with JONSWAP spectra, fitted to the North Atlantic Scatter Diagram according
to the state of the art [39]. Ultimately each blue star in Figure 5 corresponds to
one such JONSWAP spectrum, and it has a known likelihood of being observed at
a random point in the North Atlantic, at a random time of the year (this likelihood
is not plotted here, but can be found in [39]).
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8.3. Implementation. One should start with the important observation that, for
the question of modulation instability of JONSWAP spectra, k0 happens to play
no role2. This is well-known [13, 29], but we will demonstrate it for completeness.

Let us begin with Alber’s eigenvalue relation for some JONSWAP spectrum Spkq,
e.g. as in equation (2) of [13]:

DΩ P C, X P R 1� ω0k
2
0

»
kPR

Spk � X
2 q � Spk � X

2 q
Ω� ω0

4k20
kX

dk � 0 (53)

Recall that the existence of such Ω, X means the spectrum is unstable. By rescaling
X 1 � X{k0, Ω1 :� �Ω4k0{pXω0q, and changing variable k1 � k{k0 problem 53 is
seen to be equivalent to

DΩ1 P C, X 1 P R HrDX1P spΩ1q � 1

4π
(54)

where

P pkq � α

2k3
e�

5
4k
�2

γexpr�p1�
?
kq2{2δ2s, δ � δpkq �

"
0.07, k ¤ 1,
0.09, k ¡ 1,

(55)

is the JONSWAP spectrum with k0 � 1 and the original α, γ. So the original value
of k0 will play no further role in checking stability.

To actually do the checking, we recall part (C) of Theorem 3.5: instability exists
if and only if

DX P R :
1

4π
is on, or enclosed by, the curve ΓX :� lim

ηÑ0�
HrDXP spt� iηq. (56)

So instead of checking for the existence of solutions of a system of nonlinear equa-
tions, we simply check whether 1{4π is on, or enclosed by, a curve in the complex
plane. The computation of the curve itself is somewhat demanding, since it involves
a very nearly singular integral. Still, it can be done much more reliably and quickly
than checking for existence of solutions of 53.

After some numerical testing, it is found sufficient to approximate

ΓXptq � lim
ηÑ0

HrDXP p�qspt� iηq � HrDXP p�qspt� itolq, tol=1e-4.

In all relevant cases here we observe that condition 56 is satisfied if and only if it is
satisfied for X � 0 (and this seems to be the case for any unimodal spectrum). Once
we generate an approximation to ΓX , the built-in MATLAB function inpolygon is
then used to determine if the target 4πp{q is contained in ΓX Y t0u.

Application to individual spectra is vizualized in Figures 3 and 4. Synoptic plots
showing the stable and unstable regions of the γ � α plane can be found in Figure
5. There is broad agreement with [13, 29], but we find somewhat fewer unstable
sea states. Modulationally unstable sea states are the prime suspects for rogue
waves [8, 4, 10, 11, 14, 25], and we find that such sea states are very unlikely but
nevertheless they do exist, with an estimated total likelihood of � 2 � 10�3. This is
broadly consistent with the record of observations of rogue waves.

2We would like to thank A. Babanin and O. Gramstad for their helpful insights on this point.
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8.4. The bifurcation from Landau damping to modulation instability. An-
other aspect of practical interest is to understand the bifurcation from stability to
instability e.g. as α or γ increases. This has been thought of as a violent change
in behavior once a borderline stable spectrum became unstable. Such a change in
behavior is the object of numerical experiments in [17], where it is noted that in-
stead only a gradual transition is found. In fact, the lack of a dramatic bifurcation
was seen as a challenge for the validity Alber equation in the aformentioned works.
However our proof here (and the heuristic results of [4] for the unstable case) show
that indeed the Alber equation only predicts a gradual transition.

For example, assume γ�, α� are exactly on the separatrix of the stable/unstable
regions as in Figure 5. Also take pγm, αmq a sequence of points in the stable re-
gion with lim

mÑ8pγm, αmq � pγ�, α�q. Now denote S�pkq � Sα�,γ�,k0pkq, Smpkq �
Sαm,γm,k0pkq. For each Smpkq we have Landau damping, and dispersion of inhomo-
geneities over a timescale controlled by κm. However, as m Ñ 8 it takes longer
and longer for the inhomogeneities to disperse; this can be seen e.g. by considering
equation 11, which in this case becomes

XrnmpX,ωq �Xrnf pX,ωq � rhmpX,ωq
1� rhmpX,ωqXrnf pX,ωq,

assuming the same initial inhomogeneity for all m. So when mÑ8 we have κm Ñ 0
and the force decays more and more slowly, until it ceases to have any time decay
at all.

On the other hand, in the unstable case a very slow rate of growth would make the
instability irrelevant; moreover, a very small bandwidth of unstable wavenumbers X
would make the resulting extreme events supported over unrealistically large regions
(e.g. thousands of wavelengths) [4]; but there are no energy transport mechanisms
to support such events. In other words, to really observe the modulation instability
a fast enough rate of growth and a large enough bandwidth of unstable wavenumbers
are required.

So a barely stable and a barely unstable spectrum would lead to very similar be-
haviour over physically relevant timescales and lengthscales, reconciling the findings
of [17] with the analysis of the Alber equation.

8.5. 1 versus 2 spatial dimensions. It must be noted that in the original paper
[1] a two-dimensional setup is used, with the Davey-Stewartson equation for the en-
velope instead of the NLS equation 2. However, while technically two-dimensional,
the Davey-Stewartson equation has unidirectional propagation built in, and the
second dimension is merely the “transverse direction”. This leads to Alber’s “ei-
genvalue relation” eventually being one-dimensional: an effective spectrum is used,
that results from appropriate integration of the two-dimensional spectrum along
the transverse direction. In that sense, Theorem 3.5 can be used in 1 � 1 dimen-
sional scenarios automatically, as the effective stability condition is one-dimensional
anyway and of the exact same form as the one treated here.

In genuinely two-dimensional settings (e.g. crossing seas), things are more com-
plicated: the NLS equation 2 is no longer an appropriate model. Systems of NLS
equations [24, 30, 31] or systems of other dispersive equations [14] have been pro-
posed. In any case the departure point is no longer a single scalar NLS equation.

8.6. Other problems. More broadly, it must also be mentioned that combining
NLS-type equations with stochastic modelling is natural in many different contexts,
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Figure 3. Numerical investigation of the stability condition for a
stable JONSWAP spectrum, cf. Section 8 for more details. We are
using a target of 1{4π as in equation 54. Left: Plots of the curve
ΓX on the complex plane for different values of X. Since 1{4π is
always outside the ΓX , this spectrum is stable. Right: The span
of the real parts of ΓX for different values of X.

Figure 4. Numerical investigation of the stability condition for
an unstable JONSWAP spectrum. Left: Plots of the curve ΓX on
the complex plane for different values of X. Since 1{4π is contained
in some curves ΓX , the spectrum is unstable. Right: The span
of the real parts of ΓX for different values of X. In this case it
highlights clearly the bandwidth of unstable wavenumbers X.

not only ocean waves. It is thus natural that variants of the Alber equation are
being independently rederived in different branches of physics, including optics [15]
and many-particle systems [12]. Thus the main results of this paper are, in principle,
applicable and/or generalizable to other problems as well.

Acknowledgments. We would like to thank C. Saffirio, O. Gramstad and A.
Babanin for helpful discussions on various aspects of this work.

Appendix A. Auxiliary lemmata.

Lemma A.1. Let A,B ¡ 0, ζ P p0, 1q. Then

1

A�B ¤ 1

AζB1�ζ
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Figure 5. A number of points on the pγ, αq plane are tested
for stability of the corresponding JONSWAP spectrum, cf. equa-
tion 52. α controls the power of the sea state (larger α means
larger significant wave height) and γ controls the effective band-
width (larger γ means more narrowly peaked spectrum). The car-
rier wavenumber k0 can easily be seen not to affect the (in)stability
of the spectrum. pγ, αq points found to be stable are marked with
a full square, while points found to be unstable are marked with
an empty square. For reference the proposed separatrices of [29]
and [13] are shown (they are of the form α � γ{β � C, where β is
the mean wave steepness and C � 0.77 [13] or C � 0.974 [29]).
More details can be found in Section 8. Top: Linear scaling in
both axes. Bottom: Log scaling in the α (vertical) axis.
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Proof. The well-known Young’s inequality for products implies that, for a, b ¡ 0,
p P p1,8q, 1

p � 1
q � 1,

ab ¤ ap

p
� bq

q
¤ ap � bq.

Now setting A � ap, B � bq we have

A1{pB1{q ¤ A�B ñ 1

A�B ¤ 1

A1{pB1{q .

By setting ζ � 1{p and observing that 1{q � 1 � 1{p � 1 � ζ the conclusion
follows.

Lemma A.2. Let rhpX, sq be as in equation 38. Then

lim
ρÑ8 sup

Repωq¡0
|ω|¡ρ

|rhpX,ωq| � 0.

Proof. Recall that P P SpRq is of compact support. Hence by constructionXDXP pkq
� P pk� X

2 q�P pk� X
2 q is also of compact support for each X P R. Let M �MpXq

be such that suppXDXP � r�M,M s. Then for all ρ large enough we have

Gpρq :� sup
Repωq¡0
|ω|¡ρ

|rhpX,ωq| ¤ sup
Repωq¡0
|ω|¡ρ

|q|
»
R

|XDXP pkq|
|ω � 4π2ipXk|dk

� |q| sup
Repωq¡0
|ω|¡ρ

» M
�M

|XDXP pkq|
|ω � 4π2ipXk|dk

¤ |q|
»
R
|XDXP pkq|dk sup

Repωq¡0
|ω|¡ρ, |k| M

1

|ω � 4π2ipXk| .

Clearly lim
ρÑ8Gpρq � 0.

Theorem A.3 (Conditional integrability of the Hilbert transform). Let f P SpRq
be a function of compact support with

³
t
fptqdt � 0. Then

}Hrf s}L1pRq   8.
Proof. Choose an M ¡ 0 so that the support of f is contained in r�M,M s, i.e.
fpxq � 0 @|x| ¥ M. We will also use the “double” interval, J :� r�2M, 2M s and
its complement Jc � RzJ. By an elementary estimate we have

}Hrf s}L1pRq ¤ 4M}Hrf s}L8pRq �
»
Jc
|Hrf spxq|dx ¤ 4CM}Hrf s}H1pRq

�
»
Jc
|Hrf spxq|dx

where C is the constant of the Sobolev embedding H1pRq ãÑ L8pRq. Moreover,
using the fact that

³
R fptqdt � 0 we have

I :�
»
Jc
|Hrf spxq|dx � 1

π

»
Jc

��� »
R

fptq
x� tdt

���dx � 1

π

»
Jc

��� »
R

�
fptq
x� t �

fptq
x



dt
���dx �

� 1

π

»
Jc

��� »
R
fptq

�
1

x� t �
1

x



dt
���dx � 1

π

»
Jc

��� » M
�M

fptq t

xpx� tqdt
���dx,
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where in the last step we also used the fact that f is supported inside r�M,M s.
Now observe that for any x R r�2M, 2M s and t P r�M,M s

|t| ¤ |x� t| ñ |x| � |x� t� t| ¤ 2|x� t| ñ 1

|x� t| ¤
2

|x| .

Hence ���� t

xpx� tq
���� ¤ 2M

x2
ñ I ¤ 2M

π

»
Jc

1

x2
dx

» M
�M

|fptq|dt   8.

Appendix B. Derivation of the Alber equation.

Remark B.1. Technically, the Alber equation does not govern any moments of
solutions of NLS. It is derived heuristically, assuming the existence of a stochas-
tic solution for the NLS with a certain kind of autocorrelation function and then
applying a Gaussian closure to the resulting infinite moment hierarchy. So while,
in certain situations, it may well turn out to be a reasonable approximation for
certain second moments of solutions of the NLS equation, we don’t study such an
approximation in this paper.

In what follows in this Section we describe systematically the steps for the heuris-
tic derivation of the Alber equation from the NLS equation. In particular, we use
exact properties of certain Gaussian processes which are natural in the linear theory
of water waves in order to motivate and justify the Gaussian closure used.

It is important to note that other equations of a similar character can be derived
using different assumptions, cf. e.g. [2, 33], and the results of this paper could
motivate analogous advances for those equations as well.

To explain the derivation of the Alber equation 1 as a second moment of the NLS
2, first consider the algebraic (deterministic) second moment: denoting

R1pα, β, tq :� upα, tqupβ, tq,
a straightforward computation leads to

iBtR1 � p

2
p∆α �∆βqR1 � q

2
R1pα, β, tq rR1pα, αq �R1pβ, βqs � 0 (57)

for the evolution in time of R1. Thus, despite taking a second moment of a nonlinear
equation, the exact algebraic moment closure

|upα, tq|2upα, tqupβ, tq � R1pα, α, tqR1pα, β, tq
allows one to have a closed, exact second moment equation. The same equation is
called the “infinite system of fermions” in statistical physics [9]. Now consider the
stochastic second moment,

Rpα, β, tq :� Erupα, tqupβ, tqs.
Obviously now the algebraic closure is not enough, as Er|upα, tq|2upα, tqupβ, tqs is a
fourth order stochastic moment, and not exactly expressible in terms of second order
moments in general. However, for Gaussian processes (under additional assumptions
described below) it can be seen that

Er|upα, tq|2upα, tqupβ, tqs � 2Rpα, α, tqRpα, β, tq. (58)
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This is reminiscent of the well known real-valued Isserlis Theorem; the difference
is that here u is complex valued (and the factor 2 is an artifact of the complex-
valuedness of u). So the Alber equation 1 and the deterministic Wigner transform
of the Schrödinger equation 2 differ only in terms of this factor of 2.

The precise result we invoke here can be summarized as follows:

Observation B.1 (A complex Isserlis theorem). A moment closure result is proved
in [27], and a special case of it is the following:

Let zpxq be a Gaussian, zero-mean, stationary process with the additional property
that

Erupxqupx1qs � 0 @x, x1 P R. (59)

Then

Erzpx1qzpx2qzpx3qzpx4qs �
� Erzpx1qzpx3qsErzpx2qzpx4qs � Erzpx2qzpx3qsErzpx1qzpx4qs.

This result directly implies the closure relation

Erupα, tqupβ, tqupα, tqupα, tqs � 2Erupα, tqupα, tqsErupβ, tqupα, tqs, (60)

which is exactly equation 58.
Moreover, the condition 59 is equivalent to circular symmetry, i.e. to the condi-

tion that

teiθupxquθPr0,2πq are identically distributed for all θ P r0, 2πq (61)

by virtue of a result by Grettenberg [35].

Remark B.2 (Physical meaning of the Gaussian closure). Assuming that, for each
t0 the wave envelope upx, t0q is a Gaussian process, with mean zero, stationary
in x (i.e. spatially homogeneous) and gauge invariant, eiθupx, t0q � upx, t0q, is
in line with standard modelling assumptions for linearized ocean waves [22]. In
other words, the Gaussian moment closure of equation 58 can be thought of as a
linearization of the probability structure of the wave envelope.

By using the Gaussian closure 58 we see that Rpα, β, tq satisfies the equation

iBtR� p

2
p∆α �∆βqR� qRpα, β, tq rRpα, αq �Rpβ, βqs � 0, (62)

which is structurally the same as the infinite system of fermions, the only difference
being an effective doubling of the coupling constant, q{2 ÞÑ q. Introducing the
assumption

Rpα, β, tq � Γpα� βq � ερpα, β, tq,
we postulate that R is in leading order homogeneous in space, and we set up an
initial value problem for the inhomogeneity ρpα, β, tq,

iBtρ� p
2 p∆α �∆βq ρ� q rΓpα� βq � ερpα, βqs rρpα, αq � ρpβ, βqs � 0. (63)

Now denote R be the rotation operator on phase-space

Rrfpx, yqs :� fpx� y

2
, x� y

2
q, (64)

and consider the average Wigner transform of the wave envelope [3, 5]

W px, k, tq �
»
Rd
e�2πiky E

�
upx� y

2
, tqupx� y

2
, tq�dy � FyÑkRrRpx, y, tqs �

� FyÑkrΓpyq � ερpx� y

2
, x� y

2
, tqs � P pkq � εwpx, k, tq.

(65)
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Then the Alber equation 1 is the equation for wpx, k, tq, i.e. it results by applying
FyÑkR to equation 63.

So finally the relation between the unknown of the Alber equation, wpx, k, tq,
and the wave envelope, upx, tq, is

FyÑk Erupx� y

2
, tqupx� y

2
, tqs � P pkq � εwpx, k, tq,

where the quality of the approximation rests crucially on how accurate the Gaussian
closure is.

Moreover, if
³
R2d w0px, kqdxdk � 0 we have just an inhomogeneous redistribution

of the energy of the homogeneous sea state, while if
³
R2d w0px, kqdxdk ¡ 0 we have

a wave-train of finite energy interacting with a homogeneous sea state of infinite
energy.

Appendix C. Background results on Laplace and Hilbert transforms.

Theorem C.1 (Regularity of the Hilbert & signal transforms). Let 1   p   8.
Then there exist constants C � Cppq such that

}Hrus}LppRq ¤ C}u}LppRq, }Srus}LppRq ¤ p1� Cq}u}LppRq.
Moreover, Cp2q � 1 and for any s P N,

}Hrus}HspRq � }u}HspRq, }Srus}HspRq ¤ 2}u}HspRq.

Combining this with the Sobolev embedding H1pRq ãÑ C0pRq it follows that

u P H1pRq ñ Hrus,Srus P C0pRq.
Theorem C.2 (Sokhotski-Plemelj formula). For u P CpRq X L1pRq and for any
s, c P R

lim
ηÑ0�

Hrus
�s� iη

c

	
� Srus

�s
c

	
.

Theorem C.3 (Inverse Laplace transform, open half-plane). Let F pωq be a bounded
analytic function on an open right half-plane, ω P ΠpMq :� tRe z ¡ Mu. Assume
moreover that the limit FM�pbq :� lim

εÑ0�
F pM � ε� ibq exists for all b P R and is a

continuous function in b. Moreover assume that

lim
ρÑ�8 sup

ωPΠpMq
|ω|¡ρ

|F pωq| � 0 and

» �8

�8
|FM�psq|ds   8. (66)

Then

F pωq � LtÑωrfptqs where fptq � eMt

2π

» �8

�8
eistFM�psqds,

i.e.

L�1
ωÑtrF s �

eMt

2π

» �8

�8
eistFM�psqds.
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Appendix D. Moments and Derivatives of the Alber-Fourier equation.
Denote

LrP1 P2;ms :�
�
P1

�
k � X

2

	
� P2

�
k � X

2

	�
mpX, tq

N rm; f1 f2s :�
»
s

mps, tq
�
f1

�
X � s, k � s

2
, t
	
� f2

�
X � s, k � s

2
, t
	�
ds.

(67)

The nonlinearity Brm, f s defined in equation 23 is comprised of

Brm, f s � iqLrP P ;ms � εiqN rm; f f s.

Lemma D.1. For any multi-indices α, β, γ, δ P pN Y t0uqd we have the following
relations

XαLrP1 P2;ms � LrP1 P2;Xαms,

kβLrP1 P2;ms �
¸

0¤β1¤β

�
β

β1



Lrkβ�β1P1 p�1qβ1kβ�β1P2; pX

2
qβ1ms,

BγXLrP1 P2;ms �
¸

0¤γ1¤γ

�
γ

γ1



Lrp�1{2qγ�γ1∇γ�γ1P1 p1{2qγ�γ

1

∇γ�γ1P2; Bγ1Xms,

BδkLrP1 P2;ms � Lr∇δP1 ∇δP2;ms,

and

XαN rm; f1 f2s �
¸

0¤α1¤α

�
α

α1



N rXα�α1m;Xα1f1 Xα1f2s,

kβN rm; f1 f2s �
¸

0¤β1¤β

�
β

β1



N
��X

2

	β�β1
m; kβ

1

f1 p�1qβ�β1kβ1f2

�
,

BγXN rm; f1 f2s � N rm; BγXf1 BγXf2s,
BδkN rm; f1 f2s � N rm; Bδkf1 Bδkf2s.

Moreover,

XαkβBγXBδk
�
k �Xf� � k�X�

XαkβBγXBδkf
�

�Xαkβ
¸

0¤γ1 γ
0¤δ1 δ

�
γ

γ1


�
δ

δ1


�Bγ1XBδ1k f��Bγ�γ1X Bδ�δ1k X � k�.
The proof follows from direct computations using the definition of LrP1 P2;ms

and N rm; f1 f2s.
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By applying the operator XαkβBγXBδk to equation 22 and commuting according
to Lemma D.1 one obtains equation 27 with right hand side

Bpα,β,γ,δqrf s � �
¸

0¤γ1¤γ
0¤δ1¤δ

|γ1�δ1| |γ�δ|

�
γ

γ1


�
δ

δ1


�Bγ�γ1X Bδ�δ1k X � k�fα,β,γ1,δ1

� qi
¸

0¤β1¤β
0¤γ1¤γ

p1
2
q|γ�γ1|�|β1|

�
β

β1


�
γ

γ1




� Lrkβ�β1p�1q|γ�γ1|∇γ�γ1�δP  kβ�β1∇γ�γ1�δP ;

»
k

fα�β
1,0,γ1,0dks

� εqi
¸

0¤α1¤α
0¤β1¤β

p1
2
q|β�β1|

�
α

α1


�
β

β1




�N r
»
k

fα�α
1�β�β1,0,0,0dk ; fα

1,β1,γ,δ  p�1q|β�β1|fα1,β1,γ,δs.

REFERENCES

[1] I. E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains,

Proc. Roy. Soc. London Ser. A, 363 (1978), 525–546.
[2] D. Andrade, R. Stuhlmeier and M. Stiassnie, On the generalized kinetic equation for surface

gravity waves, blow-up and its restraint, Fluids, 4 (2018), 2 pp.

[3] A. G. Athanassoulis, Exact equations for smoothed Wigner transforms and homogenization
of wave propagation, Appl. Comput. Harmon. Anal., 24 (2008), 378–392.

[4] A. G. Athanassoulis, G. A. Athanassoulis and T. Sapsis, Localized instabilities of the Wigner

equation as a model for the emergence of rogue waves, J. Ocean Eng. Mar. Energy, 3 (2017),
353–372.

[5] A. G. Athanassoulis, N. J. Mauser and T. Paul, Coarse-scale representations and smoothed
Wigner transforms, J. Math. Pures Appl., 91 (2009), 296–338.

[6] J. Bedrossian, N. Masmoudi and C. Mouhot, Landau damping in finite regularity for uncon-

fined systems with screened interactions, Comm. Pure Appl. Math., 71 (2018), 537–576.
[7] T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water Part 1. Theory,

J. Fluid Mech., 27 (1967), 417–430.

[8] E. M. Bitner-Gregersen and O. Gramstad, DNV GL Strategic Reserach & Innovation position
paper 05-2015: rogue waves: Impact on ships and offshore structures, 2015, online article:
https://issuu.com/dnvgl/docs/rogue_waves_final/10.
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