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Nonlinear pseudoparabolic equations as singular

limit of reaction–diffusion equations
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In this article, a solution of a nonlinear pseudoparabolic equation is constructed as a singular
limit of a sequence of solutions of quasilinear hyperbolic equations. If a system with cross
diffusion, modelling the reaction and diffusion of two biological, chemical, or physical
substances, is reduced then such an hyperbolic equation is obtained. For regular solutions
even uniqueness can be shown, although the needed regularity can only be proved in two
dimensions.
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1. Introduction

In this work, we consider existence and uniqueness of solution of the nonlinear
pseudoparabolic equation

bðt, x, utÞ � r � aðt, x,rutÞ � r � ðdðt, xÞhðuÞruÞ ¼ fðt,x, uÞ:

Pseudoparabolic equations are used to model fluid flow in fissured porous media [1],
two-phase flow in porous media with dynamical capillary pressure [7,10], and heat
conduction in two-temperature systems [6].

We consider a reaction system with diffusion of one of the substances:

"@tv ¼ r � aðt, x,rvÞ þ r � ðdðt, xÞrwÞ þ ~fðt, x,wÞ � bðt, x, vÞ,
@tw ¼ hðwÞv,

�
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where the function h satisfies 0 < h0 � hðwÞ � h1. After a change to a new variable
u ¼ HðwÞ, where HðwÞ ¼

R w

0 ð1=hðsÞÞds, we obtain @tu ¼ v. Hereby the system is reduced
to the single equation

"utt ¼ r � aðt, x,rutÞ þ r � ðdðt,xÞhðuÞruÞ þ ~fðt, x,H�1ðuÞÞ � bðt,x, utÞ:

The pseudoparabolic equation describes the reaction and diffusion of the faster
evolving substance.

This article is organised in the following way: First, the existence of a solution of a
quasilinear hyperbolic equation is shown using Galerkin’s approximation. To obtain
a priori estimates the monotonicity and the growth assumptions on the nonlinear
functions are used. Second, the convergence of the sequence of solutions to a solution
of the pseudoparabolic equation is shown. The regularity of this solution is proved
in two dimensions. The uniqueness follows from the strong monotonicity of the
nonlinear functions.

The question of regularity of solutions of linear and quasilinear pseudoparabolic
equations is considered in [2–5,12], where it is shown that regularity or singularity of
the initial data is preserved.

2. Existence

In this section, we show at first the existence of a weak solution of the equation

"utt þ bðt, x, utÞ � r � aðt,x,rutÞ � r � ðdðt, xÞhðuÞruÞ ¼ fðt, x, uÞ ð1Þ

in QT accompanied by the initial conditions uð0Þ ¼ u0 and utð0Þ ¼ 0. Here, ��R
N is a

bounded domain and QT ¼ ð0,TÞ ��. In a second step, we prove the convergence of a
(sub)sequence of solutions fu"g as " ! 0 to a solution of the pseudoparabolic equation

bðt, x, utÞ � r � aðt, x,rutÞ � r � ðdðt, xÞhðuÞruÞ ¼ fðt, x, uÞ ð2Þ

with initial condition uð0Þ ¼ u0. Both initial value problems are completed by posing
spatial boundary conditions. Here, we choose a closed subspace V0,
H1

0ð�Þ �V0 �H1ð�Þ, densely and continuously embedded in L2ð�Þ.
The existence of a solution will be ensured by the following assumption.

Assumption 2.1

A1 The function b : ð0,TÞ ���R ! R is measurable in t and x, continuous in �,
elliptic in �, i.e. b0 > 0, bðt, x, �Þ� � b0j�j

p for �2R and a.a. ðt, xÞ 2QT, and
strongly monotone, i.e. b1 > 0, ðbðt, x, �1Þ � bðt, x, �2ÞÞð�1 � �2Þ � b1j�1 � �2j

p, for
�1, �2 2R and a.a. ðt, xÞ 2QT, p� 2, and satisfies a growth assumption, i.e.
b0 < 1, jbðt, x, �Þj � b0ð1þ j�jp�1Þ for �2R and a.a. ðt, xÞ 2QT.

A2 The function a : ð0,TÞ ���R
N
! R

N is measurable in t and x, continuous in �,
elliptic in �, i.e. a0 > 0, aðt, x, �Þ� � a0j�j

2 for �2R
N and ðt,xÞ 2QT, strongly

monotone, i.e. a1 > 0, ðaðt, x, �1Þ � aðt,x, �2ÞÞð�1 � �2Þ � a1j�1 � �2j
2 for

�1, �2 2R
N and a.a. ðt, xÞ 2QT, and satisfies a growth assumption, i.e. a0 < 1,

jaðt, x, �Þj � a0ð1þ j�jÞ for �2R
N and a.a. ðt, xÞ 2QT.
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A3 The matrix field d2L1ðQTÞ
N�N, i.e. jdðt, xÞj � d1 for a.a. ðt, xÞ 2QT, h : R ! R

is continuous and satisfies 0 < h0 � hð�Þ � h1 < 1 for �2R.
A4 The function f : ð0,TÞ ���R ! R is measurable in t and x, continuous in �, and

sublinear, i.e. f1 < 1, j fðt, x, �Þj � f1ð1þ j�jÞ for �2R and a.a. ðt, xÞ 2QT.
A5 The initial condition u0 is in V0.

2.1. Existence of a weak solution of hyperbolic equation

Definition 2.2 A function u : QT ! R is called a weak solution of (1) if

(i) ut 2Cð½0,T�;L2ð�ÞÞ, ut 2LpðQTÞ \ L2ð0,T;V0Þ, u2Cð½0,T�;V0Þ,
(ii) u satisfies the initial condition, i.e. uðtÞ ! u0 in V0, utðtÞ ! 0 in L2ð�Þ for t ! 0,

and

Z
QT

h
�"utvt þ bðt, x, utÞvþ aðt, x,rutÞrvþ dðt, xÞhðuÞrurv

i
dxdt

þ "

Z
�

utðTÞvðTÞdx ¼

Z
QT

fðt,x, uÞv dxdt ð3Þ

for all v2LpðQTÞ \ L2ð0,T;V0Þ, s.t. vt 2L2ðQTÞ, v2Cð½0,T�;L2ð�ÞÞ.

THEOREM 2.3 There exists a weak solution u" of the problem (1).

The existence of a solution of (1) is proved using Galerkin’s method: let
f�kg1k¼1 �V0 \ Lpð�Þ be a basis of the spaces V0 and Lpð�Þ. We consider the sequence
of the functions fumg of the form umðt, xÞ ¼

Pm
k¼1 z

m
k ðtÞ�

ðkÞðxÞ, m ¼ 1, 2; . . . ; such that
um is a solution of the Cauchy problem

"

Z
�

umtt �
ðkÞ dxþ

Z
�

bðt, x, umt Þ�
ðkÞ dxþ

Z
�

aðt, x,rumt Þr�
ðkÞ dx

þ

Z
�

dðt, xÞhðumÞrum r�ðkÞ dx ¼

Z
�

fðt, x, umÞ�ðkÞ dx, ð4Þ

umð0, xÞ ¼ um0 ðxÞ, umt ð0, xÞ ¼ 0, ð5Þ

where fum0 g is an approximation of u0 in the space V0. Due to the generalisation of
Peano’s theorem for Carathéodory functions [8], there exists a local solution of this
problem in ½0, t0m�: The following lemma allows an extension of the solutions to the
whole interval ½0,T �:

LEMMA 2.4 The estimates

"kumt ðtÞkL2ð�Þ � C, t2 ½0, t0m�, ku
m
t kLpðQt0m

Þ � C, krumt kL2ðQt0m
Þ � C ð6Þ

hold uniformly with respect to m and ".
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Proof We multiply the equation (4) by zmkt, sum up over k from 1 to m, and integrate
over ½0, ��, where 0 < � � t0m

Z
Q�

h
"umtt u

m
t þ bðt, x, umt Þu

m
t þ aðt, x,rumt Þru

m
t þ dðt, xÞhðumÞrum rumt

i
dx dt

¼

Z
Q�

fðt, x, umÞumt dx dt: ð7Þ

Due to @tuð0Þ ¼ 0 and Assumption 2.1 the first three terms in (7) are bounded from
below by

"

2

Z
�

jumt ð�Þj
2dxþ

Z
Q�

b0ju
m
t j

p þ a0jru
m
t j

2
� �

dxdt:

For the fourth term, we have

Z
Q�

dðt, xÞhðumÞrum rumt dxdt �
d 2
1 h

2
1

2�

Z
Q�

jrumj2 dx dtþ
�

2

Z
Q�

jrumt j
2 dxdt

� c1

Z �

0

Z
Qt

jrumt j
2 dxdtþ

�

2

Z
Q�

jrumt j
2 dxdtþ c2:

Due to the assumption on f, we have

Z
Q�

fðt, x, umÞumt dx dt �
�

p

Z
Q�

jumt j
pdx dtþ c3

Z �

0

Z
Qt

jumt j
p dxds dtþ c4:

Applying Gronwall’s lemma to (7) implies the assertion. g

Remark Since the constant C is independent of t0m, the solution um may be assumed to
be the maximal solution, i.e. the one that exists for all t2 ½0,T�. Furthermore, since the
estimates of the last lemma are independent of m, they are satisfied by every umt for all
t2 ½0,T�.

From the estimates for umt we obtain the estimate for um. Due to (6), u0 2 V0, and
p� 2 we have

Z
�

�
jumð�Þj2 þ jrumð�Þj2

�
dx

�

Z
Q�

�
jumt j

2 þ jrumt j
2 þ jumj2 þ jrumj2

�
dxdt

þ

Z
�

�
jum0 j

2 þ jrum0 j
2
�
dx � c2 þ

Z
Q�

�
jumj2 þ jrumj2

�
dxdt:

Then Gronwall’s lemma implies

kumð�ÞkV0
� C, � 2 ½0,T�: ð8Þ
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Proof (of Theorem 2.3) The growth assumptions on a and b imply

Z
QT

bðt, x, umt Þv dxdt

�����
����� � C 1þ kumt k

p=q
LpðQTÞ

� �
kvkLpðQTÞ

,

Z
QT

aðt, x,rumt Þrv dxdt

�����
����� � C 1þ kumt kL2ð0,T;V0Þ

� �
kvkL2ð0,T;V0Þ

for all v2LpðQTÞ \ L2ð0,T;V0Þ. Hence, the estimates, (6) and (8), imply the existence of
a subsequence of fumg, again denoted by fumg, such that

um ! u" weakly- � in L1ð0,T;V0Þ,

umt ! u"t weakly in LpðQTÞ \ L2ð0,T;V0Þ,

umt ! u"t weakly- � in L1ð0,T;L2ð�ÞÞ,

bðt, x, umt Þ ! �" weakly in LqðQTÞ,

aðt, x,rumt Þ ! �" weakly in L2ðQTÞ
N,

as m ! 1. Using Aubin–Lions’s Compactness Lemma [11], yields um ! u" strongly in
L2ðQTÞ; therefore um ! u" a.e. in QT. The continuity of h and f implies hðumÞ ! hðu"Þ
and fðt,x, umÞ ! fðt, x, u"Þ a.e. in QT. From the assumptions it follows that h(um),
hðu"Þ 2L1ðQTÞ and fðt, x, umÞ, fðt, x, u"Þ 2L2ðQTÞ. Then by Egorov’s Theorem,
hðumÞ ! hðu"Þ uniformly a.e. in QT and by the Dominated Convergence Theorem
fðt, x, umÞ ! fðt,x, u"Þ strongly in L2ðQTÞ. The sum of all but the first term of (4) defines
a functional w2LqðQTÞ þ L2ð0,T;V�

0Þ

"hw, ~vi ¼

Z
�

fðt, x, u"Þ ~v dx�

Z
�

�
�" ~vþ �" r ~vþ dðt, xÞhðu"Þru" r ~v

�
dx

in Lqð0,TÞ þ L2ð0,TÞ for ~v2Lpð�Þ \ V0. Since umt ! u"t weakly in LpðQTÞ, we obtain
humtt , ~vi ¼ ðd=dtÞhumt , ~vi ! hu"tt, ~vi in D0ð0,TÞ as m!1 for ~v2Lpð�Þ. Hence, w ¼ u"tt
in D0ð0,T,Lqð�Þ þ V�

0Þ. Since w2LqðQTÞ þ L2ð0,T;V�
0Þ we may assume

u"tt 2LqðQTÞ þ L2ð0,T;V�
0Þ. Thus, [9, Theorem IV.1.17], it may be assumed that

u"t 2Cð½0,T�;L2ð�ÞÞ and the integration by parts formula

Z t2

t1

u"tt, u
"
t

� �
dt ¼

1

2

Z
�

ju"t ðt2Þj
2 dx�

1

2

Z
�

ju"t ðt1Þj
2 dx

holds for all 0 � t1 < t2 � T. Now we will show that u" satisfies the initial condition.
Since all umt and u"t are in Cð½0,T�;L2ð�ÞÞ, and umt ! u"t weakly- � in L1ð0,T,L2ð�ÞÞ,
we obtain

Z
�

umt ð0Þ ~v dx !

Z
�

u"t ð0Þ ~v dx and

Z
�

umt ðTÞ ~v dx !

Z
�

u"t ðTÞ ~v dx,
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as m!1 for ~v2Lpð�Þ. Then we have u"t ð0Þ ¼ 0 in L2ð�Þ because of umt ð0Þ ¼ 0
in L2ð�Þ. Since u" 2L1ð0,T;V0Þ and u"t 2L2ð0,T;V0Þ it may be assumed
that u" 2Cð½0,T�;V0Þ [11], and umð0Þ ! u"ð0Þ strongly inL2ð�Þ as m!1. Thus,
u"ð0Þ ¼ u0.

Integrating in the equation (4) the first term by part, passing to the limit as m!1

and using the fact that the set of all functions of the form
P

l<1 dl �
l, where

dl 2C1ð½0,T�Þ, is dense in Lp(QT), L2ð0,T;V0Þ; Cð½0,T�;L2ð�ÞÞ, and H1ð0,T;L2ð�ÞÞ

yields

�"

Z
QT

u"t vt dxdtþ

Z
QT

�"vþ �"rvð Þdxdtþ

Z
QT

dðt, xÞhðu"Þru" rv dx dt

þ "

Z
�

u"t ðTÞvðTÞdx ¼

Z
QT

fðt, x, u"Þv dxdt

for all v2LpðQTÞ \ L2ð0,T;V0Þ, s.t. vt 2L2ðQTÞ and v2Cð½0,T�;L2ð�ÞÞ.
To complete the proof, we have to show �" ¼ bðt, x, u"t Þ and �" ¼ aðt, x,ru"t Þ. For this

we show the strong convergence of {umt } to u"t in LpðQTÞ \ L2ð0,T;V0Þ. We choose
umt � u"t as a test function in (4), integrate over ½0, �� and obtain

"

Z �

0

umtt , u
m
t � u"t

� �
dtþ

Z
Q�

ðbðt, x, umt Þ � bðt, x, u"t ÞÞðu
m
t � u"t Þdxdt

þ

Z
Q�

ðaðt, x,rumt Þ � aðt, x,ru"t ÞÞrðu
m
t � u"t Þdx dt ¼

Z
Q�

bðt,x, u"t Þðu
"
t � umt Þdxdt

þ

Z
Q�

�
aðt, x,ru"t Þrðu

"
t � umt Þ þ dðt, xÞ hðumÞrðum � u"Þrðu"t � umt Þ

�
dxdt

þ

Z
Q�

�
dðt, xÞhðumÞru"rðu"t � umt Þ � fðt, x, umÞðumt � u"t Þ

�
dx dt:

By Fatou’s lemma and weak convergence of umtt in LqðQTÞ þ L2ð0,T;V�
0Þ, we obtain for

the first integral

lim inf
m!1

Z �

0

umtt , u
m
t � u"t

� �
dt �

1

2
lim inf
m!1

Z
�

jumt ð�,xÞj
2 dx�

1

2

Z
�

ju"t ð�, xÞj
2 dx � 0:

Due to the convergences of {umt }, fhðu
mÞg, and f fðt, x, umÞg, the first, second, fourth, and

fifth terms on the right-hand side converge to zero as m!1. The third term on the
right hand side can be estimated by

Z
Q�

dðt, xÞhðumÞ rðum � u"Þrðumt � u"t Þdx dt

�
d21h

2
1

2�

Z
Q�

jrðum � u"Þj2 dxdtþ
�

2

Z
Q�

jrðumt � u"t Þj
2 dx dt

� c1

Z
Q�

jrðum0 � u0Þj
2 dxdtþ c2

Z �

0

Z
Qs

jrðumt � u"t Þj
2 dxdt ds

þ
�

2

Z
Q�

jrðumt � u"t Þj
2 dx dt:
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The monotonicity of b and a, and the convergence of fum0 g, fu
mg, and fumt g imply

b1

Z
Q�

jumt � u"t j
p dxdtþ a1 �

�

2

	 
Z
Q�

jrðumt � u"t Þj
2 dxdt

� �
1

m

	 

þ c3

Z �

0

Z
Qs

jrðumt � u"t Þj
2 dxdt ds:

Using Gronwall’s lemma in the last inequality yields

kumt � u"tkLpðQTÞ
þ krumt � ru"tkL2ðQTÞ

� C�
1

m

	 

:

Thus, umt ! u"t strongly in LpðQTÞ \ L2ð0,T;V0Þ as m!1. The strong convergence of
{umt } and the weak convergence of fbðt, x, umt Þg and faðt, x,rumt Þg imply �" ¼ bðt, x, u"t Þ
and �" ¼ aðt,x,ru"t Þ, and the theorem is proved. g

2.2. Existence of a solution of a pseudoparabolic equation

Now we show that the subsequence of solutions fu"g converges as " ! 0 to a solution of
the initial boundary value problem for the nonlinear pseudoparabolic equation (2).

Definition 2.5 A function u : QT ! R is called a weak solution of (2) if

(i) u2Cð½0,T�;V0Þ, ut 2LpðQTÞ \ L2ð0,T;V0Þ,
(ii) u satisfies the initial condition, i.e., uðtÞ ! u0 in V0 for t ! 0, and

Z
QT

bðt, x, utÞvþ aðt, x,rutÞrvþ dðt, xÞhðuÞrurv½ �dxdt ð9Þ

¼

Z
QT

fðt,x, uÞv dxdt for all v2LpðQTÞ \ L2ð0,T;V0Þ:

THEOREM 2.6 There exists a weak solution of the problem (2).

Proof We rewrite the equation (3) for v ¼ u"t and obtain

�"

Z
QT

u"t u
"
t dx dtþ

Z
QT

h
bðt, x, u"t Þ u

"
t þ aðt, x,ru"t Þru

"
t

i
dxdt ð10Þ

þ

Z
QT

dðt,xÞhðu"Þru"ru"t dxdtþ "

Z
�

u"t ðTÞ u
"
t ðTÞdx ¼

Z
QT

fðt, x, u"Þu"t dxdt:

We estimate all integrals in (10) analogously to (7) and have

"1=2ku"t ðtÞkL2ð�Þ � C, t2 ½0,T�, ku"tkLpðQTÞ
� C, kru"tkL2ðQTÞ

� C,

where C is independent of ": Due to the growth assumptions on b and a, and estimates
for u"t , we obtain

kbðt, x, u"t ÞkLqðQTÞ
� C, kaðt, x,ru"t ÞkL2ðQTÞ

N � C:
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Similarly to (8) ku"ðtÞkV0
� C, t2 ½0,T� can be shown. Then there exists a subsequence

of fu"g, again denoted by fu"g, such that

u" ! u weakly- � in L1ð0,T;V0Þ,

u"t ! ut weakly in LpðQTÞ \ L2ð0,T;V0Þ,

bðt, x, u"t Þ ! � weakly in LqðQTÞ,

aðt, x,ru"t Þ ! � weakly in L2ðQTÞ
N,

"u"t ! 0 weakly in L2ð0,T;L2ð�ÞÞ,

"u"t ð�,TÞ ! 0 weakly in L2ð�Þ,

as " ! 0. Using the same argument for convergence of fhðu"Þg and f fðt, x, u"Þg as in the
proof of Theorem 2.3 and passing to the limit as " ! 0 in (3) yields

Z
QT

�
�v þ �rv

�
dxdtþ

Z
QT

dðt, xÞhðuÞrurv dx dt ¼

Z
QT

fðt, x, uÞv dx dt

for all v2LpðQTÞ \ L2ð0,T;V0Þ: Similarly as for {umt }, we prove the strong convergence
of fu"t g and obtain � ¼ bðt,x, utÞ, � ¼ aðt,x,rutÞ. Using u2L1ð0,T;V0Þ,
ut 2L2ð0,T;V0Þ implies that u : ½0,T� ! V0 is continuous [11]. Due to u"ð0Þ ¼ u0,
we obtain uð0Þ ¼ u0 in V0. Thus, u is a solution of (2). g

3. Regularity

To prove the uniqueness of a solution of a pseudoparabolic equation additional
regularity is needed.

3.1. Regularity of solutions of hyperbolic equations

We prove that a weak solution of a hyperbolic equation actually is in H1ð0,T;H2ð�ÞÞ

in the two dimensional case.

THEOREM 3.1 Let Assumption 2.1 be satisfied, � be a C2-domain, V0 ¼ H1
0ð�Þ,

u0 2H2ð�Þ, aðt, � , �Þ 2C1ð��R
N
Þ, dðt, �Þ 2C1ð�Þ

N�N for t2 ð0,TÞ, h2C1ðRÞ, N¼ 2,
p¼ 2, and for �2R

N, �2R;

j@�aðt, x, �Þj � C, jrxaðt, x, �Þj � a2ð1þ j�jÞ,

j@�hð�Þj � C, jrxdðt, xÞj � C:

Then the solution u" of the problem (1) is in H1ð0,T;H1
0ð�ÞÞ, in H1ð0,T;H2ð�ÞÞ, and

satisfies "u"tt 2L2ðQTÞ.

1292 M. Ptashnyk



Proof First we show the local regularity. We fix any open set U, and choose
an open set W, such that U��W���. We choose the basis functions �k as
solutions of

��k ¼ ��k in �, �k ¼ 0 on @�:

We choose v ¼ �@xlð	
2
1@xlu

m
t Þ as a test function in (4), where 	1 is the smooth cut-off

function, 	1 ¼ 1 in U, 	1 ¼ 0 in �nW, 0 � 	1 � 1, and integrate over t2 ½0,T�. Due to
the regularity of �k, we have v2L2ð0,T;H1

0ð�ÞÞ. Integrating by parts and summing
over l implies

"

Z
QT

rumtt ru
m
t 	21 dx dt�

XN
l¼1

Z
QT

bðt, x, umt Þ@xl ð	
2
1@xlu

m
t Þdx dt

þ
XN
l¼1

XN
i, j¼1

Z
QT

@�j a
iðt, x,rumt Þ@xj@xlu

m
t @xið	

2
1@xlu

m
t Þdxdt ð11Þ

þ
XN
l¼1

Z
QT

�
@xlaðt, x,ru

m
t Þ þ @xlðdðt,xÞhðu

mÞrumÞ
�
rð	21@xlu

m
t Þdxdt

¼ �
XN
l¼1

Z
QT

fðt, x, umÞ@xlð	
2
1@xlu

m
t Þdxdt:

The strong monotonicity of a implies 1=�ðaðt, x, ~�þ ��Þ � að ~�ÞÞ� � a1j�j
2 for

�1 ¼ ~�þ ��, � > 0, and �2 ¼ ~�. Taking the limit as � ! 0 yields

r�aðt, x, ~�Þ�� � a1j�j
2 for ~�, �2R

N: ð12Þ

Then we have the estimate

XN
l, i, j¼1

Z
QT

@�j a
iðt, x,rumt Þ@

2
xjxl

umt @
2
xixl

umt 	
2
1 dx dt � a1

XN
l, i¼1

Z
QT

j@2xixlu
m
t j

2	21 dx dt:

From the equation (11), using Young’s inequality, we obtain

"

2

Z
�

jrumt ðTÞj
2 	21 dxþ a1

Z
QT

jr2umt j
2 	21 dx dt

� �0

Z
QT

jr2umt j
2 	21 dxdtþ c1ð�0Þ

Z
QT

�
jr2umj2 þ jrumj4

�
	21 dxdt

þ c2ð�0Þ

Z
QT

�
jrumt j

2 þ jumt j
2 þ jrumj2 þ jumj2

�
dxdtþ c3ð�0Þ:

ð13Þ
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For N¼ 2, due to the embedding theorem, we have rum 2L4ðQTÞ and the
Gagliardo–Nirenberg inequality

Z
QT

jrumj4 	21 dx dt � C

Z
QT

�
jr2umj2	21 þ jrumj2	21jr	1j

2
�
dx dt

Z
QT

jrumj2 dx dt:

The estimate for rum and the assumption u0 2H2ð�Þ imply

Z
QT

jrumj4	21 dxdt � c1

Z
QT

jr2umj2	21 dxdtþ c2 � c3 þ c4

Z T

0

Z
Qt

jr2um� j
2	21 dxd� dt:

Due to the estimates (6) for umt and the assumptions in the theorem, we obtain from
(13) the inequality

Z
QT

	21jr
2umt j

2 dxdt � C1 þ C2

Z T

0

Z
Qt

	21jr
2um� j

2 dxd� dt:

Then Gronwall’s lemma implies the estimate

k	1r
2umt kL2ðQTÞ

� C: ð14Þ

From (13) we obtain also

"krumt ð�Þ	1kL1ð0,T;L2ð�ÞÞ � C:

Using these extra estimates in the proof of Theorem 2.3 yields a subsequence
and a limit-function u" 2H1ð0,T;H1

0ð�ÞÞ, which satisfies u"t 2L2ð0,T;H2
locð�ÞÞ and

"u"t 2L1ð0,T;H1
locð�ÞÞ also.

To show the regularity of u" up to the boundary, we need an estimate for r2umt close
to @�. Here, we use �k ¼ 0 and��k ¼ 0 on @�. In the local coordinates near the bound-
ary � is of the form B1ð0Þ \ fR� Rþg. Hence, we consider the case
� ¼ B1ð0Þ \ fR�Rþg at first. We choose v ¼ �@x1 ð	

2@x1u
m
t Þ as a test function in (4),

where 	 is the smooth cut-off function, 0 � 	 � 1 and 	 ¼ 1 in B1=2ð0Þ,
	 ¼ 0 in R

2
nB1ð0Þ, and 	 vanishes near the curved part of @�. Integrating over t and

integrating by parts imply

"

Z
QT

@x1u
m
tt@x1u

m
t 	

2 dxdt�

Z
QT

bðt, x, umt Þð@
2
x1
umt 	

2 þ 2	@x1	@x1u
m
t Þdx dt

þ

Z
QT

�
r�aðt, x,ru

m
t Þ@x1ru

m
t þ @x1aðt, x,ru

m
t Þ

�
rð@x1u

m
t 	

2Þdxdt

þ

Z
QT

@x1 ðdðt, xÞhðu
mÞrumÞrð@x1u

m
t 	

2Þdxdt

¼ �

Z
QT

fðt, x, umÞ@x1 ð@x1u
m
t 	

2Þdxdt: ð15Þ
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We have v2L2ð0,T;H1
0ð�ÞÞ since �k is regular for all k and since 	 vanishes near

the curved part of @�, and @x1u
m ¼ 0 and @2x1u

m ¼ 0 on fx2 ¼ 0g, because
um ¼

Pm
k¼1 c

k
m�

k is zero on fx2 ¼ 0g and the normal vector to this part of the boundary
is 
 ¼ ð0;�1Þ.

Then starting from equation (15), we obtain, by using the strong monotonicity
of a (see (12)), Young’s inequality, the Gagliardo–Nirenberg inequality, the estimates
(6) for umt and the assumptions in the theorem, the inequality:

Z
QT

j@x1ru
m
t j

2 	2 dxdt � C1 þ

Z T

0

Z
Qt

�
j@2x2u

m
� j

2 þ j@x1ru
m
� j

2
�
	2 dx d� dt:

Then Gronwall’s lemma implies the estimate

Z
QT

j@x1ru
m
t j

2 	2 dxdt � C
�
1þ

Z T

0

Z
Qt

j@2x2u
m
� j

2 	2 dxd� dt
�
: ð16Þ

Similarly, we choose v ¼ �@x2ð	
2@x2u

m
t Þ as a test function in (4) and integrate over t and

integrate by parts. Using �um ¼ 0 and @2x1u
m ¼ 0 on fx2 ¼ 0g, it follows that @2x2u

m ¼ 0
on fx2 ¼ 0g, and since @x2	 ¼ 0 on fx2 ¼ 0g and 	 vanishes near the curved part of @�,
v2L2ð0,T;H1

0ð�ÞÞ. The strong monotonicity of a for � ¼ ð0, 1Þ (see (12)), yields
a2�2 � a1. Then, due to

Z
QT

jrumj4	2 dx dt � Cþ

Z T

0

Z
Qt

j@x1ru
m
� j

2	2 dxd� dtþ

Z T

0

Z
Qt

j@2x2u
m
� j

2	2 dxd� dt,

that follows from Gagliardo–Nirenberg inequality, the estimate (16), and the estimates
for um we obtain

Z
QT

j@2x2u
m
t j

2 	2 dxdt � C1 þ C2

Z T

0

Z
Qt

j@2x2u
m
� j

2 	2 dxd� dt:

Hence, Gronwall’s lemma implies k@2x2u
m
t 	kL2ðQTÞ

� C: From this and (16) it
follows that

kr2umt 	kL2ðQTÞ
� C:

From the preceding estimates we obtain also "krumt ð�Þ 	kL1ð0,T;L2ð�ÞÞ � C:
Using these estimates and the local estimate (14) in the proof of Theorem 2.3

yields u"t 2L2ð0,T;H1
0ð�ÞÞ, u"t 2L2ð0,T;H2ð�ÞÞ; and "u"t 2L1ð0,T;H1

0ð�ÞÞ. From
u"t 2L2ð0,T;H2ð�ÞÞ and equation (1), it follows that "u"tt 2L2ðQTÞ.

All the preceding calculations are true for a general C2 domain: for any point x0 2 @�,
since @� is C2, we may assume � \ Bðx0, rÞ ¼ fx2Bðx0, rÞ, xN > �ðx1, . . . , xN�1Þg for
some r>0 and some C2 function � : RN�1

!R. We change variables to y ¼ �ðxÞ,
x ¼ �ðyÞ and choose s>0 so small that the half-ball �0 :¼ Bð0, sÞ \ fyN > 0g lies in
�ð� \ Bðx0, rÞÞ. From the preceding calculations above we obtain the estimate for
�u" :¼ u"ðt,�ðyÞÞ and consequently for u". g
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3.2. Regularity of solutions of pseudoparabolic equations

By using the regularity of u", we prove the regularity of solutions of the pseudo-
parabolic equation.

THEOREM 3.2 Let the assumptions of Theorem 3.1 be satisfied. Then a solution of the
problem (2) is in H1ð0,T;H1

0ð�ÞÞ and H1ð0,T;H2ð�ÞÞ.

Proof For the proof of the local regularity, we choose v ¼ �r � ð	21D
�u"t Þ as a test

function in the equation (3), where D�
i vðxÞ ¼ ð1=�Þðuðxþ �eiÞ � uðxÞÞ, i ¼ 1; . . . ;N,

D�v :¼ ðD�
1v, . . . ,D

�
NvÞ, and the cut-off function 	1 is defined in Theorem 3.1,

integrating by parts and obtain

�"

Z
QT

u"ttr �D�u"t 	
2
1 dxdt�

Z
QT

bðt, x, u"t Þr � ð	21D
�u"t Þdxdt

þ

Z
QT

raðt, x,ru"t Þrð	
2
1D

�u"t Þdx dtþ

Z
QT

r
�
dðt, xÞhðu"Þru"

�
rð	21D

�u"t Þdxdt

¼ �

Z
QT

fðt, x, u"Þr � ð	21D
�u"t Þdxdt:

All integrands are integrable and uniformly bounded in � by L1ðQTÞ functions, because
u"t 2L2ð0,T;H2ð�ÞÞ and "u"tt 2L2ðQTÞ. Then, due to the Dominated Convergence
Theorem, we can take limits as � ! 0 and, after integrating by parts in the first
integral, obtain

"

2

Z
�

jru"t ðTÞj
2 	21 dxþ

Z
QT

r�aðt, x,ru
"
t Þ r

2u"t rð	
2
1ru

"
t Þdxdt

þ

Z
QT

�
rxaðt, x,ru

"
t Þ þ r

�
dðt, xÞhðu"Þru"

��
rð	21ru

"
t Þdx dt

¼ �

Z
QT

fðt, x, u"Þrð	21ru
"
t Þdxdtþ

Z
QT

bðt, x, u"t Þrð	
2
1ru

"
t Þdxdt:

ð17Þ

Then by using in (17) the strong monotonicity of a, see (12), Young’s inequality,
the Gagliardo–Nirenberg inequality, the estimates for u"t , and the assumptions in the
theorem we obtain

Z
QT

	21jr
2u"t j

2 dxdt � C1 þ C2

Z T

0

Z
Qt

	21jr
2u"�j

2 dxd� dt:

Then Gronwall’s lemma implies

k	1 r
2u"tkL2ðQTÞ

� C: ð18Þ

Using this estimate in the proof of Theorem 2.6 yields a subsequence and a limit-
function such that ut 2L2ð0,T;H1

0ð�ÞÞ and ut 2L2ð0,T;H2
locð�ÞÞ.
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For the estimate near the boundary we use the same argument as for the hyperbolic
equation. We can consider the equation in the half-ball, i.e., � ¼ B1ð0Þ \ fR�Rþg with
a straight boundary. Then we choose v ¼ �@x1 ð	

2D�
1u

"
t Þ as a test function in the equation

(3), where 	 is as in Theorem 3.1, and after integrating by parts and taking limits as
� ! 0 as above, we obtain

"

2

Z
�

j@x1u
"
t j
2	2 dx�

Z
QT

bðt, x, u"t Þ@x1ð	
2@x1u

"
t Þdx dt

þ

Z
QT

�
@x1aðt, x,ru

"
t Þ þ @x1 ðdðt, xÞhðu

"Þru"Þ
�
rð	2@x1u

"
t Þdxdt

¼ �

Z
QT

fðt, x, u"Þ@x1ð	
2@x1u

"
t Þdxdt:

We have v2L2ð0,T;H1
0ð�ÞÞ since u"t 2L2ð0,T;H2ð�ÞÞ and 	 vanishes near the curved

part of @�, and @x1u
" ¼ 0 and @2x1u

" ¼ 0 on fx2 ¼ 0g, because the normal vector to
this part of the boundary is 
 ¼ ð0;�1Þ. Similarly as for the hyperbolic equation,
we obtain

Z
QT

j@x1ru
"
t j
2 	2 dxdt � C

�
1þ

Z T

0

Z
Qt

j@2x2u
"
�j
2 	2 dxd� dt

�
: ð19Þ

Since u"t 2L2ð0,T;H2ð�ÞÞ, u"t 2L2ð0,T;H1
0ð�ÞÞ and "u"tt 2L2ðQTÞ uniformly in ", we have

that u" satisfies (1) almost everywhere. Then we obtain

@�2a
2ðt, x,ru"t Þ@

2
x2
u"t ¼ "u"tt � d22ðt, xÞhðu

"Þ@2x2u
" � dðt, xÞ@�hðu

"Þru" ru"

�@x1a
1ðt, x,ru"t Þ � ðr�a

1ðt, x,ru"t Þ þ @�1a
2ðt, x,ru"t ÞÞ@x1ru

"
t

�@x1 ðd
1ðt, xÞhðu"Þru"Þ � @x2d

2ðt, xÞhðu"Þru" þ bðt, x, u"t Þ � fðt, x, u"Þ:

From the strong monotonicity of a for � ¼ ð0, 1Þ, see (12), it follows that @�2a
2 � a1.

Then

Z
QT

j@2x2u
"
t j
2 	2 dx dt � Cþ

Z T

0

Z
Qt

j@2x2u
"
�j
2 	2 dxd�:

Hence Gronwall’s lemma implies the estimate k@2x2u
"
t 	kL2ðQTÞ

� C, where C is indepen-
dent of ". This, together with (19), implies

kr2u"t 	kL2ðQTÞ
� C:

Using the last estimate and the local estimate (18) in the proof of Theorem 2.6
yields a subsequence and a limit-function such that u2H1ð0,T;H1

0ð�ÞÞ and
u2H1ð0,T;H2ð�ÞÞ. g
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4. Uniqueness

In the last section, we showed regularity of weak solution in two dimension. In this
section, we show that a regular solution is the unique solution in dimension N � 4.

THEOREM 4.1 Let Assumption 2.1, u2H1ð0,T;H2ð�ÞÞ, and

j fðt, x, �1Þ � fðt, x, �2Þj � Cj�1 � �2j, jhð�1Þ � hð�2Þj � Cj�1 � �2j

for ðt, xÞ 2QT, �1, �2 2R, be satisfied. Then there exists at most one weak solution of (2).

Proof Suppose u1 and u2 are two solutions of the problem (2). Then for u ¼ u1 � u2

and the test function v¼ ut, we obtain the equation

Z
QT

ðbðt, x, u1t Þ � bðt, x, u2t ÞÞut dxdtþ

Z
QT

ðaðt, x,ru1t Þ � aðt, x,ru2t ÞÞrut dxdt

þ

Z
QT

�
dðt, xÞðhðu1Þru1 � hðu2Þru2Þrut � ð fðt, x, u1Þ � fðt, x, u2ÞÞut

�
dxdt ¼ 0:

Due to the strong monotonicity of a and b, the first two integrals are estimated from
below by

b1

Z
QT

jutj
2 dx dtþ a1

Z
QT

jrutj
2 dx dt:

The terms of the third integral can be estimated separately:

Z
QT

dðt, xÞhðu1Þrurut dxdt �
c1
2�

Z T

0

Z
Q�

jrutj
2 dxdtd� þ

�

2

Z
QT

jrutj
2 dxdt,

since uð0Þ ¼ 0. From the embedding theorem we have that v2H1ð0,T;H2ð�ÞÞ implies
rv2L4ðQTÞ even for � of the dimension N � 4. Then, due to the regularity of u1

and u2, we obtain u1; u2 2L4ðQTÞ and ru2 2L4ðQTÞ. The remaining term satisfies

Z
QT

dðt, xÞðhðu1Þ � hðu2ÞÞru2 rut dxdt

� c2

�Z
QT

juj4 dxdt
�1=4�Z

QT

jru2j4 dx dt
�1=4�Z

QT

jrutj
2 dxdt

�1=2

�
c4
2�

Z
QT

juj2 þ jruj2
� �

dx dtþ
�

2

Z
QT

jrutj
2 dxdt:

The right-hand side is estimated by

Z
QT

ð fðt, x, u1Þ � fðt, x, u2ÞÞut dx dt �
c6
�0

Z T

0

Z
Q�

jutj
2dxdt d� þ �0

Z
QT

jutj
2 dxdt,
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since uð0Þ ¼ 0. Thus, due to these estimates we obtain the inequality

ðb1 � �0Þ

Z
QT

jutj
2dxdtþ ða1 � �Þ

Z
QT

jrutj
2dxdt � C

Z T

0

Z
Q�

�
jutj

2 þ jrutj
2
�
dxdt d�:

Using Gronwall’s lemma in the last inequality implies uðtÞ ¼ uð0Þ ¼ 0. Hence, u1 ¼ u2

a.e. in QT. g

Remark The existence and uniqueness of solutions of nonlinear variational inequalities
is proved also, and will be published in a forthcoming article.

Acknowledgement

This work was supported by SFB 359 Reaktive Strömungen, Diffusion und Transport,
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