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Nonlinear pseudoparabolic equations as singular
limit of reaction—diffusion equations
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In this article, a solution of a nonlinear pseudoparabolic equation is constructed as a singular
limit of a sequence of solutions of quasilinear hyperbolic equations. If a system with cross
diffusion, modelling the reaction and diffusion of two biological, chemical, or physical
substances, is reduced then such an hyperbolic equation is obtained. For regular solutions
even uniqueness can be shown, although the needed regularity can only be proved in two
dimensions.
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1. Introduction

In this work, we consider existence and uniqueness of solution of the nonlinear
pseudoparabolic equation

b(t, x,u;) — V- a(t, x,Vu;) — V - (d(t, x)h(u)Vu) = f(t, x, u).

Pseudoparabolic equations are used to model fluid flow in fissured porous media [1],
two-phase flow in porous media with dynamical capillary pressure [7,10], and heat
conduction in two-temperature systems [0].

We consider a reaction system with diffusion of one of the substances:

gd,v =V -a(t,x,Vv)+ V- (d(t, x)Vw) —i—f(l, x,w) — b(t, x,v),
aw = h(w)v,
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where the function /4 satisfies 0 < Ay < h(w) < h;. After a change to a new variable
u = H(w), where H(w) = [;'(1/h(s))ds, we obtain d,u = v. Hereby the system is reduced
to the single equation

euy, = V-a(t,x,Vu,) + V - (d(t, x)h(u)Vu) +j;([, X, H’l(u)) — b(t, x, uy).

The pseudoparabolic equation describes the reaction and diffusion of the faster
evolving substance.

This article is organised in the following way: First, the existence of a solution of a
quasilinear hyperbolic equation is shown using Galerkin’s approximation. To obtain
a priori estimates the monotonicity and the growth assumptions on the nonlinear
functions are used. Second, the convergence of the sequence of solutions to a solution
of the pseudoparabolic equation is shown. The regularity of this solution is proved
in two dimensions. The uniqueness follows from the strong monotonicity of the
nonlinear functions.

The question of regularity of solutions of linear and quasilinear pseudoparabolic
equations is considered in [2-5,12], where it is shown that regularity or singularity of
the initial data is preserved.

2. Existence

In this section, we show at first the existence of a weak solution of the equation
euy + b1, x,u,) — V- a(t, x, Vuy) = V- (d(t, X)h(u)Vu) = f(1, x, u) ©)

in Q7 accompanied by the initial conditions u(0) = u and u,(0) = 0. Here, Q c R" is a
bounded domain and Q7 = (0, 7) x Q. In a second step, we prove the convergence of a
(sub)sequence of solutions {u°} as ¢ — 0 to a solution of the pseudoparabolic equation

b(t,x,u;) — V- a(t,x,Vu;) — V - (d(t, x)h(u)Vu) = f(t, x, u) 2)

with initial condition u(0) = uy. Both initial value problems are completed by posing
spatial boundary conditions. Here, we choose a closed subspace Vy,
HL\(Q) C Vo c H'(Q), densely and continuously embedded in L*().

The existence of a solution will be ensured by the following assumption.

Assumption 2.1

Al The function b:(0,7T) x Q x R — R is measurable in ¢ and x, continuous in &,
elliptic in &, i.e. by > 0, b(t,x,&)& > by|é)P for £€R and a.a. (t,x)€ Qp, and
strongly monotone, i.e. by > 0, (b(t, x,&) — b(t, x,&))(&E — &) > b1|& — &P, for
£&,65€R and a.a. (1,x)eQr, p>2, and satisfies a growth assumption, i.c.
b0 < oo, |b(t,x, &) < b°(1 + |£[P7") for E€R and a.a. (¢, x) € Or.

A2 The function a : (0, 7) x 2 x RY — R" is measurable in 7 and x, continuous in 7,
elliptic in n, i.e. ap > 0, a(t,x,n)n > ag|n|*> for neRY and (,x) € Qr, strongly
monotone, ie. ay >0, (a(t,x,n)— a(t,x, ) —m) = ailn — o> for
1,2 eRY and a.a. (t,x) € Qr, and satisfies a growth assumption, i.e. a’ < oo,
la(t, x, )| < a®(1 + |n|) for neRY and a.a. (1,x) € O7.
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A3 The matrix field de L®(Q7)"", ie. |d(t,x)| < d, for a.a. (t,x)€Op, h: R — R
is continuous and satisfies 0 < sy < h(§) < h; < oo for E€R.

A4  The function f: (0, 7) x 2 x R — R is measurable in 7 and x, continuous in &, and
sublinear, i.e. f] < oo, |f(t, x,&)| < fi(1 + |&|) for £€R and a.a. (t,x) € Q7.

A5 The initial condition ug is in V.

2.1. Existence of a weak solution of hyperbolic equation
Definition 2.2 A function u : Q7 — R is called a weak solution of (1) if

(i) ur € C(0, TI; LA(Q)), u, € L/(Q7) N L*(0, T; Vo), ue C([0, T; Vo),
(i) u satisfies the initial condition, i.e. u(f) = uy in Vo, u,(f) = 0 in L*(Q) for t — 0,
and

/ [—Su,v, b1, x, u)v + alt, X, Viu)Vv + d(t, X)h(u)Vu Vv]dx di
+ S/Qu,(T)v(T)dx = /;Tf(l, x,u)yvdxdt 3)

for all ve LP(Q7) N L*(0, T; V), s.t. v, € L*(Q7), v e C([0, T]; L*(RQ)).
THEOREM 2.3 There exists a weak solution u® of the problem (1).

The existence of a solution of (1) is proved using Galerkin’s method: let
("), € Vo N LP(R) be a basis of the spaces ¥y and L7(2). We consider the sequence
of the functions {&"} of the form u"(,x) = 3", 2()¢®(x), m=1,2,..., such that
u™ is a solution of the Cauchy problem

e/g;uj’,“ »® dx+/9b(t,x, u’,”)qb(k) dx—i—/ga(l, X, VuT)V(l)(k) dx

+ / d(t, x)hu™)Vi" Vo dx = [ S, x, ™" dx, 4)
Q Q
u™(0,x) = ul(x), u"0,x)=0, (5)

where {u'} is an approximation of u, in the space V. Due to the generalisation of
Peano’s theorem for Carathéodory functions [8], there exists a local solution of this
problem in [0, #y,,]. The following lemma allows an extension of the solutions to the
whole interval [0, T'].

LemMMA 2.4 The estimates

8||LIT(I)||LZ(Q) <C, te [0, Z‘()m], ||u',”||U(Q,0m) <C, ||Vu;”||Lz(Q,0m) <C (6)

hold uniformly with respect to m and .



1288 M. Ptashnyk

Proof  We multiply the equation (4) by z}}, sum up over k from 1 to m, and integrate
over [0, ], where 0 < 7 < f,

/ [gu';;u';’ Bt ol alt, x, V")V + d(t, X)h(u") V" Vu',”]dx di
0

T

= /Q S, x, u™)u) dx de. (7

Due to 9,u(0) = 0 and Assumption 2.1 the first three terms in (7) are bounded from
below by

2/9 |u';’(r)|2dx+/ (boltd' P + ao|Va"|*)dx d.

0.

For the fourth term, we have

27,2
8
d(t, x)h(u™)Vu" Vu" dx dt < % / |V > dx dt + 3 |V |* dx de
QT

o8 0:

t 8
< clf |Vu’,”|2dxdt+—/ |Vu;"|2dxdt+cz.
0 Jo 2Jo.
Due to the assumption on f, we have
8 T
f St x,u™ dxde < f/ [ Pdx dt + ¢3 / / [u)')F dx dsdt + cs.
0 PJo. 0 Jo

Applying Gronwall’s lemma to (7) implies the assertion. [ |

Remark  Since the constant C is independent of 7y, the solution #™ may be assumed to
be the maximal solution, i.e. the one that exists for all # € [0, 7]. Furthermore, since the
estimates of the last lemma are independent of m, they are satisfied by every u/" for all
tel0, T1.

From the estimates for «)" we obtain the estimate for . Due to (6), uy € V), and
p>2 we have

[ (o + v o)
Q
S/ (|u}t'n|2+|vu7tn|2+|um|2+|Vum|2)dxdt

+ f (|ug’|2 + |Vu8“|2)dx < +f (|u'"|2 n |Vu"’|2)dxdz.
Q

T

Then Gronwall’s lemma implies

" (Olly, = C, t€l0,T]. ®)
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Proof (of Theorem 2.3) The growth assumptions on « and b imply

b(t, x,u")vdxdt

/
Q < (1 1130, ) W0
T

< C(L+ 1"l 200,72 voy) IV L 220, 72 )

/ a(t,x, Vu,")Vvdxdt

T

for all ve LP(Q1) N L*(0, T; V). Hence, the estimates, (6) and (8), imply the existence of
a subsequence of {#"'}, again denoted by {u"'}, such that

u™ — u®  weakly- x in L>(0, T; Vy),
W' — ui  weakly in L#(Qr) N L2(0, T; V),
u" — uf  weakly- * in L¥(0, T; LA()),
b(t,x,u)")y — p° weakly in LY(Qr),
a(t,x,Vu)') - n° weakly in Lz(QT)N ,

as m — 00. Using Aubin—Lions’s Compactness Lemma [11], yields ™ — u® strongly in
L*(Q7); therefore u™ — u° a.e. in Q7. The continuity of 4 and fimplies h(u™) — h(u®)
and f(t,x,u™) — f(t,x,u’) a.e. in Q7. From the assumptions it follows that A(u™),
h(w®)e L®(Qr) and f(t,x,u™), f(t,x,u®)e L*(Q7). Then by Egorov’s Theorem,
h(u™) — h(u®) uniformly a.e. in Q7 and by the Dominated Convergence Theorem
f(t, x,u") — f(t, x,u°) strongly in L>(Q7). The sum of all but the first term of (4) defines
a functional we LY(Q7) + L*(0, T; V)

g(w, V) = /f(t, x,u’)vdx — / (,88\7 +n° Vv + d(t, x)h(u®)Vu* Vﬁ) dx
Q Q

in 290, T) + L*(0, T) for v€ LP(Q) N Vy. Since u" — uf weakly in L?(Qr), we obtain
(W, vy = (d/d)(u,v) — (uf,,v) in D'(0, T) as m— oo for ve L7(2). Hence, w = u,
in  D0,T,LYQ) + V). Since weliQr)+L*0,T;V;) we may assume
ut, € LY(Qr) + L*0, T; V§). Thus, [9, Theorem IV.1.17], it may be assumed that
ut € C([0, T]; L*(R)) and the integration by parts formula

15} 1 1
/ (uf, uf)de = 5/ | (1)) dX—E/ | (1)]* dx
1 Q2 @

holds for all 0 < #; < t, < T. Now we will show that #° satisfies the initial condition.
Since all «" and «¢ are in C([0, T]; L*(R)), and u" — u® weakly- * in L>(0, T, L*()),
we obtain

[wr@iax— [ordr and [ wrmiae [imids
Q Q Q@ §
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as m— oo for 7€ L”(Q). Then we have uf(0) =0 in L*(Q2) because of u"(0) =0
in L*(Q). Since u*eL>®0,T;Vy) and ufel?0,T;V,) it may be assumed
that u® e C([0, T); Vo) [11], and «"(0) — u*(0) strongly in L>(R2) as m — oco. Thus,
u?(0) = uy.

Integrating in the equation (4) the first term by part, passing to the limit as m — oo
and using the fact that the set of all functions of the form Y, d;¢', where
dye C'([0, T)), is dense in L(Q7), L*0,T;Vy), C(0,T]; L*(R)), and H' (0, T; L*(Q))
yields

—5/ wvedxde+ | (Bv+n*Vv)dxdr + f d(t, x)h(u®)Vu® Vvdx de
T Or

Or
+8/Qu[(7)v(T)dx: /Qrf(t,x,u yvdxdt

for all ve LP(Q7) N L*(0, T; Vy), s.t. v, € L>(Q7) and v e C([0, T]; L*(2)).

To complete the proof, we have to show ° = b(t, x, uf) and n° = a(t, x, Vu?). For this
we show the strong convergence of {#} to u¢ in L(Q7) N L*(0, T; V). We choose
w) — uf as a test function in (4), integrate over [0, 7] and obtain

sf (o) — u dl+/ (b(t, x, ") — b(t, x, )W) — uf)dx de
0
+ / (a(t, x, Vu]")y — a(t, x, Vui))V(u]" — uf)dx dt = f b(t, x,u)(u; — uy")dx dt
0 (o

+ / (a(t, X VIOV — ") + d(t, x) hu"™ V" — 1)V — u;"))dxdz

T

+ / (d(t, D"YVEVE — ™) — A, x, ")l — uf)) dxdt.

T

By Fatou’s lemma and weak convergence of " in LY(Q7) + L*(0, T; V§), we obtain for
the first integral
T

liminf | (], " —u,)dl>7hm1nf/ U (T, x)I* dx—f/. |u (7, x)|* dx > 0.
0

m—00

Due to the convergences of {u/"}, {21/}, and {f{¢, x, ™)}, the first, second, fourth, and
fifth terms on the right-hand side converge to zero as m — oco. The third term on the
right hand side can be estimated by

/ d(t, )h(u™) V" — u)V(u}" — uf)dx de

d2h2
- 25

< cl/ |V(u8’—u0)|2dxdt+62/ / |V(u't"—uf)|2dxdtds
(022 0 Jo,

/ IV@" — ) dxdt + = f V(" — uf)[* dxde

8
+5 , V(" — uf)]* dx dt.
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The monotonicity of b and a, and the convergence of {u'}, {#"'}, and {u]'} imply

)
by , |u;t11 — uf|p dxdr+ <al —§> /Q |V(u;” _ uf)|2 dxdt

1 T
< a(—) +03/ / V(" — uf)|* dx drds.
m 0 Jo,

Using Gronwall’s lemma in the last inequality yields
1 1 1
||M[7 — Llf”Lp(Ql) + ||Vur7 — VM§||LZ(QI) < CO’(E)
Thus, ¥ — u¢ strongly in LP(Q7) N L*(0, T} V) as m — oo. The strong convergence of

{u}"} and the weak convergence of {b({, x,u/)} and {a(t, x, Vu")} imply B° = b(t, x, uf)
and n° = a(t, x, Vuf), and the theorem is proved. |

2.2. Existence of a solution of a pseudoparabolic equation

Now we show that the subsequence of solutions {#°} converges as ¢ — 0 to a solution of
the initial boundary value problem for the nonlinear pseudoparabolic equation (2).

Definition 2.5 A function u : Q7 — R is called a weak solution of (2) if

(i) ue ([0, T); Vo), us € L'(Qr) N L*(0, T; Vy),
(i1) u satisfies the initial condition, i.e., u(t) — uy in V, for t — 0, and

f [b(2, x, u;)v + a(t, x, Vu,)Vv + d(t, x)h(u)Vu Vv]dx dz 9)

T

= / fit,x,uyvdxdt for allve LP(Q7) N L*(0, T; Vy).

THEOREM 2.6 There exists a weak solution of the problem (2).

Proof  We rewrite the equation (3) for v = u; and obtain
e / wuf dxdi+ [ [0 x.16) i + att, x, Vi) Vi J v e (10)
T T

+ / d(t, x)h(u®)Vuf Vui dx dr + 8[ (1) uf(T)dx = / St x, uf)uf dxde.
T Q Or

We estimate all integrals in (10) analogously to (7) and have
/2y, & £
e Nu, (D2 = C 1[0, 1], Nyl = C IVl = C,

where C is independent of ¢. Due to the growth assumptions on » and a, and estimates
for u;, we obtain

”b(ta X, u?)”L‘/(QT) = C: ”a([: X, Vu(:)”LZ(QT)N = C.
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Similarly to (8) [[u®()lly, < C, t€[0, T] can be shown. Then there exists a subsequence
of {u#°}, again denoted by {u}, such that

U —u weakly- x in L*°(0, T; Vy),

ut — u,  weaklyin L7(Q7) N L*(0, T; Vo),

b(t,x,u) - B weaklyin LY(Q7),
a(t,x,Vui) - n weaklyin L*(Q7)",
euf — 0  weaklyin L*(0, T; L*()),
eu!(,T) — 0 weaklyin L*(Q),

as ¢ — 0. Using the same argument for convergence of {/(x°)} and {f(¢, x, u®)} as in the
proof of Theorem 2.3 and passing to the limit as ¢ — 0 in (3) yields

/ (,BV +an)dxdt+ ; d(t, x)h(u)Vu Vv dx dt = ; At x, wyvdx dr

for all ve LP(Q1) N L*(0, T; Vy). Similarly as for {#"}, we prove the strong convergence
of {uf} and obtain B=05b(tx,u), n=alt,x,Vu). Using wuelL>®0,T;V),
u, € L*(0, T; V) implies that wu:[0,7] — Vy is continuous [11]. Due to u°(0) = uy,
we obtain u(0) = uy in V. Thus, u is a solution of (2). [ |

3. Regularity

To prove the uniqueness of a solution of a pseudoparabolic equation additional
regularity is needed.

3.1. Regularity of solutions of hyperbolic equations

We prove that a weak solution of a hyperbolic equation actually is in H'(0, T; H*(R))
in the two dimensional case.

THeOREM 3.1  Let Assumption 2.1 be satisfied, Q be a C*-domain, Vo= H)(RQ),
up € HA(Q), a(t, -, )e CHQ x RY), d(1,-)e C' (VN for 1e(0,T), he C(R), N=2,
p=2, and for neR", £cR,

|87}a(ta xa 77)' S Ca |vxa(ta x9 ’7)' S a2(1 + |n|)a

Then the solution u® of the problem (1) is in H'(0, T; H\(R)), in H'(0, T, H*(R)), and
satisfies eu;, € L*(07).
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Proof First we show the local regularity. We fix any open set U, and choose
an open set W, such that Ucc W ccC Q. We choose the basis functions ¢F as
solutions of

AP =x1¢"in Q, ¢ =0 on .
We choose v = —d,,(£70,,4") as a test function in (4), where ¢; is the smooth cut-off
function, ¢y =11in U, ¢ =01in Q\ W, 0 < ¢; < 1, and integrate over ¢ €[0, 7]. Due to
the regularity of ¢*, we have ve L*(0, T; H)(Q)). Integrating by parts and summing

over [ implies

N

e / vu'ly Vuy' {f dxdr — Z b(t, x, u:”)ax,(glzax,uT)dx dr
T =1 YOr
N N A
+y > / 8, (1, 3, Vi) a1l 3, (£ )dx dr (11)
=1 ij=170r

N
+3° / (B2, x, Va?") + 01, (e, X)h(u") Vi) ) V(e 1) dx
=1 T

N
=-> / St x, ™3y (G108, dx .
=1 YOr

The strong monotonicity of « implies 1/o(a(t, x, 7 + 0&) — a(i)E > a1|&]>  for
n =1+ o0& o >0, and n, = 7. Taking the limit as o — 0 yields

V,a(t, x, NEE > ailg)*  for 7,6 RY. (12)

Then we have the estimate

N

N
Z / o, d'(2, x, VuT)Bi/_xlu’[”aiixlu’;’{f dxdr > a Z /Q |8)2€’x,u’z"|2{f dxdr.
Lij=1%T Li=1Y€r

From the equation (11), using Young’s inequality, we obtain

I
E/ |Vu',"(7*)|2;fdx+a1/ |V2u"? &3 dxde
Q

Or

580/ V212 ¢F dx dt + ¢1(8o) <|V2u’”|2+|Vu’"|4)§12dxdt (13)
T

Or

1 cz(ao)/ (|W,ﬂ|2 F R VP + Iu’”lz)dxdt + e3(50).
Or
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For N=2, due to the embedding theorem, we have Vu”eL*(Q7) and the
Gagliardo—Nirenberg inequality

/ |Vu'"|4;fdxdzgcf (|v2u'"|2g%+|Vum|2;f|vgl|2)dxdz/ Va2 dx dr.

T T Or

The estimate for Vi and the assumption uy € H>(2) imply
T
/ |Vu’”|4§f dxdr < ¢ f |V2u’”|2§f dxdt+c <3+ 04/ / |V2u’;’|2§% dxdrdz.
T T 0 JO,

Due to the estimates (6) for #)" and the assumptions in the theorem, we obtain from
(13) the inequality

T
SV P dxde < € + C2/ V2> dxdedr.
QT 0 Qr

Then Gronwall’s lemma implies the estimate
160V 120, < C. (14)
From (13) we obtain also
el Vi (D)1l o0, 72 122 < C-

Using these extra estimates in the proof of Theorem 2.3 yields a subsequence
and a limit-function u® € H'(0, T; H)(R2)), which satisfies u¢ e L*(0, T H3 .(Q2)) and
eut € L>(0, T, H} () also.

To show the regularity of #° up to the boundary, we need an estimate for V2" close
to 892. Here, we use ¢* = 0 and A¢* = 0 on 3. In the local coordinates near the bound-
ary Q is of the form Bj(0)N{R xR,}. Hence, we consider the case
Q= B1(0)N{R x R,} at first. We choose v = —dy,(£%d,,u") as a test function in (4),
where ¢ is the smooth cut-off function, 0<¢<1 and ¢=11in B;;(0),
¢ =0 in R?\ B,(0), and ¢ vanishes near the curved part of 9. Integrating over ¢ and
integrating by parts imply

P / el 01" dxdr — | b1, x, ) )% 1) ¢ + 280, £y, 1) dx di
or or

+ / (V,,a(t, X, Vu")dy, Vi + 9y, a(t, x, Vu’[”)) V(ay, u;”g‘z)dx dr
T

+ f By, (d(t, X)h(W™) V")V (D, u" ¢*)dx di

=— | fit,x,u™)dy, 8y, P)dx dr. (15)
or
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We have ve L2(0, T; H\(Q)) since ¢* is regular for all k and since ¢ vanishes near
the curved part of 92, and 9,,u”" =0 and Bf,l " =0 on {x; =0}, because
u" =31, ¢k ¢t is zero on {x2 = 0} and the normal vector to this part of the boundary
is v=1(0, —1).

Then starting from equation (15), we obtain, by using the strong monotonicity
of a (see (12)), Young’s inequality, the Gagliardo—Nirenberg inequality, the estimates
(6) for /" and the assumptions in the theorem, the inequality:

T
/ [0y, Vu';1|2 Zdxdr < ¢ —1—/ / (|3i2u’;1|2 + 18y, Vufrn|2>§2 dxdrdzr.
T 0 t
Then Gronwall’s lemma implies the estimate
T
/ 10, V" 2 dxdr < C(l +/ P2 2 dxdrdt). (16)
T o Jo. ~

Similarly, we choose v = —dy,(£%d,,4") as a test function in (4) and integrate over ¢ and
integrate by parts. Using Au” = 0 and 92 u™ = 0 on {x, = 0}, it follows that 92 u" = 0
on {x, = 0}, and since 9, = 0 on {x, = 0} and ¢ vanishes near the curved part of 32,
ve LX(0, T; H\(R)). The strong monotonicity of a for &= (0,1) (see (12)), yields
afp > a;. Then, due to

T T
/ V™| dxdr < c+/ |9y, V"2 ¢? dxdrdt~|—/ / |03, ul*¢* dx drde,
T 0 Jo, 0 Jo,

that follows from Gagliardo—Nirenberg inequality, the estimate (16), and the estimates
for " we obtain

T
/ 3%, ¢ dxdr < €1 + G / |57 ¢ dxdedr,
Or 0 JO

Hence, Gronwall’s lemma implies ||8i2u7’§|| 2n < C. From this and (16) it
follows that

||V2“:n §||L2(QT) < C.

From the preceding estimates we obtain also &[|Vu!'(t) {|| 10, 7 12(2)) = C-

Using these estimates and the local estimate (14) in the proof of Theorem 2.3
yields ¢ e L*(0, T; H\(R)), uf e L*0,T; H*(R)), and euf e L>*(0,T; H)(RQ)). From
w6 € L2(0, T; H*(R)) and equation (1), it follows that eu?, € L*(Q7).

All the preceding calculations are true for a general C* domain: for any point x° € 92,
since 92 is C%, we may assume N B, r) = {xe B, r), xy > p(x1,...,xy_1)} for
some r >0 and some C> function y : RY~!' - R. We change variables to y = ®(x),
x = W(y) and choose s > 0 so small that the half-ball Q' := B(0,s) N {yy > 0} lies in
®(Q N B(x%, ). From the preceding calculations above we obtain the estimate for
u® := u®(t, ¥(y)) and consequently for u*. |
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3.2. Regularity of solutions of pseudoparabolic equations

By using the regularity of u°, we prove the regularity of solutions of the pseudo-
parabolic equation.

THEOREM 3.2 Let the assumptions of Theorem 3.1 be satisfied. Then a solution of the
problem (2) is in H'(0, T; H\(R)) and H'(0, T; H*()).

Proof  For the proof of the local regularity, we choose v = —V - (Z2D°u) as a test
function in the equation (3), where D7v(x) = (1/o)(u(x 4+ oe;) —u(x)), i=1,..., N,
D%y :=(DJv,...,D%v), and the cut-off function ¢; is defined in Theorem 3.1,
integrating by parts and obtain

t

—8/ u,v - D"u‘"’(f dxdr — / b(t, x,u;)V - ({%D”uf)dx dr

+ f Va(t, x, Vuf)V((%D"uf)dx dr + / V(d(t, x)h(ug)Vue)V(ﬁD"uf)dx dr

T

== / .f(t’ X, uS)V . (C%Dauf)dx dr.
Or

All integrands are integrable and uniformly bounded in o by L'(Q7) functions, because
ut € LX0, T: HX()) and euf, € L*(Q7). Then, due to the Dominated Convergence
Theorem, we can take limits as o — 0 and, after integrating by parts in the first
integral, obtain

%/ |Vu’;'"(T)|2 ;% dx + / Vya(t, x, Vu;) Vzuj3 V(;fVuﬁ)dx dr
Q

Or

+ / (an(t,x, Vuf)—i—V(d(t,x)h(ua)Vus))V(g“fVuf)dxdt 17)

=— ) ft, x, u‘g)V(gleuf)dx dr + /Q b(t, x, uf)V({%Vuf)dx dz.

Then by using in (17) the strong monotonicity of a, see (12), Young’s inequality,
the Gagliardo—Nirenberg inequality, the estimates for 7, and the assumptions in the
theorem we obtain

T
;?|V2uf|2dxdt5C1+C2/ / V2l )* dxdedr.
QT 0 Qr

Then Gronwall’s lemma implies
1< Vzuf”LZ(QT) < C. (18)

Using this estimate in the proof of Theorem 2.6 yields a subsequence and a limit-
function such that u, € L*(0, T; H}(Q)) and u, € L*(0, T H2, ().
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For the estimate near the boundary we use the same argument as for the hyperbolic
equation. We can consider the equation in the half-ball, i.e., 2 = B;(0) N {R x R} with
a straight boundary. Then we choose v = —d,, (¢?DJu?) as a test function in the equation
(3), where ¢ is as in Theorem 3.1, and after integrating by parts and taking limits as
o — 0 as above, we obtain

% / |0, uf 222 dx — / b(t, X, 1)y, (820, )dx dr
Q -

01

+ / (axla(t, X, Vi) + 0y, (d1, x)h(ug)VuE))V(Czaxl u)dx di

=), St x, 1)y, (620, uf)dx dt.

We have ve L*(0, T; H)(Q2)) since v € L*(0, T; H*(Q2)) and ¢ vanishes near the curved
part of 02, and d,,#° =0 and 83,] u®* =0 on {x, =0}, because the normal vector to
this part of the boundary is v = (0, —1). Similarly as for the hyperbolic equation,
we obtain

T
/ 18y, Vil |2 ¢ dxdr < C(l—i—/ / |3iz”i|2§2ddedt>' (19)
QT 0 Qr

Since ¢ € L*(0, T; HX()), ut € L*(0, T; H)(2)) and eut, € L*(Q7) uniformly in &, we have
that u* satisfies (1) almost everywhere. Then we obtain

Iy (1, x, VU, 1l = euts, — dop(t, X)h(u )3, u° — d(t, x)dsh(u ) Vi Vit
—dy,a' (1, x, Vub) — (V,a' (t, x, Vi) + 8, a(t, x, Vi), Vi
— 0, (d" (1, )W) V) — By d(t, X)W )V + b(t, X, uE) — ft, x, ).

From the strong monotonicity of a for & = (0, 1), see (12), it follows that 9,,a* > a;.
Then

T
/ |a§2uf|2§2dxdzgc+/ / 192 u|? £ dxdr.
Or 0o Jo,

Hence Gronwall’s lemma implies the estimate ||8§2uf 2, = C, where Cis indepen-
dent of ¢. This, together with (19), implies

IV2u Lo = C.

Using the last estimate and the local estimate (18) in the proof of Theorem 2.6
yields a subsequence and a limit-function such that ue H'(0,T; H)(RQ)) and
ue H\(0, T; H(RQ)). [ |
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4. Uniqueness
In the last section, we showed regularity of weak solution in two dimension. In this

section, we show that a regular solution is the unique solution in dimension N < 4.

THEOREM 4.1  Let Assumption 2.1, ue H'(0, T; H*(2)), and

|f(t, x, &) — flt, x,6)| < Cl& — &, |h(&1) — h(&)| < Cl& — &

for (t,x) € Or, &,& €R, be satisfied. Then there exists at most one weak solution of (2).

Proof Suppose u' and u” are two solutions of the problem (2). Then for u = u' — i

and the test function v=u,, we obtain the equation

; (b(t, x,ul) — b(t, x, u?))u, dx dr + /Q (a(t, x, Vul) — a(t, x, Vu?))Vu, dx dt

+ / (d(t, ")V = hG2)Vid)Vu, — (i, x, u') — fit, x, u2))u,)dx dr = 0.

Due to the strong monotonicity of a and b, the first two integrals are estimated from
below by

by / |, dx dr + ay / |Vu,|* dx de.
T T
The terms of the third integral can be estimated separately:

r )
d(t, x)h(u")Vu Vu, dx dr < % / / |Vut|2dxdtdr+§ / |V, |? dx ds,
0 JO-

T

Or

since #(0) = 0. From the embedding theorem we have that ve H'(0, T; H*(2)) implies
Vye L*(Q7) even for Q of the dimension N < 4. Then, due to the regularity of u'
and u*, we obtain u', 1> € L*(Q7) and Vu? € L*(Q7). The remaining term satisfies

/ d(t, x)(h(u") — h(?)) Vi Vu, dx dt

T

< cz(/QT|u|4dxdz>l/4(fQ] |Vu2|4dxdz)l/4</g |Vu,|2dxdt>1/2

T

1)
< =l (IuI2 + |Vu|2)dxdz+—/ |V, |* dx dr.
26 Or 2

T

The right-hand side is estimated by

T
/ () = it e < f w2 dr dr + 8 f w2 dxdr,
Or 0J0

Qt T
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since u(0) = 0. Thus, due to these estimates we obtain the inequality

T
(b —80) | JulPdxdr+ (@ —8) | |VuPdxdr < C/ / (|u,|2 + |Vut|2)dxdldr.
Or Or 0 JO.

Using Gronwall’s lemma in the last inequality implies u(¢) = u(0) = 0. Hence, u' = 1

a.e. in Qr. |

Remark The existence and uniqueness of solutions of nonlinear variational inequalities
is proved also, and will be published in a forthcoming article.
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