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Chemotaxis

» Cells secrete chemical signal substance

» Cells partially orient their movement toward or away from increasing
signal concentration

Chemoattractant

» formation of aggregations (Dictyostelium discoideum)
» tumour cell migration

» migration of immune cells into the region of a tumour

|



The Keller-Segel model of chemotaxis (1971)

>

The Keller-Segel model

= V- (Dy(x)Vu — x(x)uVv)
ve = V- (Dy(x)VVv) —yv+au

Consider a random, heterogeneous environment

up® = V- (D2 (x/e)Vu — x“(x/e)u>“Vvo¥)
v.' = V- (Dy(x)VvSY) — v + au®

w € Q, where (2, F, P) is a probability space

Dy (x/e) = Du(T (x/e)w), x*(x/e) = X(T (x/2)w),

where {7 (x)}xerr is a measure-preserving
dynamical system

What is the limit as ¢ — 0 of (u®, v®)?
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Stochastic homogenization

>

>

>

Stochastic homogenization of linear elliptic eq. Papanicolaou &
Varadhan 1979; Kozlov 1980; Zhikov, Kozlov, Oleinik& Ngoan 1979

Stochastic homogenization of convex integral operators by means of
—convergence: Dal Maso & Modica 1986

Quasi-linear elliptic and parabolic equations with stochastic
coefficients: Bensoussan & Blankenship 1988; Castell 2001

Hamilton-Jacobi, Hamiltonial-Jacobi-Bellman equations: Lions &
Souganidis 2005, 2010; Kosygina, Rezakhanlou & Varadhan 2006;
Armstrong & Soudanidis 2012

Fully nonlinear parabolic in stationary ergodic media: Caffarelli,
Souganidis, Wang 2005

Stochastic two-scale convergence in the mean: Bourgeat, Mikeli¢ &
Wright 1994; Bourgeat, Mikeli¢, Piatnitski 2003

Stochastic unfolding (in the mean): Neukamm & Varga 2018

Stochastic two-scale convergence: Zhikov & Piatnitski 2006;
Heida 2011, 2012



Heterogeneity: Dynamical system

e (Q,F,P) — a probability space with probability measure P

e T(x):Q — Q dynamical system, i.e. a family {7(x) : x € R"} of
invertible maps, such that for each x € R”, T(x) is measurable and
satisfy:



Heterogeneity: Dynamical system

e (Q,F,P) — a probability space with probability measure P

e T(x):Q — Q dynamical system, i.e. a family {7(x) : x € R"} of
invertible maps, such that for each x € R”, T(x) is measurable and
satisfy:

(i) 7(0) is the identity map on Q and 7 (x) satisfies the
semigroup property:

T(x1+x)=Tk)T(x) forall xi, xx € R"

(ii) P is an invariant measure for 7 (x), i.e. for each x € R" and
F € F we have that

PT1(F) = P(F)

(iii) For each F € F, the set {(x,w) ER"x Q: T(x)w € F} is a
dx X dP(w)-measurable subset of R” x Q, where dx denotes
the Lebesgue measure on R”



Heterogeneity: Dynamical system

e (Q,F,P) — a probability space with probability measure P

e T(x):Q — Q dynamical system, i.e. a family {7(x) : x € R"} of
invertible maps, such that for each x € R”, T(x) is measurable and
satisfy:

(i) 7(0) is the identity map on Q and 7 (x) satisfies the
semigroup property:

T(x1+x)=Tk)T(x) forall xi, xx € R"

(ii) P is an invariant measure for 7 (x), i.e. for each x € R" and
F € F we have that

PT1(F) = P(F)

(iii) For each F € F, the set {(x,w) ER"x Q: T(x)w € F} is a
dx X dP(w)-measurable subset of R” x Q, where dx denotes
the Lebesgue measure on R”

e periodic case: 2 =10,1]", T(x)w =w + x(mod 1) on Q
e a shift: 7(x)u(B) = (B + x) for all Borel sets B C R", - Radon measure on R"



The ergodic setting

Definition A random fiIeNd D(x,w), x € RY, w € Q is stationary if there is
a measurable function D(w) on Q

D(x,w) = D(T(x)w)

[x = D(x,w) and x — D(x 4 z,w) have the same statistics for all shifts z]



The ergodic setting

Definition A random fiIeNd D(x,w), x € RY, w € Q is stationary if there is
a measurable function D(w) on Q

D(x,w) = D(T(X)w)

[x = D(x,w) and x — D(x 4 z,w) have the same statistics for all shifts z]

Definition A measurable function f on Q is said to be invariant for a
dynamical system T (x) if for each x € RY

f(w)=f(T(x)w) P —ae on.



The ergodic setting

Definition A random fiIeNd D(x,w), x € RY, w € Q is stationary if there is
a measurable function D(w) on Q

D(x,w) = D(T(x)w)
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Definition A dynamical system T (x) is said to be ergodic, if every

measurable function which is invariant for 7(x) is P-a.e. equal to a
constant.



The ergodic setting

Definition A random fiIeNd D(x,w), x € RY, w € Q is stationary if there is
a measurable function D(w) on Q

D(x,w) = D(T(x)w)
[x = D(x,w) and x — D(x 4 z,w) have the same statistics for all shifts z]
Definition A measurable function f on Q is said to be invariant for a
dynamical system T (x) if for each x € RY
f(w)=f(T(x)w) P —ae on.
Definition A dynamical system T (x) is said to be ergodic, if every

measurable function which is invariant for 7(x) is P-a.e. equal to a
constant.

Ergodic Birkhoff theorem

tﬁoo td|A|/ w)dx = /Qg(w)dP P-a.s.
for all bounded Borel sets A with |[A| > 0, and all g € C1(Q)



Ergodic environment
Poisson point process (2, F,P)

IIITY)
w € Q w= {B(km) : m € N} distribution of S88eee
balls of a specific radius centered at x, 4+
Iy
N(w, A) - the number of balls the centers of which Pl e

fall in the open bounded set A C R".

media.net/

o- algebra F generated by the subsets of Q2

{weQ: Nw, A1) =ki,...,Nw, A;) = ki}
i ki,..., ki € Ng and Ay,..., A; are disjoint open sets

P(N(w, Al) = kl, ey N(w,A,—) = k,)
= P(N(W,Al) = kl) et P(N(W,A,) = k,)
with

K
P(N(w,A) = k) = ()\‘;3” exp(—AlA[]), A >0

weQ, T(x)w={B(km)+x: meN}, xeR"

1st ORDER STOCHASTIC
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Definition of Stochastic two-scale convergence
(Zhikov & Piatnitsky 2006, Heida 2011)
T (x)— ergodic dynamical system, T (x)&0— “typical trajectory” (satisfy
Birkhoff's theorem); realizations are typical P-a.s.

{ve} C L2((0,7) x G) converges stochastically two-scale to
v e L?((0,7) x G x Q) if

Iimsup/ /|v5(t,x)|2dxdt<oo (1)
o Je

e—0

and

lim / / ve(t, x)o(t, x)b(T (x/e)@) dxdt
e—0 Jg G
= / / / v(t, x,w)p(t, x)b(w) dP(w)dxdt
o JeJa
for all p € C§°([0,7) x G) and b € L%(Q).
Theorem  Every {v¢} C L?(0,7; L?(G)) that satisfies (1) converges

along a subsequence to some v € L?(0,7; L?(G x Q, dx x dP(w))) in the
sense of stochastic two-scale convergence.



Compactness results
Theorem {v¢} C H1(G) satisfies

Vel < C@),  [IVVillze) < C(@)
then v € H'(G) and v; € [(G; [2,,()) s.t. (up to subseq.)
ve — v stochastically two-scale

Vve — Vv+v  stochastically two-scale



Compactness results
Theorem {v¢} C H1(G) satisfies

Vel < C@),  [IVVillze) < C(@)
then v € H'(G) and v; € [(G; [2,,()) s.t. (up to subseq.)
ve — v stochastically two-scale

Vve — Vv+v  stochastically two-scale

Theorem {v¢} C HY(G) satisfies

IVollee) < C(@), el Vvillize) < C(0)

then 3 v € L2(G; H(R)) s.t. (up to subseq.)
ve — v stochastically two-scale
eVve — V,v stochastically two-scale

O u(w) = lim ”(T(‘Sef)‘(’;) — @) Gou= (@hu,. ., 0u), HYQ) = {v, Vv € 2(Q)}

12
12(Q) = (Vou s we CE@)} ) 12,(Q) = Loy()*
Zhikov & Piatnitsky 2006




Weak solutions and A priori estimates

Weak solution uf € HY(G,), v¢ € HY(G,) N L*0,; W14(G)):

(U, 9)6. + (DS(X)VU® — X (x)u° Vv, Vd)g. =0,
<v§7w>GT + <Dv(X)VVE, v¢>GT + ")/<V571ﬂ>GT = 0‘<U67¢>Gﬂ

for all ¢,¢ € L2(0,7; H*(G)) and P-almost surely in w € Q.

Theorem For every € > 0 and for P-a.e. w € Q there exists a unique
weak solution of KS, and

> uf |l 0,mie2(6)) T IV U] 0,m12¢6)) + [10e% [l 12(6,) < C

> [[VE Lo 0,7:H1(6)) F 10:vE 20,711 (6)) + IVE Nl oo 0,5 H2(6)) < €

for some constant C that is independent of ¢.

(Global solution for n =1 and local in time for n = 2)



Macroscopic equations

Oty =V(D*Vu—x"uVv) in G,
Orv =V (D, (x)Vv) —yv + au in G,
Vu=0, Vv=0 on 9G x (0,7),
u(0,x) = up(x), v(0,x) = w(x) in G,
where

D¢ = [ Df)(dne +aP()
6= [ (Bulw)ine — X(w)e)dP()
and &y ¢, {p ¢ are solutions of the auxiliary problems

e € Lpot(Q) such that D w(W)(T1e +€) € L2,(Q),
0 € Lpot(Q) such that Du(w)uLE —Y(w)¢ € 12,(Q).



Sketch of the Proof

u®, Vu®, 0:u® bounded in L?(G;,)

Ve, VvE, V2ve, 8,v°, 9, Vv for P-a.e. we Q.
Ut —=u stochastically two-scale, u € L%(0,7; H(G))
Vu®— Vu+ u; stochastically two-scale, u € [3(G;, Liot(Q))
Ot — i stochastically two-scale, icl?G, xQ)
ve—v stochastically two-scale, v € L2(0,7; HY(G))
Ove— ¥ stochastically two-scale, v € L2(0,7; HY(G))
Vve—¥ stochastically two-scale, ¥ € L2(0,7; H*(G))

for all “typical” realizations w.



Proof Sketch: Convergence
The stochastic two-scale limit and the strong convergence of u*:

(e 9)6, + (Duf@)(Vur+ 1) = X(@)u Vv, Vo + 91 Vapa(w)) 6.0 = 0.
Choosing ¢(t,x) = 0 for (t,x) € G, we obtain
(Dy(w)(Vu + u1) — X(w) u Vv, 01(t,x) Vpa(w))e,.0 = 0
for every 1 € C5°(G,) and ¢ € CH(Q).
(Dy(w)(Vu+ t1) — X(w) uVv,dup2)q =0, dt x dx —a.e. inG;,

> Exists a unique solution uy(t,x,-) € L3.,(Q2) that depends linearly

on Vu(t,x) and u(t, x) Vv(t,x) for a.e. (t,x) € G,
>

(t,x,w) Zaxju (t,x) b1 j(w) + u(t, x) Zﬁxjv(t,x) i j(w)

Jj=1

for a.e (t,x) € G; and P-a.e. w € Q

> 0y, 01 € L2,,(€) are solutions of the unit cell problems.



Mathematical model

Biochemistry:
» methylestrified pectin: be 1

» demethylestrified pectin: be >

P pectin-calcium cross links: be 3

» calcium ions: ¢, and ¢r
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Mathematical model

Biochemistry:
» methylestrified pectin: be 1

» demethylestrified pectin: be >
P pectin-calcium cross links: be 3

» calcium ions: ¢, and ¢r
O¢be — div(DpV be) = gh(be, ce, e(ue))

)
Orce — div(DeVee) = ge(be, Ce,e(ue))
ath — diV(DfVCf — g(ath)Cf) = gf(Cf)

Mechanics: Poroelasticty

u. - deformations of cell walls-+middle lamella
pe - flow pressure in cell walls+middle lamella
Otur - fluid flow inside the cells
div (E(b.) e(ue) — pel) =0 in Ge
div(KVpe — drue) =0 in Ge

Ot(Orur) — pdiv(e(drur) — pel) =0 in G



Plant tissues biomechanics: Random geometry

[T

e Qr measurable set, P(Q2r) >0, P(Q\Qr) >0 F

e 2.=0Q\Q D0 DOjE
o OrcC Q,\witfh P(Qr) > 0 and P(Qr N Q) > 0 %@@@@@@@

&\ €
|TE\F

o N

e For P-a.a. w € Q define a random system of subdomains in R3

Gw)={xeR®: T(X)weQ}, j=ef
Gr(w) = {X € R3: T(X)w € Qr}

M(w) = 8Gr(w), Mw) = M(w) N Gr(w)



Plant tissues biomechanics: Random geometry

e Qf measurable set, P(Qf) >0, P(Q\Qf) >0 @@@@ @@
(B

o Q.=0\Q @@@@@@@@

o Qr CQ with P(Qr) >0 and P(Qr NQ;) > 0 =

OO 0P

e For P-a.a. w € Q define a random system of subdomains in R3

€
@

&\ €
|TE\F

Te

Gw)={xeR®: T(X)weQ}, j=ef
Gr(w) = {X € R3: T(X)w € Qr}

M(w) = 8Gr(w), Mw) = M(w) N Gr(w)

1. G¢(w) countable number of disjoined Lipschitz domains for
P-a.a. weQ

2. The distance between two connected components of Gf(w) and
diameter of Gf(w) are uniformly bounded from above and below.

3. The surface I'(w) C (w) is open on I'(w) and Lipschitz continuous



Random geometry

==y
G-xe®: Twentne  BTIOHSOT
cell inside @ %

O
O
()
0

[5 (=)
|5
D
1=
oo
[y (]

G =G\ Gf cell wall + middle lamella

R

~
o)
U
o

GE={xeR3: T(x/eweQ}nNG
re =90G; cell membrane
re=ren GE part of the cell membrane

impermeable to calcium ions



Random geometry

D e

Gi ={xeR*: T(x/e)w €Qr} NG 3@@ DDD@\%
cell inside ] =000 @ %

G:=G\ G cell wall + middle lamella ]@ @ O0= . .
D000

I
GE={xeR3: T(x/eweQ}nNG
= 0Gf cell membrane

re=ren GE part of the cell membrane

impermeable to calcium ions
Statistically homogeneous (stationary) random fields
E(x,w,€) = E(T(x)w,£),  Kp(x,w) = Kp(T(x)w)
E(-¢): Q=R K,(-) : Q — R3*3 measurable functions, ¢ € R.

E*(x,¢&) = E(x/aw,f), Ky(x) = KP(X/E,W) forweQ, xeR3 ¢eR



Plant tissue biomechanics: Poroelasticity

%@@@]@@@@@@ d7ug — div(E*(bg 3)e(ug)) + Vpz =0

E@@@@@@@E o 9:p5 — div(KSVpS — dpug) = 0
@@@@@ 02us — 2 pdiv(e(dwus)) + Vps =0

[ @@@ F@@@f‘ﬁ divd,us = 0

Te



Plant tissue biomechanics: Poroelasticity
%@@@@@@@@ Ofug — div(E° (b 3)e(ug)) + Vp; =0
E@ﬁ@@@@@@ o OepS — div(KEVpE — D) = 0

O0=2No0 2us — 2 div(e(dpus)) + Vpi =0
E@@@%@@” : ”

B divdsuz =0
(B (b5 5) e(uf) — pil) v = (2ue(@un) — pil) v on T

I_ITatui = I_I-,-atui on[*®
n-(2pue(:us) — pf)v = —pg on ¢
(=K Vpz + 0wug) - v = Opug - v on €

M, w - tangential components

On the external boundaries :

Eg(bis)e(ug) v=F, (KSVpi — o) -v=F, onoQ



Plant tissue biomechanics: Chemistry

@@@@@
jH@ﬁl@@@

3%@@@556@

Nee
o atb - le(DbeE) +gb(ce7bz7 ( E)) in Qi
Dect = div(DeVed) + golcS, b, e(ud))  in O

5 H
3

A Oec; = div(DeVe; — G(0:uf)cf) + gr(cf)  in QF

DyVb - v =ceR(b) on ¢

€ __ €
c; = ¢f,

D.VcE v =0,

DeVece - v = (DsVe — G(Bu)cs) - v on [\ T*
(DfVeg — G(Owuf)cs)-v =0 on®



Plant tissue biomechanics: Chemistry

200 &0
@@@@@@@ DTk .
@@@@@ L ObE = div(D,VE) + gu(cE. be(uD) im0

j% @@@ Orcs = div(DeVel) + ge(cg, bE, e(u)) in Q

£ TE

T Opef = div(DeVef — G(0:uf)cs) + gr(cf)  in QF
f—e
DyVb - v =ceR(b) on ¢
< =c, DeVece - v = (DsVe — G(Bu)cs) - v on [\ T*
D.Vc:-v=0, (DfVe; — G(Oruz)cs) - v =0 onl®

On the external boundaries :

DyVbE v = Fp(bS),  DeVct-v=F.(cE)  ondQ

e



Macroscopic equations
908, — div(E"™ (b )e(ue)) + Voo + [ GFur g dP() =0 in G,
Dedepe — div(Kyo"Vpe — Kydpue — Q(O:ur)) =0 in G,
and
| [Bhure + neufduunlen() + Voe]xa dP(w) = | Plia pdP() =0

div,0iur =0 in Gy x €, Orur(0) = uf, in GxQ

M 0wur(t, x, T(X)w) = N 0rue(t,x) for (t,x) € Gr, x € [(w), P-a.s. in Q

3
Pl(t,x,w) = Z@kae(t,x) W,f(w) + Dpuk(t, x) WK (w) + Qf(w, Druy)
k=1
Vo € L2(Gr; HY(Q))3, divee =0in Gr x Q, Mo(t, x, T(X)w) =0
for (t,x) € Gr, x € ['(w) and P-a.s. in Q
ew(P)i = 3 (0Ldr + 0Luy)



Macroscopic equations for b and ¢

Ve0tb — div(Dp g Vb) = / go(c, b, U(b,w)e(ue)) x, dP(w)
JQ ¢

+ / R(be) dp(w) in Gt
Ja
Orc — div(Deg Ve — ueg ¢) = D¢ gr(c)

+ /Q ge(c, b, U(b,w)e(ue)) X, dP(w) in Gt

where ¥; = [, x, (w) dP(w), for j = e, f, and
J

U(b,w) = {Uklfj(bvw)}k,l,i,jzl,2,3 = {bZ/ + Wé{sym,k/}k 1ij=123

WJ solutions of the cell problems, by = (bZ,);J:1,2,3, by =e® e
p(w) is the Palm measure of the random measure of the surfaces I'(w)



Macroscopic tensors
o EE(e) = [ Byl )+ (Bl W, )] xg IP(o).
.« Kiom = / [Ry(w) + (R()Wi),] xq, dP(),
Q
° KuU - /Q [5U - ( ( )WJ) } XQe dP(w)v

o Q(f)tuf):/QatquQfdP(w)—/QR(W)Qf(w,Otuf)xQe dP(w)

E(w, b) (WXL .. + bi) ®xq dP(w) =0 for all ® € L2 ,(Q)*,
K(w)(Wy + ex) ¢ xg, dP(w) =0 for all ¢ € L2,,(Q),
(K(w)W) — e) ¢ xq, dP(w) =0 for all ¢ € L2,,(Q),
(K() Qr xq, + Detir xg,) CdP(w) =0 for ¢ € L5,,(Q),

with by = %(ek ® e + e ® ) and {ej}f:1 — canonical basis of R3.



Effective diffusion coefficients and velocity
e Macroscopic diffusion coefficients

£>;'{7eff:/Q |3 + (D5 wh)i | X, dP(w)

D — /Q [D9(w) + (D(w) w) | dP ()

where D(w) = Dex,, (w) + DfXQf(UJ) for w e Q
o wiel2,(Q), we L2,,.1(9) solutions of the cell problems

/ Db(wf; + ej)CXQ dP(w)=0 forall e le)ot(Q)7
o :
/ D(w)(wW + e))ndP(w) =0 forall ne L2, ().
Q
o  Effective velocity
et (£, x) = / DrZ(t,x,w) xq, dP(w)
Q

o Zel>®(Gr;L2,,(Q)) satisfies

./S:Z(sz - g((“)tuf))gxﬂf dP(w)=0 forall € Liot(Q), a.e. (t,x) € Gr



Convergence on boundaries of random microstr.
Lemma For u € H'(Q,P) we have u € L?(Q, ) and the embedding is continuous
p is the Palm measure of the random stationary measure ., of surfaces I'(w)
for realisations w € Q
Lemma Let p, random measure of I'(w) and dpug,(x) = £"dpw,(x/¢)

> For‘ 165 (|r sy + IIVE llir(esy < € ‘ and b® — b stochastic two-scale,
b e LP(0, T; WHP(G)), with p € (1,00), then

lim / b (£, x) 6 (£, ) (T (x/)w) dpis, (x)dt

:/G /b(t,x)qb(t,x)zp(w)dp,(w) dxdt

for any ¢ € C*°(0, T; C$°(R?)) and ¥ € C(Q) and

/ / |b|Pdp(w)dxdt < C/ / |b|P d'Pdxdt

165 \|o(csy + €l VO [|iresy < € ‘ and b° — b stochastic two-scale,
b€ LP(Gr, WP(Q, dP)), with p € (1,00), then we have (2) and

/ / |b|Pdp(w)dxdt < C
6rJa

Piatnitski, MP (2020) Nonlinearity




The ergodic setting

Definition Let (Q, F) be a measurable space and (R?, B(R?))
fi: Q x B(RY) — Ry U {oc} is a random measure on (RY, B(RY)) if

o(A) = fi(w, A) s
e F-measurable in w € Q for each A € B(RY) and
e a measure in A € B(R?) for each w € Q.

Definition  The random measure p,, is stationary if for ¢ € C§°(RY)

/¢ = x)dpo(y /¢y)duT w(¥)

i.e. random function
Folx) = [ oly = x)dina(y)

is stationary and measurable.



The ergodic theorem for random fields

Definition The Palm measure of the random measure p,, is a measure p
on (2, F) defined by:

- /Q /R Toap (IR(T () diu(X)dP(w), F € F
o du,(x) = p(T(x)w)dx on RY : du(w) = p(w)dP(w) on Q

Theorem (Ergodic theorem (see Zhikov & Piatnitsky 2006))

Let {T(x)}xern be ergodic and the stationary random measure i, has
finite intensity m(p,,) > 0. Then

Jim td|A|/ w)dpe(x ):/Qg(w)du(w) P-a.s.

for all bounded Borel sets A with |A| > 0, and all g € L}(Q, )

e For pp = P - classical ergodic theorem of Birkhoff

tﬁoo td|A|/ w)dx = /Qg(w)dP P-a.s.
for all bounded Borel sets A with |A| > 0, and all g € L1(Q, )
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