Stochastic Homogenization

Mariya Ptashnyk

Bonn, 15 April, 2021

Chemotaxis

- Cells secrete chemical signal substance
- Cells partially orient their movement toward or away from increasing signal concentration

- formation of aggregations (Dictyostelium discoideum)
- tumour cell migration
- migration of immune cells into the region of a tumour

The Keller-Segel model of chemotaxis (1971)

- The Keller-Segel model

$$
\begin{aligned}
& u_{t}=\nabla \cdot\left(D_{u}(x) \nabla u-\chi(x) u \nabla v\right) \\
& v_{t}=\nabla \cdot\left(D_{v}(x) \nabla v\right)-\gamma v+\alpha u
\end{aligned}
$$

- Consider a random, heterogeneous environment

$$
\begin{aligned}
u_{t}^{\varepsilon, \omega} & =\nabla \cdot\left(D_{u}^{\omega}(x / \varepsilon) \nabla u^{\varepsilon, \omega}-\chi^{\omega}(x / \varepsilon) u^{\varepsilon, \omega} \nabla v^{\varepsilon, \omega}\right) \\
v_{t}^{\varepsilon, \omega} & =\nabla \cdot\left(D_{v}(x) \nabla v^{\varepsilon, \omega}\right)-\gamma v^{\varepsilon, \omega}+\alpha u^{\varepsilon, \omega}
\end{aligned}
$$

- $\omega \in \Omega$, where (Ω, \mathcal{F}, P) is a probability space
- $D_{u}^{\omega}(x / \varepsilon)=\widetilde{D}_{u}(\mathcal{T}(x / \varepsilon) \omega), \chi^{\omega}(x / \varepsilon)=\widetilde{\chi}(\mathcal{T}(x / \varepsilon) \omega)$, where $\{\mathcal{T}(x)\}_{x \in \mathbb{R}^{n}}$ is a measure-preserving dynamical system
- What is the limit as $\varepsilon \rightarrow 0$ of $\left(u^{\varepsilon, \omega}, v^{\varepsilon, \omega}\right)$?

Stochastic homogenization

- Stochastic homogenization of linear elliptic eq. Papanicolaou \& Varadhan 1979; Kozlov 1980; Zhikov, Kozlov, Oleinik\& Ngoan 1979
- Stochastic homogenization of convex integral operators by means of「-convergence: Dal Maso \& Modica 1986
- Quasi-linear elliptic and parabolic equations with stochastic coefficients: Bensoussan \& Blankenship 1988; Castell 2001
- Hamilton-Jacobi, Hamiltonial-Jacobi-Bellman equations: Lions \& Souganidis 2005, 2010; Kosygina, Rezakhanlou \& Varadhan 2006; Armstrong \& Soudanidis 2012
- Fully nonlinear parabolic in stationary ergodic media: Caffarelli, Souganidis, Wang 2005
- Stochastic two-scale convergence in the mean: Bourgeat, Mikelić \& Wright 1994; Bourgeat, Mikelić, Piatnitski 2003
- Stochastic unfolding (in the mean): Neukamm \& Varga 2018
- Stochastic two-scale convergence: Zhikov \& Piatnitski 2006; Heida 2011, 2012

Heterogeneity: Dynamical system

- $(\Omega, \mathcal{F}, \mathcal{P})$ - a probability space with probability measure \mathcal{P}
- $\mathcal{T}(x): \Omega \rightarrow \Omega$ dynamical system, i.e. a family $\left\{\mathcal{T}(x): x \in \mathbb{R}^{n}\right\}$ of invertible maps, such that for each $x \in \mathbb{R}^{n}, \mathcal{T}(x)$ is measurable and satisfy:
$T(0)$ is the identity map on Ω and $\mathcal{T}(x)$ satisfies the semigroup property:

$$
\mathcal{T}\left(x_{1}+x_{2}\right)=\mathcal{T}\left(x_{1}\right) \mathcal{T}\left(x_{2}\right) \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}^{n}
$$

$$
\mathcal{P}\left(\mathcal{T}^{-1}(x) F\right)=\mathcal{P}(F)
$$

(iii) For each $F \in \mathcal{F}$, the set $\left\{(x, \omega) \in \mathbb{R}^{n} \times \Omega: \mathcal{T}(x) \omega \in F\right\}$ is a $d x \times d \mathcal{P}(\omega)$-measurable subset of $\mathbb{R}^{n} \times \Omega$, where $d x$ denotes the Lebesgue measure on \mathbb{R}^{n}

Heterogeneity: Dynamical system

- $(\Omega, \mathcal{F}, \mathcal{P})$ - a probability space with probability measure \mathcal{P}
- $\mathcal{T}(x): \Omega \rightarrow \Omega$ dynamical system, i.e. a family $\left\{\mathcal{T}(x): x \in \mathbb{R}^{n}\right\}$ of invertible maps, such that for each $x \in \mathbb{R}^{n}, \mathcal{T}(x)$ is measurable and satisfy:
(i) $\mathcal{T}(0)$ is the identity map on Ω and $\mathcal{T}(x)$ satisfies the semigroup property:

$$
\mathcal{T}\left(x_{1}+x_{2}\right)=\mathcal{T}\left(x_{1}\right) \mathcal{T}\left(x_{2}\right) \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}^{n}
$$

(ii) \mathcal{P} is an invariant measure for $\mathcal{T}(x)$, i.e. for each $x \in \mathbb{R}^{n}$ and $F \in \mathcal{F}$ we have that

$$
\mathcal{P}\left(\mathcal{T}^{-1}(x) F\right)=\mathcal{P}(F)
$$

(iii) For each $F \in \mathcal{F}$, the set $\left\{(x, \omega) \in \mathbb{R}^{n} \times \Omega: \mathcal{T}(x) \omega \in F\right\}$ is a $d x \times d \mathcal{P}(\omega)$-measurable subset of $\mathbb{R}^{n} \times \Omega$, where $d x$ denotes the Lebesgue measure on \mathbb{R}^{n}

Heterogeneity: Dynamical system

- $(\Omega, \mathcal{F}, \mathcal{P})$ - a probability space with probability measure \mathcal{P}
- $\mathcal{T}(x): \Omega \rightarrow \Omega$ dynamical system, i.e. a family $\left\{\mathcal{T}(x): x \in \mathbb{R}^{n}\right\}$ of invertible maps, such that for each $x \in \mathbb{R}^{n}, \mathcal{T}(x)$ is measurable and satisfy:
(i) $\mathcal{T}(0)$ is the identity map on Ω and $\mathcal{T}(x)$ satisfies the semigroup property:

$$
\mathcal{T}\left(x_{1}+x_{2}\right)=\mathcal{T}\left(x_{1}\right) \mathcal{T}\left(x_{2}\right) \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}^{n}
$$

(ii) \mathcal{P} is an invariant measure for $\mathcal{T}(x)$, i.e. for each $x \in \mathbb{R}^{n}$ and $F \in \mathcal{F}$ we have that

$$
\mathcal{P}\left(\mathcal{T}^{-1}(x) F\right)=\mathcal{P}(F)
$$

(iii) For each $F \in \mathcal{F}$, the set $\left\{(x, \omega) \in \mathbb{R}^{n} \times \Omega: \mathcal{T}(x) \omega \in F\right\}$ is a $d x \times d \mathcal{P}(\omega)$-measurable subset of $\mathbb{R}^{n} \times \Omega$, where $d x$ denotes the Lebesgue measure on \mathbb{R}^{n}

- periodic case: $\Omega=[0,1]^{n}, \quad \mathcal{T}(x) \omega=\omega+x(\bmod 1)$ on Ω
- a shift: $\mathcal{T}(x) \mu(B)=\mu(B+x)$ for all Borel sets $B \subset \mathbb{R}^{n}, \mu$ - Radon measure on \mathbb{R}^{n}

The ergodic setting

Definition A random filed $D(x, \omega), x \in \mathbb{R}^{d}, \omega \in \Omega$ is stationary if there is a measurable function $\tilde{D}(\omega)$ on Ω

$$
D(x, \omega)=\tilde{D}(\mathcal{T}(x) \omega)
$$

$[x \rightarrow D(x, \omega)$ and $x \rightarrow D(x+z, \omega)$ have the same statistics for all shifts $z]$
Definition A measurable function f on Ω is said to be invariant for a dynamical system $\mathcal{T}(x)$ if for each $x \in \mathbb{R}^{d}$

$$
f(\omega)=f(\mathcal{T}(x) \omega) \quad \mathcal{P}-\text { a.e. on } \Omega .
$$

Definition A dynamical system $\mathcal{T}(x)$ is said to be ergodic, if every measurable function which is invariant for $\mathcal{T}(x)$ is \mathcal{P}-a.e. equal to a constant.

Ergodic Birkhoff theorem

The ergodic setting

Definition A random filed $D(x, \omega), x \in \mathbb{R}^{d}, \omega \in \Omega$ is stationary if there is a measurable function $\tilde{D}(\omega)$ on Ω

$$
D(x, \omega)=\tilde{D}(\mathcal{T}(x) \omega)
$$

$[x \rightarrow D(x, \omega)$ and $x \rightarrow D(x+z, \omega)$ have the same statistics for all shifts $z]$
Definition A measurable function f on Ω is said to be invariant for a dynamical system $\mathcal{T}(x)$ if for each $x \in \mathbb{R}^{d}$

$$
f(\omega)=f(\mathcal{T}(x) \omega) \quad \mathcal{P}-\text { a.e. on } \Omega .
$$

Definition A dynamical system $\mathcal{T}(x)$ is said to be ergodic, if every measurable function which is invariant for $\mathcal{T}(x)$ is \mathcal{P}-a.e. equal to a constant.

Ergodic Birkhoff theorem

The ergodic setting

Definition A random filed $D(x, \omega), x \in \mathbb{R}^{d}, \omega \in \Omega$ is stationary if there is a measurable function $\tilde{D}(\omega)$ on Ω

$$
D(x, \omega)=\tilde{D}(\mathcal{T}(x) \omega)
$$

[$x \rightarrow D(x, \omega)$ and $x \rightarrow D(x+z, \omega)$ have the same statistics for all shifts $z]$
Definition A measurable function f on Ω is said to be invariant for a dynamical system $\mathcal{T}(x)$ if for each $x \in \mathbb{R}^{d}$

$$
f(\omega)=f(\mathcal{T}(x) \omega) \quad \mathcal{P} \text { - a.e. on } \Omega .
$$

Definition A dynamical system $\mathcal{T}(x)$ is said to be ergodic, if every measurable function which is invariant for $\mathcal{T}(x)$ is \mathcal{P}-a.e. equal to a constant.

Ergodic Birkhoff theorem

The ergodic setting

Definition A random filed $D(x, \omega), x \in \mathbb{R}^{d}, \omega \in \Omega$ is stationary if there is a measurable function $\tilde{D}(\omega)$ on Ω

$$
D(x, \omega)=\tilde{D}(\mathcal{T}(x) \omega)
$$

[$x \rightarrow D(x, \omega)$ and $x \rightarrow D(x+z, \omega)$ have the same statistics for all shifts $z]$
Definition A measurable function f on Ω is said to be invariant for a dynamical system $\mathcal{T}(x)$ if for each $x \in \mathbb{R}^{d}$

$$
f(\omega)=f(\mathcal{T}(x) \omega) \quad \mathcal{P}-\text { a.e. on } \Omega .
$$

Definition A dynamical system $\mathcal{T}(x)$ is said to be ergodic, if every measurable function which is invariant for $\mathcal{T}(x)$ is \mathcal{P}-a.e. equal to a constant.

Ergodic Birkhoff theorem

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{d}|A|} \int_{t A} g(\mathcal{T}(x) \omega) d x=\int_{\Omega} g(\omega) d \mathcal{P} \quad \mathcal{P} \text {-a.s. }
$$

for all bounded Borel sets A with $|A|>0$, and all $g \in C_{\rho}^{1}(\Omega)$

Ergodic environment

Poisson point process $(\Omega, \mathcal{F}, \mathcal{P})$
$\omega \in \Omega: \omega=\left\{B\left(\kappa_{m}\right): m \in \mathbb{N}\right\}$ distribution of balls of a specific radius centered at κ_{m}
$N(\omega, A)$ - the number of balls the centers of which fall in the open bounded set $A \subset \mathbb{R}^{n}$.
http://discuss.epluribus-
media.net/
σ - algebra \mathcal{F} generated by the subsets of Ω

$$
\left\{\omega \in \Omega: N\left(\omega, A_{1}\right)=k_{1}, \ldots, N\left(\omega, A_{i}\right)=k_{i}\right\}
$$

$i, k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$ and A_{1}, \ldots, A_{i} are disjoint open sets

$$
\begin{aligned}
& \mathcal{P}\left(N\left(\omega, A_{1}\right)=k_{1}, \ldots, N\left(\omega, A_{i}\right)=k_{i}\right) \\
& =\mathcal{P}\left(N\left(\omega, A_{1}\right)=k_{1}\right) \cdot \ldots \cdot \mathcal{P}\left(N\left(\omega, A_{i}\right)=k_{i}\right)
\end{aligned}
$$

with

$$
\begin{array}{cl}
\mathcal{P}(N(\omega, A)=k)=\frac{(\lambda|A|)^{k}}{k!} \exp (-\lambda|A|), & \lambda>0 \\
\omega \in \Omega, \quad \mathcal{T}(x) \omega=\left\{B\left(\kappa_{m}\right)+x: m \in \mathbb{N}\right\}, & x \in \mathbb{R}^{n}
\end{array}
$$

Definition of Stochastic two-scale convergence

(Zhikov \& Piatnitsky 2006, Heida 2011)
$\mathcal{T}(x)$ - ergodic dynamical system, $\mathcal{T}(x) \tilde{\omega}-$ "typical trajectory" (satisfy Birkhoff's theorem); realizations are typical \mathcal{P}-a.s.
$\left\{v^{\varepsilon}\right\} \subset L^{2}((0, \tau) \times G)$ converges stochastically two-scale to $v \in L^{2}((0, \tau) \times G \times \Omega)$ if

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \int_{0}^{\tau} \int_{G}\left|v^{\varepsilon}(t, x)\right|^{2} d x d t<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{\tau} \int_{G} v^{\varepsilon}(t, x) \varphi(t, x) b(\mathcal{T}(x / \varepsilon) \tilde{\omega}) d x d t \\
& \quad=\int_{0}^{\tau} \int_{G} \int_{\Omega} v(t, x, \omega) \varphi(t, x) b(\omega) d \mathcal{P}(\omega) d x d t
\end{aligned}
$$

for all $\varphi \in C_{0}^{\infty}([0, \tau) \times G)$ and $b \in L^{2}(\Omega)$.
Theorem Every $\left\{v^{\varepsilon}\right\} \subset L^{2}\left(0, \tau ; L^{2}(G)\right)$ that satisfies (1) converges along a subsequence to some $v \in L^{2}\left(0, \tau ; L^{2}(G \times \Omega, d x \times d \mathcal{P}(\omega))\right)$ in the sense of stochastic two-scale convergence.

Compactness results

Theorem $\left\{v^{\varepsilon}\right\} \subset H^{1}(G)$ satisfies

$$
\left\|v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega}), \quad\left\|\nabla v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega})
$$

then $\exists v \in H^{1}(G)$ and $v_{1} \in L^{2}\left(G ; L_{\text {pot }}^{2}(\Omega)\right)$ s.t. (up to subseq.)

$$
\begin{array}{rlll}
v^{\varepsilon} & \rightharpoonup v & \text { stochastically two-scale } \\
\nabla v^{\varepsilon} & \rightharpoonup \nabla v+v_{1} & \text { stochastically two-scale }
\end{array}
$$

Theorem $\left\{v^{\varepsilon}\right\} \subset H^{1}(G)$ satisfies

$$
\left\|v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega}), \quad \varepsilon\left\|\nabla v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega})
$$

then $\exists v \in L^{2}\left(G ; H^{1}(\Omega)\right)$ s.t. (up to subseq.)

Compactness results

Theorem $\left\{v^{\varepsilon}\right\} \subset H^{1}(G)$ satisfies

$$
\left\|v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega}), \quad\left\|\nabla v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega})
$$

then $\exists v \in H^{1}(G)$ and $v_{1} \in L^{2}\left(G ; L_{\text {pot }}^{2}(\Omega)\right)$ s.t. (up to subseq.)

$$
\begin{array}{rlll}
v^{\varepsilon} & \rightharpoonup v & \text { stochastically two-scale } \\
\nabla v^{\varepsilon} & \rightharpoonup \nabla v+v_{1} & \text { stochastically two-scale }
\end{array}
$$

Theorem $\left\{v^{\varepsilon}\right\} \subset H^{1}(G)$ satisfies

$$
\left\|v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega}), \quad \varepsilon\left\|\nabla v^{\varepsilon}\right\|_{L^{2}(G)} \leq C(\tilde{\omega})
$$

then $\exists v \in L^{2}\left(G ; H^{1}(\Omega)\right)$ s.t. (up to subseq.)

v^{ε}	$\rightharpoonup v$	stochastically two-scale
$\varepsilon \nabla v^{\varepsilon}$	$\rightharpoonup \nabla_{\omega} v$	stochastically two-scale

$\partial_{\omega}^{j} u(\omega)=\lim _{\delta \rightarrow 0} \frac{u\left(\mathcal{T}\left(\delta e_{j}\right) \omega\right)-u(\omega)}{\delta}, \nabla_{\omega} u=\left(\partial_{\omega}^{1} u, \ldots, \partial_{\omega}^{n} u\right), H^{1}(\Omega)=\left\{v, \nabla_{\omega} v \in L^{2}(\Omega)\right\}$
$\left.L_{\text {pot }}^{2}(\Omega)=\overline{\left\{\nabla_{\omega} u: u \in C_{\mathcal{T}}^{1}(\Omega)\right.}\right\}^{L^{2}(\Omega)}, \quad L_{\text {sol }}^{2}(\Omega)=L_{\text {pot }}^{2}(\Omega)^{\perp}$

Weak solutions and A priori estimates

Weak solution $u^{\varepsilon} \in H^{1}\left(G_{\tau}\right), v^{\varepsilon} \in H^{1}\left(G_{\tau}\right) \cap L^{4}\left(0, \tau ; W^{1,4}(G)\right)$:

$$
\begin{array}{ll}
\left\langle u_{t}^{\varepsilon}, \phi\right\rangle_{G_{\tau}}+\left\langle D_{u}^{\varepsilon}(x) \nabla u^{\varepsilon}-\chi^{\varepsilon}(x) u^{\varepsilon} \nabla v^{\varepsilon}, \nabla \phi\right\rangle_{G_{\tau}} & =0, \\
\left\langle v_{t}^{\varepsilon}, \psi\right\rangle_{G_{\tau}}+\left\langle D_{v}(x) \nabla v^{\varepsilon}, \nabla \psi\right\rangle_{G_{\tau}}+\gamma\left\langle v^{\varepsilon}, \psi\right\rangle_{G_{\tau}} & =\alpha\left\langle u^{\varepsilon}, \psi\right\rangle_{G_{\tau}},
\end{array}
$$

for all $\phi, \psi \in L^{2}\left(0, \tau ; H^{1}(G)\right)$ and \mathcal{P}-almost surely in $\omega \in \Omega$.

Theorem For every $\varepsilon>0$ and for \mathcal{P}-a.e. $\omega \in \Omega$ there exists a unique weak solution of KS , and

$$
\begin{aligned}
& >\left\|u^{\varepsilon}\right\|_{L^{\infty}\left(0, \tau ; L^{2}(G)\right)}+\left\|\nabla u^{\varepsilon}\right\|_{L^{\infty}\left(0, \tau ; L^{2}(G)\right)}+\left\|\partial_{t} u^{\varepsilon}\right\|_{L^{2}\left(G_{\tau}\right)} \leq C \\
& >v^{\varepsilon}\left\|_{L^{\infty}\left(0, \tau ; H^{1}(G)\right)}+\right\| \partial_{t} v^{\varepsilon}\left\|_{L^{2}\left(0, \tau ; H^{1}(G)\right)}+\right\| v^{\varepsilon} \|_{L^{\infty}\left(0, \tau ; H^{2}(G)\right)} \leq C
\end{aligned}
$$

for some constant C that is independent of ε.
(Global solution for $n=1$ and local in time for $n=2$)

Macroscopic equations

$$
\begin{array}{ll}
\partial_{t} u=\nabla\left(D^{*} \nabla u-\chi^{*} u \nabla v\right) & \text { in } G_{\tau}, \\
\partial_{t} v=\nabla\left(D_{v}(x) \nabla v\right)-\gamma v+\alpha u & \text { in } G_{\tau}, \\
\nabla u=0, \quad \nabla v=0 & \text { on } \partial G \\
u(0, x)=u_{0}(x), \quad v(0, x)=v_{0}(x) & \text { in } G,
\end{array}
$$

where

$$
\begin{aligned}
D^{*} \xi & =\int_{\Omega} \widetilde{D}_{u}(\omega)\left(\bar{u}_{1, \xi}+\xi\right) d \mathcal{P}(\omega) \\
\chi^{*} \xi & =-\int_{\Omega}\left(\widetilde{D}_{u}(\omega) \hat{u}_{1, \xi}-\widetilde{\chi}(\omega) \xi\right) d \mathcal{P}(\omega)
\end{aligned}
$$

and $\bar{u}_{1, \xi}, \hat{u}_{1, \xi}$ are solutions of the auxiliary problems

$$
\begin{aligned}
& \bar{u}_{1, \xi} \in L_{\text {pot }}^{2}(\Omega) \quad \text { such that } \quad \widetilde{D}_{u}(\omega)\left(\bar{u}_{1, \xi}+\xi\right) \in L_{\text {sol }}^{2}(\Omega) \\
& \hat{u}_{1} \in L_{\text {pot }}^{2}(\Omega) \quad \text { such that } \quad \widetilde{D}_{u}(\omega) \hat{u}_{1, \xi}-\widetilde{\chi}(\omega) \xi \in L_{\text {sol }}^{2}(\Omega) .
\end{aligned}
$$

Sketch of the Proof

$$
\left.\begin{array}{ll}
u^{\varepsilon}, \nabla u^{\varepsilon}, \partial_{t} u^{\varepsilon} \\
v^{\varepsilon}, \nabla v^{\varepsilon}, \nabla^{2} v^{\varepsilon}, \partial_{t} v^{\varepsilon}, \partial_{t} \nabla v^{\varepsilon}
\end{array}\right\} \quad \begin{gathered}
\text { bounded in } L^{2}\left(G_{\tau}\right) \\
\text { for } \mathcal{P} \text {-a.e. } \omega \in \Omega .
\end{gathered}
$$

$u^{\varepsilon} \rightharpoonup u$	stochastically two-scale,	$u \in L^{2}\left(0, \tau ; H^{1}(G)\right)$
$\nabla u^{\varepsilon} \rightharpoonup \nabla u+u_{1}$	stochastically two-scale,	$u_{1} \in L^{2}\left(G_{\tau}, L_{\text {pot }}^{2}(\Omega)\right)$
$\partial_{t} u^{\varepsilon} \rightharpoonup \tilde{u}$	stochastically two-scale,	$\tilde{u} \in L^{2}\left(G_{\tau} \times \Omega\right)$
$v^{\varepsilon} \rightharpoonup v$	stochastically two-scale,	$v \in L^{2}\left(0, \tau ; H^{1}(G)\right)$
$\partial_{t} v^{\varepsilon} \rightharpoonup \tilde{v}$	stochastically two-scale,	$\tilde{v} \in L^{2}\left(0, \tau ; H^{1}(G)\right)$
$\nabla v^{\varepsilon} \rightharpoonup \hat{v}$	stochastically two-scale,	$\hat{v} \in L^{2}\left(0, \tau ; H^{1}(G)\right)$

for all "typical" realizations ω.

Proof Sketch: Convergence

The stochastic two-scale limit and the strong convergence of u^{ε} :
$\left\langle u_{t}, \varphi\right\rangle_{G_{\tau}}+\left\langle\widetilde{D}_{u}(\omega)\left(\nabla u+u_{1}\right)-\widetilde{\chi}(\omega) u \nabla v, \nabla \varphi+\varphi_{1} \nabla_{\omega} \varphi_{2}(\omega)\right\rangle_{G_{\tau}, \Omega}=0$.
Choosing $\varphi(t, x)=0$ for $(t, x) \in G_{\tau}$ we obtain

$$
\left\langle\widetilde{D}_{u}(\omega)\left(\nabla u+u_{1}\right)-\widetilde{\chi}(\omega) u \nabla v, \varphi_{1}(t, x) \nabla_{\omega} \varphi_{2}(\omega)\right\rangle_{G_{T}, \Omega}=0
$$

for every $\varphi_{1} \in C_{0}^{\infty}\left(G_{\tau}\right)$ and $\varphi_{2} \in C^{1}(\Omega)$.

$$
\left\langle\widetilde{D}_{u}(\omega)\left(\nabla u+u_{1}\right)-\widetilde{\chi}(\omega) u \nabla v, \partial_{\omega} \varphi_{2}\right\rangle_{\Omega}=0, \quad d t \times d x-\text { a.e. in } G_{\tau}
$$

- Exists a unique solution $u_{1}(t, x, \cdot) \in L_{\text {pot }}^{2}(\Omega)$ that depends linearly on $\nabla u(t, x)$ and $u(t, x) \nabla v(t, x)$ for a.e. $(t, x) \in G_{\tau}$

$$
u_{1}(t, x, \omega)=\sum_{j=1}^{n} \partial_{x_{j}} u(t, x) \bar{u}_{1, j}(\omega)+u(t, x) \sum_{j=1}^{n} \partial_{x_{j}} v(t, x) \hat{u}_{1, j}(\omega)
$$

for a.e $(t, x) \in G_{\tau}$ and \mathcal{P}-a.e. $\omega \in \Omega$

- $\bar{u}_{1, j}, \hat{u}_{1, j} \in L_{\text {pot }}^{2}(\Omega)$ are solutions of the unit cell problems.

Mathematical model

Biochemistry:

- methylestrified pectin: $b_{e, 1}$
- demethylestrified pectin: $b_{e, 2}$
- pectin-calcium cross links: $b_{e, 3}$
- calcium ions: c_{e} and c_{f}

Mathematical model

Biochemistry:

- methylestrified pectin: $b_{e, 1}$
- demethylestrified pectin: $b_{e, 2}$
- pectin-calcium cross links: $b_{e, 3}$
- calcium ions: c_{e} and c_{f}

$$
\begin{aligned}
\partial_{t} b_{e}-\operatorname{div}\left(D_{b} \nabla b_{e}\right)=g_{b}\left(b_{e}, c_{e}, e\left(\mathbf{u}_{e}\right)\right) & \text { in } G_{e} \\
\partial_{t} c_{e}-\operatorname{div}\left(D_{e} \nabla c_{e}\right)=g_{e}\left(b_{e}, c_{e}, e\left(\mathbf{u}_{e}\right)\right) & \text { in } G_{e} \\
\partial_{t} c_{f}-\operatorname{div}\left(D_{f} \nabla c_{f}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}\right) c_{f}\right)=g_{f}\left(c_{f}\right) & \text { in } G_{f}
\end{aligned}
$$

Mathematical model

Biochemistry:

- methylestrified pectin: $b_{e, 1}$
- demethylestrified pectin: $b_{e, 2}$
- pectin-calcium cross links: $b_{e, 3}$
- calcium ions: c_{e} and c_{f}

$$
\begin{aligned}
\partial_{t} b_{e}-\operatorname{div}\left(D_{b} \nabla b_{e}\right)=g_{b}\left(b_{e}, c_{e}, e\left(\mathbf{u}_{e}\right)\right) & \text { in } G_{e} \\
\partial_{t} c_{e}-\operatorname{div}\left(D_{e} \nabla c_{e}\right)=g_{e}\left(b_{e}, c_{e}, e\left(\mathbf{u}_{e}\right)\right) & \text { in } G_{e} \\
\partial_{t} c_{f}-\operatorname{div}\left(D_{f} \nabla c_{f}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}\right) c_{f}\right)=g_{f}\left(c_{f}\right) & \text { in } G_{f}
\end{aligned}
$$

Mechanics: Poroelasticty

\mathbf{u}_{e} - deformations of cell walls+middle lamella
p_{e} - flow pressure in cell walls+middle lamella $\partial_{t} \mathbf{u}_{f}$ - fluid flow inside the cells

$$
\begin{array}{ll}
\operatorname{div}\left(\mathbb{E}\left(b_{e}\right) \mathbf{e}\left(\mathbf{u}_{e}\right)-p_{e} I\right)=0 & \text { in } G_{e} \\
\operatorname{div}\left(K \nabla p_{e}-\partial_{t} \mathbf{u}_{e}\right)=0 & \text { in } G_{e} \\
\partial_{t}\left(\partial_{t} \mathbf{u}_{f}\right)-\mu \operatorname{div}\left(\mathbf{e}\left(\partial_{t} \mathbf{u}_{f}\right)-p_{f} I\right)=0 & \text { in } G_{f}
\end{array}
$$

Plant tissues biomechanics: Random geometry

- Ω_{f} measurable set, $\mathcal{P}\left(\Omega_{f}\right)>0, \mathcal{P}\left(\Omega \backslash \Omega_{f}\right)>0$
- $\Omega_{e}=\Omega \backslash \Omega_{f}$
- $\Omega_{\Gamma} \subset \Omega_{\text {, with }} \mathcal{P}\left(\Omega_{\Gamma}\right)>0$ and $\mathcal{P}\left(\Omega_{\Gamma} \cap \Omega_{j}\right)>0$ for $j=e, f$

- For \mathcal{P}-a.a. $\omega \in \Omega$ define a random system of subdomains in \mathbb{R}^{3}

$$
\begin{aligned}
G_{j}(\omega)=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x) \omega \in \Omega_{j}\right\}, \quad j=e, f \\
G_{\Gamma}(\omega)=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x) \omega \in \Omega_{\Gamma}\right\} \\
\Gamma(\omega)=\partial G_{f}(\omega), \quad \widetilde{\Gamma}(\omega)=\Gamma(\omega) \cap G_{\Gamma}(\omega)
\end{aligned}
$$

Plant tissues biomechanics: Random geometry

- Ω_{f} measurable set, $\mathcal{P}\left(\Omega_{f}\right)>0, \quad \mathcal{P}\left(\Omega \backslash \Omega_{f}\right)>0$
- $\Omega_{e}=\Omega \backslash \Omega_{f}$
- $\Omega_{\Gamma} \subset \Omega_{\text {, with }} \mathcal{P}\left(\Omega_{\Gamma}\right)>0$ and $\mathcal{P}\left(\Omega_{\Gamma} \cap \Omega_{j}\right)>0$ for $j=e, f$

- For \mathcal{P}-a.a. $\omega \in \Omega$ define a random system of subdomains in \mathbb{R}^{3}

$$
\begin{aligned}
G_{j}(\omega)=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x) \omega \in \Omega_{j}\right\}, \quad j=e, f \\
G_{\Gamma}(\omega)=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x) \omega \in \Omega_{\Gamma}\right\} \\
\Gamma(\omega)=\partial G_{f}(\omega), \quad \widetilde{\Gamma}(\omega)=\Gamma(\omega) \cap G_{\Gamma}(\omega)
\end{aligned}
$$

1. $G_{f}(\omega)$ countable number of disjoined Lipschitz domains for \mathcal{P}-a.a. $\omega \in \Omega$
2. The distance between two connected components of $G_{f}(\omega)$ and diameter of $G_{f}(\omega)$ are uniformly bounded from above and below.
3. The surface $\widetilde{\Gamma}(\omega) \subset \Gamma(\omega)$ is open on $\Gamma(\omega)$ and Lipschitz continuous

Random geometry

$$
\begin{aligned}
& G_{f}^{\varepsilon}=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x / \varepsilon) \omega \in \Omega_{f}\right\} \cap G \\
& \quad \text { cell inside } \\
& G_{e}^{\varepsilon}=G \backslash G_{f}^{\varepsilon} \quad \text { cell wall }+ \text { middle lamella } \\
& G_{\Gamma}^{\varepsilon}=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x / \varepsilon) \omega \in \Omega_{\Gamma}\right\} \cap G
\end{aligned} \quad \begin{aligned}
& \Gamma^{\varepsilon}=\partial G_{f}^{\varepsilon} \\
& \widetilde{\Gamma}^{\varepsilon}=\Gamma^{\varepsilon} \cap G_{\Gamma}^{\varepsilon}
\end{aligned} \quad \text { pell membrane } \quad \text { impermeable to calcium ions }
$$

Statistically homogeneous (stationary) random fields

$K_{p}(x, \omega)=\widetilde{K}_{p}(\mathcal{T}(x) \omega)$

Random geometry

$$
\begin{aligned}
& G_{f}^{\varepsilon}=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x / \varepsilon) \omega \in \Omega_{f}\right\} \cap G \\
& \quad \text { cell inside } \\
& G_{e}^{\varepsilon}=G \backslash G_{f}^{\varepsilon} \quad \text { cell wall }+ \text { middle lamella } \\
& G_{\Gamma}^{\varepsilon}=\left\{x \in \mathbb{R}^{3}: \mathcal{T}(x / \varepsilon) \omega \in \Omega_{\Gamma}\right\} \cap G \\
& \Gamma^{\varepsilon}=\partial G_{f}^{\varepsilon} \\
& \tilde{\Gamma}^{\varepsilon}=\Gamma^{\varepsilon} \cap G_{\Gamma}^{\varepsilon} \quad
\end{aligned} \quad \text { cell membrane } \quad \text { part of the cell membrane } \quad l
$$

Plant tissue biomechanics: Poroelasticity

$$
\begin{aligned}
& \partial_{t}^{2} \mathbf{u}_{e}^{\varepsilon}-\operatorname{div}\left(\mathbb{E}^{\varepsilon}\left(b_{e, 3}^{\varepsilon}\right) \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right)+\nabla p_{e}^{\varepsilon}=0 \\
& \partial_{t} p_{e}^{\varepsilon}-\operatorname{div}\left(K_{p}^{\varepsilon} \nabla p_{e}^{\varepsilon}-\partial_{t} \mathbf{u}_{e}^{\varepsilon}\right)=0 \\
& \partial_{t}^{2} \mathbf{u}_{f}^{\varepsilon}-\varepsilon^{2} \mu \operatorname{div}\left(\mathbf{e}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right)\right)+\nabla p_{f}^{\varepsilon}=0 \\
& \operatorname{div} \partial_{t} \mathbf{u}_{f}^{\varepsilon}=0
\end{aligned}
$$

Plant tissue biomechanics: Poroelasticity

$$
\begin{aligned}
& \partial_{t}^{2} \mathbf{u}_{e}^{\varepsilon}-\operatorname{div}\left(\mathbb{E}^{\varepsilon}\left(b_{e, 3}^{\varepsilon}\right) \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right)+\nabla p_{e}^{\varepsilon}=0 \\
& \partial_{t} p_{e}^{\varepsilon}-\operatorname{div}\left(K_{p}^{\varepsilon} \nabla p_{e}^{\varepsilon}-\partial_{t} \mathbf{u}_{e}^{\varepsilon}\right)=0 \\
& \partial_{t}^{2} \mathbf{u}_{f}^{\varepsilon}-\varepsilon^{2} \mu \operatorname{div}\left(\mathbf{e}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right)\right)+\nabla p_{f}^{\varepsilon}=0 \\
& \operatorname{div} \partial_{t} \mathbf{u}_{f}^{\varepsilon}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\left(\mathbb{E}^{\varepsilon}\left(b_{e, 3}^{\varepsilon}\right) \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)-p_{e}^{\varepsilon} I\right) \nu=\left(\varepsilon^{2} \mu \mathrm{e}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right)-p_{f}^{\varepsilon} I\right) \nu & \text { on } \Gamma^{\varepsilon} \\
\Pi_{\tau} \partial_{t} \mathbf{u}_{e}^{\varepsilon}=\Pi_{\tau} \partial_{t} \mathbf{u}_{f}^{\varepsilon} & \text { on } \Gamma^{\varepsilon} \\
n \cdot\left(\varepsilon^{2} \mu \mathrm{e}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right)-p_{f}^{\varepsilon}\right) \nu=-p_{e}^{\varepsilon} & \text { on } \Gamma^{\varepsilon} \\
\left(-K_{p}^{\varepsilon} \nabla p_{e}^{\varepsilon}+\partial_{t} \mathbf{u}_{e}^{\varepsilon}\right) \cdot \nu=\partial_{t} \mathbf{u}_{f}^{\varepsilon} \cdot \nu & \text { on } \Gamma^{\varepsilon}
\end{array}
$$

$\Pi_{\tau} W$ - tangential components

On the external boundaries :

$$
\mathbb{E}^{\varepsilon}\left(b_{e, 3}^{\varepsilon}\right) \mathrm{e}\left(u_{e}^{\varepsilon}\right) \nu=F_{u}, \quad\left(K_{p}^{\varepsilon} \nabla p_{e}^{\varepsilon}-\partial_{t} u_{e}^{\varepsilon}\right) \cdot \nu=F_{p} \quad \text { on } \partial \Omega
$$

Plant tissue biomechanics: Chemistry

$$
\begin{array}{ll}
\partial_{t} b_{e}^{\varepsilon}=\operatorname{div}\left(D_{b} \nabla b_{e}^{\varepsilon}\right)+g_{b}\left(c_{e}^{\varepsilon}, b_{e}^{\varepsilon}, \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right) & \text { in } \Omega_{e}^{\varepsilon} \\
\partial_{t} c_{e}^{\varepsilon}=\operatorname{div}\left(D_{e} \nabla c_{e}^{\varepsilon}\right)+g_{e}\left(c_{e}^{\varepsilon}, b_{e}^{\varepsilon}, \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right) & \text { in } \Omega_{e}^{\varepsilon} \\
\partial_{t} c_{f}^{\varepsilon}=\operatorname{div}\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right)+g_{f}\left(c_{f}^{\varepsilon}\right) & \text { in } \Omega_{f}^{\varepsilon}
\end{array}
$$

$D_{b} \nabla b_{e}^{\varepsilon} \cdot \nu=\varepsilon R\left(b_{e}^{\varepsilon}\right)$ on Γ^{ε}
$c_{e}^{\varepsilon}=c_{f}^{\varepsilon}$,
$D_{e} \nabla c_{e}^{\varepsilon} \cdot \nu=\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right) \cdot \nu$ on $\Gamma^{\varepsilon} \backslash \widetilde{\Gamma}^{\varepsilon}$
$D_{e} \nabla c_{e}^{\varepsilon} \cdot \nu=0$,
$\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right) \cdot \nu=0$ on $\widetilde{\Gamma}^{\varepsilon}$

Plant tissue biomechanics: Chemistry

$$
\begin{array}{rlr}
\partial_{t} b_{e}^{\varepsilon}=\operatorname{div}\left(D_{b} \nabla b_{e}^{\varepsilon}\right)+g_{b}\left(c_{e}^{\varepsilon}, b_{e}^{\varepsilon}, \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right) & \text { in } \Omega_{e}^{\varepsilon} \\
\partial_{t} c_{e}^{\varepsilon}=\operatorname{div}\left(D_{e} \nabla c_{e}^{\varepsilon}\right)+g_{e}\left(c_{e}^{\varepsilon}, b_{e}^{\varepsilon}, \mathbf{e}\left(\mathbf{u}_{e}^{\varepsilon}\right)\right) & \text { in } \Omega_{e}^{\varepsilon} \\
\partial_{t} c_{f}^{\varepsilon}=\operatorname{div}\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right)+g_{f}\left(c_{f}^{\varepsilon}\right) & \text { in } \Omega_{f}^{\varepsilon}
\end{array}
$$

$D_{b} \nabla b_{e}^{\varepsilon} \cdot \nu=\varepsilon R\left(b_{e}^{\varepsilon}\right)$ on Γ^{ε}
$c_{e}^{\varepsilon}=c_{f}^{\varepsilon}$,
$D_{e} \nabla c_{e}^{\varepsilon} \cdot \nu=\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right) \cdot \nu$ on $\Gamma^{\varepsilon} \backslash \widetilde{\Gamma}^{\varepsilon}$
$D_{e} \nabla c_{e}^{\varepsilon} \cdot \nu=0$,
$\left(D_{f} \nabla c_{f}^{\varepsilon}-\mathcal{G}\left(\partial_{t} \mathbf{u}_{f}^{\varepsilon}\right) c_{f}^{\varepsilon}\right) \cdot \nu=0$ on $\widetilde{\Gamma}^{\varepsilon}$

On the external boundaries:

$$
D_{b} \nabla b_{e}^{\varepsilon} \cdot \nu=F_{b}\left(b_{e}^{\varepsilon}\right), \quad D_{e} \nabla c_{e}^{\varepsilon} \cdot \nu=F_{c}\left(c_{e}^{\varepsilon}\right) \quad \text { on } \partial \Omega
$$

Macroscopic equations

$$
\begin{array}{ll}
\vartheta_{e} \partial_{t}^{2} \mathbf{u}_{e}-\operatorname{div}\left(\mathbb{E}^{\text {hom }}\left(b_{e, 3}\right) \mathbf{e}\left(\mathbf{u}_{e}\right)\right)+\nabla p_{e}+\int_{\Omega} \partial_{t}^{2} \mathbf{u}_{f} \chi_{\Omega_{f}} d \mathcal{P}(\omega)=0 & \text { in } G_{\tau} \\
\vartheta_{e} \partial_{t} p_{e}-\operatorname{div}\left(K_{p}^{\text {hom }} \nabla p_{e}-K_{u} \partial_{t} \mathbf{u}_{e}-Q\left(\partial_{t} \mathbf{u}_{f}\right)\right)=0 & \text { in } G_{\tau}
\end{array}
$$

and

$$
\begin{gathered}
\int_{\Omega}\left[\partial_{t}^{2} \mathbf{u}_{f} \varphi+\mu \mathbf{e}_{\omega}\left(\partial_{t} \mathbf{u}_{f}\right) \mathbf{e}_{\omega}(\varphi)+\nabla p_{e} \varphi\right] \chi_{\Omega_{f}} d \mathcal{P}(\omega)-\int_{\Omega} P_{e}^{1} \chi_{\Omega_{e}} \varphi d \mathcal{P}(\omega)=0 \\
\operatorname{div}_{\omega} \partial_{t} \mathbf{u}_{f}=0 \quad \text { in } G_{T} \times \Omega,
\end{gathered} \partial_{t} \mathbf{u}_{f}(0)=\mathbf{u}_{f 0}^{1} \quad \text { in } G \times \Omega=\$
$$

$$
\Pi_{\tau} \partial_{t} \mathbf{u}_{f}(t, x, \mathcal{T}(\widetilde{x}) \omega)=\Pi_{\tau} \partial_{t} \mathbf{u}_{e}(t, x) \text { for }(t, x) \in G_{T}, \widetilde{x} \in \Gamma(\omega), \mathcal{P} \text {-a.s. in } \Omega
$$

$$
P_{e}^{1}(t, x, \omega)=\sum_{k=1}^{3} \partial_{x_{k}} p_{e}(t, x) W_{p}^{k}(\omega)+\partial_{t} u_{e}^{k}(t, x) W_{u}^{k}(\omega)+Q_{f}\left(\omega, \partial_{t} u_{f}\right)
$$

$$
\forall \varphi \in L^{2}\left(G_{T} ; H^{1}(\Omega)\right)^{3}, \quad \operatorname{div}_{\omega} \varphi=0 \text { in } G_{T} \times \Omega, \Pi_{\tau} \varphi(t, x, \mathcal{T}(\widetilde{x}) \omega)=0
$$

$$
\text { for }(t, x) \in G_{T}, \widetilde{x} \in \Gamma(\omega) \text { and } \mathcal{P} \text {-a.s. in } \Omega
$$

$$
\mathbf{e}_{\omega}(\psi)_{j l}=\frac{1}{2}\left(\partial_{\omega}^{j} \phi_{l}+\partial_{\omega}^{l} \psi_{j}\right)
$$

Macroscopic equations for b and c

$$
\begin{array}{rlrl}
\vartheta_{e} \partial_{t} b-\operatorname{div}\left(D_{b, \text { eff }} \nabla b\right) & =\int_{\Omega} g_{b}\left(c, b, \mathbb{U}(b, \omega) \mathbf{e}\left(u_{e}\right)\right) \chi_{\Omega_{e}} d \mathcal{P}(\omega) \\
& +\int_{\Omega} R\left(b_{e}\right) d \mu(\omega) & & \\
\partial_{t} c-\operatorname{div}\left(D_{\mathrm{eff}} \nabla c-u_{\mathrm{eff}} c\right) & =\vartheta_{f} g_{f}(c) & \\
& +\int_{\Omega} g_{e}\left(c, b, \mathbb{U}(b, \omega) \mathbf{e}\left(u_{e}\right)\right) \chi_{\Omega_{e}} d \mathcal{P}(\omega) & \text { in } G_{T}
\end{array}
$$

where $\vartheta_{j}=\int_{\Omega} \chi_{\Omega_{j}}(\omega) d \mathcal{P}(\omega)$, for $j=e, f$, and

$$
\mathbb{U}(b, \omega)=\left\{\mathbb{U}_{k l i j}(b, \omega)\right\}_{k, l, i, j=1,2,3}=\left\{b_{k l}^{i j}+W_{e, \text { sym }, k l}^{i j}\right\}_{k, l, i, j=1,2,3}
$$

$W_{e}^{i j}$ solutions of the cell problems, $\mathrm{b}_{k l}=\left(b_{k l}^{i j}\right)_{i, j=1,2,3}, \quad \mathrm{~b}_{k l}=e_{k} \otimes e_{l}$ $\boldsymbol{\mu}(\omega)$ is the Palm measure of the random measure of the surfaces $\Gamma(\omega)$

Macroscopic tensors

- $\mathbb{E}_{i j k l}^{\mathrm{hom}}(b)=\int_{\Omega}\left[\widetilde{\mathbb{E}}_{i j k l}(\omega, b)+\left(\widetilde{\mathbb{E}}(\omega, b) W_{e, \mathrm{sym}}^{k l}\right)_{i j}\right] \chi_{\Omega_{e}} d \mathcal{P}(\omega)$,
- $K_{i j}^{\text {hom }}=\int_{\Omega}\left[\widetilde{K}_{i j}(\omega)+\left(\widetilde{K}(\omega) W_{p}^{j}\right)_{i}\right] \chi_{\Omega_{e}} d \mathcal{P}(\omega)$,
- $K_{u, i j}=\int_{\Omega}\left[\delta_{i j}-\left(\widetilde{K}(\omega) W_{u}^{j}\right)_{i}\right] \chi_{\Omega_{e}} d \mathcal{P}(\omega)$,
- $Q\left(\partial_{t} u_{f}\right)=\int_{\Omega} \partial_{t} u_{f} \chi_{\Omega_{f}} d \mathcal{P}(\omega)-\int_{\Omega} \widetilde{K}(\omega) Q_{f}\left(\omega, \partial_{t} u_{f}\right) \chi_{\Omega_{e}} d \mathcal{P}(\omega)$
- $\int_{\Omega} \widetilde{\mathbb{E}}(\omega, b)\left(W_{e, \text { sym }}^{k l}+\mathrm{b}_{k l}\right) \Phi \chi_{\Omega_{e}} d \mathcal{P}(\omega)=0 \quad$ for all $\Phi \in L_{\mathrm{pot}}^{2}(\Omega)^{3}$,
- $\int_{\Omega} \widetilde{K}(\omega)\left(W_{p}^{k}+e_{k}\right) \zeta \chi_{\Omega_{e}} d \mathcal{P}(\omega)=0 \quad$ for all $\zeta \in L_{\text {pot }}^{2}(\Omega)$,
- $\int_{\Omega}\left(\widetilde{K}(\omega) W_{u}^{k}-e_{k}\right) \zeta \chi_{\Omega_{e}} d \mathcal{P}(\omega)=0 \quad$ for all $\zeta \in L_{\text {pot }}^{2}(\Omega)$,
- $\int_{\Omega}\left(\widetilde{K}(\omega) Q_{f} \chi_{\Omega_{e}}+\partial_{t} u_{f} \chi_{\Omega_{f}}\right) \zeta d \mathcal{P}(\omega)=0 \quad$ for $\zeta \in L_{\text {pot }}^{2}(\Omega)$,
with $\mathrm{b}_{k l}=\frac{1}{2}\left(e_{k} \otimes e_{l}+e_{l} \otimes e_{k}\right)$ and $\left\{e_{j}\right\}_{j=1}^{3}$ - canonical basis of \mathbb{R}^{3}.

Effective diffusion coefficients and velocity

- Macroscopic diffusion coefficients

$$
\begin{aligned}
& D_{b, e \mathrm{ff}}^{i j}=\int_{\Omega}\left[D_{b}^{i j}+\left(D_{b} w_{b}^{j}\right)_{i}\right] \chi_{\Omega_{e}} d \mathcal{P}(\omega) \\
& D_{\mathrm{eff}}^{i j}=\int_{\Omega}\left[D^{i j}(\omega)+\left(D(\omega) w^{j}\right)_{i}\right] d \mathcal{P}(\omega)
\end{aligned}
$$

where $D(\omega)=D_{e} \chi_{\Omega_{e}}(\omega)+D_{f} \chi_{\Omega_{f}}(\omega)$ for $\omega \in \Omega$

- $w_{b}^{j} \in L_{\mathrm{pot}}^{2}(\Omega), w^{j} \in L_{\mathrm{pot}, \Gamma}^{2}(\Omega)$ solutions of the cell problems

$$
\begin{array}{ll}
\int_{\Omega} D_{b}\left(w_{b}^{j}+e_{j}\right) \zeta \chi_{\Omega_{e}} d \mathcal{P}(\omega)=0 & \text { for all } \zeta \in L_{\mathrm{pot}}^{2}(\Omega), \\
\int_{\Omega} D(\omega)\left(w^{j}+e_{j}\right) \eta d \mathcal{P}(\omega)=0 \quad \text { for all } \eta \in L_{\mathrm{pot}, \Gamma}^{2}(\Omega) .
\end{array}
$$

- Effective velocity

$$
u_{\mathrm{eff}}(t, x)=\int_{\Omega} D_{f} Z(t, x, \omega) \chi_{\Omega_{f}} d \mathcal{P}(\omega)
$$

- $Z \in L^{\infty}\left(G_{T} ; L_{\mathrm{pot}}^{2}(\Omega)\right)$ satisfies
$\int_{\Omega}\left(D_{f} Z-\mathcal{G}\left(\partial_{t} u_{f}\right)\right) \zeta \chi_{\Omega_{f}} d P(\omega)=0 \quad$ for all $\zeta \in L_{\text {pot }}^{2}(\Omega)$, a.e. $(t, x) \in G_{T}$

Convergence on boundaries of random microstr.

Lemma For $u \in H^{1}(\Omega, \mathcal{P})$ we have $u \in L^{2}(\Omega, \mu)$ and the embedding is continuous $\boldsymbol{\mu}$ is the Palm measure of the random stationary measure μ_{ω} of surfaces $\Gamma(\omega)$ for realisations $\omega \in \Omega$
Lemma Let μ_{ω} random measure of $\Gamma(\omega)$ and $d \mu_{\omega}^{\varepsilon}(x)=\varepsilon^{n} d \mu_{\omega}(x / \varepsilon)$

- For $\left\|b^{\varepsilon}\right\|_{L^{p}\left(G_{e}^{\varepsilon}\right)}+\left\|\nabla b^{\varepsilon}\right\|_{L^{p}\left(G_{e}^{\varepsilon}\right)} \leq C$ and $b^{\varepsilon} \rightarrow b$ stochastic two-scale, $b \in L^{p}\left(0, T ; W^{1, p}(G)\right)$, with $p \in(1, \infty)$, then

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \int_{G_{T}} b^{\varepsilon}(t, x) & \phi(t, x) \psi(\mathcal{T}(x / \varepsilon) \omega) d \mu_{\omega}^{\varepsilon}(x) d t \\
= & \int_{G_{T}} \int_{\Omega} b(t, x) \phi(t, x) \psi(\omega) d \boldsymbol{\mu}(\omega) d x d t \tag{2}
\end{align*}
$$

for any $\phi \in C^{\infty}\left(0, T ; C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right)$ and $\psi \in C(\Omega)$ and

$$
\int_{G_{T}} \int_{\Omega}|b|^{p} d \mu(\omega) d x d t \leq C \int_{G_{T}} \int_{\Omega}|b|^{p} d \mathcal{P} d x d t
$$

- $\left\|b^{\varepsilon}\right\|_{L^{p}\left(G_{e}^{\varepsilon}\right)}+\varepsilon\left\|\nabla b^{\varepsilon}\right\|_{L^{p}\left(G_{e}^{\varepsilon}\right)} \leq C$ and $b^{\varepsilon} \rightarrow b$ stochastic two-scale, $b \in L^{p}\left(G_{T}, W^{1, p}(\Omega, d \mathcal{P})\right)$, with $p \in(1, \infty)$, then we have (2) and

$$
\int_{G_{T}} \int_{\Omega}|b|^{p} d \mu(\omega) d x d t \leq C
$$

The ergodic setting

Definition Let (Ω, \mathcal{F}) be a measurable space and $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$
$\tilde{\mu}: \Omega \times \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is a random measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ if $\mu_{\omega}(A)=\tilde{\mu}(\omega, A) \quad$ is

- \mathcal{F}-measurable in $\omega \in \Omega$ for each $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ and
- a measure in $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ for each $\omega \in \Omega$.

Definition The random measure μ_{ω} is stationary if for $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}^{d}} \phi(y-x) d \mu_{\omega}(y)=\int_{\mathbb{R}^{d}} \phi(y) d \mu_{\mathcal{T}(x) \omega}(y)
$$

i.e. random function

$$
F_{\phi}(x, \omega)=\int_{\mathbb{R}^{d}} \phi(y-x) d \mu_{\omega}(y)
$$

is stationary and measurable.

The ergodic theorem for random fields

Definition The Palm measure of the random measure μ_{ω} is a measure $\boldsymbol{\mu}$ on (Ω, \mathcal{F}) defined by:

$$
\boldsymbol{\mu}(F)=\int_{\Omega} \int_{\mathbb{R}^{d}} \mathbb{I}_{[0,1)^{d}}(x) \mathbb{I}_{F}(\mathcal{T}(x) \omega) d \mu_{\omega}(x) d \mathcal{P}(\omega), \quad F \in \mathcal{F}
$$

- $d \mu_{\omega}(x)=\rho(\mathcal{T}(x) \omega) d x$ on $\mathbb{R}^{d}: d \boldsymbol{\mu}(\omega)=\rho(\omega) d \mathcal{P}(\omega)$ on Ω

Theorem (Ergodic theorem (see Zhikov \& Piatnitsky 2006))
Let $\{\mathcal{T}(x)\}_{x \in \mathbb{R}^{n}}$ be ergodic and the stationary random measure μ_{ω} has finite intensity $m\left(\mu_{\omega}\right)>0$. Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{d}|A|} \int_{t A} g(\mathcal{T}(x) \omega) d \mu_{\omega}(x)=\int_{\Omega} g(\omega) d \boldsymbol{\mu}(\omega) \quad \text { P-a.s. }
$$

for all bounded Borel sets A with $|A|>0$, and all $g \in L^{1}(\Omega, \mu)$

- For $\boldsymbol{\mu}=\mathcal{P}$ - classical ergodic theorem of Birkhoff

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{d}|A|} \int_{t A} g(\mathcal{T}(x) \omega) d x=\int_{\Omega} g(\omega) d \mathcal{P} \quad \mathcal{P} \text {-a.s. }
$$

for all bounded Borel sets A with $|A|>0$, and all $g \in L^{1}(\Omega, \mu)$

Some references

- Piatnitski, MP (2020) Homogenization of biomechanical models of plant tissues with randomly distributed cells, Nonlinearity, 2020
- MP, Venkataraman (2020) Multiscale analysis and simulation of a signalling process with surface diffusion, MMS, SIAM J
- Matzavinos, MP (2016) Stochastic homogenization of the KellerâSegel chemotaxis system, Nonlinear Anal: Theory, Methods Applic
- Matzavinos, MP (2015) Homogenization of oxygen transport in biological tissues, Applic. Anal.
- Ptashnyk (2015) Locally periodic unfolding method and two-scale convergence on surfaces of locally periodic microstructures, MMS, SIAM J Two-scale convergence for locally-periodic microstructures and homogenization of plywood structures. MMS, SIAM J, 2013
- MP, Roose (2010) Derivation of a macroscopic model for transport of strongly sorbed solutes in the soil using homogenization theory. SIAM J Appl Math
- Fatima, Muntean, MP (2012) Error estimate and unfolding method for homogenization of a reaction-diff. system model. sulfate corrosion, Applic Anal - Griso (2004) Error estimate and unfolding for periodic homogenization, Asymptot. Anal.
- Griso (2005) Interior error estimate for periodic homogenization, C. R. Math

