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Summary

We use homogenization techniques to derive a dual (or double) porosity model of solute diffusion and
reaction in soil, allowing for slow access to sorption sites within micro-aggregates and time-dependent sorption
reactions. We give a means for determining the conditions in which micro-scale concentration gradients affect
macro-scale gradients and fluxes. We present equations for a unit volume of soil represented as a series
of uniformly-spaced, porous spherical particles, containing and surrounded by solution through which solutes
diffuse. The methods we use can, in principle, be applied to more complex geometries. We compare the model’s
predictions with those of the equivalent single porosity model for commonly used boundary conditions. We
show that failure to allow for slow access to reaction sites can lead to seriously erroneous results. Slow access
has the effect of decreasing the sorption of solute into soil from a source or desorption from soil to a sink.
As a result of slow access, the diffusion coefficients of strongly-sorbed solutes measured at the macro-scale
will be time-dependent and will depend on the method of measurement. We also show that slow access is
more often likely to limit macro-scale diffusion than rates of slow chemical reactions per se. In principle, the
unimportance of slow reactions except at periods longer than several weeks of diffusion simplifies modelling
because, if slow access is correctly allowed for, sorption can be described with equilibrium relations with an
understanding of speciation and rapid sorption-desorption reactions.

Introduction

This paper is about the prediction of diffusion in soil when
local equilibration between the diffusate and soil particles is slow
compared with diffusion through the soil bulk. The processes
resulting in slow equilibration are likely to be most important
for strongly sorbed solutes, such as phosphate and contaminants
including many heavy metals and radionuclides. The potentially
rate-limiting steps include access to sorption sites within particles
as well as slow sorption reactions (Tinker & Nye, 2000;
Barrow, 2008; Sposito, 2008). Which of these is dominant
has implications for modelling and measurement. However, few
models of diffusion in soil deal with these processes explicitly,
and most kinetic studies are made in shaken suspensions in which
access to sorption sites may be increased by disaggregation and
convection. Nonetheless, failure to allow correctly for slow access
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and true reaction kinetics in models can produce misleading
results, as we will show.

Modelling such systems is complicated. Where solute concen-
tration gradients at the macro-scale, for example the scale of a
plant root or an experimental soil column, depend on processes
controlled by gradients at much finer scales such as a pore within
a soil particle, it is difficult to solve and link together the rel-
evant equations across scales. We know of only two examples
where this has been attempted. Staunton & Nye (1989) developed
a model of diffusion along a soil column in which local equi-
libration depended on diffusion into spherical aggregates. With
the numerical methods that they used it was necessary to decou-
ple the inter- and intra-aggregate pathways and solve the resulting
equations separately. Only a simple equilibrium treatment of sorp-
tion reactions was possible, and diffusion within the aggregates
was only radial and made no contribution to the longitudinal flux.
Nye & Staunton (1994) avoided these problems and included
time-dependent reactions by representing unit volume of soil as
a hollow cylinder with its axis in the direction of the longitu-
dinal flux, and with parallel inter- and intra-aggregate pathways
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represented by the central and outer cores of the cylinder. The
resulting equations could be solved together using standard meth-
ods. However, this geometry gives a poor representation of a
real soil and the physical basis of a continuous intra-aggregate
pathway is weak. An alternative approach, with which more real-
istic geometries and reaction terms can be tackled, is provided
by the method of homogenization (Bourgeat et al., 1996; Hor-
nung, 1997; Pavliotis & Stuart, 2008). This gives a means of
transforming equations at different scales into a single, tractable
set of equations. Thereby it is possible to define equations at the
macro-scale that implicitly allow for processes and geometries at
the micro-scale.

In this paper we use the method of homogenization to
develop a dual-porosity model of diffusion and reaction in
soil, with which to assess the importance of slow access to
sorption sites versus rates of sorption reactions per se. We
treat the soil as a series of porous spherical particles, pace
Staunton & Nye (1989). We use multiple space-scale analysis
to derive equations at the macroscopic, whole-soil scale, and
base the coupling between the microscopic, sub-particle scale
and the macroscopic scale on the microscopic interaction between
the intra- and extra-particle spaces. Multiple space-scale analysis
of this sort is a generalization of the more well-known multiple
timescale approach (Kevorkian & Cole, 1996; Bender & Orszag,
1999). We derive models for movement at the macro-scale for
different parameter regimes, and solve the resulting equations
using standard numerical packages. To avoid undue geometrical
complexity we consider a system of uniformly spaced spherical
particles. This corresponds approximately to experiments in which
soil has been sieved to give roughly uniform micro-aggregates,
and then re-packed to a uniform bulk density. The approach is
applicable to more complex geometries.

Theory

The nomenclature is explained in Table 1.

Geometry of the model

We consider a column of moist soil of uniform bulk density.
We represent unit volume of soil as a series of uniformly-spaced
porous spherical particles containing solution within the pores and
surrounded by further solution and gas spaces (Figure 1a). The
radius of the soil particles is determined by the sieve mesh of the
soil, and their porosity is determined by the soil bulk density and
solid density. Solute applied at or removed from one end of the
soil column diffuses longitudinally in the extra-particle pores, and
both longitudinally and radially in the intra-particle pores, and it
is simultaneously sorbed by soil surfaces inside and outside the
particles in time-dependent reactions. We consider two types of
reactions: one fast and one slow relative to diffusion through the
soil. We discuss the empirical basis of the fast and slow reactions
later under ‘Parameter values’.

Figure 1 The geometry of the model. (a) The upper figure shows eight
unit cells, each containing one porous soil particle (shaded) and its
associated extra-particle liquid and gas (not differentiated in the figure).
The particles are in a loose cubic arrangement with the edges of
neighbouring particles separated by a thin liquid layer thickness δ. (b) The
lower figure illustrates homogenization across scales. The left-hand graph
is in coarse x coordinates and shows the macrostructure of the system; the
right-hand graph is in finer y coordinates and reveals the microstructure.
The scaling parameter ε equals 1/100: a 100-fold magnification of the
macroscopic scale is necessary to reveal the microstructure.

The following assumptions are implied by this geometry: (i) the
soil micro-aggregates can be represented as porous spherical
particles, (ii) the particles are surrounded by macro-pores that are
interconnected, (iii) a continuous film of liquid is in contact with
and connects the particles, and (iv) the soil air tends to occupy
the centre of the pores between particles.

We therefore have a composite material with microscopic
properties that change periodically and rapidly compared with
the macroscopic scale. We define macroscopic space variable x
and microscopic space variable y (Figure 1b). The characteristic
macroscopic length-scale is the length b of the soil column;
the characteristic microscopic length-scale is the length l of
the unit cell containing a soil particle and its associated extra-
particle liquid and gas. If the ratio of the two length scales is
small, i.e. scaling parameter ε = l/b � 1, it is possible to use
homogenization theory to find effective macroscopic properties.
Homogenization allows us to develop equations allowing for
the influence of both spatial coordinates: the y coordinates
reflecting the microscopic properties of the system, and the
coarser x coordianates reflecting the macroscopic properties.
Homogenization theory considers that x and y can be treated
independently if ε is sufficiently small.

We first define dimensional equations for the model. We then
make these dimensionless by using the scale of the microscopic
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Table 1 Nomenclature

Symbol Meaning Units

x Space variable for macroscopic scale (i.e. scale of a soil column) (Cartesian coordinates x1, x2, x3) cm
y Space variable for microscopic scale (i.e. scale of a single soil particle) (Cartesian coordinates y1, y2, y3) cm
a Radius of soil particle cm
b Length of soil column cm
c Radius of soil column cm
l Length of unit cell containing a soil particle and its associated extra-particle liquid and gas cm
ε Scaling parameter relating micro- and macro-scopic length-scales, ε = l/b –
ν Vector normal to particle or gas-space surface (positive inwards) –
t Time s
C Concentration of solute per unit whole soil volume μmol cm−3 (soil)
Le,Li Concentration of solute in extra-, intra-particle liquid μmol cm−3 (liquid)
Se , Si Concentration of solute on extra-, intra-particle surfaces per unit solid mass (subscripted 1 or 2 for

rapidly- and slowly-reacting solute, respectively)
μmol g−1 (solid)

kFe , kBe Rate constant for forward, backward sorption reaction on extra-particle surfaces (subscripted as S) s−1

kFi , kBi Rate constant for forward, backward sorption reaction on intra-particle surfaces (subscripted as S) s−1

α Coefficient in equilibrium sorption equation (subscripted as S) –
β Coefficient in equilibrium sorption equation (subscripted as S) μmol1−α cm3α g−1

θ Water content of whole soil per unit whole soil volume cm3 cm−3 (soil)
θe Water content of extra-particle space per unit extra-particle space volume cm3 cm−3 (liquid)
θi Water content of particle per unit particle volume cm3 cm−3 (particle)

θ
′
e , θ

′
i θe, θi per unit whole soil volume cm3 cm−3 (soil)

ρ Soil solid mass per unit whole soil volume g cm−3 (soil)
ρi Soil solid mass per unit particle volume g cm−3 (particle)
ρs Soil solid mass per unit solid volume g cm−3 (solid)

φ
′
e , φ

′
i Porosity of extra- intra-particle space cm3 cm−3 (soil)

σe Soil mass per unit external surface area of particle g cm−2 (ext. particle)
σi Soil mass per unit internal surface area of particle g cm−2 (int. particle)
Di Diffusion coefficient of solute in intra-particle pores = θifiDl cm2 s−1

Dl Diffusion coefficient of solute in free solution cm2 s−1

fe ,fi Impedance factor for diffusion in inter-, intra-particle pores –
∇ Partial differential operator in 3-D space (= (∂/∂x1,∂/∂x2,∂/∂x3)) –

space, re-scale to obtain equations on the scale of the soil bulk, and
then apply homogenization theory to obtain the the macroscopic
equations.

Dimensional model

The continuity equation for diffusion in the liquid around a particle
is (Le is the concentration in the extra-particle liquid):

∂Le

∂t
= ∇·(Dl∇Le), (1)

and the continuity equation for diffusion and reaction in the
particle is (Li is the concentration in the intra-particle liquid)

∂(θiLi)

∂t
= ∇·(Di∇Li) − ∂(ρiSi1)

∂t
− ∂(ρiSi2)

∂t
, (2)

where the last two terms allow for the fast and slow sorption
reactions on surfaces inside the particle. These equations need to
be coupled via boundary conditions at the particle surface. The
boundary conditions showing the solute flux and concentration

continuity at the particle surface, and allowing for the fast and
slow sorption reactions on the external particle surface, are:

Dl∇Le·ν = Di∇Li ·ν − ∂(σeSe1)

∂t
− ∂(σeSe2)

∂t
, (3)

and

Le = Li. (4)

On the surfaces of the extra-particle gas spaces we apply a zero
flux boundary condition:

Dl∇Le·ν = 0. (5)

As stated previously, Le and Li are the solute concentrations in
the extra- and intra-particle liquid, and Se1, Se2, Si1 and Si2 are the
concentrations of rapidly- and slowly-reacting solute on external
and internal particle surfaces, respectively. The rates of reaction
are functions of L and S as described later. The term ν is the
vector normal to the soil particle or air particle surface.
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Non-dimensional model

We now make Equations (1)–(5) dimensionless to facilitate the
multi-scale analysis. In order to couple processes at the micro-
and macro-scales, we scale space by using the microscopic length-
scale of the unit cell containing a single soil particle, and time by
using the macroscopic diffusional timescale based on the length
of a soil column, that is to the time-scale of experimental interest.
Hence, using asterisks to indicate dimensionless variables,

y = (ly∗
1 , ly∗

2 , ly∗
3 ), and

t = (b2/Dl)t
∗.

Also we scale concentration with unit concentration, and, because
Le = Li at the particle surface, we scale Le and Li the
same. Hence:

Le = L × L∗
e and

Li = L × L∗
i ,

where L is the characteristic solute concentration scale, which we
take to be L = 1 μm. The scalings for the amounts of sorbed
solutes are:

Se = (l/σe)S
∗
e and

Si = (1/ρi)S
∗
i ,

where ρi is the solid mass per unit particle volume and σe is the
soil mass per unit external particle surface area.

With these scales the dimensionless forms of Equations (1)–(5)
in y coordinates (the microscale coordinates), dropping the
asterisks, are:

∂Le

∂t
= 1

ε2
∇2

yLe in extra-particle space, (1a)

∂(θiLi)

∂t
= Di

Dlε2
∇2

yLi − ∂Si1

∂t
− ∂Si2

∂t
in particle, (2a)

∇yLe·ν = Di

Dl

∇yLi ·ν − ε2 ∂Se1

∂t
− ε2 ∂Se2

∂t
on particle surface,

(3a)

Le = Li on particle surface, (4a)

∇yLe·ν = 0 on gas-space surfaces. (5a)

Homogenized model

For our standard parameter values (see later), the ratio of the diffu-
sion coefficients inside and outside the particle Di/Dl ≈ ε2. This
means the term Di/(Dlε

2), which multiplies the space derivative
in Equation (2a), is of the order of one, and the spatial and tem-
poral solute dynamics inside the particle are therefore properly
coupled to the dynamics outside the particle. If this was not so,
the effective macro-scale model would not reflect the micro-scale

processes, in other words, the within-particle dynamics would not
constrain solute movement on the macro-scale. Having set the
conditions for coupling the micro- and macro-scales, we can re-
scale Equations (1a)–(5a) from the single particle to the whole
soil using x = εy, and obtain the homogenized macro-scale model.
We summarize the derivation of the model for Di/Dl ≈ ε2 in the
Appendix, and also give the models for Di/Dl ≈ ε and ε3. The
model for Di/Dl ≈ ε2 is as follows.

We denote the macroscopic space domain bounded by the
external surfaces of the soil column as �, the microscopic space
domain within soil particles as Y, and the domain of soil particle
surfaces as 
. The effective macro-scale model for Di/Dl ≈ ε2

is then:

∂(θ
′
eLe)

∂t
= ∇x ·(θ ′

efe∇xLe)

+ 1

|Z|
∫



(
D̂∇yLi ·ν − ∂Se1

∂t
− ∂Se2

∂t

)
dγ in �, (6)

Le = Li on 
 × �, (7)

∂(θiLi)

∂t
= D̂∇2

yLi − ∂Si1

∂t
− ∂Si2

∂t
in Y × �, (8)

where fe is the impedance factor for the extra-particle space
(= Ahom/θ

′
e where Ahom is effective diffusion matrix derived

in the Appendix), |Z| is the volume of a single soil particle
in y coordinates, D̂ = Di/(Dlε

2) is the dimensionless diffusion
coefficient within the particle, and the term under the integral in
Equation (6) is integrated over the particle surface 
.

The macro-scale boundary condition at x1 = 0 (surface denoted

D) is determined by the means of application or removal of the
solute, and the condition at all other external boundaries (surfaces
denoted 
N ) is that there is no transfer of solute, i.e.:

Le = LeD on 
D. (9)

∇xLe·ν = 0 on 
N . (10)

Equations (6)–(10) constitute a dual porosity model that is valid
when the ratio of intra- and extra-particle diffusion coefficients
Di/Dl ≈ ε2 = (l/b)2. We choose as standard for the simulations
below the length of the single particle domain l = 0.02 cm and
the length of the soil column b = 2 cm; these are appropriate
for an experiment (see Staunton & Nye, 1989) in which soil has
been sieved to 0.02 cm and repacked in a column 2-cm long.
Hence ε = 1/100, and Di/Dl ≈ 2 × 10−4 (see later) ≈ ε2. The
model should be valid for Di/Dl values that are 10-fold greater
or smaller than this with ε ≈ 1/100.

For Di/Dl ≈ ε (e.g. l = 0.02 cm, b = 100 cm and Di/Dl

as later), the effective macro-scale model is Equation (A10)
in the Appendix. In this case, diffusion within the particle is
fast relative to that outside and thus the concentration profile
within the particle is flat. However, the rate of reaction inside
the particle is important on the macroscopic scale and so we
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have a standard, impeded diffusion model with source/sink terms
that allow for sorption on surfaces inside and outside particles.
For Di/Dl ≈ ε3 (e.g. l = 0.02 cm, b = 0.4 cm and Di/Dl as
below), the effective macro-scale model is Equation (A11) in the
Appendix. The diffusion into and inside the particle is now too
slow to influence macro-scale processes and the equations for
the concentrations inside the particle are not coupled with the
macroscopic equations.

The remainder of the paper is concerned only with the dual-
porosity model given by Equations (6)–(10).

Kinetics of the sorption reactions

We represent the sorption-desorption reactions on internal and
external particle surfaces with the following Freundlich-type
equations:

∂(ρiSi)

∂t
= kFi(θiLi)

α − kBiρiSi, (11)

and

∂(σeSe/l)

∂t
= kFe(θ

′
eLe)

α − kBeσeSe/l, (12)

where kF and kB are forward and backward rate constants
(omitting subscripts 1 and 2 for fast and slow reactions) and α is
a coefficient with value between 0 and 1 (α = 1 being for linear
sorption). The non-dimensional forms of Equations (11) and (12)
are (dropping asterisks):

∂Si

∂t
= kFiL

α
i − kBiSi, (11a)

and

∂Se

∂t
= kFeL

α
e − kBeSe. (12a)

Simplification of the model

We simplify the homogenized model by considering conditions
for which the fast reactions are effectively instantaneous compared
with diffusion through the soil solution, i.e. kB1b

2/Dl � 1. Also,
because the particles are separated by extra-particle solution
and diffusion in the extra-particle solution is fast, there are no
longitudinal gradients within the particles and diffusion in them
is only radial. Therefore we can reduce the general model to a
set of one-dimensional equations for Le and Li coupled via the
boundary condition on the particle surface. We consider a soil
column of dimensionless length x1 = 1 and particles of radius
r = a where r is the radial coordinate within a particle (r varies

from 0 to a). Thereby we obtain:

(
θ

′
e + 4πa2l

kFe1

kBe1
θ

′α
e αLα−1

e

)
∂Le

∂t
= ∂

∂x1

(
θ

′
efe

∂Le

∂x1

)

− 4πa2l

[
l
∂(D̂Li)

∂r
|r=a + (kFe2L

α
e − kBe2Se2)

]

in (0 ≤ x1 ≤ 1), (13)

Le = Li on (r = a) × (0 ≤ x1 ≤ 1), (14)(
θi + kFi1

kBi1
θα
i αLα−1

i

)
∂Li

∂t
= 1

r2

∂

∂r

(
r2l2 ∂(D̂Li)

∂r

)

− (kFi2L
α
i − kBi2Si2) in (0 ≤ r ≤ a) × (0 ≤ x1 ≤ 1).(15)

Solution of the equations

We solved Equations (13)–(15) numerically using finite-difference
approximations for the space derivatives and Matlab ODE solver
ode15s to solve the resulting ordinary differential equations. In the
results presented below, we give calculated concentration-distance
profiles of Le and C along a soil column subject to specified
boundary conditions, where C is the total solute concentration at
a particular distance, equal to the sum of concentrations in the
solid and solution taking account of the distributions inside the
particle.

Results and discussion

Parameter values

The standard parameter values for the simulations below are
derived as follows. The set of primary values is given in Table 2.

Geometry. The relations between the soil bulk density, water
content and gas content are constrained by the model geometry.
We have for the total soil porosity:

φ = φ
′
e + φ

′
i = 1 − ρ/ρs, (16)

Table 2 Parameter values for the simulations in Figures 2–6

Parameter Value Parameter Value

a 9.98 × 10−3 cm α 1
b 2 cm β1 500 cm3 g−1

l 0.02 cm β2 1500 cm3 g−1

ρ 1.1 g cm−3 (soil) kF2 10−4 s−1

ρ s 2.65 g cm−3 (solid) Dl 9 × 10−6 cm2 s−1

φ
′
e 0.48 cm3 cm−3 (soil) fe 0.628

σi 5 × 10−4 g cm−2 fi 0.001
(int. particle)

All other parameters are derived from these parameters, as described in
the text.
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where φ
′
e and φ

′
i are the porosities of the extra- and intra-

particle spaces, respectively, and ρs is the density of the soil
solid. The upper limit on φ

′
e as the thickness of the liquid

layer around a particle (δ in Fig. 1) → 0 is (l3 − 4/3πa3)/l3 =
1 − 4/3π(0.5)3 = 0.476. We choose φ

′
e = 0.48, which means that

a = 9.98 × 10−3 cm. The upper limit on the gas content, and
hence the lower limit on the water content, is set by the maximum
size of spherical gas spaces that can be accommodated in the
corners of the unit cell. From the relevant triangles in the unit
cell, this gives for the maximum radius of the gas spaces:

ag =
√

3/4 × l2 − l/2. (17)

Hence the volume of the gas spaces per unit whole soil volume is

φ
′
e − θ

′
e = 4/3πa3

g/l
3. (18)

Thus for l = 0.02 cm and φ
′
e = 0.48, θ

′
e = 0.274. Therefore, for

ρ = 1.1 g cm−3 and ρs = 2.65 g cm−3, φ
′
i = 1 − ρ/ρs − φ

′
e =

0.105, and because the intra-particle space is assumed to be
water-saturated, θ

′
i = φ

′
i = 0.105 and θ = θ

′
e + θ

′
i = 0.379: θe =

θ
′
e/φ

′
e = 0.571 and θi = θ

′
i /(1 − φ

′
e) = 0.202.

The specific surface area of the external particle surface is
SSAe = 4πa2/(l3ρ), that is σe = 1/SSAe = 7.03 × 10−3 g cm−2.
The specific surface area of the internal particle surface depends
on how the total internal porosity is distributed amongst pores of
different sizes and is a function of the composition of the particle
as well as its total porosity. Typical values are SSAi = 500 to
15 000 cm2 g−1, that is σi = 2 × 10−3 to 6.7 × 10−5 g cm−2.

Diffusion. With spherical gas spaces in the corners of the unit
cell, the impedance factor for the extra-particle space, fe = 0.628
(see Appendix) (note that other gas space geometries can be
specified, resulting in different values of fe; alternatively, an
experimentally measured fe can be used). We take as standard
fi = 0.001, which is the value used by Nye & Staunton (1994) to
fit their model to experimental data for P diffusion. The diffusion
coefficient in the intra-particle space is Di = θifiDl . With
fi = 0.001, θi = 0.202 and Dl = 9 × 10−6 cm2 s−1 (the value
for H2PO−

4 ), Di = 1.82 × 10−9 cm2 s−1. For the simulations for
non-sorbed solutes in Figure 2, we use Dl = 2 × 10−5 cm2 s−1

(the value for Cl−).

Sorption. In the simplified model we represent sorption as
an instantaneous reaction followed by a much slower one.
Measurements of sorption kinetics in shaken soil suspensions
often indicate several relatively fast reactions lasting minutes or
hours followed by much slower reactions continuing for days
or weeks (Sposito, 2008). Simple sorption-desorption reactions
should be complete within a matter of minutes, and be effectively
instantaneous compared with diffusion. The much slower reactions
may involve specific sorption, precipitation, solid-state diffusion,
or other processes (Sposito, 2008). However, the slower ‘fast’
reactions observed in shaken suspensions can be accounted

for by slow diffusive penetration of soil particles as we now
show (after Nye & Staunton, 1994). The half-time for diffusion
into a spherical particle of radius a maintained at a constant
external concentration is

√
Dt/a2 = 0.18 (Crank, 1975, Fig. 6.7),

where D is the effective intra-particle diffusion coefficient with
instantaneous sorption, given by D = Dlθifi/(ρiβi1) where βi1 is
the solid : solution partition coefficient. With our standard values
of a, Dl , θi , fi and ρi and a typical value of βi1 = 500, this
gives t1/2 = 2.2 × 106 s ≡ 25 d. If the slow penetration into the
particle is represented as a first order reaction, given by (compare
Equation (11)) ∂(ρiS)/∂t = kF θiLe − kBρiS, where kF and kB

are forward and backward rate constants, then from the integral
of this equation, remembering Le is constant, the half-time of
the reaction is t1/2 = ln 2/kB . Thus the half-time of 2.2 × 106

s for diffusive penetration calculated above would correspond to
kB = 3.15 × 10−7 s−1. The corresponding value of kF in a shaken
suspension experiment would be kB × βi1 = 1.6 × 10−4 s−1 or a
half-time for sorption of 1.3 hours This is comparable with the
values observed for ‘fast’ reactions in shaken suspensions, and an
order of magnitude faster than the ‘slow’ reactions. We conclude
that our representation of sorption as an instantaneous reaction
and a slow reaction is realistic.

We relate the parameters in Equations (11) and (12) for sorption
on internal and external surfaces to the corresponding, measurable
parameters for the whole soil as follows. We have for the whole
soil (dropping the subscripts 1 and 2 for fast and slow reactions):

∂(ρS)

∂t
= kF (θL)α − kBρS. (19)

At equilibrium, ∂S/∂t = 0 and Equation (19) gives a Fre-
undlich equation:

S = βLα where β = kF θα/(kBρ). (20)

We assume that the density of sorption sites on external and
internal surfaces is the same and that σiSi = σeSe. Also kBi =
kBe = kB . Thereby we obtain for the reactions on internal surfaces:

kFi = kF

(θ/θi)
α

(1 + σi/σe)

ρi

ρ
, (21)

and

βi = kFiθ
′α
i /(kBiρi) = β/(1 + σi/σe), (22)

and for the reactions on external surfaces:

kFe = kF

(θ/θ
′
e)

α

(1 + σe/σi)

σe

lρ
, (23)

and

βe = kFeθ
′α
e /(kBeσe/l) = β/(1 + σe/σi). (24)
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Figure 2 Plots of In C/C0 against x2/t for a solute initially deposited at the surface of a soil column with (a) no solute sorption, (b) instantaneous sorption
and (c) instantaneous sorption plus continuing slow sorption. Full lines are the predictions of the dual porosity model with different values of fi ; dotted
lines are for the single porosity model with either no (case i) or instantaneous (case ii) intra-particle equilibration (D given by Equations (27) and (28),
respectively). Run times 104 s for (a) and 5 × 106 s for (b) and (c). Note the larger scale of the x-axis of (a).

For simplicity we choose linear sorption with α = 1, which is
realistic for isotopic exchange or a narrow concentration range. We
take as standard the following values from Nye & Staunton (1994)
for sorption of P on a sandy loam soil: β1 = 500, β2 = 1500 and
kF2 = 10−4 s−1.

Applications

We now illustrate the applications of the model for analysing
experiments on diffusion and reaction in soil. We compare its
predictions with those of the simple single-porosity model in
which local equilibration is instantaneous and only diffusion in the
inter-particle pores contributes to diffusion down the soil column.
In particular, we study the case of a pulse application of solute at
the surface of a soil column, for which the single porosity model
has a simple linear form.

Pinner & Nye (1982) showed that, for a pulse application,
if local equilibration is instantaneous a plot of log C against
x2/t (where C is concentration and x is distance normal to
the application surface) should be linear, but if equilibration is
slow the plot should be curved. This has been exploited by
Nye and colleagues to measure the self-diffusion and surface
interactions of a wide range of solutes in soil. In self-diffusion
there is no net exchange of sorbed species and so the sorption
reactions are necessarily linear. They found that results for the
self-diffusion of non-adsorbed Cl− ions gave linear plots (Pinner
& Nye, 1982; So & Nye, 1989; Kirk et al., 2003), and results
for the self-diffusion of the exchangeable cations Na+, Ca2+,
Rb+ and Cs+ also gave approximately linear plots (references
in Nye & Staunton, 1994). However, plots for the self-diffusion
of phosphate were curved (Staunton & Nye, 1989), indicating
non-instantaneous equilibration.

We discuss Nye and colleagues’ findings in the light of the
dual-porosity results for a pulse boundary condition. We also give
results for the more practically important boundary conditions of

a constant concentration of solute at the soil surface (for example
for diffusion from a band of fertilizer) and a zero concentration at
the surface (for example for diffusion to a root mat or to a DGT
device: Ernstberger et al., 2002).

Instantaneous source at soil surface. The single porosity model
in planar geometry when local equilibration is instantaneous is:

∂C

∂t
= ∂

∂x

(
Dlθ

′
efe

∂Le

∂x

)

= ∂

∂x

(
Dlθ

′
efe

dLe

dC

∂C

∂x

)
= ∂

∂x

(
D

∂C

∂x

)
, (25)

where C is the total concentration of solute in the soil, D is
the effective soil diffusion coefficient and x is the distance along
the soil column (≡ x1 in the dual-porosity model). For a pulse
application of solute at x = 0, zero initial concentration in the
soil column, and instantaneous local equilibration with linear or
no sorption, the solution of Equation (25) is (Pinner & Nye, 1982,
after Crank, 1975, Equation 2.6):

C

C0
= exp

(
− x2

4Dt

)
, (26)

where C0 is the concentration at x = 0 at time t . Therefore
plots of ln(C/C0) against x2/t should be linear with slope =
−1/(4D). There are two limiting cases: either (i) there is no
significant transfer between the extra- and intra-particle spaces
on the timescale of diffusion along the column, in which case
C = θ

′
eLe + ρSe = (θ

′
e + ρβe)Le, and

D = Dlθ
′
efe/(θ

′
e + ρβe), (27)

or (ii) extra- to intra-particle equilibration is effectively
instantaneous, in which case C = θ

′
eLe + θ

′
i
Li + ρSe + ρSi =

© 2009 The Authors
Journal compilation © 2009 British Society of Soil Science, European Journal of Soil Science, 61, 108–119



Dual-porosity modelling of diffusion 115

(θ
′
e + θ

′
i + ρβ)Le, and

D = Dlθ
′
efe/(θ

′
e + θ

′
i + ρβ). (28)

Between these limits the relationships will be curved.
Figure 2 gives plots of ln(C/C0) versus x2/t for the single

porosity model with the two limiting cases, and for the dual
porosity model with different rates of intra-particle diffusion
as represented by different values of the intra-particle diffusion
impedance factor, fi . Three types of solute reaction are compared:
(i) no sorption, (ii) instantaneous sorption and (c) instantaneous
sorption plus continuing slow sorption.

The relationships for no sorption (Figure 2a) are approximately
linear, and the line for the single porosity model with instanta-
neous intra-particle equilibration is approached. There is some
tendency to curvature near the x = 0 boundary, particularly for
smaller fi values. This is because, if diffusion out of the particles
is slow, solute will tend to accumulate within particles as the peak
of the solute pulse passes, and this effect increases as distance
behind the peak increases, i.e. towards x = 0. The relationships
for sorbed solutes (Figure 2b and c) are also approximately lin-
ear at large fi values (for fast intra-particle diffusion), but they
are increasingly curved as fi decreases. For a given value of
fi , as sorption increases diffusion into and out of the particles
is increasingly rate-limiting. The effect of the additional slow
sorption reaction is small on the timescale of the runs shown
(5 × 106 s,= 58 days).

The approximately linear relationships with large values of fi

are consistent with the experimental results listed above for the
non-adsorbed Cl− ion and for exchangeable Na+, Ca2+, Rb+

and Cs+ cations. The curved relationships with fi ≤ 0.001
are consistent with the experimental results for strongly-sorbed
phosphate anions. These results imply that fi , as we have
defined it, varies between solutes. The linear experimental
relationships for the exchangeable cations imply large fi values,
in spite of substantial sorption. Comparison of measured diffusion
coefficients for these cations with those expected for diffusion
in the liquid phase alone (references above) indicates that they

retain significant mobility in the sorbed state on soil surfaces,
contributing between 27 and 97% to the overall diffusion
coefficient depending on the cation. If equilibration between the
soil solution and solid is very rapid, as it will be for freely
exchangeable cations, the solution and solid diffusion pathways
partly act in series and so it is not possible to separate them.
Further, being positively charged, cations are not excluded from
very narrow pores by electrostatic repulsion. Hence equilibration
between intra- and extra-particle pores is likely to be faster for
these cations than for phosphate anions, which are essentially
immobile on soil surfaces and are excluded from narrow pores to a
greater extent. The effective value of fi is therefore larger than for
phosphate anions. We anticipate that specifically adsorbed cations,
such as most transition metals, will also lack surface mobility and
behave more like strongly sorbed phosphate.

The additional slow sorption reaction had little effect on overall
diffusion through the soil. For the standard parameter values, the
concentration of slowly reacting sites is three times that of rapid
sites. Hence the model predicts that only a small proportion of
the sorption sites that potentially participate in the diffusion pro-
cess actually did so. This partly reflects the nature of the pulsed
boundary condition and the fact that at a particular distance along
the soil column, the sorption sites are first exposed to an increas-
ing solute concentration and then to a decreasing one as the solute
peak passes. The reaction times at individual sites are correspond-
ingly curtailed. This is not the case for a constant source or sink
of solute at the surface, as in the next two applications.

Constant concentration at soil surface. Figure 3 shows the
predicted concentration-distance profiles in a soil column with
a constant concentration C0 at the surface x = 0 and zero initial
concentration in the rest of the soil. For these conditions and
instantaneous local equilibration, the single porosity model is
(after Crank, 1975, Equation 3.13)

C

C0
= 1 − erf

x

2
√

Dt
, (29)

where erf z is the error function. The profiles for rapid
(fi = 10−2) and slow (fi = 10−3) access to intra-particle sites

Figure 3 The effect of maintaining a constant con-
centration of a solute in solution at the surface of a
soil column from which it was initially absent: (a)
the concentration in the extra-particle liquid, (b) the
total concentration in the soil. Solid lines: dual porosity
model with rapid intra-particle diffusion (fi = 10−2).
Dash-dot-dot lines: dual porosity model with slow
intra-particle diffusion (fi = 10−3). Dashed lines: sin-
gle porosity model with instantaneous equilibration
with the intra-particle space. Sorption is instantaneous
with no slow reactions.
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Figure 4 As Figure 3 with fi = 10−3 except: solid
lines, with no slow reaction (kF2 = 0); dash-dot-dot
lines, with slow reaction (kF2 = 10−4 s−1).

in the dual porosity model are compared with the profiles given
by Equation (29) with D given by Equation (28) (instantaneous
extra- to intra-particle equilibration).

Figure 3 shows that the spread of solution concentration is
greater when there is slow access to the particles than with
instantaneous access. However, the total amount of solute entering
the soil, given by the area under the curve, is smaller because less
accumulates within the particles. With slow access (fi = 0.001),
the concentration at x = 0 at t = 105 s is only a fifth of that
for instantaneous intra-particle equilibration. The effect is smaller
at longer times. Interestingly, the curves of total concentration
cross over. Because the spread of solution concentration is greater
at smaller fi , the total concentration is greater far from the
source. Nearer the source, total concentrations are larger at larger
fi because solute accumulates in the particles. The cross-over
distance increases with time. Nye & Staunton (1994) obtained
similar results with their model.

Figure 4 shows the effect of the rate constant for ‘slow’
sorption with the other parameters as standard. It shows that
kF2 has little effect on the profiles in solution or the whole
soil for values up to 10−4 s−1 and run times of several weeks.
This is equivalent to a half-time of t1/2 = ln 2/kF2 = 6.93 ×

103 s ≡ 1.9 h, which is far faster than the very slow processes
leading to equilibrium in well-mixed systems (Sposito, 2008).
This shows that these slowly- reacting sites, which may dominate
the long-term sorption equilibrium, are scarcely involved in the
diffusion process. This implies that it is not necessary to allow
for the slow reactions in modelling diffusion except at very long
times. By contrast, Figure 3 shows that the rate limitation through
diffusive penetration of the particles is clearly important both in
terms of the spread of solute through the soil solution and the total
amount sorbed.

Zero concentration at soil surface. Figure 5 shows the effect
of maintaining a zero inter-particle solution concentration at the
surface of a soil column containing a strongly-sorbed solute.
This boundary condition is equivalent to a strong absorbent at
the surface, such as a rapidly absorbing root mat. If the initial
concentration throughout the soil is Ci, and local equilibration
is instantaneous, then the single porosity model is (after Crank,
1975, Equation 3.13):

C

Ci

= erf
x

2
√

Dt
. (30)

Figure 5 The effect of maintaining zero concentra-
tion of a solute in solution at the surface of a soil
column from which it was initially uniformly dis-
tributed: (a) the concentration in the extra-particle
liquid and (b) the change in total concentration
in the soil. Solid lines, dual porosity model with
rapid intra-particle diffusion (fi = 10−2); dash-dot-
dot lines, dual porosity model with slow intra-
particle diffusion (fi = 10−3); dashed lines, single
porosity model with instantaneous equilibration with
the intra-particle space. Sorption is instantaneous
with no slow reactions.
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Figure 6 As in Figure 5 with fi = 10−3 except:
solid lines, with no slow reaction (kF2 = 0);
dash-dot-dot lines, with slow reaction (kF2 =
10−4 s−1).

As in Figure 3, the profiles calculated with the single and dual
porosity models are compared in Figure 5.

The figure shows that solute depletion near the surface is
strongly affected by the rate of intra-particle diffusion. If it is slow
then the total solute released to the sink at x = 0 is decreased.
With fi = 0.001, the solute depletion at x = 0 at t = 105 s is
only a fifth of that for instantaneous intra-particle equilibration. By
contrast, Figure 6 shows the effect of the slow sorption reaction,
as indicated by kF2 = 10−4 s, is small, and slow sorption sites
contribute little to the diffusion process, although, with the model
parameter values used, they are three times more concentrated than
the rapidly reacting sites. Hence, as for the results for adsorption,
slow reaction has little net effect.

For a porosity of 0.1 (as for the intra-particle space in the
model runs), the equivalent pore diameters in a medium textured
soil are in the range 10–100 μm. For comparison, cereal roots
can penetrate pores ≥100 μm in diameter, root hairs 5–20 μm in
diameter and fungal hyphae 2–10 μm in diameter (Kilham, 1994).
Given the slow rates of diffusion of strongly-sorbed solutes from
pores of this diameter shown by the model, it is clear why very
fine roots and fungal hyphae are crucial for plants to absorb such
solutes.

Conclusions

1. Comparison of the single and dual porosity models shows that
failure to allow correctly for slow access to sorption sites can lead
to seriously erroneous predictions of diffusion through soil.
2. Slow access has the effect of decreasing the net rate of sorption
of solute into soil from a source or of desorption from soil to a
sink.
3. As a result, the diffusion coefficients of strongly-sorbed solutes
measured at the macro-scale will be time dependent and will
depend on the method of measurement.
4. For diffusion times up to several weeks, diffusion is dominated
by rapidly equilibrating sorption sites; slowly-equilibrating sites,

which may account for the majority of the final equilibrium
sorption, are only important at very long times.
5. In principle, the unimportance of slow reactions simplifies
modelling because, if slow access is correctly allowed for,
sorption can be described with equilibrium relations based
on understanding of speciation and rapid (<1 hour) sorption-
desorption reactions. The problem then is to correctly describe
diffusion limitations at the appropriate scale.
6. These conclusions broadly agree with those of Nye & Staunton
(1994) for their less physically-realistic model.
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Appendix: homogenization and derivation of
macro-scale models using multiple scale asymptotic
expansion

By re-scaling Equations (1a)–(5a) using x = εy we obtain the
following model for a domain of unit length:

∂Le

∂t
= ∇2

xLe, in �ε (A1)

∂(θiLi)

∂t
= ε2D̂∇2

xLi − ∂Si1

∂t
− ∂Si2

∂t
, in �ε

s (A2)

∇xLe·ν = ε2D̂∇xLi ·ν − ε
∂Se1

∂t
− ε

∂Se2

∂t
, on 
ε (A3)

Le = Li, on 
ε (A4)

∇xLe·ν = 0, on 
ε
g (A5)

where D̂ = Di/(Dlε
2) and �ε, �ε

s , 

ε and 
ε

g are the domains
of the inter-particle space, the intra-particle space, the surfaces of
all soil particles and the surfaces of all gas spaces, respectively.
Equations (A1)–(A5) are defined in the complicated space domain
�ε consisting of many individual soil particles. For the final
model we need equations for average concentrations defined in a
simpler domain. We obtain these using homogenization techniques
as follows. We give the equations for the model used in the main
paper, which depends on the ratio of the diffusion coefficients in
the intra- and inter-particle spaces (Di/Dl) being of order ε2.
We also give the equations forDi/Dl larger and smaller than
this.

Equations for Di/Dl ≈ ε2

To derive the macroscopic equations we use the following
asymptotic expansions with respect to ε:

Le = L0
e(x, y) + εL1

e(x, y) + ε2L2
e(x, y) + . . .

Li = L0
i (x, y) + εL1

i (x, y) + ε2L2
i (x, y) + . . .

Sen = S0
en(x, y) + εS1

en(x, y) + ε2S2
en(x, y) + . . . (A6)

Sin = S0
in(x, y) + εS1

in(x, y) + ε2S2
in(x, y) + . . .

where n = 1 or 2 for the fast and slow reactions. The concentration
variables in (A6) are periodic with respect to y = x/ε. In the
multiple space scale, we have from the chain rule ∇ = ∇x +
1/ε∇y . We combine Equations (A6) with Equations (A1)–(A5)
and then compare the coefficients of the resulting equations for
different powers of ε (O(εk) where k = 0, 1, 2 etc) to obtain the
sequence of problems at each power of ε. The variable L0

e(t, x)
is a solution to the problem that comes from O(ε0) after solving
the problems at O(ε−2) and O(ε−1) and averaging over the single
particle scale problem, i.e. L0

e(t, x) solves

θ
′
e

∂L0
e

∂t
= ∇x ·(Ahom∇xL

0
e) + 1

|Z|
∫



D̂∇yL
0
i ·νdγ

− 1

|Z|
∫



(
∂S0

e1

∂t
+ ∂S0

e2

∂t

)
dγ (A7)

where Ahom is a matrix for the effective macroscopic diffusion,
with off-diagonal elements a(i,j ) because of the microstructure.
This is given by:

Ahom = θ
′
eδij + 1

|Z|
∫
Y1

∂wj

∂yi

dy, (A8)

where δij is Kroenecker’s delta (= 1 if i = j , 0 if i 
= j ) and wj

is defined by:

∇2
y wj = 0 in Y1

∇ywj ·ν = −ej ·ν on 


∇ywj ·ν = −ej ·ν, on 
1

where ej is the unit vector for the j th coordinate axis:
e1 = (1,0, 0), e2 = (0,1, 0), e3 = (0,0, 1) and wj is periodic in
Y1 such that

∫
Y1

wjdy = 0. Similarly L0
i (t, x, y) solves:

∂L0
i

∂t
= D̂∇2

yL0
i − ∂S0

i1

∂t
− ∂S0

i2

∂t
, (A9)

with L0
i = L0

e on 
 × �. The solution of the integral term in
Equation (A8) for the geometry specified in Figure 1, obtained

© 2009 The Authors
Journal compilation © 2009 British Society of Soil Science, European Journal of Soil Science, 61, 108–119



Dual-porosity modelling of diffusion 119

with Comsol Multiphysics, is:

∫
Y1

∂wj

∂yi

dy = −0.102δij .

Thus, since θ
′
e = 0.274 (Parameter values), A

ij

hom = 0.172δij .
Because of the geometry, that is a spherical particle, there are
no off-diagonal elements in our diffusion matrix and so we have
standard impeded diffusion with Ahom = θ

′
efe = 0.172.

Equations for Di/Dl ≈ ε

In Equations (A1)–(A5), ε2 is replaced by ε and D̂ = Di/(Dlε)

is of order one. Thus, in contrast to the case of Di/Dl ≈ ε2 where
the single particle term appeared at the O(ε0) problem, the single
particle dynamics now appear in the O(ε−1) problem. Hence, the
concentration within the particle L0

i is undisturbed and depends
only on the macroscopic variable x. Thus, as in the previous case,
the equation for average macroscopic concentrations comes from
the O(ε0) problem and L = Le(x) = Li(x) is given by:

(
θ

′
e + |Y |θi

|Z|
)

∂L

∂t
= ∇x ·(Ahom∇xL)

− 1

|Z|
∫



(
∂S0

e1

∂t
+ ∂S0

e2

∂t

)
dγ − 1

|Z|
∫
Y

(
∂S0

i1

∂t
+ ∂S0

i2

∂t

)
dy,

(A10)

where Ahom is defined in the same way as for Di/Dl ≈ ε2.
Hence whenDi/Dl ≈ ε, we find that only the rate of reaction
inside the particle is important on the macroscopic scale because
the diffusion of the solute inside the particle is effectively
instantaneous.

Equations for Di/Dl ≈ ε3

In Equations (A1)–(A5), ε2 is replaced by ε3 and D̂ = Di/(Dlε
3)

is of order one. Following the same procedures as for Di/Dl ≈ ε

we obtain:

θ
′
e

∂L0
e

∂t
= ∇x ·(Ahom∇xL

0
e)

− 1

|Z|
∫



(
∂S0

e1

∂t
+ ∂S0

e2

∂t

)
dγ on 
 × �

∂L0
i

∂t
= −∂S0

i1

∂t
− ∂S0

i2

∂t
. in Y × � (A11)

The flux into the particle is of order ε3, which is small because
∇L0

i × particle volume = (∇x + 1/ε∇y)·C·ε3 ≈ O(ε2). Thus the
diffusion into and inside the particle is not apparent on the
macroscopic scale and the equations for the concentrations inside
the particle are not coupled with the macroscopic equations in the
inter-particle space.
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