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Pseudoparabolic equations with convection
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The existence of solutions of pseudoparabolic equations with convection by using discretization along
characteristics is shown. The uniqueness of the solution of a pseudoparabolic equation is proved for a
linear elliptic part and for a space dimensionN 6 4.
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1. Introduction

The pseudoparabolic equations are used to model fluid flow in fissured porous media (Barenblattet al.,
1990), two-phase flow in porous media with dynamical capillary pressure (Cuestaet al., 1999; Gray &
Hassanizadeh,1993) and heat conduction in two-temperature systems (Chen & Gurtin, 1968). Pseu-
doparabolic equations can be used also as regularization of ill-posed transport problems (Barenblatt
et al., 1993).

To discretize a pseudoparabolic equation, Crank–Nicolson approximation in time combined with
finite-element or finite-difference scheme is used (Ewing, 1975a,b, 1978; Ford & Ting, 1974; Wahlbin,
1975; Gilbert & Lundin, 1983). A predictor–corrector Galerkin approximation is considered inFord
(1976). The Euler–Galerkin method for quasi-linear pseudoparabolic equation is presented inArnold
et al. (1981). In special cases, when the differential operator acting upon the time derivative of the
solution is invertible and dominates the elliptic operator, the pseudoparabolic equation is equivalent
to a Banach-space-valued ordinary differential equation. In this manner, the strong convergence of a
Galerkin approximation is proved inGajewski & Zacharias(1973).

Pseudoparabolic equations with convection are obtained by modelling of two-phase flow in porous
media with dynamical capillary pressure. The two phases in this model are water and air. For water in a
homogeneous and isotropic porous medium, we have the momentum balance equation (Darcy’s law)

q = −K (S)(∇ pw + ρg) (1.1)

and the mass balance equation

φ∂t (ρS) + ∇ ∙ (ρq) = 0. (1.2)

Here,q denotes the volumetric water flux,S the water saturation,K (S) the hydraulic conductivity,pw
the water pressure,ρ the water density,φ the porosity andg a gravity constant. To solve these equations,
an additional relation betweenpw andS is needed. For this relation, it is assumed that the air pressure
pa is constant and the static condition holds:

pa − pw = pc(S),
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PSEUDOPARABOLIC EQUATIONS WITH CONVECTION 913

where pc denotes the capillary pressure. For the processes with slowly monotonically varying water
saturation, this condition can be accepted. For the fast processes, e.g. capillary imbibition, the hysteresis
and dynamical effect are important. To derive the dynamical relation between saturationSand pressure
differencepa − pw, Gray & Hassanizadeh(1993) gave a definition of the capillary pressurepc(S) as a
thermodynamic parameter in terms of the free-energy functions of the phases, independent ofpa − pw,
and obtain the equation

pa − pw = pc(S) − φL∂t S. (1.3)

Now, from (1.1–1.3), a single equation for the water saturation can be obtained:

φ∂t (ρS) = ∇ ∙ {ρK (S)ρg + ρK (S)∇(−pc(S) + φL∂t S)}. (1.4)

We consider a simplified version of (1.4) assuming linearity of the pseudoparabolic term

∂t u − ∇ ∙ (a(x)∂t∇u) + c(t, x, u) ∙ ∇u − ∇ ∙ (d(t, x, u)∇u) = f (t, x, u).

The existence of solution of this pseudoparabolic equation with appropriate initial and boundary con-
ditions can be shown using Rothe or Galerkin discretization method. In order to obtain a good numeri-
cal approximation for the convection term, a discretization along characteristics is used. Such type of
discretization was used for parabolic equations inDouglas & Russell(1982), Dawsonet al. (1994),
Arbogast & Wheeler(1995), Bermejo(1995), Barrett & Knabner(1998), Kacur (2001) and Kacur &
Keer (2001). An approximate solution is obtained as a solution to a discretized differential equation
along the approximated characteristics. The change of the solution of the problem with convection along
the characteristics is small compared to the change of the solution in time. Thus, the discretization along
characteristics allows for large time steps in the time discretization.

In this article, the discretization along characteristics is applied to a pseudoparabolic equation with
convection. The convergence of approximative solutions to the solution of the original problem is shown.
The uniqueness is proved for a linear elliptic part, for a space dimensionN 6 4 and for Lipschitz
continuous non-linear functions.

2. Pseudoparabolic equation with convection

Let Ω ⊂ RN be a bounded domain with Lipschitz continuous boundary. InQT = (0, T)×Ω, the initial
boundary-value problem is given by






∂t u − ∇ ∙ (a(x)∂t∇u) + c(t, x, u) ∙ ∇u − ∇ ∙ (d(t, x, u)∇u) = f (t, x, u),

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ (0, T) × ∂Ω.

(2.1)

The existence of a solution will be ensured by the following assumptions.

ASSUMPTION2.1

A1. The matrix fielda ∈ L∞(Ω)N×N is symmetric and elliptic, i.e. for somea0 anda0, 0 < a0 6
a0 < ∞, a satisfiesa0|ξ |2 6 a(x)ξ ξ 6 a0|ξ |2 for a.a.x ∈ Ω and forξ ∈ RN .

A2. The functionc: (0, T) × Ω × R → RN is continuous and bounded|c(t, x, z)| 6 c0 < ∞.

A3. The matrix fieldd: (0, T)×Ω×R → RN×N is continuous, elliptic, i.e. there exists somed0 > 0
such thatd satisfiesd(t, x, z)ξξ > d0|ξ |2 for ξ ∈ RN , and bounded, i.e. for somed0 < ∞,
|d(t, x, z)| 6 d0 for almost all(t, x) ∈ QT andz ∈ R.
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914 M. PTASHNYK

A4. The function f : (0, T)×Ω ×R → R is continuous and sublinear, i.e.| f (t, x, z)| 6 C(1+ |z|)
for almost all(t, x) ∈ QT and forz ∈ R.

A5. The initial conditionu0 is in H1
0 (Ω).

DEFINITION 2.1 A functionu: QT → R is called a weak solution of (2.1) if u ∈ H1(0, T; H1
0 (Ω)),

u satisfies the initial condition, i.e.u(t) → u0 in H1
0 (Ω) ast → 0, andu satisfies the equality

∫

QT

utv dx dt +
∫

QT

a(x)∇ut∇v dx dt +
∫

QT

c(t, x, u)∇uv dx dt

+
∫

QT

d(t, x, u)∇u∇v dx dt =
∫

QT

f (t, x, u)v dx dt (2.2)

for all test functionsv ∈ L2(0, T; H1
0 (Ω)).

The main theorem of this section contains the existence of such a solution.

THEOREM 2.1 (Existence). Under Assumption2.1, there exists a solution of Problem (2.1).

At first, we explain the discretization method.
Equation (2.1) is of the form






∂t u + v ∙ ∇u − A(u) = f (t, x, u) in QT ,

u = 0 on(0, T) × ∂Ω,

u(0, x) = u0 in Ω,

(2.3)

wherev(t, x) = c(t, x, u(t, x)). Due to the characteristic method, the basic structure of the in-time
discretized equation reads

ui − ui −1 ◦ φi

h
− A(ui ) = f (ti , x, ui −1),

whereφi (x) = x − hv(ti , x) is an approximation ofX(ti −1, ti , x) for h = T/n, ti = ih, i = 0, . . . , n,
andX satisfies

∂t X(t, s, x) = v(t, X(t, s, x)), X(s, s, x) = x.

To make this idea work, there are some subtleties to be considered.
It is substantial that the characteristicsX do not intersect; otherwise, neither the backward transport

X(ti −1, ti , x) norφi (x) can be shown to exist. Provided

‖∇v(t)‖L∞(Ω) 6 c for all t ∈ (0, T),

and therefore det(Dφi (x)) > 1 − hc > 0, the backward transport exists. However, this estimate may
not be satisfied. To circumvent this problem, we consider forτ = hω, 0 < ω < 1, the smoothed version
of vi (x) := v(ti , x) by vτ

i := wτ ∗ vi , wherewτ (x) = 1
τ N w1

( x
τ

)
,

w1(x) =

{
κ exp

(
|x|2

|x|2−1

)
, for |x| 6 1,

0, otherwise,
and

∫

RN
w1(x)dx = 1. (2.4)
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PSEUDOPARABOLIC EQUATIONS WITH CONVECTION 915

This concept will guarantee that‖∇vτ
i ‖L∞(Ω) will be uniformly bounded ini = 1, . . . , n for each

fixed τ .
Choose

Ωh = {x ∈ RN, dist(x,Ω) < h‖v‖L∞(QT )}.

Then,Ω = ∩h>0Ωh. Fix someh∗ > 0 andΩ∗ = Ωh∗ . Let Ωi = φi (Ω). The boundedness ofv
yieldsΩi ⊂ Ωh ⊂ Ω∗ for h 6 h∗. Sinceh∗ > 0, there exists an extensionũi −1 of ui −1 from Ω to
Ω∗, satisfying‖ũi −1‖H1(Ω∗) 6 c‖ui −1‖H1(Ω) uniformly in u. The functionui −1 from H1

0 (Ω) can be
extended by zero to a functioñui −1 ∈ H1

0 (Ω∗) and‖ũi −1‖H1
0 (Ω∗) 6 ‖ui −1‖H1

0 (Ω). This construction

allows us to assume thatũi −1 is defined on allΩi . Especially,ũi −1 ◦ φi is well defined.
We approximate the differential equation (2.1) by the time discretization,h = T/n, ti = ih, i =

0, . . . , n, and obtain

1

h
(ui − ũi −1 ◦ φi ) − ∇ ∙

(
a(x)

1

h
∇(ui − ui −1)

)
− ∇ ∙ (d(ti , x, ui −1)∇ui ) = f (ti , x, ui −1),

ui (x) = 0 on∂Ω, (2.5)

whereφi (x) := x − hvτ
i (x) andvi (x) = c(ti , x, ui −1). It is equivalent to

−∇ ∙
((

a(x)
1

h
+ d(ti , x, ui −1)

)
∇ui

)
+

1

h
ui = f (ti , x, ui −1) +

1

h
ũi −1 ◦ φi −

1

h
∇ ∙ (a(x)∇ui −1).

The existence and uniqueness of the solutionui of elliptic problems (2.5) follow from Lax–Milgram
theorem (Evans, 1998).

In the proof of thea priori estimates, we use the following lemma.

LEMMA 2.1 (Kacur, 2001). There exists ah0 > 0 such thatφi is one to one and

1

2
|x − y| 6 |φi (x) − φi (y)| 6 2|x − y|, for all x, y ∈ Ω, (2.6)

uniformly in n, i = 1, . . . , n, andh 6 h0.

Proof. Due to‖vi ‖L∞(Ω) 6 C < ∞, we have

‖vτ
i ‖L∞(Ω) 6 C

and

‖∇vτ
i ‖L∞(Ω) 6 C/τ.

Sinceτ = hω and 0< ω < 1, we obtain forφi ,

(1 − h1−ωC)|x − y| 6 |φi (x) − φi (y)| 6 (1 + h1−ωC)|x − y|.

�
Now, we provea priori estimates forui .
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916 M. PTASHNYK

LEMMA 2.2 The estimates

max
16 j6n

∫

Ω
(|u j |

2 + |∇u j |
2)dx6C,

n∑

i =1

h
∫

Ω
|∇ui |

2 dx6C (2.7)

hold uniformly inn.

Proof. Testing (2.5) with ui and summing overi yield

j∑

i =1

1

h

∫

Ω
(ui − ui −1)ui dx +

j∑

i =1

1

h

∫

Ω
(ui −1 − ũi −1 ◦ φi )ui dx

+
j∑

i =1

1

h

∫

Ω
a(x)∇(ui − ui −1)∇ui dx

+
j∑

i =1

∫

Ω
d(ti , x, ui −1)∇ui ∇ui dx =

j∑

i =1

∫

Ω
f (ti , x, ui −1)ui dx.

Due to Assumption2.1, Abel’s summation formula and multiplication withh, we obtain

∫

Ω
|u j |

2 dx + a0

∫

Ω
|∇u j |

2 dx + d0

j∑

i =1

h
∫

Ω
|∇ui |

2 dx

6
∫

Ω
|u0|

2 dx + a0
∫

Ω
|∇u0|

2 dx +
j∑

i =1

∫

Ω
|(ui −1 − ũi −1 ◦ φi )ui |dx + c1

j∑

i =1

h
∫

Ω
|ui |

2 dx + c2.

(2.8)

To estimate the third integral on the right-hand side, we use the equality

ui −1 − ũi −1 ◦ φi =
∫ 1

0
∇ũi −1(x + s(φi (x) − x))dsvτ

i (x)h.

Integration overΩ and boundedness ofvτ
i yield

∫

Ω
|ui −1 − ũi −1 ◦ φi |2 dx 6 C

∫ 1

0

∫

Ω
|∇ũi −1(x + s(φi (x) − x))|2 dx dsh2.

Changing to the new variabley = x + s(φi (x) − x), usingy ∈ Ωi ⊂ Ω∗ and the monotonicity of the
integral and applying the estimate|detDφ(x)| > 1

2N yield

∫

Ω
|ui −1 − ũi −1 ◦ φi |2 dx 6 Ch2

∫ 1

0

∫

Ω∗
|∇ũi −1(y)|2 dy ds.
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PSEUDOPARABOLIC EQUATIONS WITH CONVECTION 917

From the boundedness of the extension operator, it follows that

‖ui −1 − ũi −1 ◦ φi ‖L2(Ω) 6 Ch‖∇ũi −1‖L2(Ω∗) 6 C1h‖∇ui −1‖L2(Ω).

Using this estimate yields

j∑

i =1

∫

Ω
|(ui −1 − ũi −1 ◦ φi )ui |dx 6 c1

j∑

i =1

h
∫

Ω
|∇ui |

2 dx + c2

j∑

i =1

h
∫

Ω
|ui |

2 dx.

Then, we obtain the inequality

∫

Ω
|u j |

2 dx + a0

∫

Ω
|∇u j |

2 dx + d0

j∑

i =1

h
∫

Ω
|∇ui |

2 dx 6 c3 + c4

j∑

i =1

h
∫

Ω
(|ui |

2 + |∇ui |
2)dx.

Due to the discrete Gronwall lemma, we obtain the estimates (2.7). �

LEMMA 2.3 The estimate
n∑

i =1

h
∫

Ω
(|∂hui |

2 + |∂h∇ui |
2)dx 6 C (2.9)

holds uniformly inn, where∂hui := ui −ui −1
h .

Proof. We test (2.5) with ui − ui −1, sum up overi and obtain the equality

j∑

i =1

h
∫

Ω

ui − ũi −1 ◦ φi

h
∂hui dx +

j∑

i =1

h
∫

Ω
a(x)∇∂hui ∇∂hui dx

+
j∑

i =1

h
∫

Ω
d(ti , x, ui −1)∇ui ∇∂hui dx =

j∑

i =1

h
∫

Ω
f (ti , x, ui −1)∂hui dx.

By Assumption2.1, we have the inequality

j∑

i =1

h
∫

Ω
|∂hui |

2 dx + a0

j∑

i =1

h
∫

Ω
|∇∂hui |

2 dx

6 c1δ

j∑

i =1

h
∫

Ω
|∇∂hui |

2 dx +
c2d0

δ

j∑

i =1

h
∫

Ω
|∇ui |

2 dx + c3δ

j∑

i =1

h
∫

Ω
|∂hui |

2 dx

+
c4

δ

j∑

i =1

h
∫

Ω
| f (ti , x, ui −1)|

2 dx +
c5

δ

j∑

i =1

h
∫

Ω

∣
∣
∣
∣
ui −1 − ũi −1 ◦ φi

h

∣
∣
∣
∣

2

dx.

Similarly to Lemma2.2, we obtain

ui −1(x) − ũi −1 ◦ φi (x)

h
=
∫ 1

0
∇ũi −1(x + s(φi (x) − x))dsvτ

i
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918 M. PTASHNYK

and
∥
∥
∥
∥

ui −1 − ũi −1 ◦ φi

h

∥
∥
∥
∥

L2(Ω)

6 C‖∇ũi −1‖L2(Ω∗) 6 C‖∇ui −1‖L2(Ω).

Then, we have the inequality

j∑

i =1

h
∫

Ω
|∂hui |

2 dx +
j∑

i =1

h
∫

Ω
|∇∂hui |

2 dx 6 C1

j∑

i =1

h
∫

Ω
|ui |

2 dx + C2

j∑

i =1

h
∫

Ω
|∇ui |

2 dx.

Due to the estimates in Lemma2.2, this inequality implies the estimate for the discrete time deriva-
tive ∂hui . �

Proof of Theorem2.1. By using thea priori estimates forui and∂hui , we will show the convergence of
an appropriate subsequence of the approximate solutions to a solution of the original problem (2.1).

Therefore, we define the Rothe functions piecewise fort ∈ (ti −1, ti ] andx ∈ Ω by

un(t, x) := u(ti −1, x) + (t − ti −1)
u(ti , x) − u(ti −1, x)

h

and the step functions by

ūn(t, x) := u(ti , x),

where the initial conditions areun(0, x) = u0(x) andūn(0, x) = u0(x). From (2.7) and (2.9), we have
the estimates

sup
06t6T

∫

Ω
(|ūn|2 + |∇ūn|2)dx 6 C,

∫

QT

|∇ūn|2 dx dt 6 C, (2.10)

∫

QT

(|∂hun|2 + |∇∂hun|2)dx dt 6 C,

∫

QT

(|un − ūn|2 + |∇un − ∇ūn|2)dx dt 6
C

n2
.

These estimates imply the existence of subsequences of{un} and{ūn}, respectively, again denoted by
{un} and{ūn}, respectively, such that

ūn → u weakly-∗ in L∞(0, T; H1
0 (Ω)),

ūn → u weakly inL2(0, T; H1
0 (Ω)), (2.11)

∂hun → ∂t u weakly inL2(0, T; H1
0 (Ω)),

where∂hun(t) := un(t)−un(t−h)
h andun(t − h) = u0 for t ∈ [0, h]. Using the compactness Aubin–Lions

lemma (seeLions, 1969) implies thatūn → u strongly inL2(QT ). Due toEvans(1998, Theorem 5.9.2)
andu ∈ H1(0, T; H1

0 (Ω)), we obtainu ∈ C([0, T ]; H1
0 (Ω)) andu(0) = u0.

Testing the discrete equation (2.5) with v ∈ L2(0, T; H1
0 (Ω)) yields

∫

QT

∂hunv dx dt +
∫

QT

∂h∇un∇v dx dt +
∫

QT

dn(t, x, ūn
h)∇ūn∇v dx dt

+
∫

QT

1

h

(
ūn

h − ˜̄u
n
h ◦ φn

)
v dx dt =

∫

QT

fn(t, x, ūn
h)v dx dt, (2.12)
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PSEUDOPARABOLIC EQUATIONS WITH CONVECTION 919

whereφn(t, x) = x − hwτ ∗ cn(t, x, ūn
h), ūn

h(t, x) = ūn(t − h, x), cn(t, x, z) = c(ti , x, z), dn(t, x, z) =
d(ti , x, z) for t ∈ (ti −1, ti ], for i = 1, . . . , n, andcn(0, x, z) = c(0, x, z), dn(0, x, z) = d(0, x, z).
The strong convergence ofūn and the last estimate in (2.10) imply thatūn

h → u strongly inL2(QT ) and
ūn

h → u a.e. inQT . The continuity ofd(t, x, z) in t andz and the convergence ofūn
h a.e. inQT imply

thatdn(t, x, ūn
h) → d(t, x, u) a.e. inQT . Due toūn → u weakly inL2(0, T; H1

0 (Ω)) and boundedness
of dn(t, x, ūn

h) andd(t, x, u), we obtain strong convergence ofdn(t, x, ūn
h) to d(t, x, u) in L2(QT ) and

weak convergence ofdn(t, x, ūn
h)∇ūn in L2(QT ) to d(t, x, u)∇u since

∫

QT

dn(t, x, ūn
h)∇ūnϕ dx dt →

∫

QT

d(t, x, u)∇uϕ dx dt

for any smoothϕ. The convergence offn(t, x, ūn
h) → f (t, x, u) a.e. inQT follows from the continuity

of f and the a.e. convergence ofūn
h in QT . Due to the sublinearity off and the dominated convergence

theorem (Evans, 1998), we obtainfn(t, x, ūn
h) → f (t, x, u) in L2(QT ). The continuity ofc implies that

cn(t, x, ūn
h) → c(t, x, u) a.e. inQT . From the boundedness ofcn(t, x, ūn

h) andc(t, x, u) in L∞(QT )

follows cn(t, x, ūn
h) → c(t, x, u) strongly inL2(QT ) andcn(t, x, ūn

h) converges weakly-∗ in L∞(QT ).
Now, we have to prove that

∫

QT

1

h

(
ūn

h − ˜̄u
n
h ◦ φn

)
v dx dt →

∫

QT

c(t, x, u)∇uv dx dt

for n → ∞, whereh = T
n . The equality

∫

QT

1

h

(
ūn

h − ˜̄u
n
h ◦ φn

)
v dx dt =

∫

QT

∫ 1

0
∇˜̄u

n
h(x + s(φn(t, x) − x))dswτ ∗ cn(t, x, ūn

h)v dx dt

holds. Sincecn(t, x, ūn
h) → c(t, x, u) a.e. inQT , we havewτ ∗ cn(t, x, ūn

h) → c(t, x, u) a.e. inQT as
n → ∞.

The assumed boundedness ofc yields

‖wτ ∗ cn(t, x, ūn
h)‖L∞(QT ) 6 c0.

We need to show that∇zn → ∇u weakly inL2(QT ), where

∇zn(t, x) :=
∫ 1

0
∇˜̄u

n
h(t, x + s(φn(t, x) − x))ds.

Due to
∫

QT

|∇zn|
2 dx dt 6 C1,

there exists aχ ∈ L2(QT ) such that∇zn → χ weakly in L2(QT ). Now, we show thatzn → u in
L2(QT ). Integrating the difference

zn(t, x) − ūn
h(t, x) =

∫ 1

0

(
˜̄u

n
h(t, x + s(φn(t, x) − x)) − ūn

h(t, x)
)

ds

=
∫ 1

0

∫ 1

0
∇˜̄u

n
h(t, x + sr(φn(t, x) − x))dsdr wτ ∗ cn(t, x, ūn

h)h
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over QT and using the boundedness ofcn imply that

∫

QT

|zn(t, x) − ūn
h(t, x)|2 dx dt 6 c0h2

∫ 1

0

∫ 1

0

∫

QT

∣
∣
∣∇˜̄u

n
h(t, x + sr(φn(t, x) − x))

∣
∣
∣
2

dx dt dsdr.

From the boundedness of the extension operator and thea priori estimates for̄un
h, it follows that

∥
∥
∥∇˜̄u

n
h

∥
∥
∥

L2((0,T)×Ω∗)
6 C2‖∇ūh

n‖L2(QT ) 6 C3.

Then, we have
∫ T

0

∫

Ω
|zn(t, x) − ūn

h(t, x)|2 dx dt 6 Ch2.

Due to the fact that̄un
h → u in L2(QT ), we obtainzn → u in L2(QT ). Then,∇zn → χ weakly in

L2(QT ) implies thatχ = ∇u. Passing (2.12) to the limit asn → ∞, it follows that the functionu is a
solution of Problem (2.1). �

THEOREM2.2 (Uniqueness). Let Assumption2.1be satisfied, whered depends only on time and space.
Let N 6 4 and

| f (t, x, z1) − f (t, x, z2)| 6 C|z1 − z2|, |c(t, x, z1) − c(t, x, z2)| 6 C|z1 − z2|

for z1, z2 ∈ R and(t, x) ∈ QT . Then, there exists at most one weak solution of (2.1).

Proof. Suppose thatu1 andu2 solve Problem (2.1). Then, the differenceu = u1 − u2 satisfies the
equality

∫

Qτ

utv dx dt +
∫

Qτ

a(x)∇ut∇v dx dt +
∫

Qτ

(c(t, x, u1)∇u1 − c(t, x, u2)∇u2)v dx dt

+
∫

Qτ

d(t, x)∇u∇v dx dt =
∫

Qτ

( f (t, x, u1) − f (t, x, u2))v dx dt. (2.13)

We choose the test functionv = u. The third integral in the last equality is estimated by
∫

Qτ

(c(t, x, u1)∇u1 − c(t, x, u2)∇u2)u dx dt

=
∫

Qτ

c(t, x, u1)∇u udx dt +
∫

Qτ

(c(t, x, u1) − c(t, x, u2))∇u2u dx dt

6 c1

∫

Qτ

|u|2 dx dt + c2

∫

Qτ

|∇u|2 dx dt + c3

(∫

Qτ

|u|4 dx dt

) 1
2
(∫

Qτ

|∇u2|
2 dx dt

) 1
2

.

Sobolev’s embedding theorem yields

(∫

Qτ

|u|4 dx dt

) 1
2

6 c4

∫

Qτ

|u|2 dx dt + c5

∫

Qτ

|∇u|2 dx dt
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sinceu ∈ L∞(0, T; H1
0 (Ω)) and N 6 4. Applying these estimates, ellipticity ofa and d and the

Lipschitz continuity of f to (2.13) implies that

∫

Ω
(|u(τ )|2 + |∇u(τ )|2)dx 6 C

∫

Qτ

(|u|2 + |∇u|2)dx dt.

Due to Gronwall’s lemma, we obtain
∫

Ω
(|u(τ )|2 + |∇u(τ )|2)dx 6 0

andu1 = u2 almost everywhere inQT . �

REMARK 2.1 Here, the zero Dirichlet boundary conditions were considered. This restriction is not
essential and the results can be obtained also for other boundary conditions.
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