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Abstract

In this article a fractional cross-diffusion system is derived as the rigorous many-particle limit of a multi-
species system of moderately interacting particles that is driven by Lévy noise. The form of the mutual
interaction is motivated by the porous medium equation with fractional potential pressure. Our approach
is based on the techniques developed by Oelschldger (1989) and Stevens (2000), in the latter of which the
convergence of a regularization of the empirical measure to the solution of a correspondingly regularized
macroscopic system is shown. A well-posedness result and the non-negativity of solutions are proved for
the regularized macroscopic system, which then yields the same results for the non-regularized fractional
cross-diffusion system in the limit.
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1. Introduction

Cross-diffusion systems arise in modelling many different biological and physical processes,
e.g. the movement of cells, bacteria or animals; transport through ion-channels in cells; tumour
growth; gas dynamics; carrier transport in semiconductors [1-8], with the chemotaxis system [9]
being one of the most important examples of a cross-diffusion system (with a triangular cross-
diffusion matrix). Different approaches, ranging from semigroup theory to energy or entropy
methods and applications of the Jordan-Kinderlehrer-Otto scheme, have been used to analyze
cross-diffusion systems [10-21], with many results dedicated to the chemotaxis model in par-
ticular, see the review papers [22—-24] and the references therein. Cross-diffusion equations with
nonlocal interaction terms have also attracted interest in previous years [16,25,26].

The derivation of cross-diffusion systems from stochastic N-particle systems has been stud-
ied in [27], assuming some ellipticity of the cross-diffusion matrix. A new approach, using a
regularized system and an intermediate “frozen” system, was necessary for the rigorous deriva-
tion of a chemotaxis system from a microscopic description of stochastic particle interactions
[28]. Some models of cross-diffusion type used in population dynamics were derived in [29,30],
whereas in [31] the Maxwell-Stefan equations were obtained as the hydrodynamic limit of the
empirical densities. In [32] a cross-diffusion model with nonlocal interactions was derived from
a many-particle system with a Newtonian potential.

Although there are several contributions concerned with nonlocal cross-diffusion systems
available, the derivation of cross-diffusion systems with fractional cross-diffusion terms from
the stochastic particle systems, as well as well-posedness results for such systems have not been
considered. Correspondingly, the aim of this article is to rigorously derive such a system starting
from the microscopic model, the movement of the particles being determined by a Lévy walk and
non-local mutual interaction potentials. In particular, we first derive a fractional cross-diffusion
system as the many-particle limit of a moderately interacting particle system and then we prove
a well-posedness result for the limiting system.

The motivation for considering processes driven by Lévy walks is derived from the exper-
imental observation that both in the context of cell motility [33-39] and population dynamics
[40—43] in certain situations organisms move according to Lévy processes. Especially in the ab-
sence of an attractant [33] or when targets are rare and can be visited any number of times [39],
the distribution of runs asymptotically behaves like an inverse square power-law distribution
leading to Lévy walks as optimal movement and search strategies. Lévy walks were also used in
modelling human mobility [43] and swarm robotic systems [44], see also [45] for an overview.

In this work we derive the following fractional cross-diffusion system:

n
dut; + 07 (— A u; — div(Zaijuivﬂuj) =0 in (0.T) x RY,
j=1 (1)

i (0, ) =u? in R, i=1,...,n,

for T > 0 with g;; € R and 0; > 0. Here Vﬁuj = V((—A)%uj) and we consider @ € (1/2, 1)
and B € (0,1) in such a way that 2o > § + 1, meaning that self-diffusion dominates cross-
diffusion effects. This restriction is necessary in our derivation of the limiting result as well as in
proving the well-posedness of the cross-diffusion system (1).

The form of the non-local interaction in the fractional cross-diffusion term in (1) is motivated
by the porous medium equation with fractional potential pressure that has been treated by Caf-
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farelli and Vazquez, see [46—48] and the overview [49]. Their equation is, in particular, given by
v, =V - (vVp(v)), where the pressure p(v) = (—A)*v for s € (0, 1). This model has appeared
in the context of the macroscopic evolution and the phase segregation dynamics of particles sys-
tems with short- and long-range interactions [50-52]. It, furthermore, appears in the study of
dislocations [53,54].

The starting point of our analysis is the microscopic description of the particle dynamics,
which will be introduced in detail in Section 1.1. It is given in terms of a system of SDEs assum-
ing that there are n species, each with N; particles for i =1, ..., n. In our model, the dynamics
are influenced by two forces: a nonlocal mutual interaction between the subpopulations, which
scales in a moderate way as the particle number increases, and random dispersal, which is mod-
elled by >/, N; i.i.d. Lévy processes. For simplicity, we assume that the i.i.d. Lévy processes
are taken to correspond to the fractional Laplacian (in the sense of (7) below), which then appears
in (1). However, as in the derivation in [55], we expect that our analysis holds for any 2«-stable
Lévy processes.

In the limiting procedure we use the methods developed by Oelschldger [27] and Stevens [28].
The article [27] is part of a series of works by the author on this subject (see also [56—58]), the
first of which drew some inspiration from the previous work [59], where a propagation of chaos
result for the Burgers’ equation is proven. The propagation of chaos result contained in [56] was
then generalized by Méléard and Roelly-Coppoletta in [60]. Furthermore, in [61] propagation
of chaos is shown for a Keller-Segel system with fractional diffusion. The main technique in
[27,28] and which we also use here is to, using [t6’s formula and martingale estimates, examine
the asymptotic behaviour of a regularization of the empirical measure, now viewed as a stochastic
process taking values in LZ(R9)". The novelty in our analysis lies in the structure of the fractional
cross-diffusion terms, whose handling requires some new technical ingredients.

The limiting procedure that we use relies on the existence and regularity of solutions to the
system (1). These issues are addressed in the final two theorems of this paper. While the proofs
are quite involved, the main ideas that we use are classical and rely on the Banach fixed-point
theorem and higher-order a priori estimates. Due to the fractional nature of (1), in our arguments
we require the use of the fractional Leibniz rule and Gagliardo-Nirenberg inequality. For the
reader’s convenience, any results concerning fractional Sobolev spaces that are needed in our
proofs are listed in the Appendix.

The structure of this paper is as follows: We first introduce our microscopic model and review
some standard facts about Lévy processes. In Section 2, we formulate the main results. Then, in
Sections 3 and 4 we give the arguments for our convergence results. In Sections 5 and 6 we prove
existence and uniqueness of non-negative solutions for the limiting macroscopic model.

1.1. Description of the microscopic dynamics

We consider the following system of ) ;_; N; SDEs:

n Nj
1 A
axfN ==y ¥ > aii VPN (XN (1) - an’"(t)) dt +20:d LF (1), )
j=1"" ¢=1
fori=1,...,nandk=1,..., N;, with a;; € R and o; > 0. Here, Xf’N(t) denotes the position

of the k-th particle of species i at time ¢ > 0 and the Li.‘ are i.i.d. Lévy processes corresponding
to the fractional Laplacian.
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—1 A N
The interaction potential that we use is (—A)ﬂT Vn for B € (0, 1). Here, Vy is defined in
terms of a radially symmetric probability density Wy as

Vy =Wy % Wy for Wy (x) =4 Wi(knyx) and Wy (x) = R4 Wi (Ryx), (3)

where ky = N*/? and &y = N*/¢ for exponents x and & that satisfy conditions given in (10)
and « > k. The properties satisfied by W are listed in (12)-(14).

In order for our limiting theorems to hold, it is important that the scaling of the interaction
is moderate. In particular, we consider an interaction to be “moderate” if, in the many-particle
limit, the mutual interaction does not depend on the microscopic fluctuations of the particle
densities. To verify that our interaction is moderate we perform a heuristic calculation, similar
to [56]: Assume for simplicity that the processes Xf’N(t) fori=1,...,nandk=1,..., N; are
i.i.d. with a smooth density (¢, -) and, furthermore, that each N; = N. We consider the variance
of the force exerted at x € R?, which is given by

3
=

1 o
J = Var(ﬁ Zvﬁ VN (x — Xf’N(t)))
j=lk=1

C N N 2
= 2L 19906 =) Pty ay = (0 VPt 0) ) .
R4

We treat the first term on the right-hand side of the above expression using

/|vﬂx7N(x_y)\2M(r,y)dy=/|vﬁ<WN*WN)<x—y)\zw,y)dy

d d
R R )

A A A 2 _
= [ KPR ) £ VWi DO i ) s,
R4

where we have made the change of variables s =k (y — x). We notice that
VAGDERS (w))(s)) < f [WiRn D) VP Wi (s —ken2)| dz

R
_ ~ (RN
:KNd/ Wl(_s/>
KN

R4

|V’3 Wi(s —s")|ds’,

where s’ = «kyz. Plugging this into (4) and using that k¥ > £ yields that

J < N_llc];dﬂ’g/?]z\,d < N_llc;l]“ﬁ —0 asN — oo, when « satisfies (10).

~
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1.2. Regularized empirical processes

The empirical processes SI.N (t) corresponding to the subpopulations are given by

N; N;
1 « 1 «
S0 = Dby (ST 0.9 = 5 > wx M)
k=1

k=1

fori =1,...,n and any real-valued function ¥ on R¢. Throughout this paper, for any real-valued
measure v, we use the notation

(v, ¥) 2=/1/f(x)v(dX)-
R

In Theorem 1, we show that certain regularizations of the empirical processes converge to the
solution of a regularized version of (1). We introduce the following regularized versions of the
empirical processes:

sN@Ex) = (SN0 V), BN @ x) = (SN () * W) (), (5)

where we use the notation from (3). With (5) we are able to rewrite the system (2) as

n
dX{PN () == ay VPN (1 XN () dt + v 20id LE (1), (6)
j=1

fork=1,...,N;andi=1,...,n.
1.3. It0’s formula for Lévy processes

Fori=1,...,nand k=1,..., N;, the Lf-‘(t) in (6) are i.i.d. Lévy processes on a filtered
probability space (2, F, F;, P) corresponding to (—A)®. We mean this in the sense that the
Lévy measure v of the processes is given by

Cd
dv: o

= g 9

where 1/2 <o < 1 and ¢4, 1s a dimensional constant that is, e.g., given in [62, Section 3].
With v defined as above, for any real-valued function i with sufficient regularity, the nonlocal
operator L corresponding to the L;‘(t) satisfies

Ly = / (V& +2) =¥ () = VY () - 2xz1=1) dv(2)
R4

7
v(x) —v(y) @

= o PV | T e

]Rd

dy =: =(=A)*y,
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where P.V. denotes the Cauchy principal value.
As it is the main tool of our derivation, we now give It6’s formula for the dynamics determined
by (6). The natural space of test functions is given by

Cl2 Ry x RY) = {w e CVIR L x RY | (—A)*y € COR, x ]Rd)},

where CS(R+ x R9) is the space of continuous bounded functions and C ;’1(R+ x R?) also
requires continuous and bounded derivatives with respect to time and space. For ¢y € C ;’Za (R4 x
R9) the dynamics given by (6) then yield that

n t

(SN @)y, )) = (SN (0).9(0.)) = / (SN (1), ai;VEsY (z. XN (D) - Vi (z, ) dr

=1
t t ®)
1O .
—or [(s¥ @ arveodrs 5 [ [ Va0 Do (e X 1) iz,
0 =10 rd\(o)

Here, Xff’N(r_) denotes the one-sided limit of Xf’N(t) ast /'t and

D.f(y):=f(y+2)— f(y) forany z,yeR’.
Furthermore, the compensated Poisson measure J\N/ik is defined by
NEWO, 11 x U) ;= NF((0,1] x U) —tv(U) forany U e B(R?\ {0}) andt >0,

where ./\/ik is the Poisson measure

N, 11 x Uy := ) 1y(LE(r) — LE(r)).

t€(0,1]

The above expression is a sum because it can be shown that a.s. the Lévy process has only a finite
number of jumps in a bounded interval. For the reader’s convenience, we remark that a useful
reference on Lévy processes is [63].

1.4. Additional notation

Unless otherwise stated, we use the convention that the indices i, j = 1, ..., n denote species,
whereas k, £ =1, ..., N; are used to denote the k-th (or £-th) particle.
We will use || - ||, to denote || - ||, ey for p € (1, 00]. Furthermore, for o € (0, 1) and

p € (1,00l weuse || - [|[wer to denote || - [lyye.p(ray and similarly || - || g« denotes | - || go (ray- For
T > 0, we denote the natural norm associated with (1) on (0, T') x R%:

T
1= s 17 @13 + [1a% roia. ©)
0

<t=

391



E.S. Daus, M. Ptashnyk and C. Raithel Journal of Differential Equations 309 (2022) 386426
As in [27,28], for two positive finite real-valued measures vy, vy € M(Rd), we consider
. 1 pd
d(v1,v2) i=sup{(v1 = v2, ) | ¥ € CHRY), ¥l oty + VY ey < 1}

Throughout the article, we denote iV = (12?], ..., 4 and ||12N||§ =y, ||121N||%, analogous
notation is used for all other n-dimensional vectors (e.g. u, N sN and §N ) and other norms.
We use the notation “<” in order to denote “< C(n, o, 8, a; j»0i,d)”. If there are additional
dependencies for the universal constant, e.g. on a time 7 > 0, then we write “<7”. Often the
universal constant may not depend on the full retinue of n, o, B, d, a;;, and o;, but we still use

the notation “<”.
2. Formulation of the main results

We have already defined VN, Wy, and WN in terms of ky = N*/4 and &y = N¥/4 in (3).
Now, we give the conditions on « and k. For a given arbitrarily small p > 0, we require that

N &d d
0<k and S(14+p)d <k < ——, (10)

-
d+4 d+3

for some 6 € (0, 1). These conditions are essential for the limiting argument in Theorem 1. We
shall also use the notation

Sy i=N"%. (1)

We assume the following properties satisfied by W;:

F(Wy) € CHRY), (12)
|[F(W) (&) S exp(—C'[E]), (13)
IAF(W)(E) S (L+ERIFW)E)], (14)

where F denotes the Fourier transform and C’ > 0 is a constant. We remark that the condi-
tions (10) are similar to those given in (1) of [28]. We, furthermore, mention that the conditions
(12)-(14) are likewise similar to (6)-(8) in [28] and (3.2)-(3.4) in [27], where in both [28] and
[27] the authors include an additional assumption concerning the decay of W; along rays.

The first theorem of this paper is a convergence result that shows that a certain regularization
of the empirical measure, namely 2" defined in (5), converges to 2" solving

n
B +oi(— ) a —div (Y aal VP @) « Wx)) =0 in 0,7) x RY, s
j=1

aN©, ) =u? in RY,
fori =1,...,nand T > 0. The convergence result is as follows:
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Theorem 1. Let o € (1/2,1) and B € (0, 1) satisfy p + 1 < 2« and, furthermore, when d = 1
that o — B < 1/2 or a < 3/4. The kernel Wy satisfies (12)-(14). Assume that u® € H*(R%)", for
s > d /24 2, is non-negative and satisfies

lim supIP’|:Z(SiN(O),1)Zmi|=O for i=1,...,n, (16)

m—>00 N N =

lim P [IhY©,) -’13z 8y | =0, (17)
N—o0
where § and p satisfy (10) and we use the notation (11). Then, we have
I ]P’[ WY V2 > ]:0,
N1—r>noo l u ”[O,T] Z ON
where i solves (15).

We make a couple of remarks concerning the above theorem:

Remark 1 (Initial condition). Notice that the assumptions (16) and (17) ensure that N;, which is
the number of particles of species i, is of the same order of magnitude as the scaling parameter
N,ie. N; & N. An example of an admissible initial condition would be to have N i.i.d. random
variables for species i with distribution u?/||u?||1 fori=1,...,n (see [57]).

Remark 2 (Regularization). In the formulation and proof of Theorem 1 our use of the regu-
larized problem (15) is similar to [28, Theorem 6.2]. As we will see in Step 1, the different
scalings of the kernels Wy and Wy are required to obtain uniform (in N) boundedness of
SUPQ < <N |V (Ol c2(ray> Where N is an appropriately defined stopping time. In [28] the anal-
ogous estimate is (28), whereas in [27] some ellipticity condition on the cross-diffusion term is
used to estimate corresponding terms.

Remark 3 (Dominating self-diffusion). The restriction on 8, i.e. B + 1 < 2, including f < o
for o < 1, implies that the self-diffusion dominates the cross-diffusion. The main place we use
this assumption is in the well-posedness and regularity results for problems (1) and (15). In
particular, we highlight the derivation of the higher-order a priori estimates, uniform in N, for
4" in Theorem 3, which are used in (27). Since our cross-diffusion matrix is not assumed to be
triangular, the condition on B is also used in Step 3.1 of the proof of Theorem 1. Throughout the
paper we consider « < 1, if « = 1 then many of our calculations could be simplified. We remark
that in [28] a cross-diffusion system with triangular cross-diffusion matrix and « = 8 =1 is
analyzed.

In our second theorem, we post-process the result of Theorem 1 in order to compare the not
regularized objects, the empirical processes SiN and u; solving (1).

Theorem 2. Assume that the conditions of Theorem [ are satisfied and that

n n

Z(u?, y)<C  and lim sup ]P’[Z(S,N(O), ¥ > m] =0, (18)

m—>00 N N P
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where C is a constant and v (x) =log(2 + x2), then
n

lim P[ 3" sup d(sY@0),ui(0)zp]=0

N—o0 D 0<t<T
forany u > 0.
Our final two theorems are well-posedness and regularity results that are used in Theorems 1
and 2. In Theorem 3 we ensure that the system (15) has a unique non-negative solution with

sufficient regularity. Then, in Theorem 4, we pass to the limit in the regularization to obtain a
solution of (1).

Theorem 3. Assume that the conditions of Theorem | are satisfied. Letting u® € H*(R?)", for
s > d /2, be non-negative, the following results hold:

1) (Local solution) There exists a time T = T(||u0||Hs (R4y) > 0 such that there is a unique

non-negative weak solution i € L0, T; H*(R%))" of the regularized problem (15) in the
time interval [0, T]. This solution satisfies

”ﬁN”LOC(O,T;HI(Rd)) + ”ﬁN”LZ(O’T;HHa(]Rd)) S C (19)

and if additionally s > d /2 + 2, then we obtain

sup |D%N @, x)<C, i=1,...,n, (20)
0,T)xR4

where C = C(d, 0;, a;j, n) is independent of N.

ii) (Global solution for small initial data)  Additionally, there exists a constant 60 =
0(d, oi,aij,n) > 0 such that if

161l s ety < 6(d, 01, i, ), @n
then part i) holds for any T > 0.

Passing to the limit N — oo in the result of Theorem 3, we obtain a solution for the original
system (1). In particular, we find that

Theorem 4. Under the assumptions of Theorem 3, there exists a unique non-negative solution u
of problem (1) in L°°(0, T; H* (R¥))* N L2(0, T; H*t*(R%))" with

lim |2 —u|? - =0. 22
Ngﬂoo”u ullio. 1 (22)

Here T > 0 corresponds to either the local or global existence interval from Theorem 3.
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3. Argument for Theorem 1

The following lemma, which is taken from [27], is the motivation for many of the assumptions
on the convolution kernel W; and is used in the proofs of the main results.

Lemma 5 (Lemma 1 of [27]). Assume that W satisfies (12)-(14) and Wy is given in (3). Then,
using the convention U (-) = Wy (-)| - | and for any ¢ > 0 and T > 0, we have

ISN x U113 < C@)[i2 2SN (2) + Wil + (SN (1), 1)? exp (—C'kc§) ] (23)

fori=1,...,n.
For f € Hl(]R{d) we have that

If * Wy — fII3 < C@RGIV £ (24)

Since there is no birth or death in our dynamics, (SiN(r), 1) = N;/N forall T € (0, T].
For the proof of Lemma 5 we refer to [27]. Here, we only remark that the proof relies on
properties of the Fourier transform and exploits the assumptions (12)-(14).

3.1. Proof of Theorem 1

In the proof of Theorem 1 we follow ideas from [27, Theorem 1] and [28, Theorem 6.2]. The
novelty of our proof lies mainly in technical issues that we encounter due to the form of the
nonlocal cross-diffusion terms. Some of these issues can be easily remedied by using the frac-
tional Leibniz rule or the fractional Gagliardo-Nirenberg inequality (see Appendix). The main
new contribution is the estimate contained in Step 3.1. While the majority of our proof quite
closely follows [28, Theorem 6.2], we give the full argument for the sake of completeness.

Proof. Our argument proceeds in four steps:
Step 1: Introduction of a stopping time. We introduce a first hitting time ¢V such that

tN =tV (@) :==inf{r > 0| [AY = aN |} (@) > 6y} for weQ. (25)

Assumptions (16) and (17), together with the right-continuity of ||z~ — a ”[20, gpfor0<t<T,
ensure that the limit of +V, as N — oo, is positive a.s. in Q (see Appendix). In addition, the
right-continuity of ||V — a ||[20 .p> for0 <7 < T, yields that tV is a stopping time and

PN = a % v gy = O8] = PLIAY =&Y 17 7y = 8n]- (26)

Let k be a multi-index. Using the Cauchy-Schwarz inequality, the definition of N and that of
Wy in (3), and the assumption (13) on W; we obtain

sup [D[5N (1, x) — @Y (2, )« W) (0]

xeR4

. A k|44 k|44
<KV @,y —aN (t, )2 sup ID*Wy(x — )2 < Vonky ID*Willa S Vonky 2,

xeRd4
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for0<r<tVN. By our assumptions on Ky and 8y, see (10) and (1 1), we have that

ST N INECTD <1 for Nz L
Then using the triangle inequality and (20) of Theorem 3 yields

AN
sup  [IS7 (Dl c2ray
0<t<tNAT

. . . . 27
< sup Z sup ‘Dk[sN(t,x) — @@, ) * WN)(x)]| + ||MN(t)||C2(Rd)) <L
0<t<tNAT \k|§2xeRd
Step 2: Deriving an expression for 2" — iV ||2 Fori=1,...,n, we apply Itd’s formula (8)

to compute directly the expressions for (th , th ) and (hN AN ) The calculations for (hN hN )

and (th , ﬁlN ) are similar to those in [27,28], however for completeness we include here the main
steps of the derivation of the equation for |AY — @V |3. Let 7 € (0, ty A T1.

Step 2.1: Starting with (kY , 1Y), by (5) we obtain

[ |

N;

(Y (), Y (@) Z MG)}

k,0=1

where Vy := Wy * Wy. Then we use the equation for X f’N - X f’N obtained from (6), that the
Lévy processes Li.‘ are i.i.d., and that VVy and D, Vy are odd for any z € R?, to write

N;
Y, hY (,0) = —5 Y V(XN ©0) - x{ Y 0))
k=1

t

N;i
Z / Bl (. xEN () - vw (XN () — XN (D) dr
=1,k 0

n

2
N2

j=lk

3 /( A V(XN (@) = XV (1)) de
koe=1,kE

Z /_f / DV (XFN (o) — XPN (v2)) NE(dzdo).
kl 1,k

#Z 0 ]Rcl
Step 2.2: For (hN N ), we use the definition of hN to obtain
L
N @y, 4N (1, ) = / alN (s, N~ > W (XN ) — x) dx. (28)
Rd k=1
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Making use of the relation

t t T
vo) [gar= [ocfoe [ e ae]ar
0 0 0

in conjunction with Itd’s formula, we can write

(N (2, ), al 2, ) = (RN, ), 4l (z, )

i Nl' n
—%//ﬁf"(r,x)zzaijvﬂfj."(r, XN (@) vy (X5 (2) — x) drdx

Rd 0 k=1 j=1
t N;
o R
- N’//u{v(r,x)Z(—A)aWN(X,’F’N(r) — x)drdx
Rd 0 k=1 (29)

t N;
* iai//ﬁfv(””z / DWy (X" (r-) — x) N (dzdr) dx

R 0 k=IRd\ (o)

t N;

1 R i
+ / / afufv(r,x); (WN(Xf’N(t) —x) = Wy (X5 (0) —x)) drdx.

Rd 0 =

We then use

t Ni
%ffarﬁfv(r,x)dtZWN(Xf’N(O)—x) dx = (h¥ (0, ), 2N (1, ) — 4N (0, )
Rd 0 k=1

and the system (15) for ﬁlN to rewrite the last term of (29) as

t
(hN (0, ), aN,)) — (hN 0, ), aN ¢, ) — o,-/((—m%h,”(r, ), (=A)2aN (¢, ) de

° (30)

t

—/(V(—A)“T’lhf’(r, 9, Za,-j(—A)'%"(zle(z, V@Y« Wy)(t, )))dr.
0 j=1

Notice that in the above computation we have used (69) from the Appendix. Plugging the identity
(30) into (29) implies

! n
(AN (2., 4 (¢, )y = (N (0,2 (0, ) — / (SN (). > ai VPN () - V@Y « Wy)(z, ))dr
0 j=l
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t t
—a,'/(SiN(r), (=) (@Y * Wy)(z,))dr —ai/((—A)%th(r, ), (=A)2aN (7, ) de

0 0

N;j !
+‘/2_U" / / D (i  Wy) (v, X; " (z-)) N (dzdr)

(V) T hY (), Y a (=) 7 @ (. ) VP @Y« Wy (e, ) dr.
=1

S—.

Considering fth as a test function in (15) and integrating by parts yields the equation for
<ﬁllv(t5 ')7 ﬁllv(t9 '))‘

Step 2.3: Combining the previous calculations, we obtain

I8N ¢, —a® @, )13 = 1N 0, ) — 4™ (0, )13 M
n !

-y 2al-j/(S{V(r), VAN @ V(Y = @)« Wiz ) de an
i,j=1 0
n t

+ > 2a,-j/<V(—A)%(h§"(r, ) —al (. ), (11D
i,j=1 0

(—A)]%a (ﬁlN(r, v (127 * Wy (z, )))> dr

_ anza,»/t<si’v(z), (—A)? ((h{V — )« Wiz, ))> dr av)
,:1 g

#3020 [ (=m0 - ). - fal ) ar V)
- ' t

—|—é%(—A)“VN(O) Of (s (r),oi)dr+§MlN (). (VD+(VID)

Here, we have used the notation

o— Ni |
Mo 12%2/ / Do([(h¥ (=) =l (. 9) + W] (X1 () N (dedo).

k=10 Rd\(0)

Step 3: Estimates for terms (I1)-(VII).
Step 3.1: Terms (IT) + (I1T). We write (III) = (III.1) + (II1.2) + (IIL.3), where
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t

(IL1) =) 2a,~j/<V( AT (hN(r)—uN(r))
ij=1 0
()2 [a¥ @V (Y ()« Wy =3V () ) dr,

n t
2y =y 2a,-,-f<V( AT (Y (0) — iV (). (— ) [(ﬁf"(r)—hﬁv(f))vﬁgf’(r)])dr
i\ j=1 0
n t
L3 =y 2a,-j/(V( AT (WY () — iV (D), (—-A) (hN(r)vf“N(z))>

i,j=1 0

Then we obtain

n t
|(u)+(111.3)|=‘ > 2a,-,-/f SN('C) (—A) " RV (1, y)V(=2)T 6N, y)>dydr‘
0 R4

i,j=1

n

S Z/ /\NZ< &) RY (1 xPN @), y)\ dy + ¢ (=0 F (Y (0 = i} (@) |5 ]a,
]Rd

i,j=1} k=1

where GN(r.y) = hl¥(r.y) — al(r.y) and R¥(z.x.y) = Wy(x — y)(VA$(x.x) -
Vﬂij (z, y)). For 7 € (0,¢) and arbitrary & > 0, we process the first term on the right-hand
side of the last inequality using Parseval’s identity as

N,
1 [ l-a 2 _
f\yZ(—A) “RY (. XY (@), )| dy=f|s|2“ |
0 k=l Ré

< / FECR

I+e
€=y

+ / |$|2(1—0t)

I+e
[E1>Ky

Ni 2
F(y LR (X @) )@ dg

o kN 2
F( YR (0 XE @, )) @) ds

Ni 2
F(y SR (X @ )) @[ de =1+

Similar to [27,28], we treat I1 using Parseval’s identity, the bound (27), and (23) of Lemma 5:

N.
I < 2
2(1—a)(1 ~ k k
I < KN( a)( +S)||S§V(7:)||é2 / (ﬁ E WN(X[ ’N(r) — y)|Xi ’N(r) — y|) dy
k=1

R4

2 Niy2
N N(l Dt)(l-l—E) 26 ||SN(‘L')*WN||2 (Wl) exp(—C/Kfv)-
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Due to the fractional derivative, we need to use a different approach than in [27,28] to handle /5.
For this we first split it into two parts:

I < / TECRY

N.
1 i 2
P WX @ = )Y @ XV ) @) dg
k=1

e
| - 2
+ / 620 | F (5 Yo W XN (@) = 9V (2.) @) d =t 1+ .
k=1
g1y

The term J; can be treated using standard properties of the Fourier transform, Jensen’s inequality
for sums, assumption (13), and estimate (27). In particular, we find that

Ji= / &2

1+e
[E1>Ky

N.
1 ¢ 2
5 VN @ XEN @) F (W (X () =) @) de
k=1

N.
. N; _o I © 2
<IF IR [P [y W)@ ae
k=1

I+e
&1>kp

Nin2 - Niy?
S(3) [ PR e 20 s S () ew(-Cei.
&' |>ky

To treat J,, we once more split it into a near-field and far-field contribution, but now correspond-
ing to the integral coming from an additional convolution that turns up as

N.
1 1
F(ﬁ > wnxN @) — vz, ~))(E)
k=1
1 N
:/F(NZWN(X,]-(’N(T)—')>(5_U)F(Vﬁ§§v(f’ ) () dy.
k=1

Rd

Applying the triangle inequality then yields

h< f -

2
[ FsY @ w)E - (s o) anf de

I+e 1+e

[§1>Ky Inl=wy

2
+ / jg 207 / F(SY @)+ W) € =) F(VP5Y () () dn|"dg = K1 + K.
e Inl>sy"
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The term K can be estimated using the properties of the Fourier transform along with the as-
sumption (13) and another application of Jensen’s inequality for sums. We additionally make use

of |€ — |+ |n| = |€]| for &, n € R%. Using these tools yields
N;\2 _ R 2

k() [ R [ Em)E - I F( @)oo d

I+e

I+e
11>k Inl=<xy

< (XY’ / g 200

I+e
[E1>Ky

~ 2
| [ PIEW)E = ST o FOT o F G| de

1+e
[n<ky

Nj\2/Ni\? 2(1-a)  26(1+e)
(W) (F) [ e

I+e
&>k

<[ o EE o ()l [ran () e

I+e

Inl<ky
Nj\2/Ni\2 _ €1 Inl
<(_J) (_t) / 2(1-a) , 2B8(1+¢) / (—C’(— )) ‘d
S \w N €] Ky exp . §
BT Inl<wp™
Nin2/Ni\2 _
S(Y (Y [ g - acte
&> Ky,

Nj\2 /N2
S(3) (F) e (=ci).
Using similar methods as above, we write

NjNZ(Niy2 —a) 2(1—a)+2B+3d
ke=()(§) [ Erost o e (e

11>,
2 N2, Ni\2
Pexp(— 1 Yan | < (MY () exp(~ ).
X‘ / In'1F exp '"l,eN " S(y) (5 exp (— C'ky)

/ &
In |>KN

Here ¢’ = & /ky and ’ = n/kn. Compiling the above estimates, we find that

N.
] « —a 2
f\NZ(—A)%R,»N(r, XN @), y)| dy
R k=1

€19}

Nj\2 1/Ni2
< 2(1 a)(1+8) 26 ||hN(T )||2 [(WI) +1](Wl) exp(—C/Kf\,).
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Summing in (31) over i, j =1, ..., n and using (19) of Theorem 3 yields

t
(D + (IL3) < ¢ f (=25 (Y (z, ) — N (z, ) |3 dr
0

t
Fe g [ (o -yl + 1)
0

Sl (COR) Co ey

To estimate (I1I.1), we use (68), (71), and (73) of the Appendix and (19) of Theorem 3:

t
|(IL. 1) 5;/ I(=A)2 @M (x, ) =V (2, )3 dr
0

t
~ A 2
+C, / 12N (2, I Fer1-a IVE@N (2, ) = BV (2, ) |10 dT
0

t
< / (Colla™ @ =V @ )3+ I =02 @ (. ) = hV (z, DI3) d,
0

for any ¢ and ¢’ > 0. Notice that we have used 0 < 1 — o + 8 < «. Our treatment of (II1.2)
follows along the same lines, but we replace the use of (71) by that of (72) and (19) by (27):

t

(11.2)] < / (Cella (e, = nV @ )3+ =M F @z ) = ¥ 2. ) 13) d.,
0

for any ¢ > 0 and where we have used that 1 —« + 8 < 2 to apply (27).
Step 3.2: Terms (IV), (V), and (VI). The sum of the terms (IV) and (V) satisfies

t
V) + (V)< — / | (=% @Y () = nV (z. )| 5 dr.
0

For (VI), using that (S}, 0;) < N;/N, we find that

n

1 < N
(VOIS > W’x,”@”“t.

i=1
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Step 3.3: Compilation of the estimates. Combining the estimates from Steps 3.1 and 3.2 and
choosing ¢, ¢’ > 0 small enough, we obtain for0 < T < T:

T Aty
sup AN (1) —aV @, )3+ / J=a) 5N —aVy(x, |2 de

0<t<T Aty 0

T Aty
5||hN<0,->—ﬁN<0,->||%+/ sup AN (&, ) —a (&, )13 de
0<é<rt
(32)
T Aty 0

de=2a(1-+6) 2 KN R N
iy 0 [ (Csup VG~ V(e N+ 1) e+ 7
N 0=tor ? N ; N

L A S ol

ij=1 i=1 0<r<T Aty

Step 3.4: Estimate for the martingale term (VII). First notice that

]E[Zn: sup }M{V(t)”fo]zgznjE[ sup }Ml-N(t)Hfo]z, (33)

i=10<t<TAtN i=1 0<t<TAtN

since the L;‘ are i.i.d. To treat the right-hand side, we begin by noting that, due to the optional
sampling theorem, the stopped process MiN (t AtN) is a martingale. We can then apply Jensen’s

inequality and Doob’s L”-martingale inequality and use the mutual independence of the L;‘ to
write

]E[ sup |Ml-N(t)|‘]:0]25E[ sup~|MlN(t/\tN)|2)]:o]S4IE[|MIN(fAtN)|2‘f0]

0<t<TAtN 0<r<7
P T i (34)
syEm 2] f /DZ([G’N(L’T")*WN](Xf'N(Tf)))./\/,»k(dzdr)‘ 7).
=10 riv(o)

where GZN(L, T,X) = th (t—,x) — ﬁlN(r, x). We continue by using the 1t6 isometry (see [63,
Chapter 4]), in conjunction with the observation that the jump-set of a Lévy process is a Lebesgue
null set, which means that within the time integral we may replace the left limit th (t—,-) by
th (7, -). Finishing-off the estimate with an application of Jensen’s inequality with respect to the
measure determined by the density Wy, we obtain
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IE[ sup |MN(t)| ‘.7-"0]

0<t<TAtN
| TAtN
gﬁE[ / <S,.N(f,.), f |Dz(h,N(1:,-)—ﬁfv(r,-))|2dv(z)>kWN>dt‘fo:l
0 R4\ (0}
| TAtN
—NIE[ / <th(f,.), / 1D.(hY (z, ) — i (x, )] dv(z)>dr’f0]
0 R4\ (0)

The additional observation that
N.
N i d
”hl ”Lm(()j‘/\tN;LOO(]Rd)) < WKN’
the definition of the fractional Sobolev seminorm (see the Appendix), and (68) yield
n TtV
E[Z sup MY (1)) ‘]-'0] <y & ZIE /||( MYz, =il (x, ) |ade ‘]-'0]

i=1 0<t<TAtN

Step 4: Conclusion. We now assume that there exists n; € N such that
N;
P[Y S zm]=0. 35
Dy zm (35)

Then, taking the conditional expectatlon in (32), setting ¢ = (2o — 1)/(4 — 2«), and in the mar-
tingale term using a < a’«? Nty 2 for a > 0, we obtain

TAtN
E[ sup 10NG - a3+ /H(—m%(hN—aN)<r,->H§dr\fo]
0<t<T AtV 0
T
SN0 =¥ O3+ [E[ s 1V - i e B | 7 (36)
0<t<tAtN
i (42 TAtN ) .
(3 iy DT iy Ay E[/ [~ hY — i), [de| 7o)
0

Notice that in the transition from (32) to (36), we have used the upper bound on « included in
(10). Using the assumptions on « given in (10), we can for N > 1 absorb the last term on the
right-hand side of (36) into the left-hand side to obtain
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7
C(T)=E[|IhN —ﬁNllijMNJfo] SRV, = a0, )13 + 12273 4 5! +K,;2+/g(r)dr,
0

for0 < T < T with T € (0, T1], where T} =1/ n‘f. Then an application of Gronwall’s inequality
yields
P[;(T) > 2ce5T5}V+”] < IP’[HhN(O, ) —av 0,2 4 uy! 25}#] <o(N),

where C = C‘(d,n,cr,-,aij) and C = C(d, n, 0, a;j) are positive constants and o (N) — 0 as
N — oo by (17) and the lower bound on « from (10). To finish, similar to [28], we define

~ N C 1
Q= {a) €Q ) E [||hN =12 Ifo] () < 2CeCT8N+”}

and, by applying Markov’s inequality, then find that

B (10 = 2% 7 = 0] = [ PLIY =¥y = 30| FoJaP
Q

51?(?20)+5;1f1E[||hN — Nl 7 aev)

]—'o]d]P’ <0 (N)+2CeCT88 — 0 for N — oo.

N

This completes our argument thanks to (26). We can then repeat our arguments on the intervals
[T1,2T1], [2T1, 3711, and so on, in order to obtain the result for any 7 > 0. Now we can replace
(35) by (16). O

4. Argument for Theorem 2

Recall that i is the function from the assumptions (18) on the initial data in Theorem 2.
Throughout our proof of Theorem 2, we make use of the following elementary relations for .

Lemma 6. Ler v/ (x) = log(2 + |x|?) and « € (1/2,1). For all x € R?, the following relations
hold:

(=AY (x)] So ¥ (), V29 ()] S ¥ (x), VY ()] S ¥,
(=AY Y20 S V2 (), VPRI Sv2), V)] Sy,

Proof. The second, third, fifth and sixth relations follow from simple computations. For the first
relation we split the integral in the definition of the fractional Laplacian into two contributions:

. vx) —v() vx) -y ()
J— (&4 — —_— —_—
(—A) W(x)—glg% f — ydie dy + x — y|d+2a Y. 37
B (x)\Be (x) RANB; (x)
Then, for the first term on the right-hand side we write
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‘ / v (x) =¥ (y) ‘ - f [V (x) =¥ (y) = Vyx) - (x—y)l
o — y|dH2e |x — |+
Bi(0\Be () BI()\Be()

2
< / V™Y lloo dy<1.

|x _ y|d+2a—2
By (x)

For the second term of (37), using ¥ (y) < ¥ (x) + ¥ (x — y) and ¥ (x) < |x|%/? for |x| > 1, we
write

¥ () x — y|*/?
/ 7|x_y|d+2adY§W(X)+ / P |d+2adymtp(x) (38)
R\B (x) R\ By (x)

Notice that the relation ¥ (y) < ¥ (x) + ¥ (x — y) follows from the observation that

¥ (2x) = log(2 + [2x]) <log(4) +log(2 + x*) S ¥ (x). (39)

In particular, if |x| > |y|/2, then ¥ (¥) < ¥ (2x) + ¥ (x — y) and (39) can be applied. Likewise,
if [x| < [yl/2, then 2|y — x| > 2|[y| — |x|| = |y| and this gives ¥ (y) < ¥ (x) + ¥ (2(y — x)).
For the fourth relation, we use exactly the same argument as for the first. O

4.1. Proof of Theorem 2

Our proof follows the arguments in [27, Theorem 2] and [28, Theorem 6.3] with adaptions
made to take into account the Lévy noise and fractional cross-diffusion. We follow quite closely
the proof of Theorem 6.3 in [28], however, since our setting requires various simple modifica-
tions, we include the full argument for completeness.

Proof of Theorem 2. Let f € By, where
Bii={f e CH®R?) | Iflow + 11V flloo < 1}

We decompose f = fr+ fR, where supp(fr) € Br and supp(fR) CRY \ Bg—2, for R > 2. For
any t > 0 and ¥ (x) =log(2 + |x|%), we obtain

(SN0 = uite, ), | S REURY O = il @)l + 18N @) = it ) ]2)
(40)

+ m(SN(t) +ui(t, ), ¥) + iy (SN @), 1).

For the details of this estimate we point the reader to (61) in [28, Theorem 6.3]. Here we require
the positivity of u;, which is shown in Theorem 3. By (40), using the stopping time " defined
in (25) and the convergence results for |AY (¢, ) — ™ (¢, -)||» and [|a™ (¢, -) — u(t, -)||2, shown in
Theorems 1 and 4 respectively, it suffices to show
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n

lim lim P| > sup (SN Aty +uit At ) )T (R =

| |=0. @
R—o0o N—>oo 0 0<t<T

for any u > 0. To obtain (41) we consider equation (8) for t A V. Using that |Vy/| < ¢ and
[(—=A)*Y| < 9, see Lemma 6, together with the regularity of §§V, we obtain

t
(SNt AtN), vy S (SN ), ) + /(S,.N(r ANy yyde 4+ (MM A
0

, (42)

where

N

Nl
MiN’l(t)::%Z/ /DZW(Xf’N(t_))ﬂ/ik(dzdr).

=10 riy)

An application of Gronwall’s inequality to (42) gives that

sup (SY (e At™), ) Sr (SN 0), ) + sup [MN @ AEY)); (43)

0<t<T 0<t<T

the analogue of (43) in [28] is the estimate following (65).

We estimate the martingale MiN’] (t) using similar methods as in the proof of Theorem 1.
In particular, we use the independence of the Lévy processes and apply the optional sampling
theorem, Doob’s L?-inequality, and the It6 isometry to write

77* N
]E[ sup |MIN’1(tAtN)|‘]-'0]2,§i]E[ /M<siN(f, 3, / |Dzw|2dv(z)>dt ‘]—'0]. (44)
O=t=t M R4\ (0}

To continue we emulate the argument from Lemma 6 and obtain

2 ’ )
/ DY (0 Pdv(@) S / %dﬁ v (x)|;|-|d1€frziz+x)dz
R4\{0} B1(0) R4\, (0)
V2@ + )

ST+ + dz < v2(),

R4\ By (0)

|Z|d+2a

where we have used that /2 (x) < |x|® for |x| > 1. This estimate is then combined with (44).
To handle the resulting right-hand side, we again use Itd’s formula, now with 12, in conjunction
with V2| <2 and [(—A)*¢?| < ¢2? from Lemma 6. We find that

t
(SNt AtN), w2y S (SN (0), v + / (SN Aty yhyde + MM Pa ANy, @5)
0
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fori =1,...,n, where MI.N’2 are martingales with M iN’z(O) = 0. Taking the conditional expec-
tation of (45) and applying Gronwall’s inequality yields

o B[S Ar™) 97 [ Fo] Sr (87 0. %) 46)
=I=

the analogue of this estimate in [28] is (63). After an application of the Fubini theorem this allows
us to bound the right-hand side of (44) by (S,.N (0), ¥2), up to a multiplicative constant depending
onT.

To finish, we now take the conditional expectation of (43) to obtain

E[ sup (S¥¢t At™), v)|Fo] Sr (SN (0), ) + L. (47)
0<t<T

Similar estimates, now using the weak formulation of (1) instead of the Itd formula, ensure

sup (u;i(t, ), ¥) St (w, ), (48)

0<t<T
where we know that the right-hand side is finite due to our assumption on u? in (18).
To conclude the proof of Theorem 2, we combine (41), (47), and (48), together with the
assumptions on the initial condition given in (18). O

5. Proof of Theorem 3

Definition 1. A weak solution of (15) is ¥ € L2(0, T; H*(R%))" N L>®(0, T; L2(R%))" with
9,aN € L2(0, T; H*(R4)')" that satisfies the system (15) in the variational form

St~

T
(0,4 wl)HQ),H(,dH/a,( AEaN, (=) i) dr
0

49
., (49)
+ 3 [al-a) 'S @YV ). V2T )
=1y
for y; € L%(0, T; H(R?)), where i = 1, ..., n. The initial condition is satisfied in the L2-sense.

Weak solutions of (1) are defined in the analogous way. Here, (¢, ¥)g«y, g« denotes the dual
pairing between ¢ € L2(0, T; H*(R%)') and ¢ € L*>(0, T; H*(R?)).

Proof of Theorem 3. This proof proceeds in five steps. In the first step, we use a Galerkin argu-
ment to prove the existence of a weak solution for a linearization of the regularized system (15).
In the second step, we transition from the linearized problem to the system (15) using a Banach
fixed-point argument. In Steps 3 and 4, we prove (19) and (20) for local solutions of (15). In
Step 5 we show that for small enough initial data, we can construct a global solution that also
satisfies the estimates (19) and (20).
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Step 1: Existence of a local weak solution for a linearization of (15). We first consider the
following linearized version of (15)

n
gt} + i (- )il —div (Y aul V@Y < W) =0 in 0.7) x RY,
j=1 4 (50)

aN ) =u? in R?,

for a given vV € L2(0, T; H*(R9))" N L>®(0, T; L>(R¥))" and i =1, ..., n. To show existence
of a solution of (50) we take a Galerkin approximation {#™ ¥}, .y with

k
a0 =" pl g ), 51)

=1

where the span of the elements {g;};cn is dense in H*(R¢) and they are pairwise orthonormal
in L*>(RY), satisfying

[ [+ -t - mf |as

R4
(52)

n
+fzaij(—A)“T”(v{Vvﬂ(ﬁ§V*"*WN))V(—A)“T"qldxzo, forl € N.
R4 j=1

We remark that by (72), since VﬂﬁN’k(t) * Wy € WL (R?) and viN e L0, T; H*(R?)), the
expression (—A) 2 “ (N (z)vﬁ(AN £ (1)« Wy)) € L2(RY) is well-defined. Now, by standard ODE
theory, there exist unique pl. I ke n 1(0, T) such that ﬁlN’k, defined by (51), are solutions of (52)
with ﬁlN’k(O) = u?’k, where u?’k are the projections of u? onto Span{qy, ..., qk}-

We now derive a priori estimates that are uniform in k € N. Considering it lN * as a test func-

tion in (52), integrating with respect to the time variable, summing over i =1, ..., n, and using
Young’s inequality we obtain

Z/dt/r“\zddeZzo,//y( A)EaN ¥ dxdr
Lo - 0 R4
(53)

< Z/f Ce| (=)' (W (VP s viw)) | + < | (— A)‘ANk|2]dxdt,
i,j= IORd

for any t € (0, T']. Notice that here we have used equivalence (68) from the appendix. Using (72)
and the Gagliardo-Nirenberg interpolation inequality, we obtain
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l(—=a) = (N, ) VP BEa W) [, S @ )llgea i e, )*vﬁwNnW.oo

I
N ANk N N <Nk
SUWN s o @, ) gi-o Iy @ )l Sn o @, )IIHa llv;" (2, )Ilz I|u ()2,

for t € (0, ]. Combining the previous estimate with (53) and using Gronwall’s lemma along
with an application of Holder’s inequality (in the time integral), we obtain

2(1—a)

sup (@™ (e, )13 Sw luollzexp (10™17 0.7 12y 10N 1 30 7 g1y C DT
te(0,T]
Ny 5T ) (54)

~N.k 2 N2
”I/t ||L2(0 T;H“(Rd)) 51\7 ||I/t0||2(1 + T ||U ||L°°(0,T;L2(Rd)) ”U LZ(O’T;HO((Rd))

2(1701)

N
I35

x exp (v C(N)T).

12 v
L°(0,T; L2 (R9)) L2(0 T;H*(R4))

By (54), it follows directly from (52) that

182" * 1 20,7 e ayy < CUuollz. 10N Lo 0.7 L2®ayy» 10N 200,72 e Rayy» N)-

Since the constants above are independent of k, we pass to a weakly convergent subsequence
Nk s gN in 10, T; L*RY))" and 4% — 4V in L2(0, T; HY(RY))" as k — 0. (55)

Integrating (52) in time and passing k — oo yields 2™V e L>°(0, T; LZRY)'NL%0, T; H* (R4))"
as a weak solution of (50) with 8;a" € L?(0, T, H*(R?)")". In order to pass to the limit in the
third term of (52), we write

/( A)'F (o VP @ 5 W) V(=) Ty da = / (@Y " % VW)V dx
R4

Then notice that V# (ﬁj.v’k x Wy) — VP (ft?’ * Wx) weakly in L2(0, T; L2(R?)) and consider
Y e Cgo o, T, Cf)’o (R9)). A standard argument shows that the initial condition is satisfied in the
L2-sense.

We remark that by the lower semicontinuity of the norms, we obtain (54) also for a" . Standard
arguments yield the uniqueness of solutions of problem (50).

Step 2: Existence of local solutions for (15). To show existence of a local solution of the non-
linear problem (15) we apply the Banach fixed point theorem in the space

X = {v e L?(0, T; H*(R4))" N L>®(0, T; L>(RY))" :
HUHiZ(O,T;H”(]Rd)) + ”U”i"o(O,T;LZ(R")) = 3C/(N)”u0”%}’

where C’(N) is the maximum of the universal constants appearing in (54). In particular, we
consider the following mapping

K .
K:X— X, AN L
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where @ is the unique weak solution of the linear problem (50) provided by the previous step.
Notice that by (54), for T := T(|u®||2, N) small enough this mapping is a self-map of X.

We now show that for 7 := T'(||u®||2, N) > 0 small enough, the mapping /C is a contraction
on X. For this, we let v{v [ ﬁ]lv and v{v — ﬁé\' and see that ﬁ{v — ﬁév satisfies

sup IIﬁll M2,||2+f||( A)z(u“ uzz)szt
1€(0,T]

//‘V( AT (ull—uzl)Z( INES (v]lV’S(ulj—uzj)*WN)‘dxdt

0 R4

//‘V( AT (ul,—u2,)Z( AT (O, — o)V uzj*WN))dxdt
0 R4

T
/gn( A @y, - u21)||2+zcg<||v1,||H._a||vﬂ<u”—uz,)*WNnWm
0 j=1

o = N2 VP W0 | dr,

for ¢ > 0. Here we have used the relation (72). We use (73) and Young’s inequality for convolu-
tions, to continue the above estimate as

te(0,T]

T
N 12 N 2 AN ~N |12
S,N/([Cg’”UL,'”z'f‘§/||Ul,l'||Ha]||u1 — Uy ||2
0

N N2 N
+[Corllvy; — v 5+ &"llvy; — 03 e 123 ||2) dr,

for ¢’ and ¢” > 0. Treating the terms on the right-hand side in more detail, we obtain

T

N
f[ i ll3 + oy g J Y — 5113 de
0

N 2 N

<Co sup [opll; sup flay —ad 5T +¢'llvy; 117 sup [lay —ad |13

=Cg 1,ill2 1 —up iz Lillz2 «(RY 1 Uyl
re0.11 e LEOTHRD) 07)

<3C'(NW13(CoT sup oY —ay 13+ sup lay —ad|3)
te(0,T] 1e(0,T]

and, in exactly the same way, we find that
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T

N _ N2 N _ N2 AN 2
f[Cg/’||U1,i — vyl 4 ¢ vy — vy e ]l 115 dr
0

<3C' W) I3 (CorT sup oy = 0313+ "0 = 2720 7 e rety)-

te(0,T]
Summing over i = 1, ..., n and choosing appropriate 7', depending on ||u0||% and N, and ¢’ > 0,
we obtain
T
R N A NN
sup 1} =i 13+ [ |~a)f @ - s
te(0,T] 0

<3C" MW (CorT sup v = v I3+ 510 = v 1720, 7 proay))-
1€(0,T] e

Possibly choosing a smaller ¢” and T, this shows that for T := T(||u0||%, N) small enough the
mapping K is a contraction on X.

By the Banach fixed-point theorem we obtain a unique fixed point of the mapping K in the
set X. This fixed point is a local solution of (15) up to the time T := T(||u0||%, N).

Step 3: Higher-order a priori estimates for solutions of (15). In this step we show that 2" €
L%(0, T; HST*(R?))", where u® € H*(R4)". The distinction between the current step and the
next is that here we allow the constants in our estimates to depend on N.

Let T € (0, T], where this is the interval of existence of the local solution &% . Taking ¢; =
Dih DiﬁlN forl=1,...,s, as atest function in (49) and using estimate (72) yields

T
Db @l + [ -2 Dja 3ar
0
Lo

n
SIohdls+ X [ 3 opad e

j=1p m=1

Y % DTV Wy |} dr

l
NNHDhu"HﬁZ ZHDZ“NHHa opas e )

j=1p m=1
T

S Dl |+ /Z(HDZ“NH [ |2+ ¥ Dy |2+ | a2 | 37 M,
0 m=1

fori =1,...,n and ¢ > 0. Summing over / and i gives
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S T N )
~N 2 % ~N
Z IDLaN (o))13 + / Z l(=a)2 DLa™ |5 dr
=1 o =1

N
<> (I1Dhu ||2+[nuanf;ogmLz(Rd»+uu”umrLsz)) /uD Vi3dr).
= 0

Thus, the regularity assumption on «° and applying the Gronwall inequality yields

N

Z I:”D/r/LnﬁN”LOO(O,T;LZ(Rd)) + ||D/r1nﬁN”L2(O,T;H”(Rd)):| < C(N),

m=1

where C(N) > 0 is independent of %, and hence

”I/A‘N”LC’O(O,T;H‘(Rd)) + ”ﬁN”LZ(O,T;H-“*'a(Rd)) < C(N).

Step 4: Uniform in N higher-order estimates for solutions of (15). In this step we show (19)
and (20). The main difficulty is showing that there exists s’ < s such that

n

Z—nwnm Zoﬂ( INEFR TR

i=1 i=1

n (56)
SO [ PAICINE PR TCINE A P AL PR [TCONEEAI P
holds, where & > 0. To see that (56) is sufficient for (19) and (20), notice that
N s (=) Tl gy S NN s 1= A 2N |Gy lia 157 for 0 € (0. 1),
where s’ < 5. We then obtain
—|| AV 13 + a1 (=) 2aN 1 SN TaN a1 57)

Integrating (57) in time and applying Holder’s inequality gives that

2(2—6) 1-6

146 1-0
||MN(T)||Hs+0/H( A)fAN||HSdr<||u°||HY+ /||< A)fANHHYdt ’ anNnH‘ﬂ dt] o,

which for t € (0, T'] yields

202-6)

1Y ()12 + /ll( AN 2, dr < 1013 + /n NI .
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An application of the generalized Gronwall inequality, see e.g. [64], and assumptions on the
initial data yield (19). The relation (20) follows from Morrey’s inequality.

We now give the argument for (56). By the previous step, we use ¢; = D' DﬁlﬁlN as a test
function in (49). Integrating by parts and taking the limit 2z — 0 yields

d .
Dl 15+ 201 () E Dl

<ZH< )T D! @ vPa) i), V- Dlal],,
forall/ =0,...,s. We then first apply the product rule to write
| (=) D! @Y vPal « Wy) Z |(=2)7 (D'=al D"V « Wy) |

+ =23 (Dl VERY « Ww) |, + | (=) 3 @Y DIVFAY « W) |, =1+ T2 + T,

Applying the fractional Leibniz rule (70), the last two terms on the right-hand side are estimated
as

LS (a7 Dlal VAN s Wy |, + | D'al (—a) 2 VAl « Wy, 550

+UD’(—A)TL2N|\ H(—A)TvﬂﬁN*WNH =T+ +003,
LS8l DIVARY s Wy, + |aY (—a) 2 DIVEY x Wy, 55
+ = Fal|, |(—a) T DIVERY « Wy =T+,

where o1 + oy = 1 —a (o1 and oy can be different in (58a) and (58b))and 1/2=1/p1+1/p2 =

1/g1 + 1/q2. We then apply Holder’s inequality and use Young’s inequality for convolutions
along with the L'-normalization of Wy to write

R [COSER - A e

H( SRR Nsz
59)
i< |(=a) 20l |, | D'VPaY |, T < IIﬁ,-

where 1/p+1/p' =1/q+1/q9'=1/p+1/p' =1/G + 1/§' = 1. We estimate each term sepa-
rately and split our arguments into two cases, which are / =0and 1 </ <ss.

Treatment of the J;; for i =2,3 and j =1,2,3 when/ =0.

(@) Jo1 and J31 Since I = 0, we have that Jo; =J31. We then further distinguish between two cases:
O<a—pB <d/2and @ < (d + 2)/4. Notice that whenever d > 1 the conditions are both trivially
satisfied.

Case 1: 0 < a — B < d/2. Then there exists y € (0,1 — «) such that d/(1 — B — y) > 2. We
first notice that p” in (59) can be chosen such that p’ > d/(d — 2(1 — B — y)). Then, using the
theorem for Riesz potentials (74), that 8 + y < 1, and the fractional Sobolev embedding [62,
Theorem 6.5], yields
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n B+ __ AN
[V |,y = - SIveaE emtay],

(60)
< ||V( A)ii( A)7ﬁN||I_Is —ltaty ~5 ”( A) N”H_s )

where r =2p’d/(d+2p'(1—B—y)) >2andd/2+ B —a < s’ <s. By the Sobolev embedding
we obtain

[y al |, < 1]

for 1 < p<d/(d—2(s—1+a)). To see that 1/p + 1/p’ =1 is possible, notice that p’ >
d/d—-2(1—-B—y))>d/2(s —1+a))sinces >d/2,y <1l —a,and f+ 1 < 20.

Case2: 0 <o < (d+2)/4. We choose p in (59) such that p > d/(d —2(2a — 1)). Then applying
(74) and the Sobolev embedding, implies

[ Zal |, S [mEal |, < fmEal | .. (61)

where r' =2pd/(d +2Qa—1)p) >2and d/2 — 2a — 1) < s’ < 5. We again apply the Sobolev
embedding to write

A el QN A
197 | = 1) F Vi |,y S N80T Vi) [ yumg S 1 |

where we require that 1 < p’ <d/(d —2(s — B)). Since p > d/(d —2Qa — 1)) > d/(2(s — B))
for s > d /2, the condition 1/p + 1/p’ = 1 can be satisfied.
(it) Jp» and J3; Since [ = 0, we have that Jyy =J3».

We first notice ||uN||2p S ||uN||Hs for any 1 < p < oo since s > d /2. Under the conditions
of both Case 1 or Case 2 above, we have a<(d+2)/4+ /3/2. We now choose 0 < y < 1 such
that 2 < ¥ + 8 +d/2 holds and set p’ in (59) such that p’ > d/(d —2(2a — B — ¥)), to obtain

lea g,
I(=a) = VPal |5 = II(—

RGN LAY

SIEATETVEM TN, S8 IV EA T ey SIHEA TR0,
where r =2p'd/(d +2p'Q2a — B —y)) >2andd/2 — Ra — B —1) <s' <.

(@) Jp3 and J33  Since [ = 0, we have that Jo3 = J33. These terms can be estimated in a similar
way as in (ii). In particular, the Sobolev embedding yields

AN ~N
(=22 u; [l py < llu;" s,

where we require that 2 < py <2d/(d — 2(s — ay)).

We notice that @ < (d +2)/4 + B/2 is satisfied in both Cases 1 and 2 above. Then we can fix
0<y’ <lsuchthat 1 +a—ay <y’ + B+d/2 forsome 0 < ap < 1 —a, where ay is set in such
a way that y’ exists. Furthermore, choosing p> such that py > 2d/(d —2(1+a —y’ —az — fB)),
we can then estimate

Votzﬁl

I(=2)F VP, = V(- AT (—a) 2|,

SIV(- A)E (- MY, SIV(- A)E (- ATV | geerey STV | e,

~
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where r = pod/(d + po(l1 +a —y' —ap — B)) >2 and d/2 — (@ —ay — B) < s’ < s. Since
s > d/2 we have that py > 2d/(d —2(1+a —y' —ay — B)) > d/(s — «1), which implies that
1/p1+ 1/p2 = 1/2 can be satisfied.

Treatment of the J;; fori =2,3and j =1,2,3 when1 </ <s.

(@) Jo1 We notice that

A Bl _ . A
197 | = 1) F Vit |,y S N80T Vi) s S [ [

where we require that 1 < p’ <d/(d —2(s —B))ifs—B <d/2orany |l < p’' <ocoif s — B >
d /2. Furthermore, we have the following embeddings:

/-2 5 ], < |- G i SN |y

where d/(2(s —B)) < p <d/(d —2(s'+2a —s — 1)) and s’ can be chosen to satisfy max{d /2 —
2a —1—p8),s +1—2a} <s’ <s. Notice that the lower bound for p is derived from the upper
bound for p’, since the two are Holder conjugates, and it is possible to choose p and p’ due to
the restrictions on s’.

(1) J31 Using similar estimates as in the previous case, we obtain

l—a . ~
[ o, < ]

where we require that 1 < g <d/(d —2(s +a—1)if s+a—1<d/2orl <qg < o0 if
s +a — 1 >d/2. Additionally, we find that

A I VAN et /TN F L RS [EVNE 0

where d/2(s +a — 1)) <q' <d/(d — 2(s' + o — s — B)). Again, the lower bound for ¢’ is
derived from the upper bound for ¢. It is possible to choose an appropriate ¢’ satisfying the
above conditions if max{d/2 — 2o — 1 —B),s + ,8 — a} <s' <s.

(iii) J;»  The Sobolev embedding ensures ||(— A) P VﬂuNllz S ||UN||H5 where 1 < p’ <
d/d—-2(s+a—-1—-p8)) 1fs+oc—1—,3<d/2or1<p <001fs+o¢—1—,32d/2
Additionally, we estimate

ID'AN p = ID" (—=A) "2 (=A) 2N [lp < I(—=A) 2N |

ford/Q2(s — (1 + B —a))) < p <d/(d—2(s' +a —s)). In order to ensure the existence of an

appropriate p we choose s’ to satisfy max{d/2 — Qa — B —1),s —a} <s' <s.
@iv) I5  We have ||121N||2,; < |l&Y || s forany 1 < § < oo, since s > d/2, and

1D (—A) 7 VFi Mlagr =11D'V (~ N e ATl g SI=m)2al |y,

where we require that 1 < g’ <d/(d —2(s' + 20 — 1 — B — s)). It is possible to find such a g’
by setting s’ to satisfy s — Qa — 1 — 8) <s' <.
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(v) Jo3  Using the Sobolev embedding, we find

Ly < ID' (=) T (=) ¥ [ 1= D) Z VPN [y S N D) Ea | g a1 s,

where 2 < p1 <2d/(d —2(s'+a—s—a1)) and d/(s' + o —s —a1) < pp <2d/(d — 2(s —
B — a7)). These relations are satisfied for max{d/2 — 2 — B —1),s + o] —a} <s' <s.
(vi) J33  We estimate this term as

T3 < [(=A) TN |, I1D'V(=A) T (—=A) i Mgy Snad 1as (=) 211

where 2 < ¢y <2d/(d —2(s — 1)) if s —a; <d/20r2 <q; <ooif s —a; >d/2 and, further-
more, d/(s —a1) < g2 <2d/(d —2(s' — s + a; +2a — 1 — B)). These conditions stipulate that
s—8 —QRa—B—1 <ajands'>d/2— Qa—B—1).

We remark that the term J; only appears when [ > 2. Applying (70) yields

JI<Z||< &) 2 DIl DY W+ | DY (- 8) T DAY x|,

-1
+> H(—A)TlDl_mﬁ,]»VHprln H(—A)TZD'"Vﬂﬁ;v * WN”pgn =Jn+ I+,

m=1

where ) +ax=1—a, 1/2=1/pf" +1/p7.
Sincem+ B <l <sforallm=1,...,] —1and 2 <[l <s, we can estimate

I < Z |2y i,

m=1

Al S (CON LI i

where ¢, <d/(d—-2(s—m—B))ifs—m—pB<d/2and 1 <gq;,, <ocoifs —m— B >d/2 and
d/2(s—m—pB)) <q, <d/(d—2(s"—s+m—1+2a)). These conditions stipulate that we
choose s’ to satisfy max{d/2 — Qe —1—B),s —(m —1) —2a,s —a} <s' <s.

1—1
PN P2l N TCN Tl L0l IS [l P [N

m=1

where 1 < py, <d/(d —2m) if m <d/2 and 1 < p,, < oo if m >d/2 and d/(2m) < p}, <
d/(d —2(s" —m +2a — B — 1)). This places the following condition on s": max{m + 1+ 8 —
20,d/2— Ra—1—B),s —a} <s' <s,where l <m <5 — 1.

T SN s l(=A) 2aY | e,
where 2 < p{' <2d/(d —2(m — 1)) and d/(m — ay) < p5' <2d/(d — 2(s' —m+2a— B —
1 +ay)), which is satisfied if max{d/2 — Qe — B —1),s + B+ 1—2a — a1} <s' <s.
To conclude, we remark that combining all of the above estimates on Ji, J», and J3 and sum-

mingover/=1,...,sandi =1,...,n yields (56).
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Step 5: Global existence of solutions for (15) with small initial data. In this step we show that
there exists = 0(d, oj, a;j, n) such that if (21) holds, then we can iterate the argument in Step 2
to obtain a global solution of (15).

Using that s’ < s, from (56) we obtain

d A ~ [LA0N A0S ~
AN I 41220 e < O, aij, mIl(=2) 22" [ 1Y s, (62)
for some ¢ > 0. With (62) in-hand, we can apply [29, Lemma 17] with
F@ =1 Hms, g0 =1=n)2a"@, g, a=6, andb=Cd,a;j,n).

The lemma vyields that if 1Ol s < a/b, then (d/dt)||ﬁN||%]S < 0 and, in particular,
1aN (¢, ) zs < a/b for any t € [0, T]. Therefore, setting § = a/b allows us to iterate the lo-
cal existence result of Step 2 to obtain a global solution.

In the same way, we remark that using the higher-order regularity estimates and considering
aN e L*(0, T; H*t*(R%))", the time of existence of the local solutions from Step 2 can be made
independent of N.

To address the uniqueness and positivity of the solution, we remark that these properties can
be shown in the same way as in Theorem 4. O

6. Proof of Theorem 4

Proof. In the first step we use the uniformity in N of the a priori estimates (19) to pass to the
limit as N — oo, which yields a solution of (1). In the second step we show the non-negativity
of solutions of (1). In the third step we prove the uniqueness of weak solutions of (1). To finish,
in the fourth step, we prove strong convergence of a sequence of solutions of (15) to the solution
of (1).

Step 1: Existence of solutions of (1). Since (19) is uniform in N, by compactness there exists
ueL®0,T; H (R N L*0, T; Ht*([R?))" so that

AN —*u in L0, T; HS (RY))",
AN ~u  in L20, T; HS T (R7)",

where the 4% are the solutions of (15) provided by Theorem 3. Furthermore, by (19) and the
lower semicontinuity of the norms we have that

lull oo 0,7 115 Ry + el 20,7 5 e (Rty) S 1- (63)
We must still pass to the limit N — oo in the weak formulation (49). We first notice that
Wy * VPl —vPu; in L*0, T; L*(RY)), (64)
which follows, e.g. from (24). Furthermore, using the equation (15), we remark that
10:4™ 1l 20,7, oy S 1 (65)
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where we have used (19) and Morrey’s inequality.

Now, for any R > 0, since the embedding of H*(Bp) into L>(Bg) is compact and by (65),
the Aubin-Lions lemma yields & — u; strongly in L?(0, T; L?(Bg)). To finish, we consider the
weak formulation (49) for a test function ¥ € C3°(0, T'; C§° (R%)). Using the observations made
above, we are then able to pass to the limit in the nonlinear term of (49). Standard arguments
ensure that the initial condition is satisfied.

Step 2: Positivity of solutions of (1). Considering ;" = min{u;, 0} as a test function in the weak
formulation of (1), we then obtain

d " 1—a o
a“uill%+2m-<u,~,<—A>“ui)schIH<—A>T<u,-Vﬂu»HiﬂH(—AﬁuiHi (66)
]:

fort € (0, T]and ¢ > 0. To treat the second term on the left-hand side of (66) we use [65, Lemma
5.2]. In particular, we find that for any ¢ € (0, T'], the relation

N B NICSETR®
R4

holds. Combining this observation with (66) and using (70), we find that

d _ a - o X _
i B+ o8 2 0TVl o T,
J=

n
S T PN (CON el MR (CON e 1 N Tl ]
j=1

where 1/p1 + 1/p2 =1/2 and @1 + @p = 1 — . This we then combine with the observation

Il o -
H=A) 2 VU2 I=A) T uy 17, S s g 11
where we require that 2 < p1 <2d/(d —2(s —«1)) andd /(s —a1) < p2 <2d/(d —2w1). We are
able to satisfy these conditions since s > d/2. Plugging-in this relation, using the embedding of
H® — L* for s > d /2, and additionally using the fractional Gagliardo-Nirenberg interpolation
inequality, we obtain

d 5 22,31 2§a7;13) 5 2u=1-p 14+f—a s
Ellu IIZS(IIMII,jv+HIIMIIH?‘ Hllullyyses + lullgs @ llull e )Ilu 5.

From the above estimate and using the regularity of # and non-negativity of initial data, we
conclude that u; > 01in (0, T) x RY, fori=1,...,n.

Step 3: Uniqueness of solutions of (1). We assume that there are two solutions «! and u? of (1)

and consider w; = ull - u? as a test function in the weak formulation of the equation for w;:
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n

d
> 2 lwill3 + =) w3 S Z (=8 (wi VPu} +u?vPw)) |3
i=1 i,j=1 (67)

1-6 20 2(1-6
Z i 37 w13~ 121+ 1 1w g w157,
i,j=1
where 8 = 1/a — 1 and 0; = (1 + B — )/« are defined by applying Gagliardo-Nierenberg
inequality. To obtain (67), we have used (70) and
=2 F w12, 1= FPub 12, S Twil el e

a2 2 2 2
I(=2)% IIIZ,1 I(=4)7 Vﬁwjll,,2 S 1o 1w 11

where 2 < p1 <2d/(d —2a3),2 < pp <2d/(d —2a1),s >d/2— (1 —a),anda| +ar =1 —a.
Integrating (67) in time and applying Young’s inequality gives

||w<r)||2+f||( A)zw(r>||2dr</||w(t>||2 ||u2<r>||;,§’¢l o 1O

e O o + O i1 ) i,

for any t € (0, T']. An application of the Gronwall inequality implies that w; = u 11 - ulz =0a.e.
in (0, 7) x R?, and hence uniqueness of a solution of (1).

Step 4: Strong convergence of a sequence of solutions of (15) to solution of (1). Finally, we
prove the strong convergence of iV to u. We consider the equation for ﬁlN — u; in the weak form,

and use as a test function ﬁlN — u; to obtain

d p - o
gl =B a2 =i < 3 (a0 [ - a)vPay « ],
j=1

=05 i V@Y —up) |5+ [ (8 (@l VE @Y W) = VPN ) [3] =01+ 32+ 35,

We estimate the terms on the right hand-side using (70) and for the first term obtain

J1<Z[I\Vﬁ M) % = 5+ =) 7 P [l — Y 15
j=1

n
+ 3 [TV (=) F i — i),

j=1

n
AN |2 N <N 12(1-6) AN 260 4V 2001 ~N |2
S NN Wy llui = @ 13l — aN 15077 + 1 15 N W5~ i — @ 13

N2 o LN 120 AN 2(1—0
NN 1 i = 13 + | (=20 % i = a2 |5 i — 137,
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where 0 =1/a— 1,601 = (1 + 8 —a)/o and @1 + a2 = 1 — «. For the second term in the similar
way we find that

n

2 aN aN 2(1—62)

R A R e TRl e
Jj=1

2 AN 1120 2(1-6y) AN 20 AN 2001
+ i gys lluj —u; | e lluj — ||2 (177 ||Hr||14/ uj e lluj — il ! ]

’

where 01 = (1 + 8 — o)/ and 0, = B/« < 1. For the third term we have

33 Sl 2| PP 5 Wy — VEGY |2+ llui 13 | VP + Wy — VEaN |7,

i1 [ (=) VPR s Wy — VPR |3 < &Pl 1Y 13 2
see [27] or estimate (24) of Lemma 5. Then applying Young’s inequality yields

n 2@=p)

d R - o R - . R
D gl = a3+ (=) i — MHhs Y [(1+|| N||,2;Y+L|| N

i=1 i=1 i,j=1
2Qa—1-p) 2(14B—a) 20 2(1— a) 2(2a 1)
N 20—1-p AN 2
i s © IIM It A Nl e ™7 4 gl yeste Nl s )Ilui —u; |z

~A—=2 2 AN 12
SRRl (1 R L e

Using the regularity of u and iy, the definition of k, and applying the Gronwall inequality, we
obtain the convergence result in (22). O
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Appendix

We now summarize some facts about fractional Sobolev spaces and the fractional Laplacian
that we use throughout the paper. For a more complete picture see [62] and [66].

Definition 2 (Fractional Sobolev norm H*(R?)). Let « € (0, 1). We define the fractional H®-
seminorm as

_ 2
W13 = [ dedy

|x _ y|d+2a
R4 R4

and remark that the H%-norm is then given by ||V ]| %o := I¥[I3 + [¥/1%a.
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The other fractional Sobolev spaces are defined analogously, see e.g. [62, Section 2]. Throughout
the article the following equivalences are used:

IV(-a)T 1!/I|2~ [[GYNEXATER (=) 2yl ~ [¥ 14 (68)
and can be found in [62, Prop. 3.6]. These are simple consequences of the Fourier analytic defi-

nition of the fractional Laplacian.
For f € H'(R?) and g € H'~%(R?), with o € (0, 1), it holds that

(V g) = (V(=A) T2 ) @D £ oy = (V(=A) @D £ (—A) 17928y (69)

Furthermore, for the fractional Laplacian the classical product rule may be replaced by the fol-
lowing commutator estimate:

I=A) 5 (fe) — @(=A) S f+ F(=D) i), SU=A)T FllpI(=A) T gllpy,  (70)

where 1/p =1/p1 4+ 1/pa with p1, p2 € (1,00) and @ = o1 + v with o1, ap > 0, see [67]. We
often make use of (70) in the form

a d . d
I(=2)2(f)l2 S gl me+sll fll2 + 18l gass I f 1 e fOr s > > and s' > 5o (71

We remark that (71) is a simple consequence of (68), (70), and the Sobolev embedding for frac-
tional Sobolev spaces, which can be found in [62, Theorem 6.5].
We will also make use of the estimate

=22 (f9)ll2 < (Iglloo + 1VElloo) | f 1l 2. (72)
which holds for g € WL (R?), f € H*(R%). To show (72) we use (7) and obtain
2 g(x) —g(y) 2
(=22 (f9)(@)Pdx < lg(=A) % fI3+ ‘PV ﬁf(y)dy‘ dx =J; +J2,

R4 R4

where we bound J; < ||g||%oo I (—A)%fH% and decompose J; as

— 2
st iai= | oy [ %yﬁg)ﬂ yofat [| [ %f(y)dy\ dx.

R4 |x—yl<1 R4 |x—y[>1

Considering the following L'-functions

for |x| < 1, for |x| > 1,

hi(x) = { |x|dFe-t and ha(x) = { |x|d+
0 otherwise, 0 otherwise,

we obtain
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FOI 32
m el [ ([ i) ar S ivelen i3

lx — y|d+a 1
R |x—yl<l
2 | 2 2 2
J22 S lIgllzee /( / md)’> dx S lglzell I3
RY [x—y[=1

The Gagliardo-Nirenberg inequality for fractional Sobolev spaces (see e.g. [68]) reads

”f”WA 1’(]Rd) ~ ”f”'WJl Pl (Rd)”f”' 52, pz(Rd) (73)

fors =0s; 4+ (1 —0)spand 1/p=6/p1 + (1 —6)/p>, where 0 < s1, 52, 1 < p1, p2 <00, and
0 €(,1).
To finish, we remark that for the inverse fractional Laplace operator we have

_ (6)) 1 —d—
(—A)*fx)= d Td 3y =Tocx [, Do) = —x] =20,
K
for d > 2k > 0, and for p < d/(2«), see e.g. [69, Chapter 5, Theorem 1],
||(_A)iKf||Ldp/(d72xp>(Rd) S ”f”LP(Rd)- (74)

We now show that the limit N — oo of the stopping time #V defined in (25) is positive a.s. in
Q. Towards a contradiction let us assume that t¥ — 0 with a positive probability, i.e. P(w € Q :
tv(@) — 0) > g9 > 0. For w € Q s.t. tV(w) — 0, for any & > 0 there exists Ny(w) such that
tN < & forall N > Ny. We remark that by Egoroff’s theorem the N can be chosen uniformly in
o on a set of measure go/2. Letting k < T, we thereby obtain that

~ &0
<||hN — V2 = 5N) . for N = Noand No> 1.
On the other hand, (16) and (17) ensure that for any ¢ > O there exists N such that
P(InN©0) — i (013 = 5y7") <e, for N = N.

From the right-continuity of ||AY — aV ||[20 .1 and since RN — aN ||[0 5,] 1S monotone non-
increasing as 7, \ 0, we obtain that there exists 7j; > 0 such that

IP’(HhN — ANll%O’t] > BN) <2, fort<tyand N> N.
Then taking & < €9/6, k = t)7, and Ny > N , we obtain a contradiction

IP’(||hN ||[0[N]>5N)<P(||hN AR = 3N)<2s, for N > Np.
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