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In this paper we prove the existence of global solutions of the haptotaxis model of cancer
invasion for arbitrary non-negative initial conditions. Uniform boundedness of the solutions is
shown using the method of bounded invariant rectangles applied to the reformulated system of
reaction-diffusion equations in divergence form with a diagonal diffusion matrix. Moreover, the
analysis of the model shows how the structure of kinetics of the model is related to the growth
properties of the solutions and how this growth depends on the ratio of the sensitivity function
(describing the size of haptotaxis) and the diffusion coefficient. One of the implications of our
analysis is that in the haptotaxis model with a logistic growth term, cell density may exceed the
carrying capacity, which is impossible in the classical logistic equation and its reaction-diffusion
extension.
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1. Introduction

Recently, a number of studies were published concerning mathematical models for
cancer invasion, see for example Refs. 1, 2, 4, 5, 18, 32 and 28. Many of these papers
examine the spread of cancer cells using systems of partial differential equations with
cancer cell migration governed by random motility, i.e. diffusion, and the directed
response of the cells to extracellular matrix (ECM) gradients, i.e. haptotaxis. In such
model it is usually assumed that haptotaxis occurs when cells respond to gradients of
non-diffusible molecules and migrate towards their higher concentrations. The ECM
gradients are assumed to be created when the ECM is degraded by the matrix
degrading enzymes (MDESs) secreted by cancer cells.
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The generic mathematical model of this process has the form:

o = D,Au—V - (x(v)uVv) + Fy(u,v,m), (1.1)
O = Fy(v,m), (1.2)
oym = D,,Am + F3(u,v,m) (1.3)

with (¢,2) € (0,T) x Q, non-negative initial conditions and zero-flux boundary
conditions.

This system was proposed by Anderson and colleagues,' to model the interactions
between the cancer cells and the surrounding tissue in the initial, avascular stage of
growth of a solid tumor. The three partial differential equations describe the evol-
ution in time and space of cancer cell density (denoted by u), the extracellular matrix
protein density (denoted by v) and the matrix degrading enzyme concentration
(denoted by m). The two key factors governing migration of cancer cells during
invasion are random motion and haptotaxis. In addition to migration, the model
includes a term describing cell growth (proliferation and death) expressed by a
kinetics function Fj.

Function y is called the sensitivity function and describes the sensitivity of the
cancer cells to the gradient of the ECM (strength of haptotaxis). The rate of hap-
totaxis is assumed to depend on the density of the ECM and is generally chosen as a
decreasing positive function reflecting the observation that sensitivity is lower for
higher densities of the ECM, which is a saturation effect. Using the derivation based
on kinetic analysis of a model mechanism for binding dynamics of the extracellular
ligand to a cell-surface receptor, Sherratt,® proposed the following sensitivity
function:

_ X
x(v) = oo T o) (1.4)

where y > 0 and «, 5y > 0.

The dynamics of the ECM is modeled using an ordinary differential equation,
assuming that there is neither spatial transport of the ECM nor its remodeling and
that the ECM is degraded upon contact with the matrix degrading enzyme (MDE)
secreted by the cancer cells at the rate Fy(v,m) = —awvm. The spatio-temporal
evolution of the concentration of the MDE is assumed to occur through diffusion,
production depending on interaction between cancer cells and the ECM, and loss
through simple degradation, Fs(u,v, m) = —6,,m + p,,uv.

This model belongs to the wide class of the so-called chemotaxis models (for review
see Refs. 13, 12 and references therein). There exists a vast literature concerning
mathematical analysis of different reaction-diffusion-taxis models. In the case of
chemotaxis the cells follow the gradient of the diffusible chemical, which is produced
by themselves, as it is the case in classical Keller—Segel model, or by the external
source, see e.g. Ref. 16. It is well known that in the classical chemotaxis model

solutions may exhibit singularities in finite time, such as explosions, see e.g. Refs. 15
and 25.
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In the case of haptotaxis the movement of cells follows the gradient of the non-
diffusible molecules, which is degraded by cells. In the model of haptotaxis numerical
simulations indicate the existence of bounded solutions, see e.g. Ref. 32. The aim of
this work is to check if indeed the solutions of the model of haptotaxis are uniformly
bounded and how these bounds depend on the reaction terms.

System of a similar structure, however with linear kinetics of the ECM,
Fy(u,v,m) = —am + Bu, constant sensitivity function y, and considering only
spatial transport of cancer cells, i.e. F(u,v) = 0, was studied by Morales-Rodrigo in
Ref. 23. Local existence and uniqueness of the model solutions in Holder spaces were
shown using the Schauder fix-point theory.

Simplified system of two equations with cell kinetics F(u,v) = 0 was also ana-
lyzed by Corrias, Perthame and Zaag,”® who derived L? estimates and proved the
existence of global weak solutions under the assumption that initial data are suffi-
ciently small. In Ref. 33, a model with nonlocal cell kinetics Fj(u,v), given by an
integral term, was studied and the existence of global solutions was shown without
imposing any smallness conditions on the initial data. Models similar to (1.1)—(1.3)
have also been studied in Refs. 3, 17 and 24.

In this paper we study the model (1.1)—(1.3) with nonzero cell kinetics Fj in the
form of a logistic growth law accounting for the competition for space, i.e. Fy(u,v) =
tyu(l —u —v), as it was proposed for the modeling of cancer invasion in Ref. 1 and
follow-up papers. We show that due to the structure of the kinetics system, the
solutions of the model are uniformly bounded for arbitrary non-negative initial
conditions. For non-negative initial conditions, we show the existence of a local weak
solution, which is non-negative. Following a change of variables, we reformulate the
model as a system of reaction-diffusion equations in divergence form with a diagonal
diffusion matrix. Showing a priori estimates for the supremum norm and applying
the method of bounded invariant rectangles to the reformulated system, we prove
uniform boundedness of the model solution and the existence of the global solution.
In addition, we show L? regularity of the model solution, which implies uniqueness.
The paper also includes the proof of higher regularity of the solutions. Analysis of the
model shows how the structure of kinetics of the haptotaxis model is related to the
growth properties of the model solution. Similar analysis can be performed for a
simplified system consisting of two equations. In this case a proof of boundedness of
model solutions in a two-dimensional domain is also presented.

2. Problem Setting

We consider a rescaled system of equations,
0w = D,Au—V - (x(v)uVv) + p,u(l — u —v), (2.1)
0y = —amu, (2.2)

oym = D,,Am — 6,,m + p,,uv, (2.3)
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defined in a bounded domain (0,7") x Q with 9Q C C?, n = dim Q < 3, with initial
conditions

U(O, SC) = UO(LU), U(O, .’E) = UO(LU), m(07 'T) = m()(x)v (24)
and boundary conditions
(D, Vu — x(v)uVv) - v =0,

2.
D,,Vm-v=0. (25)

In the remainder of this work we assume that the diffusion coefficients D, > 0,
D,, > 0 and rates of reaction terms p, > 0, @ > 0, u,,, > 0 and 6,, > 0 are constant.

Remark 2.1. The results of this paper can be extended to the model with space and
time dependent parameters fulfilling certain regularity assumptions.

Definition 2.1. The triple (u,v,m) is called a weak solution of the model (2.1)—
(2.3) with initial conditions (2.4) and boundary conditions (2.5), if w,v,m €
L2(0,T; HY(Q)), u,v € L>((0,T) x Q), us, vy, my € L2((0,T) x Q) such that

T T
/ / (ugpr + D,Vu - Vi, — x(v)uVu - Vo) dzdt = / / (1l —u — v); dadt,
0Ja 0Ja

T
/ / (vps + amuy) dzdt = 0,
0J0

T T
/ / (myp3 + D,Vm - Vs + 6,,mes3) dedt = / / Ly UVP5 dxdt
0J0Q 0JQ

for all p; € L2(0,T; H(Q)), vy € L2((0,T) x ), p3 € L2(0,T; H(Q)), and u, v, m
satisfy initial conditions (2.4), i.e. u — g, v — vy, m — my in L2(Q) as t — 0.

To investigate the existence and boundedness of model solutions, we change the
variables so that we obtain an equivalent system with the first equation expressed in
a divergence form with a diagonal diffusion matrix, similar as in Ref. 7. Substituting
s = (5 Where ¢(v) is a function such that for all v >0, D,¢’ = ¢(v)x(v) and
¢(0) = 1, we rewrite system (2.1)—(2.5) in the following form:

600 = D,V (6(0)75) + 50(0) (o211

u

um + Moy — /’Lu8¢(v) - Muv>7 (26)

O = —amw, (2.7)

Oym = D,,Am — b,,m + p,,s6(v)v, (2.8)

S(Ov IL‘) = SO(x) = u0/¢(v0)v ’U(O, :E) = UO(‘T)) m(oa LE) = mO('T)7 (29)
D,¢(v)Vs-v=0, D, Vm-v=0. (2.10)

Function ¢(v) can be explicitly computed and is given by

1 v
o(v) = exp(— / X(v’)dv/). (2.11)
Du 0
From (2.11) follows that ¢(v) > 1 for all v > 0.
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A system of two equations of similar structure as (2.6) and (2.7), i.e. consisting of a
nonlinear parabolic equation and an ordinary differential equation, was considered in
Ref. 10, where the existence of a unique global solution in L>(0,T; W??(2)) was
shown under the assumption that the solution was bounded. In addition, L? esti-
mates similar to those for chemotaxis equations in Ref. 7 were derived. In the next
step we show the existence of local weak solutions of the system (2.6)—(2.10) in the
following sense:

Definition 2.2. The triple (s,v,m) is called a weak solution of the model (2.6)—
(2.8) with initial conditions (2.9) and boundary conditions (2.10), if s,v,m €
L2(0,T; HY(Q)), v e L>®((0,T) x Q), s;,v;, my € L2((0,T) x Q) such that

T
| | @0iser+ Do) s Vi) dea

T
:/O/qub(v)a Xl(;;) vmep; ddt
T
+ / /Q so()p,(1 - 56(v) — )y dadt, (2.12)
T
//(atvg@ + amup,) dedt = 0, (2.13)
0Ja

T T
/ / (0ymips + D,,V'm - Vs + 6,,mes) dedt = / / L SO(V)vps dxdt  (2.14)
0Ja 0Ja

for all o, € L%(0,T; HY(Q)), vy € L2((0,T) x ), 3 € L*(0,T; H*(Q)), and s, v, m
satisfy initial conditions (2.9), i.e. s — sy, v — vy, m — mg in L*(Q) as t — 0.

Notice that the assumption s € L2(0,T; H'(€2)) implies that D,Vu — x(v)uVv €
L%((0,T) x Q). Moreover, if u and v are bounded, then the existence of weak sol-
utions of the reformulated system in the sense of Definition 2.2 is equivalent to the
existence of weak solutions of the original system in the sense of Definition 2.1.

3. Main Results

In this section the main theorems of the paper are formulated. First, using Schauder
fix-point theorem we prove a local existence of solutions of (2.6)—(2.10).

Theorem 3.1. For sy, >0, my > 0, vy > 0, s9,v9,mg € H'(Q), vy € L®(Q) and a
continuous and positive x, there exists a local in time, non-negative weak solution of
the system (2.6)—(2.10) (in the sense of Definition 2.2).

Next, we show global existence and uniform boundedness of solutions using the
method of bounded invariant rectangles.
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Theorem 3.2. For non-negative and bounded initial data, uy, vy, my € H(Q) and a
continuous and positive function x, there exists a global solution of the system (2.1)—
(2.5), in the sense of Definition 2.1. The solution is uniformly bounded.

After showing additional regularity of global solutions of the system (2.1)—(2.5),
ie. me LU0, T;Wh(Q)) and v e L*(0,T;W4(Q)), ¢ > n = dim(Q2), the uniq-
ueness result is obtained.

Theorem 3.3. Assume that

(i) the sensitivity function x is a positive and continuous function on [0,00) and is
locally Lipschitz-continuous,

(i) enitial conditions satisfy ugy, vy, my € L2(), Vvg, Vmg € L1(Q), where ¢ > n,
n = dim(Q), Vuy € L2(R2) and uy > 0, vy > 0, mg > 0.

Then, a weak solution of problem (2.1)—(2.5) 4s wunique. In addition, v €
L>(0,T;Whe(Q)), m € L0, T, WL4(R2)), where ¢ > n = dim(£2).

Computations in the proofs of a priori estimates are carried for classical solutions
of the regularized system. For details about regularization see the Appendix. Due to
the lower semicontinuity of norms and density arguments on the data, a priori
estimates also hold for the weak solutions of the original system.

4. Existence of a Local Solution

Local existence of solutions of the model is shown using a fix-point theorem. First, we
show a priori estimates for solutions s and m of system (2.6)—(2.10).

Lemma 4.1. For a continuous and positive X, ||v||r(omx0) < C, v>0, s >0,
so € L%(Q), and my € L*(Q) the following estimates hold:

;SOHIP) 101220y + IVsl1 220y + I8 35010

< Cexp(C(||v] L<(0,r)x0) (T + ”mH4L8(0,T;L2(Q))T%))HSO”%2(9)7 (4.1)

SUII?) |72 + IVmI| 220 1)x0) < Cllmoll 72 + C( sup U) I8l Z20m)x)- (42)

; T)x$Q

Proof. Testing Egs. (2.6) and (2.8) with s and m respectively, we obtain

/3,5 v)|s|?) dx—i—/Dud) )WVsVsdx

= %/ﬂq&’atv|s|2d;ﬂ+/ﬂsz¢(v) (a Xl(;;) um

+ iy — uusqﬁ(v) - :u'uv> dﬂj,

(4.3)
l/8t|m|2c1l:1c—|—/DmeVmalac—l—/6mm2dac
2 Jao 0 0

z/u7n3¢(v)vmdx.
Q
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Due to the boundedness of v, ¢(v) is also bounded and s can be used as a test
function in (2.6). Equation (2.7) and non-negativity of s and v yield

/at 0)ls]?) dm+/Du¢ )| Vs? dx+/uu¢< )(s%6(v) + 5%0) di
<Csup\v|/,uu| |2dx + = / ap(v v32|m|d$
1/3
< Csuplel [ s (/ |s|3dx)

y (/Q|s|6da:>1/6</9|m|2dx>1/2. (4.4)

Applying Sobolev inequalities (see for example Ref. 9, Sec. 5.6),
Isllzs) < Cllsll 170y lsll oty
and
llsllzs) < Cllsllmo)

for dim(Q) < 3, and using the inequality ab < 36ya*/3/4 + b*/(463), satisfied by any
b9 > 0, we obtain the estimate

D,(6(0)]s]?) de + /Q Dy6(v)|Vs|? da + /Q 1 d(0)(s36(v) + 52v) da

< Csuplol (/ fi]s]? da +5o/ (IVs]? + |s]?) dz
o) Q

1 2
+3/|s|2d1‘</ |m|2d$) .
65/ )

Choosing ¢, such that D, — C(sup,ryxq v)dy > di > 0, and integrating equations in
(4.3) with respect to t over (0, 7) for any 7 € [0, T] leads to

5 (z¢(v)|5|2dw+/0/ﬂ(d1|V8|2+uu¢(v)(53¢(v)+520))dﬂfdﬁ

g;/Qqﬁ(voﬂso2dx+C<Os:1£)Qv>/0/ |2<1+ (/ |m|2dx> )dxdt

1 T
3 [mldo s [ [ (DyVm]? o+ 6,m?) dod
2 9] 0J/Q
1 g -
SE/\mOde—l—%//|m|2dxdt+u2m//|v¢(v)|2|s|2dxdt.
Q 0JQ 0JQ
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Using the Gronwall inequality (see Ref. 9, Chap. B2), and the fact that ¢(v) > 1 we
conclude that

sup/|s| d:z:—|—// (|Vs]? + |s]?) dxdt
< CGXP<O< sup U) (TJF|m||%3(0ﬁT;L2(Q))T%)>/ |so|? da,
(0,7)x0 0
sup/|m|2d:r+// (|Vm|? + |m|?) dzdt

<C |m0| dx + C sup v//\ |2 dadt.
(0,T)xQ

Using the a priori estimates we prove the local existence theorem. O

Proof of Theorem 3.1. Non-negativity of solutions for non-negative initial con-
ditions sy > 0, vy > 0, and my > 0 is a consequence of the maximum principle. In
order to apply the maximum principle, we consider a regularization of the equation
for v. For details see the Appendix.

The existence of a solution will be proved by showing the existence of a fix-point of
an operator K defined on L3(0,T; L?(2)) by m = K(m) with m being a solution of

00005 = DT - (@(0)7) + 30(6) (0 5 om + , — us(0) ~ o) (45)
0yv = —amu, (4.6)
oym = D,,Am — é,,m + pi,,s6(v)v. (4.7)

Existence and boundedness of v is a straightforward consequence of Eq. (4.6). Indeed,
for a given m € L3(0,T; L%(Q)) a solution v(m) of the problem

0yv = —amu,
v(0) = vy(x)
has the form
v(t,x) = vy(z fm (ra)dr (4.8)

and we conclude that 0 < v < supg vy for m > 0 and v, > 0.

For m € L8(0,T; L*(92)), using estimate (4.1) from Lemma 4.1 and the Galerkin
method, we obtain a solution s(m) € L2(0,T; H'(Q)) N L>(0,T; L?(Q2)) of Eq. (4.5)
(see Ref. 19). Moreover,

I8l < exp( € (5100 ) 7+ Il ™) ) Bl

for any 7 € [0, T)]. Estimate (4.2) in Lemma 4.1 and the Galerkin method also imply
the existence of m € L2(0,T; HY(Q)) N L>(0,T; L2(2)) (see Ref. 19). Using 9;m as a
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test function for Eq. (4.7) and the regularity of mg we obtain

D,
//|8tm|2d:z:+ = sup |Vm| dx<—/|Vm0| dx

0<t<T

>
+C// (608tm|2 6m| |2—|— sup s |2> dxdt. (4.9)
(0.7)x02

In conclusion, m € H'(0,T; L?(2)) N L>(0,T; Hl(Q))

A priori estimates for m and s guarantee that, for a time 7* small enough,
the operator K satisfies K : Bp — By and also K : L8(0,T;L*(Q)) — L>(0,T;
HY(Q) N HY(0,T; L*(Q)) C L¥0,T; L*(Q)). Since L>(0,T; H(Q)) N H'(0, T;
L%*(Q)) c L30,T; L?(Q2)) is a compact embedding (see Ref. 21), we apply Schauder
fix-point theorem and obtain the existence of a solution for ¢ € [0,T*].

To show that the solution has the regularity required by Definition 2.2, we apply
0;s as test function in Eq. (4.5) and obtain

/ / ol d + sup / (Dy6(0)| V]2 + p,5%62(v)) do
) Q

/ / G am\Vs|2dacdt
0

<c / <¢<vo>|Vso|2 + 62(up)s?) da

+C< sup |v|>//(5oa,s|2 7| | )dxdt

+||5||L2(0,T*;L4(S2))+||m||L30(0,T*;L4(52))

T*
B 342 , 4.10
C/o /Qs ¢?(v)mo dxdt (4.10)

The Sobolev Embedding Theorem for dim(2) < 4 (see Ref. 9) yields

llsllz20.7+:230) < Clisllpzor+m1 @)
Ml Lo,z < Cllmllp=or+m51(0))-

Since the last integral in (4.10) is nonpositive, estimates obtained above for s and m
imply boundedness of d;s in L2((0,7*) x ) and Vs in L>(0,T*; L%(Q)).
Boundedness of ;v in L2((0,T*) x Q) directly follows from Eq. (4.6) using d,v as
a test function and taking into account that v < supq vy and [|m/||2(or+)x0) < C.
The regularity v € L2(0,7*; H*(2)) is obtained using (4.8) and the regularity of
vy € HY(Q) and m € L?(0,T*; H(Q)). O

Remark 4.1. Existence of a local weak solution of (2.6)—(2.10) with s,m €
L>(0,T*; H'(Q2)) implies also the existence of a local solution of (2.1)—(2.5)
such that v,m € L2(0,T*; H'(Q)), D,Vu — x(v)uVv € L*((0,T*) x Q), u,v,m €
HY 0,7 L2(%)).
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5. Boundedness and Existence of a Global Solution

Theorem 5.1. For non-negative and bounded initial conditions and a positive and
continuous sensitivity function x, the solutions of the problem (2.1)—(2.5) are
uniformly bounded.

In the proof of this theorem we will use the following result on the regularity of m.

Lemma 5.1. Suppose that my, sy, vy € L>(2), my > 0,50 > 0,v9 > 0, and x is
positive and continuous, then the solution m of the system (2.6)—(2.8) satisfies,

m € LY0,T;C%(Q)), p>n, vz{%}—kl—% for all T € (0,00),

t gl
/ [l con(@ydr < C(t + sup uy + sup m0> ,
0 Q Q

where C and vy are some positive constants.

Proof. In the proof we use the fact that solutions s,v,m are non-negative.
Integration of Eq. (2.6) yields

2 2 _
o, /Q so(v) da + 1, /Q $26(0)? da + i, /Q so(v)vdz = p, /Q so(v) da

Then, the integration with respect to ¢, v < supq vy, 1 < ¢(v) < C, the boundedness
of the domain 2 and Young inequality imply

/sdx < /sqb(v) de < Cit+ / Sop(vg)dx for all t € [0, 00).
Q Q Q

For s € L*>*(0,T; L°(2)) due to the regularity theory for parabolic equations, see
Ref. 14, and Eq. (2.8), we obtain
Imllwia) < erlllmollzi@) + lIsllz=(0z7))

for t € (0,T], q<—2—, oelln
n—ao

) < ealllmollpro) + I8l Lxosz0@))
no
for t € 10,7, < , € [1,n/2].
or [0, 7], = 5 © [1,n/2]
Testing Eq. (2.6) with psf,_l, where s, = s+, p >0, for 1 <p <2 and s, = s for
p > 2, and using Gagliardo—Nirenberg inequality we obtain

o, otwispda+ [ ot ( DL + st ) de

<C/ da:—|— /qb v)vms?}, dx
e (/ mr da:)r (/ ssza:)r—i—C/ s2(v) do
Q0 Q 0
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<C </ m"’ d:zc)r, (/ dex)
Q Q

+ C/Q sho(v) dx

< 05< m’ dx) (/ dew)U + 026/ (sh + |V(3;7,)|2) dx
Q Q Q

—|—C/Q sho(v) dx.

(r=L)p

(] b Vs de %
( )

Here

1 2 1 1 1
p € (0,20] suchthatL<—<1+———, —+—=1.
np+20 r n o r oo

Choosing o = 1 and limit ;. — 0, following integration with respect to time and using
the Lebesgue Theorem, we obtain

r! P
/ d(v)sP dx < Ct (Clt + / ug dx + sup m0> (Clt + / Uy dm)
Q Q ) Q

+Ct + / é(vg)sh da
Q

forallte[O,T],with1<p<%and%<r<1+%forn:3,

1
1<p<2 and 1<r<l+— forn=2.
p

Iterating over p and o and using the regularity results from the semigroup theory, we
conclude that m € L1(0,T; W'r(Q)) and for p such that p > n, using the Sobolev
Embedding Theorem, we obtain

! v
/ Im[|coa o) dr < C<t + sup uy + sup mo)
0 Q Q

for some positive constant ~.

Proof of Theorem 5.1. We consider the equivalent formulation (2.6)—(2.8) and
rewrite Eq. (2.6) in the form
/!
;s = D,As + DUMVUVS +s <a
¢(v)

Now, using the framework of invariant rectangles (see Ref. 31 for Q@ C R! and Ref. 6
for © C R") we show that solutions of the system (2.6)—(2.10) are uniformly
bounded. The theory of bounded invariant rectangles can be applied to this problem
using a regularization argument (for details see the Appendix).

x(v)
D,

UM+ fhy — ,L"1AS¢(U) - [LUU). (51)
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First, we solve the equation for v and obtain

v=1Y(t,x,m) = vo(w)eiaj:m“’z)dt

Non-negativity of m implies that v is uniformly bounded by © = supq vy(z). We
introduce a set

Y={(s,m):0<s<35 0<m<m} (5.2)

Let F, and F,, denote the kinetics of the system (2.6)—(2.8), i.e. Fy(s,m,t) =
S(Q%?Z/Jm + py — pusO(Y) — 1) and F,(s,m,t) = —6,m + pi,5¢(¢)p. To show
that there exist constants s and m < oo such that s(¢,z) < s, m(t,x) < m, for every
t >0, z €, and an initial condition (sy,mg) € ¥, we check that there exist con-
stants s,m such that for s <s, m <m, the vector field [F}, F,,] does not point
outwards X, i.e. F (s, m,t)|,—s <0 and F,,(s,m,t)|—m» <O0.

In turn, since s > 0, the condition for boundedness of s, F,(s,m,t)|,—s <0, is
satisfied if there exists a constant 5 such that

s>

Py (V)
1 a/Dyx()em — p,0 . o
— 50 + e o(0) forallt >0, z€Q.

Properties of the function y imply that 0 < x(¢) < B. Moreover, ¢(v) is always
bounded away from 0. Thus, to find s satisfying (5.3), it is enough to show that the
product m(t, x)y(t, m(t,x)) is uniformly bounded. For this we consider a function of
m given by

f(m) =may = vomeﬂféde forallt >0, z €.
We show that f(m) is an eventually nonincreasing function.

First, we show that the solutions of the model (2.6)—(2.8) can be estimated by the
solutions of the ODEs system with the kinetics corresponding to the supremum over
space of the original zeroth-order terms calculated in the proceeding time points. The
proof is based on the considerations similar to those used in the proof of Theo-
rem 14.16 in Ref. 31.

Lemma 5.2. Let S(t) and M(t) be solutions of the following equations:

as _ S (a sup (Xlgv) v) supm(t,x) + Mu> ;

dt Q u Q
S(0) = sup sy(x),
0
dM
e S sup ((v)v),
0
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with m and v given by system (2.6)—(2.8). Then, the solutions of the system (2.6)—
(2.8) satisfy s(t,z) < S(t) and m(t,z) < M(t) for every x € Q and t € [0, T).

Proof of Lemma 5.2. Notice that S(t), M(¢) are also solutions of

_ ¢'(v) < (X(v)
0,8 = D,AS+ D, ) VoVsS + S astép D

5(0) = sup sy(x), D,VS-v=0,
Q

v) supm(t,x) + ,uu> ,
U Q
a151\4 = DmAM + Nmssup(gb(v)v)a

Q

M(0) = supmgy(z), D, VM- v=0.
Q

For o(t,x) = s(t,x) — S(t) and w(t,z) = m(t,z) — M(t) we obtain

8,0 = D,Ac + D, “Z;/((;’)) VoVo + o (a sup <Xl§") v> supm(t, ) + u)
s (sgp (ng ) supm(t, ) -2 vne, x>> — 1us(56(0) +0),

01 = Db+ iy 50p(6(0)0) = 5 (SUp(6(0)0) — 6(0)0) — .

To show that o < 0 and w < 0 we have to check that (i) F,, <0 for 0 = 0, w < 0 and
(ii) F, < 0 for w =0, o < 0, where F, and F, are zeroth-order terms of the equations
for o and w respectively.

These conditions are fulfilled, since s >0, v >0 and m > 0. Thus, applying
Theorem 14.11, Ref. 31 we obtain that s(¢,z) < S(¢) and m(t,x) < M(t) for all
(t,z) €[0,T] x Q.

Using Lemmas 5.2 and 5.1 we show that m exists globally. Indeed, solving
equations for S and M results in the estimate

t
m(z,t) < M(t) < Citexp <02/ sup m(7, x)dr + C;;t), (5.4)
0 zeQ
for every x € Q, and C}, C, some positive constants depending on the model par-
ameters and initial conditions.

In turn, using the regularity of m given by Lemma 5.1 and the inequality (5.4) we
conclude that m is bounded for every finite time point ¢. Therefore, in every z € Q, m
is uniformly bounded or fé m(7,z)dr is growing. In the latter case, for a given con-
stant « there exists t* € (0, c0) such that féxm(T, x)dr > 1/a. If fé*m(T, x)dr > 1/a,
then the function f(m) is monotone nonincreasing for every ¢ > t*. Moreover, there
exists a constant A such that

mp<A form>0, t>0, zecQ.

This allows us to conclude that there exists s such that the inequality (5.3) is fulfilled
for all ¢ > 0.
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To show that there exists a constant m such that F),(s, m,t)|,,—m < 0, we have to
show that there exists m such that

m Z ,umwdj(w)s/ém' (55)

For s < s and v < v, the right-hand side of the inequality (5.5) can be estimated from
above by £=0¢,,, 5 and therefore any

Hm

m >t
b

U¢max
fulfills the inequality (5.5).

Finally, we conclude that for s, m large enough, the vector field [F}, F,,] does not
point outwards to ¥, and, therefore, 3 is invariant for system (2.6)—(2.10).

Since §, m can be chosen arbitrarily large, we also conclude that the solutions of
the system (2.6)—(2.8) with non-negative initial conditions are uniformly bounded.
Boundedness of s and v imply boundedness of u. Hence we conclude that the solutions
of the original system (2.1)—(2.5) are uniformly bounded for all ¢ € [0, o). |

Remark 5.1. Inequality (5.3) yields the following estimate for u = s¢(v),

uglm(amw_l)

Hy Dy

This shows the dependence of the bound of the solution on the diffusion parameter
D,, and the sensitivity function y. In particular, the above inequality indicates that

increasing value of & ( ) may lead to the increase of bounds for u + v.

Using the boundedness of the solutions, the global existence theorem can be shown.

Proof of Theorem 3.2. For u,v € L*((0,T) x ), Definitions 2.1 and 2.2 are
equivalent. Thus, the existence of global solutions of system (2.1)—(2.5) is equivalent
to the existence of global solution of (2.6)—(2.10). The latter results from a standard
argument based on the theory of bounded invariant rectangles,*! which provides a
priori L™ estimates for the solutions of the system. O

5.1. Uniqueness of solutions

For the proof of uniqueness of solutions of the system considered, we need more
regularity of v. Therefore, we prove the following:

Lemma 5.3. For m >0, m € L0, T;W'(Q)), and vy € W14(Q) where 2 <
q < ¢ the following estimate is fulfilled

sup ||Vv||qu(Q) < C||Vuyl|?, +C bup v/ |Vm|? dzdt.
(0,7) Q

Proof. To obtain the estimate, we differentiate the equation for v with respect to x;,
1<i<n=dim(Q), use |vz[|q’2vrl as a test function, and integrate over t in the
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interval (0, 7) for any 7 € [0,T]. We obtain

[1ea /|v0r|de+//—\v||m 4 dudt
//7oz|v| v, [ dmdt—a//|v1|qmdxdt

Since 0 < v < supg v, for m >0, and also the last integral is non-negative, the
Gronwall inequality yields the estimate for v, for all 1 <7 <n. O

Proof of Theorem 3.3. Lemma 5.1 and Theorem 3.2 imply the existence of a weak
bounded solution of the system (2.1)—(2.5). To show uniqueness we assume that
there exist two solutions of (2.1)—(2.5) denoted by (uy, v, m;) and (uy, vy, my). The
differences @ = u; — us, U = vy — vy, M = My — My satisfy

T
/ /Q (Do + DV, — x(0y)urViVir + (x(on)uy — x(vs)us) VorVipy ) dadt
0
T
- / /Q (i (1 — g — v) — gy (i + 7))oy dadt, (5.6)
0
T
/ / (0:0 + amv, + amy0)py dzdt = 0, (5.7)
0J0Q
T
/ / (0ymps + D, VNV s + 6,,mps) drdt
0JQ

T
://(Nmﬂvl"_umuQﬁ)@Z{dwdt (5.8)
0Jo

for 1,5 € L2(0,T; HY()), ¢s € L*((0,T) x Q). Using 1, v, m as test functions in
Eqgs. (5.6)—(5.8) respectively, we obtain, for any 7 € [0, T7,

1 T
—/|ﬁ|2da:+//Du|Vﬂ|2da:dt
2 /o 0/a
S//X(vl)UIV@Vﬂdxdt—F//(X(vl)ul—X(UQ)UQ)VUQVﬂd:Edt
0/o 0Jo

+ C//(|ﬂ|2+|i}|2+|ﬂ|2)dmdt, (5.9)
0JQ

/|17|2dx§0//(|ﬁ1\2+|17|2)dxdt, (5.10)
Q 0/
l/|m|2dgc+//(Dm|vm|2+(5m|m\2)dgcchs

2 Q 0JQ

SC//(Im\2+|ﬂ|2+|@|2)dmdt. (5.11)
0JQ
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We estimate

/T/ (X(vl)ul X(U2)u2) Y, Uy Vu dxdt
0/
<

([luy = uallz20(0.m) ) + 1 = vall L2001y %))
X |IVvalpoewr (0.0 IV 8 201y < )
1 _

Where%—l—?—%andp:%forn:dim(Q)>2,p<ooforn:2, and p = oo for

n=1.
Applying the Sobolev Embedding Theorem,’ we conclude that

lur — sl p20,m20(0)) < Clltill 20,711 )
llvr = vall 20,700 < ClUlL200,7:01(02))-

For a bounded solution (u,v,m), the semigroup theory (see Theorem 3.6 in Ref. 26,
Chap. 7, p. 215) yields that m € L9(0,T; W14(Q)) for any 1 < g < co. Thus, using
the estimate in Lemma 5.3 we conclude that ||V, ||z (01)x0) < C.

Remark 5.2. The regularity of m can be shown directly using a priori estimates, as
it is done in Sec. 5.2.

Differentiating equation for v with respect to z;, 1 < < n, and using 9, as a test
function, we obtain for 7 € [0, 7]

[ [odo.iraz<c [ [ (o.mlo.sl+ ale.vlle.
0/0 0J/0 -
10, 110, 7 dode + [ [ oo, 5 o
0JQ

< C// <60|amim|2 +3|6$i@|2> dzdt
0JQ 60

+ 6O||m||%Z(O,T;LF(Q))Ha:wvl”%*(o,r;LP’(Q))
+ 80105, 220,720 () 1011 7 0702 -
The Sobolev Embedding Theorem yields
Ml L20.rz0() < ClimllL2.rm1(9)
19l 2 (0,ms20()) < CllOl Lo (0,711 (02))-

Thus, using that ||Vm2||%2<01T;L,)/(Q)) < C and ||Vv1||%x(0)T;L,,/(Q)) < C we obtain

sup /|8zi1~)\2dmSC//60|8zir~rL|2dxdt+C§0 sup /|17|2d;1:
Q 0/a Q

0<t<r 0<t<t

g//60|81im|2dmdt+060//|m|2da:dt.
0J0Q 0J0Q

Adding inequalities (5.9)—(5.11) and using the Gronwall inequality we obtain

sup /(\a|2+|m2+|m|2>dxso,
0<t<T JQ

which proves the uniqueness of solutions.
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5.2. W24 regularity
In this section we show higher regularity of the model solutions.

Lemma 5.4. For m >0, m € L0, T; W24(Q)), and vy € W24(Q) the following
estimate holds:

192600, < 920000y + € s |v|// (IVol2 + [Vm|2 + [V2m|) dad.

Proof. Differentiating the equation for v with respect to x; and x; and testing the
obtained equation with |vz,,z.|q’2vz «, yields, for any 7 € [0, 77,

/|vzx| de < — /|voxz| d:c—l—a—// <1+ sup |v|> Uy, |1 dacdt
0,7)xQ

(0]
+// O[22 + |20 + [ |2 + |, |20) dadt
0

+— sup |v|//\mzm| dxdt — //m|vxz| dxdt.
(0.7)xQ

Since the last integral is nonpositive, applying the Gronwall inequality provides the
required estimate. O

Lemma 5.5. Under the assumptions of Theorem 3.2 and sy, my € W24(Q), the
following estimates hold

sup/|st|qu< C( sup {v m, s}, [|sollw2a@ )
0T

0T
T
+C’< sup {v,m})/ |Vs|?dadt,
(0.7)x%2 0Ja

ap / jmy|? de < c( sup {v,s,m)}, ||50||Wzm>
(0,7)xQ

+C< sup v)//st|qudt
0,7)xQ

Proof. Differentiating Eqs. (2.6) and (2.8) with respect to ¢, we obtain
¢(v)dFs = D,V - (¢(v)9,Vs) + D, V(¢'(1)0;0V's) = dy5¢’ (v)yv
x(v)
D

u

T (0,56(0) + 59(v)'010) (a o+ iy — 1y59(0) — M)

(%

#5600 (- (000 + x(0)@om + 0m)

— 1y (04sP(v) + 8@’ (v)Opv) — uuatv> (5.12)
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and
a?m - DrrLAatm - 6matm + M7n8ts¢(v)v + Mmsd)l(v)atvv + u7rLS¢(U)8tv' (513)

Testing Eq. (5.12) using a test function |9,s|? 29,s yields, for 7 € [0, T],
1
[ (Lot + - vpsives o) s

= —//Du¢’(v)8ths\6ts|q’QBtVsdmdt

// (—1) v)0,v|0, 8|1 dadt
0

+ [ [ atrote) + sl 2050 0w
x (%(:)vm 4 (1 = s(v) — v)) dudt
+ /0 T/Qs|ats|q2a,,s¢(v) Diu (x' () d,vvm + x(v)(dyvm + vd;m)) dzdt
- /0 /Q 5105|920, 6 (0) 1, 9y $(v) + 56/ (0)Dyv + Oy) dacdt.
We estimate
[ (ool + o= 0Dis() - D joradIvos o0l ? ) s
+f / 311 76(0) 26 (0)s + v) dadt

// 1 ( _2|5t|u3|vs|q> ddt
Q - q q
+/O/Q|st|q¢(v)(0q;1+axlgz)v(q—;1m+s)

// as(v ( ( vm+x()vm+x(v)m))qudt
//Q asd(v)mv) < < 1+s+s¢() )))qudt

1 T
+20 / / (sllollx () [16(0)] | .
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In turn, testing Eq. (5.13) with a test function |0,m,|?20,m yields
T
[ (G odmls-+ Dota = 1T + d )
0JQ
< [ (o tllsde 4 domr 4 5(6(0) -+ oo 1) ot

//C’l< sup vls| T+ |my|?+ sup {s, v}|m|q> dzdt.
0,1)x0

Combining both inequalities and using the Gronwall inequality supplies the esti-
mates in the lemma. The boundedness of [|s;(0)||z.(q) and [|m;(0)|zq) follows from
regularity of s, and my. O

Lemma 5.6. Under the assumptions of Theorem 3.2, the following estimates hold

sup || Vs|| 74, < C( sup {v, m78}> (1 + sup [Vol[ 74, + sup |5t||%q>7
(0,7) (0,7)xQ (0,7)

sup [|Asl|7, < C( sup {v,m,s} || 1+ sup V0]l 3%, + sup IstII%q>7
(0.T) (0.7)%xQ (0.T)

(s
C<<OS}JEQ{” m, 5}> (1 +sup ||mt||L'1>
)

sup [[Am]|?, < C( sup {v,m,s}
(

IN

sup ||V 7,
o0.1)

1+ sup ||mt||Lq>
(0,T) 0,1)xQ

Proof. From Eq. (2.6) we obtain
¢'(v)1
Aslidr < C/ (6 s
Q| | Q0 12 P(v)4

o [1s0((5) Ccorome + us1 + s660) + o)1)

Using boundedness of the solution we obtain

¢/
[1asjrde < 0<||ats|m AL NI AT )
: o)

|Vv|q|V3|q> dx

+C (( sup {v,m, s}) . (5.14)

0,7)xQ

Then, using the Gagliardo—Nirenberg inequality (e.g. Ref. 9, Sec. 5.6.1) provides the
estimate,

2 2 2
[Vsllg < sup_|s|??]s [ sc( sup |s|><|| 145y + 48] ¥50)-
(0,T) xS (0,T)xQ
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Thus, inequality (5.14) yields

2 2
1481740 SCII@SIQM(Q)JFC((SUP {v, 5}>||vv||qu (lAs] ¥y + lIsl ¥iia))

—|—C< sup {v,m,s}).
(0,7)x

Furthermore,

2
1As]| ¥t

< C’( sup {v s}) ||Vv||L2q +C sup {v,s}
0.1 0.T)xQ
1/2
(HV'UHpq Q) + ||VU||L2,1 0) + HVUHLZ’I Q) + \|5t8||%q(g) -+ sup m)
(0,7)xQ

and from the Gagliardo—Nirenberg inequality
IVsl| Fh) < © S {Jol, [s[}(IV0l 2 gy + 1151 )

+C sup {[v],|m/, [s|}.
(0,T)xQ

The equation for m yields
|Am|? < C(|0ym|? + 6%, |m|? + pfylvp(v)s]?).
Using again the Gagliardo—Nirenberg inequality results in estimates for m

va”uq Q) < C(HmH ) + ||Am||Lq(Q )

q
< C||8tm||%q(9) +C< sup {s,v,m}) : |
(0,7)x0

Iterating the estimates in Lemmas 5.3—5.6 in respect to ¢, we obtain the L>(0, T}
W24(Q)) regularity of the solutions.

6. Boundedness of the Solutions of a Reduced Model

In several modeling cases system (2.1)—(2.5) was reduced to the two-equation sys-
tem. Here we show that boundedness results hold also for the reduced system. Let us
assume that the matrix degrading enzyme has only a local influence on the tissue, i.e.
D,, =0, and its dynamics is faster than that of cancer cells and of the ECM. This
leads to reduction of the model to

Owu = D,Au~+ V(xuVv) + p,u(l —u —v),

O = —auv?.
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A model of this form was examined by several authors (see for example Refs. 7, 22
and 27). Changing variables, as in three-equation model, leads to a reformulated
model of the form

¢'(v)
¢(v)

3t8 =

VoVs + s(ag’(v)sv? + 1, — 1,56 (v) = p,0), (6.1)

O = —asp(v)v?. (6.2)

Equation (6.1) differs from Eq. (2.6) only in the form of the zero-order terms.
First we show the regularity of the solution s. Here we assume that 2 is a two-
dimensional domain.

Lemma 6.1. Assumen = 2, sy,vy € L>®(Q), sg,vy € HY(Q), sy, vy non-negative and
X continuous and positive. Then, it holds

(53225<:c(}up50+< +1»(fu><1+uﬁif2@o+.ﬂf»df)+1)7),
t € [0,00),

where 0 <y <8, f(t) = |ls§d(v)|lz1 o) exp(cit? + eot), and s is a solution of the
model (6.1)—(6.2).

Proof. Due to the maximum principle, the solutions are non-negative for
nonnegative initial conditions. Then, the equation for v provides v(z,t) < supg vg(x).
The Gagliardo—Nirenberg interpolation inequality for n = 2 implies

1/2 1/2
Il < ellsll i Isll Loty (6.3)

From equation for s and since ¢(v) > 1 we obtain that

"
C

/sdxg/uodm—l—Ct, //SQdmdtSt/uOdw—i——tQ.
0 0 0Ja Q 2

Using s as a test function in Eq. (6.1), the fact that ¢(v) is bounded for a bounded v,
¢'(v) = x(v)p(v)/D,, and the estimate (6.3) we obtain

9, / 6(v)s? dz + / Dod(0)| V|2 da + i, /9 6(v)25° do
< 55 [ X002 da [ o(0)5% da
2 /2
(/¢ 2d9c> (/stz) +uu/g¢(v)82dx
< c2%</ﬂ¢(v)s2dx>2+c4a/ﬂvs|2da:+uu/g¢(v)s2dx.
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The last estimate with c,6 < D,, implies

at/ﬂ ¢(v)s?dx < Cs (/Qcé(v)s2 dx)2 + MH/Q ¢(v)s? d.

For y = [, ¢(v)s? dz we obtain

p ,
?y <Cly+1dt and y< y(0)eChrm = yg)e@raen = p.
Thus

t
/\s|2dx+//(|Vs|2+|s|3)da:d7
Q 0JQ

t
<o [ (P + 50N+ | sside (6.4)
Testing Eq. (6.1) with d;s and using (6.3) we obtain
1 o} ,
/Q O(0) 5] d + 5 /ﬂ D,6()|Vs|?dr + /Q D' ()$(0)0?s|Vs| da
i [ o009 do + 252 [ 5000t da
(0%

<

X(0)6(0)v2520,5 d + 1, / (050, 5z
Du (9] o)

< 015/ |0;s|? dx + 0375/ 52 da:/ |Vs|?dx + 02,5/ d(v)s? du.
Q 0 Q Q

Integration with respect to ¢t and estimate (6.4) imply
t
[ [ ewost dsar+ [ (DowIVsl? + 6% da
0/0 Q

¢
sy X0 oy
+/0/Q¢(U)Duvs dxdr

<or 1+ [ (2 + sieyar)
+ [ DuoteoIVsildo + [ ofu)?shda,

Using similar approach as in Ref. 20 we show the estimate for sup(g).q s. Choosing
v =1n(s)(s — k), with k > supq sy as a test function, where

n'(s)(s — k) ’
T <k, /k n(r)(r —k)dr >

0< n(s)(s —k)* for s >k,

2+ &y
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we obtain

S

o /Q 4(v) /0 0 — k), drd + o /Q &/(0) v $(v) 5 / n(r)(r — ), drda
+ [ D,p(v)n(s)VsVsdr + / D, p(v)n'(s)(s — k) VsVsdx
Q Q
o /Q $262(W)n(s)(s — k), da + o, /Q so()on(s)(s — k). do
—a / & (0)$(w)v25(s — k+ k)n(s)(s — ). d + pu, / 6(0) s(5) (5 — k), de.
Q Q

The first term on the right-hand side can be estimated using the Gagliardo—Niren-
berg inequality

o / &' (0)6(0)02s(s)(s — k)2 do

<c, ( [ d)// ( [ - k)+3/2377(8))3/2 dx) "
e[ ra) ([

([ 19( = Ben 2 + 1t dm)l |

< Co / (n($)|Vs|? + s2(s)) di + Cy(ky + 1)

y (/953(1:6)1/2(/93217(3) d:c).

For n(s) = s272((1 — %), )("+2a=n=2 and h(s) = s2(((1 — %), ) (*+2)a=)1/2 we obtain

¢
sup/th:er// |Vh|%dxdr
(0,6) JQ 0/ Q
3 ! k -2
< Cq*{ sup |[s]| 750y +1 //|h|2(<1——> ) dxdr.
(0,t) 0/ S/ +

The Sobolev Embedding Theorem implies for k = (n +2)/n

t 1/(kq) 4 1/q t 1/q
([ )™ (cwat ) ([ o)
0J0Q (0.t) 0JQ

where w=s2(1— 52 dy=((1- %)) 2dedr. Choosing ¢q=1,k,k2, ...,

S

w7, ... and letting 7 — oo we obtain, for some constant 0 < v < 8,
sup s?((1—k/s),)"*?
(0,6)xQ2

< (f(t) (1 + /Ot(fZ(T) + f(T))dT) + CQ>W/0t/952dxdT.
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Thus

swp s <2h40(70(1+ [ (70 + fear) +0)W||s||m(<0,t>m)

t
(0,t)xQ 0

t
0

< 2w+ €G-+ ) (£ (1+ [ (200 + foar) ) "o

We solve ordinary differential equation for v, i.e. v(t,z) = (¢, z, s), and obtain

o' ()
(8

To show uniform boundedness of solutions for this system, we have to ensure that
there exists s such that

5(ad’(v)592 + py — p30(h) — ) <0 forallt >0, z€Q.

Using expression for ¢/(1) and positivity of 5, we obtain an equivalent inequality,

8t3 = DuAS — Du

VVs + s(ag (V)si? + pi, — pu s () — ).

(o0 + = ms6(6) ~ ) <0,

which can be rewritten as
56(0) (1 = X (W)?) 2 (1= 0).

Since v is positive, it is enough to show that there exists s such that

50(¢) (uu - %X(W/}?) > - (6.5)
Using Eq. (6.2) we obtain
O = —asv’p(v) < —asv?,
that yields
()

P(t,x,s) =v(t,x) < ; .
( ) =vlt) 14 vy(z)a [y (T, z)dr

The estimate of Lemma 6.1 implies that s is bounded in any finite time point ¢ and
therefore, s is uniformly bounded or fé s(7,z)dr is growing with respect to time t.
Boundedness of 0 < xy < B (see assumptions on y, Theorem 3.1) implies that for
every point x € () there exists t* € (0,00) such that

vg

)

I —ng2>,u _%p > 6
“ D -7 D 1+ vy fés(r,x) dr)? —
for some 6 > 0. In turn, the last inequality yields that there exists s such that
inequality (6.5) is fulfilled. This proves the boundedness of the solution (u,v) of the
reduced system.
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7. Discussion

In this paper we have shown global existence of the solutions of a model of cancer
invasion given in the form of a nonlinear reaction-diffusion-taxis equation coupled
with an ordinary differential equation and a reaction-diffusion equation. The model
was proposed by Anderson and colleagues,’ to describe cancer cell proliferation,
diffusion and movement along the gradient of the density of adhesive components of
extracellular matrix. 1t includes key features of the growth and invasion of a solid
tumor in its avascular stage, i.e. cell proliferation, random motility, haptotaxis and
extracellular matrix degradation. The model, or its discrete counterpart, were
applied by many authors to study different aspects of cancer invasion.?*?°32:33:28
We have shown that the solutions of the model are non-negative and uniformly
bounded for non-negative initial conditions. Boundedness of solutions has been
shown using the framework of bounded invariant rectangles applied to the trans-
formed system in the form of reaction-diffusion equations with a convection term.
Since the change of variables leads to a model with modified zeroth-order term in the
first equation, the bound on the solutions can be different from the bound given by a
zeroth-order term of logistic type. It is observed in the numerical simulations, see
Fig. 1 and the simulations presented in Ref. 32, that sum of concentrations u + v
might be larger than the threshold given in the logistic growth function (the carrying
capacity). The analysis performed here explains this observation. The zeroth-order
term in the reformulated parabolic system includes an additional non-negative term,
which depends on the rate of ECM degradation by the MDE, and also on the ratio of
the sensitivity function to the diffusion coefficient. Therefore, the sum of the solutions
u + v may exceed the bound given in the logistic growth term. Moreover, we see that
if the sensitivity function is large in comparison to the diffusion rate, i.e. haptotaxis is

o
>
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Numerical simulations of the model (2.1)—(2.3) showing the evolution of the density of cancer cells

(u) and the concentrations of ECM (v) and MDEs (m) in different time points. The figures show that in
some spatial points z the sum of concentrations u + v exceeds the carrying capacity 1. Simulations were
performed for the set of parameters D, = 0.00035, D,, = 0.00491, x, = 0.0285, p, = 1, u,, = 0.5, « = 8.15,
O = 0.5.
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relatively strong, the solution u describing cancer cell concentration may itself grow
above the logistic bound.

The logistic zeroth-order term in the first equation corresponds to the assumption
that the proliferation of cells ceases when space is exhausted. If u + v = 1, there is no
more proliferation, and if w4+ v > 1, the “proliferation term” becomes negative. It
could be interpreted as cell death occurring if the cell concentration is too high. In
this sense, there is competition between the cells and the ECM. However, cells may
still migrate to the area of high density of cells and ECM. To prevent this, it is
possible to consider a model with a nonlinear haptotaxis term and a sensitivity
function x vanishing when u + v > 1, similarly as it was done by Hillen and Pain-
ter.!! This corresponds to the assumption that haptotaxis is switched off at high cell
densities by a population-sensing mechanism. The analysis performed in this paper
indicates that modeling of cell proliferation is a more delicated issue than frequently
believed. Specifically, assuming the logistic growth term in the model with haptotaxis
has different implications than in the models of reaction-diffusion equations.

Appendix A. Regularization of the System

In order to prove a priori estimates and to use the maximum principle and the
framework of invariant rectangles we have to regularize the system. The equation for
v can be regularized by the convolution as follows:

Of = —awv®(m® x p°)

for some regularizing kernel p° = E%p(f) with p € D*(RY), fRdiac = 1. Since the
Neumann boundary conditions are assumed, m can be extended into a domain €2,
Q cc Q, with zero at 9Q using reflection and truncation. This implies that the
convolution m?® * p® is defined in the whole 2. Here p® can be chosen as an
approximation of the Dirac distribution. The initial conditions are approximated by
smooth functions. Then, the system of parabolic equations admits a unique smooth
solution.

Since a priori estimates for the approximation (u?, v¥, m¢) hold uniformly in €, we
can pass to the limit in the approximate equations and obtain the solution (u, v, m) of
the original system that remains non-negative and bounded.
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